VnmrJ Command and Parameter Reference

Varian NMR Spectrometer Systems
With VnmrJ 1.1D Software
Pub. No. 01-999252-00, Rev. A0604

VnmrJ Command and Parameter Reference

Varian NMR Spectrometer Systems With VnmrJ 1.1D Software

Pub. No. 01-999252-00, Rev. A0604

VnmrJ Command and Parameter Reference Varian NMR Spectrometer Systems
With VnmrJ 1.1D Software
Pub. No. 01-999252-00, Rev. A0604
Revision history:
A0604 - Initial release

Technical writers: Dan Steele
Technical editor: Dan Steele
Copyright ©2004 by Varian, Inc.
3120 Hansen Way, Palo Alto, California 94304
1-800-356-4437
http://www.varianinc.com
All rights reserved. Printed in the United States.
The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in this document are not intended to create any warranty, expressed or implied.
Specifications and performance characteristics of the software described in this manual may be changed at any time without notice. Varian reserves the right to make changes in any products herein to improve reliability, function, or design. Varian does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Inclusion in this document does not imply that any particular feature is standard on the instrument.

UNITY INOVA, MERCURYplus, Infinityplus, and VnmrJ are trademarks or registered trademarks of Varian, Inc. in the United States and/or other countries. Sun and Gigabit are trademarks or registered trademarks of Sun Microsystems, inc. in the United States and/or other countries. Other product names are trademarks or registered trademarks of their respective holders.

Table of Contents

Notational Conventions

A
aa
abort
abortallacqs
abortoff
aborton
abs
AC1S-AC11S
ACbackup
ACreport
acos
acosy
acosyold
acqdisp
acqi
acqmeter
Acqmeter
acqstat
Acqstat
acqstatus
acquire
add
addAstack
addfids
addi
addnucleus
addpar
addparams
addprobe
addrcvrs
Abort acquisition with error (C) ... 38Abort acquisition with error (C)38
Terminate action of calling macro and all higher macros (C) 39
Reset acquisition computer in a drastic situation (C) 39
Terminate normal functioning of abort in a macro (C) 39
Restore normal functioning of abort in a macro (C) 39
Find absolute value of a number (C) 39
Autocalibration macros (M) 40
Make backup copy of current probe file (M) 40
Print copy of probe file after autocalibration (M) 40
Find arc cosine of number (C) 40
Automatic analysis of COSY data (C) 40
Automatic analysis of COSY data, old algorithm (C) 41
Display message on the acquisition status line (C). 41
Interactive acquisition display process (C) 41
Open Acqmeter window (M) 42
Open Acqmeter window (U) 43
Open Acquisition Status window (M) 44
Open Acquisition Status window (U) 44
Acquisition status (P) 45
Acquire data (M) 47
Add current FID to add/subtract experiment (C) 47
Add stack 48
Add a series of FIDs together (M) 48
Start interactive add/subtract mode (C) 48
Add new nucleus to existing probe file (M) 49
Add selected parameters to current experiment (M) 49
Add parameter to current probe file (M) 51
Create new probe directory and probe file (M) 51
Combine data from multiple receivers (M) 52

adept
adept Automatic DEPT analysis and spectrum editing (C) 52
aexppl Automatic plot of spectral expansion (M) 52
ai Select absolute-intensity mode (C) 53
aig Absolute-intensity group (P) 53
aipAnnotation Annotation template name (P) 53
aipAutoLayout Turn automatic layout on or off (P) 53
aipBigFrame Toggle full-screen mode (C) 53
aipClearFrames Erase all images in displayed frames (C) 54
aipClickedFrame ID of clicked frame (P) 54
aipCurrentKey Image key of currently drawing frame (P) 54
aipDeleteData Unload data (C) 54
aipDeleteFrames Clear the graphics screen (C) 54
aipDeleteRois Delete selected ROIs (C) 55
aipDisplay Display specified images (C) 55
aipDisplayByKey Display a loaded image in a given frame (C) 56
AipDisplayMode Selection mode of image display (P) 56
aipDupFrame Move an image to another frame (C) 56
aipExtract Extract slices from a 3D data set (C) 56
aipExtractMip Extract MIP from a 3D data set (C) 57
aipGetSelectedFramesGet the location and size of selected frames (C) 57
aipFlip Reflect selected images (C) 57
aipGetDataKey Get the key of a loaded image (C) 57
aipGetFrame Get frame index (C) 58
aipGetFrameToStart Get a frame to start image display (C) 58
aipGetHeaderParam Get parameters from FDF header (C) 58
aipGetImgKey Get image keys (C) 58
aipLoadDir Load image data (C) 58aipLoadFileaipLoadRoisLoad image data (C)59
Load ROIs from a file to selected frames (C) 59
aipMathExecute Execute an Image Math Expression (C) 59AipMovieMode
Selection mode of movie (P) 59
aipMovieSettings Size of movie (P) 59
Get number of times an image is loaded (C) 60
Get number of loaded images (C) 60
Refresh image display (C) 60
Rotate selected images (C) 60
Print image keys for debugging (C) 60
Save the auxiliary header files (C) 60
Save selected ROIs to a file (C) 61
Save intensity scaling (C) 61
Query whether aip owns the graphic area (C) 61
Segment images (C) 61
Select or deselect image frames (C) 62
Select or deselect ROIs (C) 62
Enable debugging messages (C) 62
Set the image math expression template (C) 62
Set AIP mouse state (C) 63
Modify intensity scaling (C) 63
Load and display images of a given directory (M) 64
Update Point Info and Line Profile pages (C) 64
Split the graphics display area into frames (C) 64
Write ROI statistics to disk (C) 65
Update the Statistics page (C) 65
Save image data (C) 65
Update or rebuild the Review Queue list (C) 66
Set alfa delay before acquisition (P) 66
Automatic lock control (P) 66
Alternate slices (C) 67
Independent control of amplifier mode (P) 67
Amplifier type (P) 68
Calculate standard peak height (M) 68
Generalized curve fitting (C) 69
Print out "all" parameters (C) 70
"All" parameters display control (P) 71
Plot parameters automatically (M) 71
Automatic phase adjustment of spectra (C) 71
Automatic phase of zero-order term (C) 72
Auto phasing for Bruker data (C) 72
Perform optimized automatic phasing (M) 72
Application mode (P) 72
Application type (P) 73
Set up parameters for APT pulse sequence (M) 73
Set up parameters for APT experiment (M) 73
Change parameters for APT experiment (M) 73
Automatic processing for APT spectra (M) 73
Calculate arc cosine of real number (M) 74
Calculate arc sine of real number (M) 74
Calculate arc tangent of real number (M) 74
Easy entry of linearly spaced array values (M) 75
Parameter order and precedence (P) 75
Dimension of experiment (P) 76
Find arc sine of number (C) 76
Make plot resolution along f_{1} and f_{2} the same (M) 76
Assign transitions to experimental lines (M) 76
Acquisition time (P) 77
Find arc tangent of a number (C) 77
Find arc tangent of two numbers (C) 77
atcmd Call a macro at a specified time (M) 78
atextattvalauAuCALch3iAuCALch3i1AuCALch3oh
AuCALch3oh1
Aucalibz0
AuCdec
AuCgrad
AuCobs
audiofilter
Aufindz0
Augcal
Augmap
Augmapz 0
AuHdec
AuHobs
Aumakegmap
AuNuc
auto
auto
auto_au
Autobackup
autodept
autodir
autogo
autolist
autoname
autoname
autora
autosa
autoscale
autostack
autotest
autotime
av
av1
av2
averag
awc
awc1
awc2
axis
axis
axisf

B

B0
bandinfo
banner
bc
beepoff
beepon
binom
bootup
boresize
box
boxes
bpa

Append string to current experiment text file (M)............................. 79
Calculate pulse width (M)... 79
Submit experiment to acquisition and process data (M)................... 79
Set up autocalibration with CH3I sample (M).................................. 80
Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M).. 80
Set up autocalibration with Autotest sample (M) 80
Get autocalibration with Autotest sample (M) 81
Automatic Hz to DAC calibration for Z0 (M)................................... 81
Carbon decoupler calibration macro (M)... 81
Carbon/proton gradient ratio calibration macro (M) 81
Carbon observe calibration macro (M)... 81
Audio filter board type (P)... 82
Automatic adjustment of Z0 (M)... 82
Probe gcal calibration macro (M) .. 82
Automated gradient map generation (M)... 82
Automatic lock gradient map generation and z0 calibration (M) 82
Proton decoupler calibration (M).. 83
Proton observe calibration macro (M) ... 83
Auto lock gradient map generation (M) ... 83
Get parameters for a given nucleus (M) ... 83
Prepare for an automation run (C) ... 83
Automation mode active (P) .. 84
Controlling macro for automation (M) .. 84
Back up current probe file (M) .. 85
Automated complete analysis of DEPT data (M) 85
Automation directory absolute path (P).. 85
Start automation run (C) ... 85
Set up and start chained acquisition (M) ... 86
Create path for data storage (C).. 86
Prefix for automation data file (P) .. 87
Resume suspended automation run (C) ... 88
Suspend current automation run (C).. 89
Resume autoscaling after limits set by scalelimits macro (M) 89
Automatic stacking for processing and plotting arrays (M) 89
Open Auto Test Window (C) .. 89
Displays approximate time for automation (M) 89
Set abs. value mode in directly detected dimension (C)................... 90
Set abs. value mode in 1st indirectly detected dimension (C) 90
Set abs. value mode in 2nd indirectly detected dimension (C)......... 91
Calculate average and standard deviation of input (C)..................... 91
Additive weighting const. in directly detected dimension (P).......... 91
Additive weighting const. in 1st indirectly detected dimension (P). 92
Additive weighting const. in 2nd indirectly detected dimension (P) 92
Provide axis labels and scaling factors (C)....................................... 92
Axis label for displays and plots (P)... 92
Axis label for FID displays and plots (P) ... 93

Magnet main static field (P)... 95
Shaped pulse information for calibration (M) 95
Display message with large characters (C).. 96
1D and 2D baseline correction (C) .. 96
Turn beeper off (C) .. 97
Turn beeper on (C)... 97
Set up parameters for BINOM pulse sequence (M) 98
Macro executed automatically (M)... 98
Magnet bore size (P) .. 98
Draw a box on a plotter or graphics display (C)............................... 98
Draw boxes selected by the mark command (M) 99
Plot boxed parameters (M) ... 100
browser
bs
btune

C

c13

c13p
calcdim
calfa
calibflag
calibrate
capt
Carbon
cat
cattn
cd
cdc
cdept
cdump
celem
center
centersw
centersw1
centersw2
cexp
cf
cfpmult
change
Cigar2j3j
cla
cla
clamp
cleanexp
clear
cleardosy
clearStacks()
clfreq
clindex
clradd
color
combiplate
combishow
compressfid
config
confirm
Console
contact_time
continueMovie
conv2ta
convert
convertbru
copy
cos
cosy
Cosy
COSY
cosyps
cp
cp
cpmgt2

br24

Set up parameters for BR24 pulse sequence (M)
100

Start Image Browser application (U) ... 100
Block size (P) 101
Tune broadband channel on MERCURYplus/-Vx (M)................. 101

Automated carbon acquisition (M) .. 104
Process 1D carbon spectra (M)... 105
Calculate dimension of experiment (C)... 105
Recalculate alfa so that first-order phase is zero (M) 105
Correct systematic errors in DOSY experiments (P)...................... 106
Start a dialog for autocalibration routines (M) 106
Automated carbon and APT acquisition (M).................................. 106
Set up parameters for 13C experiment (M) 107
Display one or more text files in text window (C) 107
Coarse attenuator type (P)... 107
Change working directory (C) .. 107
Cancel drift correction (C).. 107
Automated carbon and DEPT acquisition (M) 108
Prints the current graphics screen (M).. 108
Completed FID elements (P) .. 108
Set display limits for center of screen (C) 109
Move cursor to center of spectrum (M) .. 109
Move cursor to center of spectrum in 1st indirect dimension (M) . 109
Move cursor to center of spectrum in 2nd indirect dimension (M) 109
Create an experiment (M)... 109
Current FID (P) ... 110
Calculate first-point multiplier for 2D experiments (M) 110
Submit a change sample experiment to acquisition (M).................. 111
Convert the paramaeter to a CIGAR2j3j experiement (M) 111
Clear all line assignments (M) ... 111
Calculated transition number (P) .. 111
Calculated transition amplitude (P) .. 111
Remove old files and directories from an experiment (M)............. 112
Clear a window (C)... 112
Delete temporarily saved data in current subexperiment (M) 112
Clear stack (C) .. 112
Calculated transition frequency (P) .. 113
Index of experimental frequency of a transition (P) 113
Clear add/subtract experiment (C).. 113
Select plotting colors from a graphical interface (M)..................... 113
View a color map for visual analysis of VAST microtiter plate (U)113
Display regions (red, green, and blue) in CombiPlate window (M)114
Compress double-precision FID data (M,U) 114
Display current configuration and possibly change it (M) 114
Confirm message using the mouse (C) ... 119
System console type (P).. 119
MAS cross-polarization spin-lock contact time (M) 119
Continue movie in either forward or backward direction (C) 120
Convert imaging 3D transform to absolute value (U) 120
Convert data set from a VXR-style system (M,U) 120
Convert Bruker data (M,U).. 120
Copy a file (C) .. 123
Find cosine value of an angle (C) .. 123
Set up parameters to a COSY pulse sequence (M).......................... 124
Convert the paramaeter to a COSY experiement (M) 124
Change parameters for COSY experiment (M) 124
Set up parameters for phase-sensitive COSY pulse sequence (M). 124
Copy a file (C) .. 124
Cycle phase (P) ... 124
Set up parameters for CPMGT2 pulse sequence (M) 125

cpos cvt

 Convert data set from a VXR-style system (M,U) 125
 cpx
cr
cr1
cr2
crcom
create
creategtable
crf
crl
crl1
crl2
crmode
crof2
cryoclient
ct
ctext
curecc
curexp
curscan
curwin
cutoff
cyclenoe
cylbr24
cylmrev
Cz
D
do
d1
d2
d2pul
d3
d4
DAC_to_G
da
daslp
date
daxis
Dbppste
Dbppsteinept
dbsetup
dbupdate
dc
dc2d
dcg
dcon
dconi
dconi
dconn
dcrmv
ddf
ddff
ddfp
ddif
dds
dds_seqfil
debug
deccwarnings
decomp

cptmp

Copy experiment data into experiment subfile (M) 125
Create pbox shape file (M) 125
Cursor position in directly detected dimension (P) 126
Cursor position in 1st indirectly detected dimension (P) 126
Cursor position in 2nd indirectly detected dimension (P) 126
Create user macro without using text editor (M) 126
Create new parameter in a parameter tree (C) 127
Generate system gradient table (M) 128
Current time-domain cursor position (P) 128
Clear reference line in directly detected dimension (M) 129
Clear reference line in 1st indirectly detected dimension (M) 129
Clear reference line in 2nd indirectly detected dimension (M) 129
Current state of the cursors in df, ds, or dconi programs (P) 129
Recalculate rof2 so that $\mathrm{lp}=0$ (M) 130
Start the CryoBay Monitor program (M, U) 130
Completed transients (P) 130
Clear the text of the current experiment (C) 130
Name of eddy current compensation file (P) 131
Current experiment directory (P) 131
Scan currently in progress (P) 131
Current window (P) 131
Data truncation limit (P) 131
Set up parameters for CYCLENOE pulse sequence (M) 132
Set up parameters for cycled BR24 pulse sequence (M) 132
Set up parameters for cycled MREV8 pulse sequence (M) 132
Clear integral reset points (C) 132
Overhead delay between FIDs (P) 137
First delay (P) 138
Incremented delay in 1st indirectly detected dimension (P) 138
Set up parameters for D2PUL pulse sequence (M) 138
Incremented delay for 2nd indirectly detected dimension (P) 139
Incremented delay for 3rd indirectly detected dimension (P). 139
Store gradient calibration value in DOSY sequences (P) 139
Display acquisition parameter arrays (C) 139
Increment for tl dependent first-order phase correction (P) 140
Date (P) 140
Display horizontal LC axis (M) 140
Set up parameters for Dbppste pulse sequence (M) 141
Set up parameters for Dbppsteinept pulse sequence (M) 141
Set up VnmrJ database (U) 141
Update the VnmrJ database (U) 141
Calculate spectral drift correction (C) 142
Apply drift correction to 2D spectra (C) 142
Drift correction group (P) 142
Display noninteractive color intensity map (C) 143
Interactive 2D data display (C) 144
Control display selection for the dconi program (P) 145
Display color intensity map without screen erase (C) 146
Remove dc offsets from FIDs in special cases (P) 146
Display data file in current experiment (C) 146
Display FID file in current experiment (C) 147
Display phase file in current experiment (C) 147
Synthesize and show DOSY plot (C) 147
Default display (M) 148
Sequence-specific default display (M) 148
Trace order of macro and command execution (C) 148
Control reporting of DECC warnings from PSG (P) 149
Decompose a VXR-style directory (M) 149

def osfilt

 Default value of osfilt parameter (P) 149
 defaultdir
delcom
Default directory for Files menu system (P).149Delete a user macro (M)150
delete Delete a file, parameter directory, or FID directory (C) 150
deleteSelected
deleteSlice
delexp
dels
delta
deltal
delta2
deltaf
dept
Dept
DEPT
deptgl
deptproc
destroy
destroygroup
df
df2d
dfid
dfmode
dfrq
dfrq2
dfrq3
dfrq4
dfs
dfsa
dfsan
dfsh
dfshn
dfsn
dfww
dg
dg
dg1
dg1
dg2
dg2
dga
DgcsteSL
Dgcstecosy
Dgcstehmqc
dglc
dglc
dgm
dgs
Delete selected slice (C) .. 151
Delete selected slice (C) .. 151
Delete an experiment (M)
Delete spectra from T_{1} or T_{2} analysis (C)....................................... 151
Cursor difference in directly detected dimension (P) 151
Cursor difference in 1st indirectly detected dimension (P) 151
Cursor difference in 2nd indirectly detected dimension (P) 152
Cursor difference in 2nd indirectly detected dimension (P) 152
Difference of two time-domain cursors (P) 152
Set up parameters for DEPT pulse sequence (M) 152
Set up parameters for DEPT experiment (M) 152
Change parameters for DEPT experiment (M) 152
Set up parameters for DEPTGL pulse sequence (M)....................... 152
Process array of DEPT spectra (M) .. 153
Destroy a parameter (C).. 153
Destroy parameters of a group in a tree (C).................................... 153
Display a single FID (C)... 154
Display FIDs of 2D experiment (C) .. 154
Display a single FID (C) .. 155
Current state of display of imaginary part of a FID (P)................... 155
Transmitter frequency of first decoupler (P) 155
Transmitter frequency of second decoupler (P).............................. 155
Transmitter frequency of third decoupler (P) 156
Transmitter frequency of fourth decoupler (P) 156
Display stacked FIDs (C).. 156
Display stacked FIDs automatically (C)... 157
Display stacked FIDs automatically without screen erase (C) 157
Display stacked FIDs horizontally (C) ... 157
Display stacked FIDs horizontally without screen erase (C).......... 158
Display stacked FIDs without screen erase (C) 158
Display FIDs in whitewash mode (C)... 158
Display group of acquisition/processing parameters (C)................ 158
Control dg parameter group display (P) ... 159
Display group of display parameters (M) .. 159
Control dg1 parameter group display (P) 159
Display group of 3rd and 4th rf channel/3D parameters (M) 159
Control dg2 parameter group display (P) 160
Display group of spin simulation parameters (M) 160
Set up parameters for DgcsteSL pulse sequence (M) 160
Set up parameters for Dgcstecosy pulse sequence (M) 160
Set up parameters for Dgcstehmqc pulse sequence (M)................. 160
Display group of LC-NMR parameters (M) 161
Control dglc parameter group display (P)....................................... 161
Display menu to view parameter screens (C) 161
Display group of shims and automation parameters (M) 161
Control dgs parameter group display (P).. 161
Decoupler high-power control with class C amplifier (P).............. 161
Display a dialog box from a macro (C) ... 162
Report differences between two parameter sets (U) 162
Compare two sets of shims (M,U) .. 163
Write digitally filtered FIDs to another experiment (M) 163
List files in directory (C) .. 163
Show overlay as center lines (C) ... 163
Display 3D data (U)... 164
Display parameters and their attributes (C) 164
Show overlay as stripes (C) .. 165
Display spin simulation parameter arrays (M) 165
Long display of spin simulation parameter arrays (C) 165
Display list of integrals (C)... 165
dll
dlni
dlp
dm
dm2
dm3
dm4
dmf
dmf2
dmf3
dmf4
dmfadj
dmf2adj
dmf3adj
dmf4adj
dmg
dmg1
dmg2
dmgf
dmi
dmm
dmm2
dmm3
dmm4
dn
dn2
dn3
dn4
dnode
doautodialog
dodialog
dof
dof2
dof3
dof4
Doneshot
dopardialog
do_pess
dosy
dosyfrq
dosygamma
dosytimecubed
dot1
dotflag
downsamp
dp
dpcon
dpconn
dpf
dpir
dpirn
dpl
dpl_seqfil
dplane
dpr
dpr_seqfil
dprofile
dproj
dps
dpwr
dpwr2

dlivast

Produce text file and process wells (M).. 166

Display listed line frequencies and intensities (C)........................... 166
Display list of normalized integrals (M).. 167
Decoupler low-power control with class C amplifier (P) 167
Decoupler mode for first decoupler (P) ... 167
Decoupler mode for second decoupler (P) 168
Decoupler mode for third decoupler (P) .. 168
Decoupler mode for fourth decoupler (P).. 168
Decoupler modulation frequency for first decoupler (P)................ 169
Decoupler modulation frequency for second decoupler (P) 169
Decoupler modulation frequency for third decoupler (P)................ 169
Decoupler modulation frequency for fourth decoupler (P) 170
Adjust tip-angle resolution time for first decoupler (M) 170
Adjust tip-angle resolution time for second decoupler (M)............. 171
Adjust tip-angle resolution time for third decoupler (M) 171
Adjust tip-angle resolution time for fourth decoupler (M) 171
Data display mode in directly detected dimension (P) 172
Data display mode in 1st indirectly detected dimension (P) 172
Data display mode in 2nd indirectly detected dimension (P) 173
Absolute-value display of FID data or spectrum in acqi (P) 173
Display multiple images (M) ... 173
Decoupler modulation mode for first decoupler (P)....................... 173
Decoupler modulation mode for second decoupler (P) 174
Decoupler modulation mode for third decoupler (P)....................... 174
Decoupler modulation mode for fourth decoupler (P).................... 175
Nucleus for first decoupler (P).. 175
Nucleus for second decoupler (P).. 175
Nucleus for third decoupler (P) ... 176
Nucleus for fourth decoupler (P) ... 176
Display list of valid limNET nodes (M,U) 176
Start a dialog window using def file (M)...................................... 177
Start a dialog window with dialoglib file (M) 177
Frequency offset for first decoupler (P)... 177
Frequency offset for second decoupler (P) 177
Frequency offset for third decoupler (P).. 177
Frequency offset for fourth decoupler (P) 178
Set up parameters for Doneshot pulse sequence (M) 178
Start a dialog with dialoglib/experiment def file (M) 178
Calculate proton chemical shifts spectrum (C)............................... 178
Process DOSY experiments (M)... 179
Larmor frequency of phase encoded nucleus in DOSY (P)............ 179
Gyromagnetic constant of phase encoded nucleus in DOSY (P) ... 179
Gyromagnetic constant of phase encoded nucleus in DOSY (P) ... 179
Set up a T_{1} experiment (M)... 180
Display FID as connected dots (P) ... 180
Downsampling factor applied after digital filtering (P).................. 180
Double precision (P) ... 181
Display plotted contours (C).. 181
Display plotted contours without screen erase (C) 182
Display peak frequencies over spectrum (C).................................. 182
Display integral amplitudes below spectrum (C) 182
Display normalized integral amplitudes below spectrum (M)........ 183
Default plot (M) .. 183
Sequence-specific default plot (M)... 183
Display a 3D plane (M) ... 183
Default process (M) .. 184
Sequence-specific default process (M) .. 184
Display pulse excitation profile (M)... 184
Display a 3D plane projection (M) .. 185
Display pulse sequence (C)... 185
Power level for first decoupler with linear amplifier (P)................. 186
Power level for second decoupler with linear amplifier (P) 186
dpwr 3
dpwr4
dpwrf
dpwrf2
dpwrf3
dpwrm
dpwrm2
dpwrm3
dqcosy
Dqcosy
DQCOSY
draw
drawslice
drawvox
dres
dres
dres2
dres3
dres4
ds
ds2d
ds2dn
dscale
dscoef
dseq
dseq2
dseq3
dseq4
dsfb
dshape
dshapef
dshapei
dshim
dslsfrq
dsn
dsnmax
dsp
dsp
dsplanes
dsptype
dss
dssa
dssan
dssh
dsshn
dssl
dssn
dsvast
dsvast2d
dsww
dtext
dtrig
E
e
eaddr
ecc
ecctabl
ecctool
echo
echo

Power level for third decoupler with linear amplifier (P)............... 187
Power level for fourth decoupler amplifier (P)................................ 187
First decoupler fine power (P) ... 187
Second decoupler fine power (P).. 188
Third decoupler fine power (P).. 188
First decoupler linear modulator power (P).................................... 188
Second decoupler linear modulator power (P) 189
Third decoupler linear modulator power (P) 189
Set up parameters for double-quantum filtered COSY (M) 189
Convert the paramaeter to a DQCOSY experiement (M)............... 189
Change parameters for DQCOSY experiment (M) 189
Draw line from current location to another location (C) 189
Display target slices (M).. 190
Display target voxels (M) ... 190
Measure linewidth and digital resolution (C) 191
Tip-angle resolution for first decoupler (P) 191
Tip-angle resolution for second decoupler (P)................................. 191
Tip-angle resolution for third decoupler (P) 192
Tip-angle resolution for fourth decoupler (P).................................. 192
Display a spectrum (C) ... 192
Display 2D spectra in whitewash mode (C) 193
Display 2D spectra in whitewash mode without screen erase (C).. 194
Display scale below spectrum or FID (C) 194
Digital filter coefficients for downsampling (P).............................. 195
Decoupler sequence for first decoupler (P) 195
Decoupler sequence for second decoupler (P)................................. 195
Decoupler sequence for third decoupler (P) 196
Decoupler sequence for fourth decoupler (P) 196
Digital filter bandwidth for downsampling (P)............................... 196
Display pulse shape or modulation pattern (M).............................. 196
Display last generated pulse shape (M) .. 197
Display pulse shape or modulation pattern interactively (M)......... 197
Display a shim "method" string (M)... 197
Bandpass filter offset for downsampling (P) 198
Measure signal-to-noise (C).. 198
Calculate maximum signal-to-noise (M) ... 199
Display calculated spectrum (C).. 199
Type of DSP for data acquisition (P) .. 200
Display a series of 3D planes (M) .. 201
Type of DSP (P).. 201
Display stacked spectra (C) .. 202
Display stacked spectra automatically (C)...................................... 203
Display stacked spectra automatically without erasing (C)............ 204
Display stacked spectra horizontally (C) .. 204
Display stacked spectra horizontally without erasing (C) 206
Label a display of stacked spectra (M) ... 206
Display stacked spectra without screen erase (C)............................ 206
Display VAST data in a stacked 1D-NMR matrix format (M)....... 207
Display VAST data in a pseudo-2D format (M) 207
Display spectra in whitewash mode (C) ... 207
Display a text file in graphics window (M) 208
Delay to wait for another trigger or acquire a spectrum (P) 208

Eject sample (M)... 210
Display Ethernet address (M,U) ... 210
Set up parameters to get eddy current compensation data (M)....... 210
Put gcal value and ecc file into table (M) .. 210
Open eccTool window (M) ... 210
Display strings and parameter values in text window (C) 211
Current echo index for transformed image (P) 211
eddysend
edit
eff_echo
eject
elist
element
enter
enterdialog
epift
epiph
epirs
epirun
episet
episvib
eread
ernst
errlog
errloglen
ewrite
exec
execpars
execplot
execprep
execprescan
execprocess
execsetup
exists
exit
exp
expactive
expfit
expl
expladd
explib
explist
explog
exptime
F
f
f19
f19p
f1coef
f2coef
fattn
fb
fbc
fdfgluer
fdfsplit
fdm1
fiddc3d
fiddle
fiddled
fiddleu
fiddle2d
fiddle2D
fiddle2dd
fiddle2Dd
fidpar
fidsave

eddyout

Data analysis of eddy current compensation (M) 211

Update acquisition eddy current settings (M).................................. 211
Edit a file with user-selectable editor (M) 212
Effective echo position in EPI experiments (P).............................. 212
Eject sample (M).. 212
Display directory on remote VXR-style system (M,U) 213
Current array index for transformed image (P) 213
Enter sample information for automation run (M,U) 213
Start a dialog window using enterexp file (M) 214
Process and display image in EPI experiments (M) 214
Generate phasemap file in EPI experiments (M)............................ 214
Reverse spectral data in EPI experiments (C) 214
Collect, process, and display EPI data (M)..................................... 215
Set up parameters for EPI experiments (M) 215
Save EPI images in FDF for ImageBrowser (M) 215
Transfer file from remote source (M,U) .. 215
Calculate the Ernst angle pulse (C)... 216
Display recent error messages (C) .. 216
Number of lines in error message display (P)................................. 216
Transfer file to remote destination (M,U).. 216
Execute a command (C)... 217
Set up the exec parameters (M) .. 217
Execute plotting macro (P) ... 217
Execute prepare macro (P)... 217
Execute prescan macro (P) .. 217
Execute processing macro (P)... 217
Execute setup macro (P) .. 217
Checks if parameter, file, or macro exists and file type (C) 218
Call the vnmrexit command (M) .. 219
Find exponential value of a number (C) ... 219
Determine if experiment has active acquisition (C) 219
Make least-squares fit to polynomial or exponential curve (U) 220
Display exponential or polynomial curves (C)............................... 222
Add another diffusion analysis to current display (M) 223
Display experiment library (M) .. 223
Display current experiment chain and approx. time for each (M).. 223
Display log file for experiment (M).. 223
Display experiment time (C)... 223

Set display parameters to full spectrum (C).................................... 226
Automated fluorine acquisition (M) ... 226
Process 1D fluorine spectra (M) ... 227
Coefficient to construct F1 interferogram (P).................................. 227
Coefficient to construct F2 interferogram (P)................................. 228
Fine attenuator (P) .. 228
Filter bandwidth (P).. 228
Apply baseline correction for each spectrum in an array (M) 229
Make FDF file from header and data parts (U) 229
Divide FDF file into header and data parts (U) 230
Set, write 1D FDM parameters, run FDM (M)................................ 230
3D time-domain dc correction (P) .. 231
Perform reference deconvolution (M) ... 231
Perform reference deconvolution subtracting alternate FIDs (C)... 233
Perform reference deconvolution subtracting successive FIDs (C) 233
Perform 2D reference deconvolution (C) .. 233
Perform 2D reference deconvolution (C) 233
2D reference deconvolution subtracting alternate FIDs (C)........... 233
2D reference deconvolution subtracting alternate FIDs (C)........... 233
Add parameters for FID display in current experiment (M)........... 234
Save data (M).. 234

fifolpsize

 FIFO loop size (P) 234
 fixgrd
Convert gauss/cm value to DAC (M) 234
file
files
filesinfo
filter
filtfile
fitplot
fitspec
fixpar
fixpar3rf
fixpar4rf
fixpar5rf
fixup
fixpsg
flashc
flipflop
fliplist
Fluorine
flush
fn
fn1
fn2
fn2D
focus
foldcc
foldj
foldt
fontselect
format
fp
fpmult
fpmult1
fpmult2
fr
fread
fsave
fsq
ft
ft1d
ft1da
ftldac
ft2d
ft2da
ft2dac
ft3d
full
fullsq
fullt
File name of parameter set (P) 234
Interactively handle files (C) 235
Return file information for files display (C) 235
Gaussian low-pass filter for image processing (M) 235
File of FIR digital filter coefficients (P) 236
Adjust plot parameters (M) 237
Perform spectrum deconvolution (C, U) 237
Correct parameter characteristics in experiment (M) 238
Create parameters for third rf channel (M) 238
Create parameters for fourth rf channel (M) 238
Create parameters for fifth rf channel (M) 239
Adjust parameter values selected by setup macros (M) 239
Update psg libraries (M) 239
Convert compressed 2D data to standard 2D format (C) 239
Set up parameters for FLIPFLOP pulse sequence (M) 240
Standard flip angle list (P) 240
Set up parameters for 19 F experiment (M) 241
Write out data in memory (C) 241
Fourier number in directly detected dimension (P) 241
Fourier number in 1st indirectly detected dimension (P) 241
Fourier number in 2nd indirectly detected dimension (P) 242
Fourier number to build up 2D DOSY display in freq. domain (P) 242
Send keyboard focus to input window (C) 242
Fold INADEQUATE data about two-quantum axis (C) 242
Fold J-resolved 2D spectrum about $f_{1}=0$ axis (C) 242
Fold COSY-like spectrum along diagonal axis (C) 242
Open FontSelect window (C) 243
Format a real number or convert a string for output (C) 243
Find peak heights or phases (C) 244
First point multiplier for np FID data (P) 244
First point multiplier for ni interferogram data (P) 245
First point multiplier for ni2 interferogram data (P) 245
Full recall of a display parameter set (M) 245
Read parameters from file and load them into a tree (C) 246
Save parameters from a tree to a file (C) 246
Frequency-shifted quadrature detection (P) 247
Fourier transform 1D data (C) 247
Fourier transform along f_{2} dimension (C) 248
Fourier transform phase-sensitive data (M) 249
Combine arrayed 2D FID matrices (M) 250
Fourier transform 2D data (C) 250
Fourier transform phase-sensitive data (M) 253
Combine arrayed 2D FID matrices (M) 254
Perform a 3D Fourier transform on a 3D FID data set (M,U) 254
Set display limits for a full screen (C) 258
Display largest square 2D display (M) 258
Set display limits for a full screen with room for traces (C) 258

G

g2pul
ga
gain
gap
gap
gaussian
gcal
gcoil
gcosy
gCOSY

Set up pulse sequence for gradient evaluation (M)......................... 261
Submit experiment to acquisition and FT the result (M)................. 261
Receiver gain (P) .. 262
Find gap in the current spectrum (M) .. 263
Slice gap (P).. 263
Set up unshifted Gaussian window function (M) 263
Gradient calibration constant (P) .. 264
Current gradient coil (P) ... 264
Set up pulse sequence for gradient COSY (M)............................... 265
Change parameters for gCOSY experiment (M) 265
Gcosy Convert the paramaeter to a gradient COSY experiement (M) 265
gcrush Crusher gradient level (P) 265
gdiff Diffusion gradient level (P) 266
Gdqcosy Convert the paramaeter to a gradient DQCOSY experiement (M) 266
get1dSelect a 1D experiment for processing (M)266
Select a 2D experiment for processing (M) 266
get2d
Get active overlay (C) 267
Get coronal overlay (C) 267
getCoronal

getDefaultSize 267
getDefaultSlices
getDefaultStacks
getDefaultThk
Get slices (C) 267
Get overlay based on scout image (C) 267
Get slice thickness (C) 267
Return dimensionality of experiment (M) 268
getdim
getfile Get information about directories and files (C) 268

getGapMode
getGapMode Get gap mode (C) 269
getgcal Get gcal value from table (M) 269
getll Get intensity and line frequency of line (C) 269
getMilestoneStacks Get overlay from saved parameters (C) 269getparam
Retrieve parameter from probe file (M) 269
getplane Extract planes from a 3D spectral data set (M) 270
getPrevStacks Start planning with previous stacks 271
getreggetSagittal
getsn
getTransverse
gettxt
gettype
getvalue
gf
gf
gf1
gf2
gflow
gfs
gfs1
gfs2
gHMBC
Ghmbc
ghmqc
gHMQC
Ghmqc
gHMQC15
gHMQC_d2
gHMQC d213
ghmqcps
gHMQCTOXY
ghsqc
gHSQC
Ghsqc
gHSQC15
gHSQC_d2
gHSQC d213
gHSQCTOXY
Ghsqctoxy
gilson
gin
globalauto
glue
gmapshim
gmapshim_au
gmapsys
Get sagittal overlay (C).. 271
Get signal-to-noise estimate of a spectrum (M).............................. 271
Get transverse overlay (C) ... 272
Get text file from VnmrJ data file (C) .. 272
Get the type of a variable (C)... 272
Get value of parameter in a tree (C) .. 273
Prepare parameters for FID/spectrum display in acqi (M) 273
Gaussian function in directly detected dimension (P) 273
Gaussian function in 1st indirectly detected dimension (P) 274
Gaussian function in 2nd indirectly detected dimension (P) 274
Flow encoding gradient level (P).. 274
Gaussian shift const. in directly detected dimension (P) 274
Gaussian shift const. in 1st indirectly detected dimension (P) 274
Gaussian shift const. in 2nd indirectly detected dimension (P)...... 275
Change parameters for gHMBC experiment (M) 275
Convert the paramaeter to a gradient HMBC experiement (M) 275
Set up a PFG HMQC pulse sequence (M)...................................... 275
Set up parameters for gHMQC experiment (M)............................. 275
Convert the paramaeter to a gradient HMQC experiement (M)..... 275
Set up parameters for ${ }^{15} \mathrm{~N}$ gHMQC experiment (M)...................... 275
Set up parameters for ${ }^{15} \mathrm{~N}$ gHMQC experiment using dec. 2 (M).. 275
Set up parameters for ${ }^{13} \mathrm{C}$ gHMQC experiment using dec. 2 (M).. 276
Set up a PFG HMQC phase-sensitive pulse sequence (M) 276
Change parameters for gHMQCTOXY experiment (M)................ 276
Set up a PFG HSQC pulse sequence (M) ... 276
Set up parameters for gHSQC experiment (M) 276
Convert the paramaeter to a gradient HSQC experiement (M) 276
Set up parameters for ${ }^{15} \mathrm{~N}$ gHSQC experiment (M) 276
Set up parameters for ${ }^{15} \mathrm{~N}$ gHSQC experiment using dec. 2 (M) ... 276
Set up parameters for ${ }^{13} \mathrm{C}$ gHSQC experiment using dec. 2 (M) ... 276
Set up parameters for gHSQCTOXY experiment (M) 276
Convert paramaters for gradient HSQCTOXY experiement (M)... 277
Convert paramaters for gradient HSQCTOXY experiement (M)... 277
Open the Gilson Liquid Handler window (C) 277
Return current mouse position and button values (C) 277
Automation directory name (P) .. 277
Create a pseudo-2D dataset (M) ... 278
Create a pseudo-2D dataset (M) ... 278
Start gradient autoshimming (M).. 278
Start acquisition with gradient shimming (M)................................. 278
Run gradient autoshimming, set parameters, map shims (M) 278
Get parameters and files for gmapz pulse sequence (M)................ 279

gmap findtof

 Gradient shimming flag to first find tof (P) 280
 gmap_z1z4
gmax
gmqcosy
gnoesy
go
go
gpat-gpat3
gpe
gpe2
gpe3
gped
gpemult
gplan
gradaxis
gradientdisable
gradstepsz
gradtype
graphis
grayctr
graysl
grecovery
grid
griserate
gro
groa
grof
gropat
gror
grora
groupcopy
gsh2pul
gspoil
gss
gssf
gsspat
gssr
gss2,gss3
gtnnoesy
gtnroesy
gtotlimit
gtrim
gvox1-gvox3
gx, gy, gz
gxcal,gycal,gzcal
gxmax, gymax,gzmax
gzlvl
gzsize
gzwin
Gradient shimming flag to first shim z1-z4 (P)280

280
Maximum gradient strength (P) 280
Set up PFG absolute-value MQF COSY parameter set (M) 281
Set up a PFG NOESY parameter set (M) 281
Submit experiment to acquisition (M) 281
Pulse sequence setup macro called by go, ga, and au (M). 282
Gradient shape (P) 282
Phase encoding gradient increment (P) 282
2nd phase encode gradient increment 283
3 rd phase encode gradient increment 283
Phase encode dephasing gradient in the EPI sequence (P) 283
Phase encode gradient increment multiplier (P) 284
Start interactive image planning (C) 284
Gradient axis (P) 284
Disable PFG gradients (P) 284
Gradient step size (P) 285
Gradients for X, Y, and Z axes (P) 285
Return the current graphics display status (C) 285
Gray level window adjustment (P) 286
Gray level slope (contrast) adjustment (P) 286
Eddy current testing (M) 286
Draw a grid on a 2D display (M) 286
Gradient rise rate (P) 287
Readout gradient strength (P) 287
Readout gradient adjuster in EPI experiment (P) 287
Fine tune readout gradient compensation (P) 288
Readout gradient shape (P) 288
Read out compensation gradient (P) 288
Readout dephasing gradient adjuster in EPI experiment (P) 288
Copy parameters of group from one tree to another (C). 288
Set up parameters for shaped gradients tests (M) 289
Spoiler gradient level (P) 289
Slice selection gradient strength (P) 289
Slice selection fractional refocusing (P) 289
Slice-select gradient shape (P) 289
Slice selection refocusing gradient (P) 290
Slice selection gradient level (P) 290
Set up a PFG TNNOESY parameter set (M) 290
Set up a PFG absolute-value ROESY parameter set (M) 290
Gradient total limit (P) 290
Trim gradient level (P) 290
Gradient strength for voxel selection (P) 291
Gradient strength for X, Y, and Z gradients (P) 291
Gradient calibration constants (P) 291
Maximum gradient strength for each axis (P) 291
Pulsed field gradient strength (P) 292
Number of z-axis shims used by gradient shimming (P) 292
Spectral width percentage used for gradient shimming (P) 292
H
h1 Automated proton acquisition (M) 294
h1freq Proton frequency of spectrometer (P) 295
h1p Process 1D proton spectra (M) 295
h2cal Calculate strength of the decoupler field (C) 295
halt Abort acquisition with no error (C) 296
hc Automated proton and carbon acquisition (M) 296
hcapt Automated proton, carbon, and APT acquisition (M) 296hcchtocsy
Set up parameters for HCCHTOCSY pulse sequence (M) 297
hecorr Automated proton, carbon, and HETCOR acquisition (M) 297
hcdept 297
hcosy
hcmult
hdwshim
hdwshimlist
het2dj
HETCOR
hetcor
hetcorcp1
hetcorps
hidecommand
hetero2d
Hmb c
HMBC
hmqc
Hmqc
HMQC
HMQC15
HMQC d2
HMQC_d213
hmqcr
hmqctocsy
Hmqctoxy
HMQCTOXY
HMQCTOXY15
HMQCTOXY_d2
HMQCTOXY d213
hmqctoxy $\overline{3} \mathrm{~d}$
ho
hold
hom2dj
HOMODEC
homdec
homo
homo2d
homo2
homo3
homo4
hoult
hpa
hregions
hs
hsqc
Hsqc
HSQC
HSQC15
HSQC_d2
HSQC_d213
Hsqctoxy
HSQCTOXY
HSQCTOXY15
HSQCTOXY d2
HSQCTOXY ${ }^{-}$d213
hsqctoxyse
hsrotor
hst
hzmm
hztomm
I
i
ihwinfo

Automated proton and COSY acquisition (M) 298
Execute protocol actions of apptype hcmult (M)............................. 298
Hardware shimming (P).. 298
List of shims for hardware shimming (P) 298
Set up parameters for HET2DJ pulse sequence (M)....................... 299
Change parameters for HETCOR experiment (M).......................... 299
Set up parameters for HETCOR pulse sequence (M)...................... 299
Set up parameters for solids HETCOR pulse sequence (M) 299
Set up parameters for HETCORPS pulse sequence (M) 299
Execute macro instead of command with same name (C)............... 299
Execute protocol actions of apptype hetero2d (M)......................... 300
Convert the paramaeter to a HMBC experiement (M) 300
Change parameters for HMBC experiment (M) 300
Set up parameters for HMQC pulse sequence (M).......................... 300
Convert the paramaeter to a HMQC experiement (M) 300
Set up parameters for HMQC experiment (M)................................ 300
Set up parameters for ${ }^{15} \mathrm{~N}$ HMQC experiment (M)........................ 300
Set up parameters for ${ }^{15} \mathrm{~N}$ HMQC experiment using dec. 2 (M).... 301
Set up parameters for ${ }^{13} \mathrm{C}$ HMQC experiment using dec. 2 (M) 301
Set up parameters for HMQCR pulse sequence (M) 301
Set up parameters for HMQCTOCSY pulse sequence (M)............ 301
Convert the paramaeter to a HMQCTOXY experiement (M) 301
Set up parameters for HMQCTOXY experiment (M)..................... 301
Set up parameters for ${ }^{15} \mathrm{~N}$ HMQCTOXY experiment (M)............. 301
Set up parameters for ${ }^{15} \mathrm{~N}$ HMQCTOXY using decoupler 2 (M) .. 301
Set up parameters for ${ }^{13} \mathrm{C}$ HMQCTOXY using decoupler 2 (M)... 301
Set up parameters for HMQC-TOCSY 3D pulse sequence (M)..... 301
Horizontal offset (P) .. 302
Post-trigger delay (P) .. 302
Set up parameters for HOM2DJ pulse sequence (M) 302
Change parameters for HOMODEC experiment (M)..................... 302
Proton homonuclear decoupler present (P)...................................... 302
Homodecoupling control for first decoupler (P).............................. 302
Execute protocol actions of apptype homo2d (M)........................... 303
Homodecoupling control for second decoupler (P)......................... 303
Homodecoupling control for third decoupler (P) 303
Homodecoupling control for fourth decoupler (P) 303
Set parameters alfa and rof2 according to Hoult (M) 303
Plot parameters on special preprinted chart paper (C).................... 304
Select integral regions in proton spectrum (M) 304
Homospoil pulses (P).. 304
Set up parameters for HSQC pulse sequence (M) 304
Convert the paramaeter to a HSQC experiement (M) 305
Set up parameters for HSQC experiment (M) 305
Set up parameters for ${ }^{15} \mathrm{~N}$ HSQC experiment (M) 305
Set up parameters for ${ }^{15} \mathrm{~N}$ HSQC experiment using dec. 2 (M)..... 305
Set up parameters for ${ }^{13} \mathrm{C}$ HSQC experiment using dec. 2 (M) 305
Convert parameters to a HSQCTOXY experiement (M) 305
Set up parameters for HSQCTOXY experiment (M) 305
Set up parameters for ${ }^{15} \mathrm{~N}$ HSQCTOXY experiment (M) 305
Set up parameters for ${ }^{15} \mathrm{~N}$ HSQCTOXY using decoupler 2 (M).... 305
Set up parameters for ${ }^{13}$ C HSQCTOXY using decoupler 2 (M) 305
Set up parameters for HSQC-TOCSY 3D pulse sequence (M)...... 305
Display rotor speed for solids operation (P) 305
Homospoil time (P)... 306
Scaling factor for plots (P).. 306
Convert locations from Hz or ppm to plotter units (C).................... 306

Insert sample (M).. 309
Hardware status of UNITY INOVA console (U) 310
il Interleave arrayed and 2D experiments (P) 310
ilfid Interleave FIDs during data processing (C) 310
image Display noninteractive gray scale image (M) 311
image Control phase encoding gradient in EPI experiments (P) 311
imageprint Plot noninteractive gray scale image (M) 311
imark Annotate an image display (M) 311
imcalc Calculate 2D phasefiles (M,U) 312
imcalci Format arguments for imcalc macro (M) 313
imconi Display 2D data in interactive grayscale mode (M) 313
imfit Fit arrayed imaging data to T_{1} or T_{2} exponential data (M,U) 313
imprep Set up rf pulses, imaging and voxel selection gradients (M) 314
in Lock and spin interlock (P) 314
inadqt Set up parameters for INADEQUATE pulse sequence (M) 315
index2 Projection or 3D plane index selected (P) 315
inept Set up parameters for INEPT pulse sequence (M) 315
initialize_iterate Set iterate string to contain relevant parameters (M) 315
input Receive input from keyboard (C) 316
ins Integral normalization scale (P) 316
ins2 2 D volume value (P) 316
insref
Fourier number scaled value of an integral (P) 316
Fourier number scaled volume of a peak (P) 317
ins2ref
Insert sample (M)
Insert sample (M) 317 317
insert
insert
Display an inset spectrum (C). 317
Find largest integral in a specified region (C) 317
integ
Automatically integrate 1D spectrum (M) 318
Integral display mode (P) 318
intmod
Produces a text file of integral regions (M) 318
intvast
Open interactive image planning tools (M) 318
io Integral offset (P) 319
Inversion recovery mode (P) 319
Integral scale (P) 319
Automatic integral scale adjustment (M) 319
isadj
320
isadj2 Automatic integral scale adjustment by powers of two (M)
320
Parameters to be iterated (P)

J
jdesign
jexp
jexp1-jexp9999
jplot
jplotscale
jplotunscale
jprint
jumpret
jwin
K
killft3
killplot
killprint
kind
kinds
kini
kinis

L

lastlk
lastmenu
latch
lb

Parameters to be iterated (P)... 320

Start Plot Designer Program (M) ... 321
Join existing experiment (C).. 321
Join existing experiment and display new parameters (M) 322
Plot from Plot Designer program (C) ... 322
Scale plot parameters (M).. 322
Restore current experiment parameters (M) 322
Prints the selected images to a printer or file (M)............................ 323
Set up parameters for JUMPRET pulse sequence (M) 323
Activate and record activity in current window (M) 323

Terminate any ft3d process started in an experiment (M,U) 325
Stop plot jobs and remove from plot queue (M)............................. 325
Stop print jobs and remove from print queue (M) 326
Kinetics analysis, decreasing intensity (M) 326
Kinetics analysis, decreasing intensity, short form (M).................. 326
Kinetics analysis, increasing intensity (M)..................................... 326
Kinetics analysis, increasing intensity, short form (M) 327

Last lock solvent used (P)... 330
Menu to display when Return button is selected (P) 331
Frequency synthesizer latching (P)... 331
Line broadening in directly detected dimension (P)....................... 331
lb1 Line broadening in 1st indirectly detected dimension (P) 331
lb2 Line broadening in 2nd indirectly detected dimension (P) 332
lc1dlcpar2d
Pulse sequence for LC-NMR (M) 332
Create 2D LC-NMR acquisition parameters (M) 332
Peak number (P) 333
Plot LC-NMR data (M) 333
Set up parameters for various LC-NMR pulse sequences (M) 333
General setup for 2D LC-NMR experiments (M) 333
Set display limits to left half of screen (C) 333
Independent control of magnet leg relay (P) 334
Determine length of a string (C) 334
List files in directory (C) 334
Amplitudes of integral reset points (P) 334
Frequencies of integral reset points (P) 335
Disable receipt of messages from send2Vnmr (M) 335
Enable receipt of messages from send 2 Vnmr (M) 335
Track changes in lock frequency (P) 335
Automatic and interactive 2D peak picking (C) 336
Copy current ll2d peak file to another file (M) 338
Control display of peaks picked by l12d (P) 339
List of line amplitudes (P) 339
List of line frequencies (P) 339
Find natural logarithm of a number (C) 339
Load status of displayed shims (P) 340
Load colors for graphics window and plotters (M) 340
Load prescription (C) 340
Location of sample in tray (P) 341
Get coordinate information from an image display (M) 341
Submit an Autolock experiment to acquisition (C) 341
Lock loop time constant during acquisition (P) 342
Lock frequency (P) 342
Lock gain (P) 343
Lock phase (P) 343
Lock power (P) 343
Lock time constant (P) 343
Transmitter local oscillator gate (P) 344
Look up words and lines from a text file (C) 344
First-order phase in directly detected dimension (P) 345
First-order phase in 1st indirectly detected dimension (P) 346
First-order phase in 2nd indirectly detected dimension (P) 346
LP algorithm in np dimension (P) 346
LP algorithm in ni dimension (P) 347
LP algorithm in ni2 dimension (P) 347
Field of view size for phase-encode axis (P) 347
Field of view size for 2nd phase-encode axis (P) 348
LP data extension in $n p$ dimension (P) 348
LP data extension in ni dimension (P) 348
LP data extension in ni2 dimension (P) 348
LP coefficients to calculate in $n p$ dimension (P) 349
LP coefficients to calculate in ni dimension (P) 349
LP coefficients to calculate in ni2 dimension (P) 349
LP number of data points in $n p$ dimension (P) 349
LP number of data points in ni dimension (P) 350
LP number of data points in ni2 dimension (P) 350
LP algorithm data extension in np dimension (P) 350
LP algorithm data extension in ni dimension (P) 351
LP algorithm data extension in ni2 dimension (P) 351
LP print output for $n p$ dimension (P) 351
LP print output for ni dimension (P) 352
LP print output for ni2 dimension (P) 352
LP output spectrum in np dimension (P) 352
LP output spectrum in ni dimension (P) 353
lro
ls
lsfid
lsfid1
lsfid2
lsfrq
lsfrq1
lsfrq2
lvl
lvltlt

M

maclibpath
macro
macrocat
macrocp
macrodir
macroedit
macrold
macrorm
macrosyscat
macrosyscp
macrosysdir
macrosysrm
macrovi
make3dcoef
makedosyparams
makefid
makephf
makeslice
man
managedb
manualpath
manvi
mapwin
mark
masvt
maxattench1-4
maxpen
maxsw_loband
md
menu
menulibpath
menuvi
method
mf
mfblk
mfclose
mfdata
mfopen
mftrace
minsw
mkdir
mlabel
move
movedssw
moveossw
movepro
movesw
movetof

lptrace2

LP output spectrum in ni2 dimension (P) 353

Field of view size for readout axis (P)... 353
List files in directory (C) ... 353
Number of complex points to left-shift the np FID (P) 354
Number of complex points to left-shift ni interferogram (P).......... 354
Number of complex points to left-shift ni2 interferogram (P)........ 355
Frequency shift of the fn spectrum (P) .. 355
Frequency shift of the fn1 spectrum (P) ... 355
Frequency shift of the fn2 spectrum (P) ... 356
Zero-order baseline correction (P)... 356
Control sensitivity of lvl and tlt adjustments (P) 356

Path to user's macro directory (P) ... 358
Macro name (P) .. 358
Display a user macro file in text window (C)................................. 358
Copy a user macro file (C)... 358
List user macro files (C) .. 359
Edit a macro with user-selectable editor (M).................................. 359
Load a macro into memory (C)... 360
Remove a user macro (C) ... 360
Display a system macro file in text window (C) 360
Copy a system macro to become a user macro (C).......................... 361
List system macros (C) ... 361
Remove a system macro (C)... 361
Edit a user macro with the vi text editor (M)................................... 361
Make a 3D coefficients file from 2D coefficients (M) 362
Create parameters for DOSY processing (M)................................. 363
Make a FID element using numeric text input (C) 363
Transform and save images as phasefiles (M)................................ 364
Synthesize 2D projection of 3D DOSY experiment (C).................. 364
Display online description of command or macro (M).................... 365
Update user files (U)... 365
Path to user's manual directory (P).. 365
Edit online description of a command or macro (M)...................... 365
List of experiment numbers (P) ... 365
Determine intensity of spectrum at a point (C)............................... 365
Type of variable temperature system (P) ... 367
Maximum limit for attenuator setting for rf channel 1-4 (P)......... 368
Maximum number of pens to use (P).. 368
Maximum spectral width of Input board (P) 368
Move display parameters between experiments (C)........................ 368
Change status of menu system (C) .. 369
Path to user's menu directory (P)... 369
Edit a menu with vi text editor (M) .. 369
Autoshim method (P).. 370
Move FIDs between experiments (C).. 370
Copy FID block (C) .. 370
Close memory map FID (C) ... 371
Move FID data (C).. 371
Memory map open FID file (C)... 372
Move FID trace (C).. 373
Reduce spectral width to minimum required (M)........................... 374
Create new directory (C).. 374
Menu label (P) ... 374
Move to an absolute location to start a line (C).............................. 374
Set downsampling parameters for selected spectral region (M)..... 375
Set oversampling parameters for selected spectral region (M)....... 375
Move the imaging readout position (C)... 375
Move spectral window according to cursors (M) 376
Move transmitter offset (M).. 376
Move parameters between experiments (C) 376
mqcosy Set up parameters for MQCOSY pulse sequence (M) 377
mrev8
mrfb
mrgain
mstat
mstring
mv
mxconstSet up parameters for MREV8 pulse sequence (M)377
Set the filter bandwidths for multiple receivers (P) 377
Set the gain for multiple receivers (P) 377
Display memory usage statistics (C) 378
Menu string (P) 378
Move and/or rename a file (C) 378
Maximum scaling constant (P) 379
N
n1,n2,n3
nactivercvrs
nD
ne
newmenu
newshm
nextpl
nf
ni
ni2
ni3
niter
nl
nli
nlivast
nlivast2
nlivast3
nll
nm
nm2d
noDconi
noedif
NOESY
Noesy
noesy
NOESY1D
Noesy1d
noise
noisemult
noislm
notebook
np
npoint
nrecords
ns
nscans
nt
ntrig
ntype3d
numrcvrs
numreg
numrfch
nv
0
off
offset
on
operatorlogin
opx
off
offset
on
operatorlogin
opx
Name storage for macros (P) 382
Return number of receivers currently active (M) 382
Application dimension (P) 382
Number of echoes to be acquired (P) 382
Select a menu without immediate activation (C) 382
Interactively create a shim method with options (M) 383
Display the next 3D plane (M) 384
Number of FIDs (P) 384
Number of increments in 1st indirectly detected dimension (P) 384
Number of increments in 2nd indirectly detected dimension (P) 384
Number of increments in 3rd indirectly detected dimension (P)... 385
Number of iterations (P) 385
Position cursor at the nearest line (C) 385
Find integral values (C) 385
Produces a text file of integral regions without a sum region (M) 386
Produces a text file with normalized integral regions (M) 386
Produces a text file with normalized integral regions (M) 386
Find line frequencies and intensities (C) 386
Select normalized intensity mode (C) 387
Select Automatic 2D normalization (M) 387
Disable image planning (C) 388
Convert parameters for NOE difference experiment (M) 388
Change parameters for NOESY experiment (M) 388
Convert the paramaeter to a NOESY experiement (M) 388
Set up parameters for NOESY pulse sequence (M) 388
Change parameters for NOESY1D experiment (M) 389
Convert the parameter set to a Noesyld experiment (M) 389
Measure noise level of FID (C) 389
Control noise multiplier for automatic 2D processing (M) 389
Limit noise in spectrum (M) 390
Notebook name (P) 390
Number of data points (P) 390
Number of points for fp peak search (P) 391
Determine number of lines in a file (M) 391
Number of slices to be acquired (P) 391
Number of scout scan or real scan repetitions (P) 391
Number of transients (P) 391
Number of trigger signals to wait before acquisition (P) 392
Specify whether f_{1} or f_{2} display expected to be N-type (P) 392
Number of receivers in the system (P) 392
Return the number of regions in a spectrum (C) 392
Number of rf channels (P) 393
Number of phase encode steps (P) 393
Make a parameter inactive (C) 395
Calculate frequency offset of cursor (M) 395
Make a parameter active or test its state (C) 396
Sets workspace and parameters for the operator (M) 396
Open shape definition file for Pbox (M) 396
orient Slice plane orientation (P) 397
oscoef
osfb
osfilt
oslsfrq
overrange
oversampDigital filter coefficients for oversampling (P)397
Digital filter bandwidth for oversampling (P) 397
Oversampling filter for real-time DSP (P) 398
Bandpass filter offset for oversampling (P) 398
Frequency synthesizer overrange (P) 398
Oversampling factor for acquisition (P) 399
P
pa1
pacosy
pad
padept
page
page
panellevel
pap
par2d
par3d
par3rf
par4d
paramedit
paramvi
pards
parfidss
parfix
parlc
parll2d
parlp
parmax
parmin
paros
parstep
parversion
path3d
patlist
paxis
Pbox
pbox_bw
pbox_bws
pbox_dmf
pbox_dres
pbox_name
pbox_pw
pbox_pwr
pbox_pwrf
pboxget
pboxpar
pboxrst
pboxunits
pcmapapply
pcmapclose
Enter pulse width for p 1 in degrees (C) 405
First pulse width (P). 405
Shape of excitation pulse (P) 406
180° refocus pulse width (P) 406
RF pulse pattern of 180° refocus pulse $\mathrm{p} 2(\mathrm{P})$ 406
Set up sequence for PFG testing (M). 406
Automated phosphorus acquisition (M) 406
Process 1D phosphorus spectra (M) 407
Set phase angle mode in directly detected dimension (C) 407
Set phase angle mode in 1st indirectly detected dimension (C) 408
Plot automatic COSY analysis (C) 408
Preacquisition delay (P) 409
Perform adept analysis and plot resulting spectra (C) 409
Submit plot and change plotter page (C) 410
Name of page (P) 410
Display level for VnmrJ interface pages (P) 410
Plot out "all" parameters (C) 410
Create 2D acquisition, processing, and display parameters (M) 411
Create 3D acquisition, processing, and display parameters (M) 411
Get display templates for 3rd rf channel parameters (M) 412
Create 4D acquisition parameters (M) 412
Edit a parameter and its attributes with user-selected editor (C) 412
Edit a parameter and its attributes with vi editor (M) 412
Create additional parameters used by downsampling (M) 413
Create parameters for time-domain solvent subtraction (M) 413
Update parameter sets (M). 414
Create parameters for LC-NMR experiments (M) 415
Create parameters for 2D peak picking (M) 415
Create parameters for linear prediction (M) 415
Parameter maximum values (P) 416
Parameter minimum values (P) 416
Create additional parameters used by oversampling (M) 416
Parameter step size values (P) 417
Version of parameter set (P). 417
Path to currently displayed 2D planes from a 3D data set (P) 417
Active pulse template parameter list (P) 418
Plot horizontal LC axis (M) 418
Pulse shaping software (U) 418
Define excitation band (M) 420
Define excitation band for solvent suppression (notch) pulses (M)420
Extract dmf value from pbox.cal or Pbox shape file (M) 420
Extract dres value from pbox.cal or Pbox shape file (M) 420
Extract name of last shape generated by Pbox from pbox.cal (M). 42 421
Extract pulse length from pbox.cal or Pbox shape file (M) 421
Extract power level from Pbox.cal or Pbox shape file (M) 421
Extract fine power level from pbox.cal or Pbox shape file (M) 421
Extract Pbox calibration data (M). 422
Add parameter definition to the Pbox.inp file (M) 422
Reset temporary Pbox variables (M) 423
Converts to Pbox default units (M) 423
Apply phase correction map to data in EPI experiments (C) 423
Close phase correction map in EPI experiments (C) 423

pcmapgen
Generate phase correction map in EPI experiments (C) 423
pcmapopen Open phase correction map in EPI experiments (C) 424
pconPlot contours on a plotter (C)424
pcsspeak
peak2d
pen
pexpl
pexpladd
pfgon
pfww
pge
pge_calib
pge_data
pge_output
pge_process
pge_results
pge_setup
ph
ph1
ph2
phase
phase
phase1
phase2
phase3
phasing
phfid
phfid1
phfid2
phi
Phosphorus
pi
pi3ssbsq
pi4ssbsq
pilot
pintvast
pipat
pir
pirn
pl
pl2d
plan
plane
planlock
plapt
plarray
plate_glue
plc
plcosy
pldept
plfid
plfit
plgrid
plh
plhet2dj
plhom2dj
plhxcor
plist
pll
pll2d
plot

plot1d
Plotting macro for simple (non-arrayed) 1D spectra (M) 448
plot2DPlot 2D spectra (M)449
plotside Plot spectrum on side (M) 449
plotter Plotter device (P) 449
plottop
plottopside
plp
plplanes
pltext
pltmod
plvast
plvast2d
plww
pmode
polyo
pos1 - pos3
pp
ppa
ppcal
ppe
ppf
pph
pplvl
ppmm
pprofile
pps
prep
presat
Plot spectrum on top (M) 449
Plot spectrum on top and side (M) 450
Plot phosphorus spectrum (M) 450
Plot a series of 3D planes (M) 450
Plot text file (M) 451
Plotter display mode (P) 451
Plot VAST data in a stacked 1D-NMR matrix format (M) 452
Plot VAST data in a stacked pseudo-2D format (M) 452
Plot spectra in whitewash mode (C) 452
Processing mode for 2D data (P) 453
Display mean of the data in regression.inp file (M) 454
Position of voxel center (P) 454
Decoupler pulse length (P) 454
Plot a parameter list in plain English (M) 455
Proton decoupler pulse calibration (M) 455
Position of image center on 2D phase encode axis (P) 455
Plot peak frequencies over spectrum (C) 455
Print pulse header (M) 456
Proton pulse power level (P) 456
Resolution on printers and plotters (P) 457
Plot pulse excitation profile (M) 457
Plot pulse sequence (C). 457
prepare a scan (M) 458
Set up parameters for PRESAT pulse sequence (M) 458
Set up parameters for presat ${ }^{1} \mathrm{H}$ experiment (M) 458
Preamplifier signal level selection (P) 458
Display the previous 3D plane (M). 458
Printer device (P) 459
Path to the print-to-file image (P) 459
Format of saved-to-file image (P) 459
Layout of printed image (P) 459
Stop sending text to printer and start print operation (C) 459
Direct text output to printer (C) 459
Screen region to be printed (P) 460
Size of printed image (P) 460
Defines where image will print (P) 460
Position of image center on the readout axis (P) 460
Probe type (P) 460
Edit probe for specific nucleus (U) 460
Edit probe for specific nucleus (M) 461
Probe protection control (P). 461
Type of processing on np FID (P) 461
Type of processing on ni interferogram (P) 462
Processing macro for simple (non-arrayed) 1D spectra (M) 462
Type of processing on ni2 interferogram (P) 462
Process 2D spectra (M) 463
Process arrayed 1D spectra (M) 463
Generic automatic processing (M) 464
Automatically process FIDs (M) 464
Set up pulse sequence for gradient calibration (M) 465
Project 2D data (C) 465
Set up parameters for ${ }^{1} \mathrm{H}$ experiment (M) 465
Prune extra parameters from current tree (C) 466
Plot scale below spectrum or FID (C) 466
Set default parameters for pseudo-echo weighting (M) 467
Display pulse sequence generation errors (M) 467
Compile a user PSG object library (M, U) 467
Set up parameters for various pulse sequences (M) 467

psgupdateon
Enable update of acquisition parameters (C) 468
psgupdateoff
pshapef
psi
pslabel
pss
psso
ptext
ptspec3d
ptsval
pulsecal
pulseinfo
pulsetool
purge
puttxt
putwave
pw
pw
pw9 0
pwd
pwpat
pwr
pwr1
pwr2
pwrlist
pwsadj
pwxcal
pxset
pxshape
Pxsim
Pxspy

Q

QKexp
qtune
?

R

r
r1-r7
ra
radialAngles
revrs
revrwt
revry
react
readallshims
readbrutape
readfile
readhw
readlk
readparam
readultra
real
recon_all
record
redor1
redosy
refresh
reffrq
Prevent update of acquisition parameters (C)468

pshapePlot pulse shape or modulation pattern (M).468
Plot the last created pulse shape (M) 468
Euler angle psi from magnet frame (P) 468
Pulse sequence label (P) 469
Slice position (P). 469
Stack center shift along z axis (P) 469
Print out a text file (M) 469
Region-selective 3D processing (P) 469
PTS frequency synthesizer value (P) 470
Update and display pulse calibration data file (M) 470
Shaped pulse information for calibration (M) 471
RF pulse shape analysis (U) 471
Remove macro from memory (C) 472
Put text file into a data file (C) 472
Write a wave into Pbox.inp file (M) 472
Enter pulse width pw in degrees (C) 473
Pulse width (P) 473
90° pulse width (P) 473
Display current working directory (C) 473
Shape of refocusing pulse (P) 474
Set power mode in directly detected dimension (C) 474
Set power mode in 1st indirectly detected dimension (C) 474
Set power mode in 2nd indirectly detected dimension (C) 475
Active pulse power level parameter list (P) 475
Adjust pulse interval time (M) 476
Decoupler pulse calibration (M) 476
Assign Pbox calibration data to experimental parameters (M). 476
Generates a single-band shape file (M) 477
Simulate Bloch profile for a shaped pulse (U) 477
Create shape definition using Fourier coefficients (U) 478
Set up quick experiment (M) 479
Tune probe using swept-tune graphical tool (C). 479
Display individual parameter value (C) 479
Recall display parameter set (M) 483
Real-value storage for macros (P) 483
Resume acquisition stopped with sa command (C) 483
Radial slice fan angle (P) 484
Which receivers to use (P) 484
Weighting for different receivers (P) 484
Pre-trigger delay (P) 484
Recover from error conditions during werr processing (M) 485
Read all shims from hardware (M) 485
Read Bruker data files from 9-track tape (U) 485
Read the contents of a text file into two parameters (C) 486
Read current values of acquisition hardware (C). 487
Read current lock level (C) 487
Read one of more parameters from a file (C) 487
Read shim coil setting for Ultra•nmr shim system (M) 488
Create a real variable without a value (C) 489
Reconstruct images from 2D MRI fid data (C) 489
Record keyboard entries as a macro (M) 491
Set up parameters for REDOR1 pulse sequence (M) 491
Restore 2D DOSY display from subexperiment (M) 491
Redraw, refresh overlay (C) 492
Reference frequency of reference line (P) 492

```
```

reffrq1

```
```

reffrq1
reffrq2
reffrq2
refpos
refpos
refpos1
refpos1
refpos2
refpos2
refsource1
refsource1
refsource2
refsource2
region
region
relayh
relayh
removeAstack
removeAstack
rename
rename
rescal
rescal
resetf3
resetf3
resetMovie
resetMovie
resolv
resolv
resto
resto
restoreStack
restoreStack
resume
resume
return
return
rev
rev
revdate
revdate
rfband
rfband
rfblk
rfblk
rfchannel
rfchannel
rfchtype
rfchtype
rfcoil
rfcoil
rfdata
rfdata
rfl
rfl
rfl1
rfl1
rfl2
rfl2
rfp
rfp
rfp1
rfp1
rfp2
rfp2
rftrace
rftrace
rftype
rftype
rfwg
rfwg
right
right
rinput
rinput
rl
rl
rl1
rl1
rl2
rl2
rm
rm
rmdir
rmdir
rmsAddData
rmsAddData
ROESY
ROESY
Roesy
Roesy
roesy
roesy
Roesy1d
Roesy1d
rof1
rof1
rof2
rof2
rotate
rotate
rotorsync
rotorsync
rp
rp
rp1
rp1
rp2
rp2
RQdisplay
RQdisplay
rqfull
rqfull
rqselection
rqselection
rqsort
rqsort
rqtype
rqtype
rsliceplan
rsliceplan
rt

```
```

rt

```
```

 Reference freq. of reference line in 1st indirect dimension (P) 492
 Reference freq. of reference line in 2nd indirect dimension (P)..... 492
 Position of reference frequency (P) ... 493
 Position of reference frequency in 1st indirect dimension (P)........ 493
 Position of reference frequency in 2nd indirect dimension (P) 493
 Center frequency in 1st indirect dimension (P) 493
 Center frequency in 2nd indirect dimension (P)............................. 494
 Divide spectrum into regions (C).. 494
 Set up parameters for RELAYH pulse sequence (M)..................... 495
 Remove stack (C)... 495
 Move and/or rename a file (C)... 495
 Calculate pixel size and spatial resolution (M)............................... 495
 Reset parameters after a partial 3D Fourier transform (M) 496
 Reset movie to the beginning and restore original display (C)....... 496
 Set resolution enhancement parameters (M) 496
 NMR resonance offset frequency (P) .. 497
 Restore stack (C)... 497
 Resume paused acquisition queue (C) .. 497
 Terminate execution of a macro (C) .. 497
 System software revision level (P) ... 497
 System software preparation date (P) ... 498
 RF band in use (P) ... 498
 Reverse FID block (C)... 498
 Independent control of rf channel selection (P)............................... 499
 Type of rf channel (P) .. 500
 RF pulse calibration identity (P).. 501
 Reverse FID data (C) ... 501
 Reference peak position in directly detected dimension (P)........... 502
 Reference peak position in 1st indirectly detected dimension (P).. 502
 Reference peak position in 2nd indirectly detected dimension (P) 502
 Reference peak frequency in directly detected dimension (P) 502
 Reference peak freq. in 1st indirectly detected dimension (P) 503
 Reference peak freq. in 2nd indirectly detected dimension (P)...... 503
 Reverse FID trace (C) ... 503
 Type of rf generation (P).. 504
 RF waveform generator (P) ... 505
 Set display limits to right half of screen (C).................................... 505
 Input data for a regression analysis (M) .. 505
 Set reference line in directly detected dimension (M)..................... 505
 Set reference line in 1st indirectly detected dimension (M) 506
 Set reference line in 2nd indirectly detected dimension (M).......... 506
 Delete file (C) .. 507
 Remove directory (C) .. 507
 Add transformed data files with weighting (U) 507
 Change parameters for ROESY experiment (M)............................. 508
 Convert the paramaeter to a ROESY experiement (M).................. 508
 Set up parameters for ROESY pulse sequence (M)......................... 508
 Convert the parameter set to a Roesy1d experiment (M) 508
 Receiver gating time preceding pulse (P) .. 508
 Receiver gating time following pulse (P) .. 508
 Rotate 2D data (C) .. 508
 Rotor synchronization (P)... 509
 Zero-order phase in directly detected dimension (P)....................... 509
 Zero-order phase in 1st indirectly detected dimension (P) 509
 Zero-order phase in 2nd indirectly detected dimension (P)............ 510
 Display images selected by aipDisplayMode (M)........................... 510
 Review Queue table width (P) ... 510
 Select images in the Review Queue (P).. 510
 Sort images in the Review Queue (P)... 510
 Review Queue type (P) ... 511
 Generate absolute magnet frame data (M).. 511
 Retrieve FIDs (M)... 511
 rtcmx
Return Spinsight data into current experiment (C) 511
rtp Retrieve parameters (M) 512
rtphf Return stored phasefile to current phasefile (C) 512
rts Retrieve shim coil settings (C) 512
rttmp Retrieve experiment data from experiment subfile (M) 513
rtv Retrieve individual parameters (C) 513
rtx Retrieve parameters based on rtx rules (C) 514
s
Save display parameters as a set (M) 521
sa
Set up parameters for standard two-pulse sequence (M) 522
Stop acquisition (C) 522
sample
Submit change sample, Autoshim experiment to acquisition (M).. 522
saveSave data (M).523
savefile Base file name for saving files (P). 523
samplename Sample name (P) 523
saveglobal Save selected parameters from global tree (P) 523
saveMilestoneStacks Save current planning as milestone (C). 523
savePrescription Save current planning to file (C) 524
sb Sinebell constant in directly detected dimension (P). 524
sb1 Sinebell constant in 1st indirectly detected dimension (P) 524
sb2 Sinebell constant in 2nd indirectly detected dimension (P). 524
sbs Sinebell shift in directly detected dimension (P) 525
sbs1 Sinebell shift in 1st indirectly detected dimension (P) 525
sbs2 Sinebell shift in 2nd indirectly detected dimension (P) 525
sc Start of chart (P) 526
sc2 Start of chart in second direction (P) 526scalelimits
Set limits for scales in regression (M) 526
scalesw Set scaling factor for multipulse experiments (M) 526
scaleswscalesw1Scale spectral width in directly detected dimension (P)526
527scalesw1Set f_{1} scaling factor for $2 D$ multipulse experiments (M)
Scale spectral width in 1st indirectly detected dimension (P) 527
scalesw2
sd
sd
Scale spectral width in 2nd indirectly detected dimension (P). 527
sd2
Set first decoupler frequency to cursor position (M) 527
Set second decoupler frequency to cursor position (M) 528
sd3 Set third decoupler frequency to cursor position (M) 528
sda Set first decoupler frequency array (M) 528sd2a
Set second decoupler frequency array (M) 528
sd3a Set third decoupler frequency array (M) 529
sdp Show diffusion projection (M). 529
sediff
selld
Set up spin-echo diffusion imaging sequence (M) 529
Execute protocol actions of apptype sel1d (M) 529
select Select spectrum, FID, trace, or 2D plane without display (C) 529
selex Defines excitation band (M) 530
selexcit Set up PFG selective excitation pulse sequence (M) 531semssend 2 vnmr
Set up basic imaging sequence with oblique capability (M) 531
Send a command to VnmrJ (U) 531
seqcon Acquisition loop control (P) 531
seqfil Pulse sequence name (P). 532
seqgen Initiate compilation of user's pulse sequence (M,U) 532
set2D General setup for 2D experiments (M) 533
set2d General setup for 2D experiments (M) 533
set3dproc Set 3D processing (C) 533
setallshims Set all shims into hardware (M) 534
setarray Set up a parameter array (M) 534
setcenter Set up parameters for center sequence calibration (M) 535
setcolor Set colors for graphics window and for plotters (C). 535
setdecpars Set decoupler parameter values from probe file (M) 536
setdec 2 pars Set decoupler 2 parameter values from probe file (M) 536
setDefaultSize Set FOV to default size (C) 536
setDefaultslices Set default number of slices (C) 536
setDefaultThk Set default slice thickness (C) 537
setDefaultType Set default type (C) 537
setDisplayStyle Show stripes or lines (C). 537
setDrawInterSection Show/hide intersection(C) 537
setDraw3D Show/hide 3D (C) 537
setDrawAxes Show/hide axes (C) 538
setDrawOrders Show/hide order of drawings (C) 538
setdgroup Set the Dgroup of a parameter in a tree (C) 538
setenumeral Set values of a string parameter in a tree (C) 538
setether Connect or reconnect host computer to Ethernet (U) 539
setFillPolygon Show/hide filled polygon (C) 539
setfrq
setGapMode
setgauss
setgcal
setgcoil
setgpe
setgrid
setgro
setgroup
setgss
sethw
setint
setlimit
setlk
setlockfreq
setloop
setLP1
setMarkMode
setnoether
setoffset
setparams
setpen
setplotdev
setpower
setprotect
setref
setref1
setref2
setscout
setssfilter
setsw
setsw1
setsw2
setselfrqc
setselinv
settcldefault
settype
setup
setup_dosy
setvalue
setValue
setwave
setwin
sf
sf1
sf2
sfrq
sh2pul
setflip

Set rf power levels to desired flip angle (M)
539
539
Set frequency of rf channels (C) 539
Fix/Unfix slice gap (C) 540
Set a Gaussian fraction for lineshape (M) 540
Set the gradient calibration constant (M) 540
Assign sysgcoil configuration parameter (M) 541
Set phase encode gradient levels (M) 541
Divide graphics window into rows and columns (C) 542
Set readout gradient (M) 542
Set group of a parameter in a tree (C) 543
Select slice or voxel selection gradient levels (M) 543
Set values for hardware in acquisition system (C) 544
Set value of an integral (M) 545
Set limits of a parameter in a tree (C) 546
Set up lock parameters (M) 546
Set lock frequency (M) 547
Control arrayed and real-time looping (M) 547
Set F1 linear prediction parameters (M) 548
Remove/activate mark (C) 548
Disconnect host computer from Ethernet (U) 548
Calculate offset frequency for given nucleus and ppm (M) 549
Write parameter to current probe file (M) 549
Set maximum number of HP plotter pens (M) 549
Return characteristics of a named plotter (C) 550
Set power and pulsewidth for a given $\gamma \mathrm{B} 1$ value (M) 550
Set protection mode of a parameter (C) 550
Set frequency referencing (M) 552
Set freq. referencing for 1 st indirectly detected dimension (M) 552
Set freq. referencing for 2 nd indirect detected dimension (M). 553
Set up a scout run (M) 553
Set sslsfrq to the frequencies of each suppressed solvents (M) 553
Set spectral width (M) 553
Set spectral width in evolution dimension (M) 554
Set spectral width in 2nd evolution dimension (M) 554
Set selective frequency and width (M) 554
Set up selective inversion (M) 555
Select default display templates for pulse sequence (M) 555
Change type of a parameter (C) 555
Set up parameters for basic experiments (M) 555
Set up gradient levels for DOSY experiments (M). 556
Set value of any parameter in a tree (C) 556
Set parameter values (C) 557
Write a wave definition string into Pbox.inp file (M) 557
Activate selected window (C) 557
Start of FID (P) 558
Start of interferogram in 1st indirectly detected dimension (P) 558
Start of interferogram in 2nd indirectly detected dimension (P) 558
Transmitter frequency of observe nucleus (P) 558
Set up for a shaped observe excitation sequence (M) 559

shdec
shdec Set up for shaped observe excitation sequence (M) 559
shell Start a UNIX shell (C) 559

```
shelli
shim
shimset
shimspath
showconsole
showfit
showloginbox
showoriginal
showplotter
showplotq
showprintq
showstat
sin
sine
sinebell
sinesq
size
slfreq
sliceorder
sliceplan
slp
slw
smaxf
sminf
smsport
sn
solppm
solvent
solvinfo
sort
sp
sp1
sp2
spadd
spcfrq
specdc3d
spin
spin
spincad
spingen
spinll
spinner
spinopt
spins
split
spmax
spmin
spsm
spsub
sqcosine
sqdir
sqname
sqrt
sqsinebell
srate
sread
ss
ssecho
ssechol
ssfilter
sslsfrq
ssntaps
```

Start an interactive UNIX shell (C) ... 560
Submit an Autoshim experiment to acquisition (C) 560
Type of shim set (P) ... 560
Path to user's shims directory (P) .. 562
Show UNITY INOVA console configuration parameters (U) 562
Display numerical results of deconvolution (M) 562
Shows operator login dialog (M).. 562
Restore first 2D spectrum in 3D DOSY experiment (M) 562
Show list of currently defined plotters and printers (M) 562
Display plot jobs in plot queue (M) ... 562
Display print jobs in print queue (M) .. 563
Display information about status of acquisition (M,U) 563
Find sine value of an angle (C)... 563
Find values for a sine window function (M).................................... 563
Select default parameters for sinebell weighting (M)...................... 564
Find values for a sine-squared window function (M)...................... 564
Returns the number of elements in an arrayed parameter (O)........ 565
Measured line frequencies (P) .. 565
Reorder the slice position list (M) .. 565
Set slice parameters for target slice (M) .. 565
Family of offset Frequencies of SLP shapes (P)............................. 566
Spin simulation linewidth (P) ... 566
Maximum frequency of any transition (P)...................................... 566
Minimum frequency of any transition (P) 566
Sample Management System serial port connection (P) 567
Signal-to-noise ratio (P)... 567
Return ppm and peak width of solvent resonances (M) 567
Lock solvent (P)... 567
Retrieve information from solvent table (C).................................... 568
Sort real values of a parameter (M) .. 568
Start of plot in directly detected dimension (P) 569
Start of plot in 1st indirectly detected dimension (P) 569
Start of plot in 2nd indirectly detected dimension (P) 569
Add current spectrum to add/subtract experiment (C).................... 569
Display frequencies of rf channels (M) .. 570
3D spectral dc correction (P) .. 570
Submit a spin setup experiment to acquisition (C)......................... 571
Sample spin rate (P).. 571
Run SpinCAD program (C) .. 571
.................................... Compile SpinCAD pulse sequence (M,U)571
Set up a slfreq array (M) ... 572
Open the Spinner Control window (C) .. 573
Spin automation (P) .. 573
Perform spin simulation calculation (C)... 574
Split difference between two cursors (M).. 575
Take the maximum of two spectra (C).. 575
Take minimum of two spectra in add/subtract experiment (C)....... 575
Enter spin system (M)... 576
Subtract current spectrum from add/subtract experiment (C) 576
Set up unshifted cosine-squared window function (M) 577
Study queue directory (P) ... 577
Study queue parameter template (P) .. 577
Return square root of a real number (O).. 578
Set up unshifted sinebell-squared window function (M)................. 578
Spinning rate for magic angle spinning (P) 578
Read converted data into VnmrJ (C) ... 579
Steady-state transients (P)... 579
Set up solid-state echo pulse sequence (M).................................... 579
Set up parameters for SSECHO1 pulse sequence (M) 579
Full bandwidth of digital filter to yield a filtered FID (P) 580
Center of solvent-suppressed region of spectrum (P) 580
Number of coefficients in digital filter (P) 580
ssorder Order of polynomial to fit digitally filtered FID (P) 581
ssplan Set slice parameters for target slice (M) 581
sslist Conjugate gradient list (P) 581
ssprep Calculate slice gradient and slice selection parameters (M) 582
stack
stackmode
startIplan
startMovie
status
stdld
stdshm
steam
stepMovie
sth
stopMovie
string
strtext
strtext1
strtext2
strtlp
strtlp1
strtlp2
studyid
su
sub
substr
suselfrq
svdat
svf
svfdf
svfdir
svfname
svib
svp
svphf
svs
svs
svsis
svtmp
sw
sw1
sw2
sw3
sysgcoil
system
systemdir

T

t1
t1image
t1s
t2
t2image
t2s
tabc
tan
tape
tape
tbox
tcapply
tcclose

Stacking control for processing arrayed 1D spectra (P) 583
Start/restart image planning (C)... 583
Start running a movie (C) ... 583
Display status of sample changer (C,U) ... 583
Execute protocol actions of apptype std1d (M) 584
Interactively create a method string for autoshimming (M) 584
Set up volume localized spectroscopy sequence (M) 584
Step one frame in a movie (C) .. 584
Minimum intensity threshold (P)... 585
Stop running a movie (C)... 585
Create a string variable (C).. 585
Starting point for LP data extension in np dimension (P)................ 585
Starting point for LP data extension in ni dimension (P)................ 585
Starting point for LP data extension in ni2 dimension (P).............. 586
Starting point for LP calculation in np dimension (P) 586
Starting point for LP calculation in ni dimension (P) 586
Starting point for LP calculation in ni2 dimension (P) 587
Study identification (P).. 587
Submit a setup experiment to acquisition (M)................................. 587
Subtract current FID from add/subtract experiment (C)................. 588
Select a substring from a string (C) .. 588
Select peak, continue selective excitation experiment (M) 589
Save data (C)... 589
Save FIDs in current experiment (M) .. 590
Save FID data in FDF format (M) .. 590
Directory for non-study data (P)... 591
Filename parameter template for non-study data ((P) 591
Generate and save images as ImageBrowser FDF files (M) 591
Save parameters from current experiment (M)............................... 591
Save current phasefile (C).. 592
Save shim coil settings (C) .. 592
Spin simulation vertical scale (P) ... 593
Generate and save images as FDF files (M) 593
Move experiment data into experiment subfile (M) 594
Spectral width in directly detected dimension (P)........................... 594
Spectral width in 1st indirectly detected dimension (P) 595
Spectral width in 2nd indirectly detected dimension (P)................. 595
Spectral width in 3rd indirectly detected dimension (P)................. 596
System gradient coil (P).. 596
System type (P) .. 596
VnmrJ system directory (P) .. 597
T_{1} exponential analysis (M).. 600
Fit arrayed imaging data to T_{1} exponential data (M)...................... 601
T_{1} exponential analysis with short output table (M)........................ 601
T_{2} exponential analysis (M).. 601
Fit arrayed imaging data to T_{2} exponential data (M)...................... 602
T_{2} exponential analysis with short output table (M)....................... 602
Convert data in table order to linear order (M)................................ 602
Find tangent value of an angle (C).. 603
Read tapes from VXR-style system (M,U)...................................... 603
Control tape options of files program (P) 604
Draw a tilted box (C) .. 604
Apply table conversion reformatting to data (C) 605
Close table conversion file (C) .. 605

tcl
Send Tcl script to Tcl version of dg window (C) 606
tcopen Open table conversion file (C) 606
te
techron
temp
temp
tempcal
tep
testct
testsn
teststr
text
textis
textvi
th
th2d
thadj
theta
thk
ti
ticks
time
tin
title
tlt
tmove
tmsref
tn
tncosyps
tndqcosy
tnmqcosy
tnnoesy
tnroesy
tntocsy
TOCSY
Tocsy
tocsy
Tocsy1d
TOCSY1D
tof
tpe
tpe2, tpe3
tpwr
tpwr1
tpwr2
tpwrcal
tpwrf
tpwri
tpwrm
tr
trace
transfer
traymax
trfunc
trfuncd
trise
troesy
trunc
tshift
tspoil
tugain
tune
606
Echo time (P)
606
606
Open the Temperature Control window (C) 607
Sample temperature (P) 607
Temperature calculation (C) 607
Post-acquisition delay in EPI experiments (P) 608
Check ct for resuming signal-to-noise testing (M) 608
Test signal-to-noise of a spectrum (M) 608
Find which array matches a string (M) 609
Display text or set new text for current experiment (C) 609
Return the current text display status (C) 610
Edit text file of current experiment (M) 610
Threshold (P) 610
Threshold for integrating peaks in 2D spectra (P) 611
Adjust threshold for peak printout (M) 611
Euler angle theta from magnet frame (P) 611
Slice thickness (P). 612
Inversion recovery time (P) 612
Number of trigger pulses (P) 612
Display experiment time or recalculate number of transients (M). 612
Temperature interlock (P) 613
Plot a title on a plotter (M) 613
First-order baseline correction (P) 613
Left-shift FID to time-domain cursor (M) 614
Reference 1D proton or carbon spectrum to TMS (M) 614
Nucleus for observe transmitter (P) 614
Set up parameters for TNCOSYPS pulse sequence (M) 614
Set up parameters for TNDQCOSY pulse sequence (M) 614
Set up parameters for TNMQCOSY pulse sequence (M) 615
Set up parameters for TNNOESY pulse sequence (M) 615
Set up parameters for TNROESY pulse sequence (M) 615
Set up parameters for TNTOCSY pulse sequence (M) 615
Change parameters for TOCSY experiment (M) 615
Convert the parameters to a TOCSY experiement (M) 615
Set up parameters for TOCSY pulse sequence (M) 615
Convert the parameter set to a Tocsyld experiment (M) 616
Change parameters for TOCSY1D experiment (M) 616
Frequency offset for observe transmitter (P) 616
Duration of the phase encoding gradient pulse (P) 616
Duration of second and third phase encoding gradient periods (P) 616
Observe transmitter power level with linear amplifiers (P). 617
Intensity of an excitation pulse (P) 617
Intensity of an excitation pulse (P) 617
Calibrate power levels of 90° and 180° pulse (M) 617
Observe transmitter fine power (P) 618
Intensity of inversion pulse (P). 618
Observe transmitter linear modulator power (P) 619
Repetition time in imaging and localized spectroscopy (P) 619
Mode for n-dimensional data display (P) 619
Move parameters to target experiment (M) 619
Sample changer tray slots (P) 620
Translate screen coordinates (M) 621
Translate screen distance (M) 621
Gradient rise time (P) 621
Set up parameters for TROESY pulse sequence (M) 622
Truncate real numbers (O) 622
Adjust tau2 to current cursor position (M) 622
Gradient spoiling time (P) 622
Amount of receiver gain used by qtune (P) 623
Assign a frequency to a channel for probe tuning (C) 623

tuneoff
Turn off probe tuning mode on MERCURYplus/-Vx (M). 624
typeof Return identifier for argument type (O). 624
U
undospins Restore spin system as before last iterative run (M) 625
undosy Restore original 1D NMR data from subexperiment (M) 625
Define conversion units (C) 625
Remove inactive lock and join experiment (C) 626
unlock
Update all parameter sets saved in a directory (M) 627
Update probe file (M) 627
Update after installing new VnmrJ version (M) 628
Update gradient coil (M) 628
Update specified acquisition parameters (C) 628
Use "mark" output as deconvolution starting point (M). 628
VnmrJ user directory (P) 629
Experiment setup macro called by go, ga, and au (M) 629
Macro called by fixpar (M) 629
Selection for images and frames (P) 629
V
vast1dvastget
vastglue
vastglue2
vastgo
vbg
vf
vi
vjhelp
vn
vnmr
vnmr2sc
vnmr_accounting
vnmrexit
vnmrj
vnmrplot
vnmrprint
vo
vorient
vox1 - vox3
voxplan
vp
vpf
vpfi
vphi,vpsi,vtheta
vs
vs2d
vsadj
vsadj2
vsadjc
vsadjh
vsproj
vtc
vttype
vtwait
vxr_unix
Set up initial parameters for VAST experiments (M) 631Set up initial parameters for VAST experiments (M)631
Selects and displays VAST spectra (M) 632
Assemble 1D datasets into a 2D (or pseudo-2D) dataset (M) 632
Assemble 1D datasets into a 2D (or pseudo-2D) dataset (M) 632
Turn off LC stop flow automation, start VAST automation (M)... 633
Run VNMR processing in background (U) 633
Vertical scale of FID (P) 633
Edit text file with vi text editor (M) 634
Display VnmrJ help (U) 636
Start VNMR directly (U) 636
Start VNMR in current windowing system (U) 636
VNMR to SpinCAD pulse sequence translator (M) 637
Open Accounting window (U) 637
Exit from the VNMR system (C). 638
Start VnmrJ (U) 638
Plot files (U) 638
Print text files (U) 638
Vertical offset (P) 639
Voxel orientation. 639
Voxel dimensions (P) 639
Set voxel parameters for voxel defined by 2D box cursor (M) 640
Vertical position of spectrum (P) 640
Current vertical position of FID (P) 640
Current vertical position of imaginary FID (P) 640
Euler angles for voxel orientation 641
Vertical scale (P) 641
Vertical scale for 2D displays (P) 641
Automatic vertical scale adjustment (M) 642
Automatic vertical scale adjustment by powers of 2 (M) 642
Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M) 642
Automatic vertical scale adjustment for ${ }^{1} \mathrm{H}$ spectra (M) 643
Vertical scale for projections and traces (P) 643
Variable temperature cutoff point (P) 643
Variable temperature controller present (P) 644
Variable temperature wait time (P) 644
Convert VXR-style text files to UNIX format (M,U) 644
W

Who is using system (C) 648
Walkup automation (M) 648

waltz
WALTZ decoupling present (P) 648
wbs
wbs
wc
wc2
wcmax
wc 2 max
werr
werr
wet
wet1d
Wet1d
wetdqcosy
wetgcosy
wetghmqcps
wetghsqc
wetgmqcosy
wetnoesy
wetpwxcal
wettntocsy
wetshape
wexp
wexp
wf
wf1
wf2
wfgtest
wft
wft1d
wft1da
wft1dac
wft2d
wft2da
wft2dac
wftt3
which
wnt
wnt
wp
wp1
wp2
write
writefid
writeparam
wrtp
wsram
wshim
wtfile
wtfile1
wtfile2
wtgen
wti
wtia
wysiwyg
X
x0
x1
$x 2 y 2$
x3
x4
Specify action when bs transients accumulate (C) 648
When block size (P) 649
Width of chart (P) 649
Width of chart in second direction (P) 649
Maximum width of chart (P) 650
Maximum width of chart in second direction (P) 650
Specify action when error occurs (C) 650
When error (P) 650
flag to turn on or off wet solvent suppression ((P) 651
Set up parameters for a WET1D pulse sequence (M) 651
Set up parameters for wet ${ }^{1} \mathrm{H}$ experiment (M) 651
Set up parameters for a WETDQCOSY pulse sequence (M) 651
Set up parameters for a WETGCOSY pulse sequence (M) 651
Set up parameters for a WETGHMQCPS pulse sequence (M) 651
Set up parameters for a WETGHSQC pulse sequence (M) 651
Set up parameters for a WETGHSQC pulse sequence (M) 652
Set up parameters for a WETNOESY pulse sequence (M) 652
Set up parameters for a WETPWXCAL pulse sequence (M) 652
Set up parameters for a WETTNTOCSY pulse sequence (M) 652
Shape for pwwet pulses (P) 652
Specify action when experiment completes (C) 652
When experiment completes (P) 653
Width of FID (P) 653
Width of interferogram in 1st indirectly detected dimension (P) 653
Width of interferogram in 2nd indirectly detected dimension (P). 654
Waveform generator test (M) 654
Weight and Fourier transform 1D data (C) 654
Weight and Fourier transform f_{2} for 2D data (C) 654
Weight and Fourier transform phase-sensitive data (M) 655
Combine arrayed 2D FID matrices (M) 655
Weight and Fourier transform 2D data (C) 655
Weight and Fourier transform phase-sensitive data (M) 656
Combine arrayed 2D FID matrices (M) 656
Process f_{3} dimension during 3D acquisition (M) 656
Display which command or macro is used (M) 657
Specify action when nt transients accumulate (C) 657
When number of transients (P) 658
Width of plot in directly detected dimension (P) 658
Width of plot in 1st indirectly detected dimension (P) 658
Width of plot in 2nd indirectly detected dimension (P) 658
Write formatted text to a device (C) 658
Write numeric text file using a FID element (C) 660
Write one of more parameters to a file (C) 660
Command string executed after rtp command (P) 661
Send hardware configuration to acquisition console (C) 661
Conditions when shimming is performed (P) 661
User-defined weighting in directly detected dimension (P) 662
User-defined weighting in 1st indirectly detected dimension (P)... 662 662
User-defined weighting in 2nd indirectly detected dimension (P)
Compile user-written weighting functions (M, U) 663
Interactive weighting (C) 663
Interactive weighting for 2D absorptive data (M) 664
Set plot display or full display (P) 664
X-zero position of HP pen plotter or Postscript device (P) 665
X 1 shim gradient (P) 665
X2Y2 shim gradient (P) 665
X 3 shim gradient (P) 665
X 4 shim gradient (P). 666
xdiag
xgate Load time counter (M) 666
xpol Cross-polarization (P) 666
xpolar1 Set up parameters for XPOLAR1 pulse sequence (M) 667
xy XY shim gradient (P) 667
xz XZ shim gradient (P) 667
xz2 XZ2 shim gradient (P) 667
Y
yo Y-zero position of HP pen plotter or Postscript device (P) 669
y1 Y1 shim gradient (P) 669
y3 Y3 shim gradient (P) 669
y4Y4 shim gradient (P)669
Yz YZ shim gradient (P) 669
yz2 YZ2 shim gradient (P) 670
ZZz 0
z2y3
z3
z3c
z3x
z3x2y2
z3x3
z3xy
z3y
z3y3
z4
z4c
z4x
$z 4 x 2 y 2$
z4xy
z4y
z 5
z5x
z5y
z 6
z7
z 8
zap
zeroneg
zoom
zxy
Add integral reset point at cursor position (C) 671
Z0 field position (P) 672
Z1 shim gradient (P) 672
Z1C shim gradient (P) 672
Z 2 shim gradient (P) 672
Z2C shim gradient (P) 673
Z2X2Y2 shim gradient (P) 673
Z2X3 shim gradient (P) 673
Z2XY shim gradient (P) 673
Z2Y3 shim gradient (P) 673
Z 3 shim gradient (P) 673
Z3C shim gradient (P) 673
Z3X shim gradient (P) 673
Z3X2Y2 shim gradient (P) 674
Z3X3 shim gradient (P) 674
Z3XY shim gradient (P) 674
Z3Y shim gradient (P) 674
Z3Y3 shim gradient (P) 674
Z4 shim gradient (P) 674
Z4C shim gradient (P) 674
Z4X shim gradient (P) 674
Z4X2Y2 shim gradient (P) 675
Z4XY shim gradient (P) 675
Z4Y shim gradient (P) 675
Z5 shim gradient (P) 675
Z5X shim gradient (P) 675
Z5Y shim gradient (P) 675
Z6 shim gradient (P) 675
Z7 shim gradient (P) 675
Z8 shim gradient (P) 676
Set up for gradient refocused high-speed imaging sequences (M) 676
Set all negative intensities of 2D spectra to zero (C) 676
Adjust display to given width (M) 676

zx2y2

zx3
ZX2Y2 shim gradient (P) 676
zx3 ZX3 shim gradient (P) 676
ZXY shim gradient (P) 676

zy3
zy3 ZY3 shim gradient (P) 677
Index 679

Notational Conventions

The VnmrJ Command and Parameter Reference describes in detail the commands, macros, and parameters in VnmrJ software. Information new to VnmrJ in this version is shown by a change bar (as shown to the left of this paragraph).

Title Line Codes

Each entry has a letter in parentheses in the title line that identifies the type of entry:
(C) VnmrJ command
(M) VnmrJ macro command (from the maclib directory)
(O) MAGICAL programming operator
(P) VnmrJ parameter
(U) UNIX command (not executable within VnmrJ)
$(\mathrm{C}, \mathrm{U})(\mathrm{M}, \mathrm{U}) \quad$ Executable from UNIX or VnmrJ (note that syntax is different)

Applicability

An entry with applicability information applies only to the system or accessory listed. If the entry does not include applicability information, the entry applies to all systems.

Command and Macro Syntax

Each command and macro entry includes the syntax used when entering it into the system. The following examples illustrate this syntax:
halt
delexp (exp_num)
rttmp(file)
$r l<($ frequency $)$ >

If no parentheses are shown, enter the command or macro exactly as shown, e.g., enter halt.
If parentheses are shown, enter the command or macro name as shown, but replace arguments with a value, e.g., if exp_num is 5, enter delexp (5).
Arguments can be a string (e.g., name of file or solvent), number, variable, or parameter (e.g., pw). If a string, enclose it with single quote marks, e.g., if £ile is samp02, enter rttmp ('samp02').
If number, variable, or parameter, do not use marks.
Angle brackets (< and >) indicate optional input, e.g., if frequency not needed or the default value of frequency is acceptable, enter $r l$, but if frequency has a value such as 10 , enter rl(10).

Notational Conventions

md (<from_exp, >to_exp)	Arguments can also be optional. Use a comma to separate arguments, e.g., md $(2,3)$. Unless stated otherwise, the order of arguments is often important.
nll<('pos') >	A keyword is frequently used as an argument. In the syntax, keywords are shown in single quotes and are entered exactly as shown, e.g., to use the optional keyword 'pos' for nll, enter nll('pos').
dc2d('f1'\|'f2')	A vertical bar indicates an OR condition, e.g., either 'f1' or 'f2' can be an argument to dc2d.
$\sin ($ angle $)<$: l >	Some commands return values to a calling macro. This is shown by a colon followed by one or more variables, e.g., if angle is variable x and n is variable $r t$, then $\sin (x): r t$ returns the value of $\sin (x)$ to the calling macro via the variable rt.
z(reset 1, reset $2, \ldots$)	Three dots indicate the sequence of arguments continues. Unless a limit is given, you can enter one argument, two, three, or as many as needed.

Parameter Syntax

Parameter syntax is always in the form parameter_name=value. If value is a string, enclose it in single quote marks; otherwise, no marks are used, e.g., auto= ' y^{\prime}, plotter='ThinkJet', spin=5. Note that some parameters are not user-enterable.

Notational Conventions

Throughout all Varian, Inc. NMR manuals, typewriter-like characters identify commands, parameters, directories, file names, and text displayed on the screen.

Because pressing the Return key is required at the end of almost every command or line of text you type on the keyboard, assume this use of the Return key unless stated otherwise.

Other Sources of Information

For further information about an entry, refer to the manual listed under "See also." For general coverage on VnmrJ, refer to the following manuals (each manual is also online):

VnmrJ Walkup NMR

VnmrJ Liquids NMR
VnmrJ Installation and Administration
VnmrJ Imaging NMR

A

```
aa
abort
abortallacqs
abortoff
aborton
abs
AC1S-AC11S
ACbackup
ACreport
acos
acosy
acosyold
acqdisp
acqi
acqmeter
Acqmeter
acqstat
Acqstat
acqstatus
acquire
add
addAstack
addfids
addi
addnucleus
addpar
addparams
addprobe
addrcvrs
adept
aexppl
ai
aig
aipAnnotation
aipAutoLayout
aipBigFrame
aipClearFrames
aipClickedFrame
aipCurrentKey
aipDeleteData
aipDeleteFrames
aipDeleteRois
aipDisplay
```

Abort acquisition with error (C)
Terminate action of calling macro and all higher macros (C)
Reset acquisition computer in a drastic situation (C)
Terminate normal functioning of abort in a macro (C)
Restore normal functioning of abort in a macro (C)
Find absolute value of a number (C)
Autocalibration macros (M)
Make backup copy of current probe file (M)
Print copy of probe file after autocalibration (M)
Find arc cosine of number (C)
Automatic analysis of COSY data (C)
Automatic analysis of COSY data, old algorithm (C)
Display message on the acquisition status line (C)
Interactive acquisition display process (C)
Open Acqmeter window (M)
Open Acqmeter window (U)
Open Acquisition Status window (M)
Open Acquisition Status window (U)
Acquisition status (P)
Acquire data (M)
Add current FID to add/subtract experiment (C)
Add stack
Add a series of FIDs together (M)
Start interactive add/subtract mode (C)
Add new nucleus to existing probe file (M)
Add selected parameters to current experiment (M)
Add parameter to current probe file (M)
Create new probe directory and probe file (M)
Combine data from multiple receivers (M)
Automatic DEPT analysis and spectrum editing (C)
Automatic plot of spectral expansion (M)
Select absolute-intensity mode (C)
Absolute-intensity group (P)
Annotation template name (P)
Turn automatic layout on or off (P)
Toggle full-screen mode (C)
Erase all images in displayed frames (C)
ID of clicked frame (P)
Image key of currently drawing frame (P)
Unload data (C)
Clear the graphics screen (C)
Delete selected ROIs (C)
Display specified images (C)

aipDisplayByKey	Display a loaded image in a given frame (C)
AipDisplayMode	Selection mode of image display (P)
aipDupFrame	Move an image to another frame (C)
aipExtract	Extract slices from a 3D data set (C)
aipExtractMip	Extract MIP from a 3D data set (C)
aipGetSelectedFrames	Get the location and size of selected frames (C)
aipFlip	Reflect selected images (C)
aipGetDataKey	Get the key of a loaded image (C)
aipGetFrame	Get frame index (C)
aipGetFrameToStart	Get a frame to start image display (C)
aipGetHeaderParam	Get parameters from FDF header (C)
aipGetImgKey	Get image keys (C)
aipLoadDir	Load image data (C)
aipLoadFile	Load image data (C)
aipLoadRois	Load ROIs from a file to selected frames (C)
aipMathExecute	Execute an Image Math Expression (C)
AipMovieMode	Selection mode of movie (P)
aipMovieSettings	Size of movie (P)
aipNumOfCopies	Get number of times an image is loaded (C)
aipNumOfImgs	Get number of loaded images (C)
aipRedisplay	Refresh image display (C)
aipRotate	Rotate selected images (C)
aipRQtest	Print image keys for debugging (C)
aipSaveHeaders	Save the auxiliary header files (C)
aipSaveRois	Save selected ROIs to a file (C)
aipSaveVs	Save intensity scaling (C)
aipScreen	Query whether aip owns the graphic area (C)
aipSegment	Segment images (C)
aipSelectFrames	Select or deselect image frames (C)
aipSelectRois	Select or deselect ROIs (C)
aipSetDebug	Enable debugging messages (C)
aipSetExpression	Set the image math expression template (C)
aipSetState	Set AIP mouse state (C)
aipSetVsFunction	Modify intensity scaling (C)
aipShow	Load and display images of a given directory (M)
aipSomeInfoUpdate	Update Point Info and Line Profile pages (C)
aipSplitWindow	Split the graphics display area into frames (C)
aipStatPrint	Write ROI statistics to disk (C)
aipStatUpdate	Update the Statistics page (C)
aipWriteData	Save image data (C)
aipUpdateRQlist	Update or rebuild the Review Queue list (C)
alfa	Set alfa delay before acquisition (P)
alock	Automatic lock control (P)
alternateslices	Alternate slices (C)
ampmode	Independent control of amplifier mode (P)
amptype	Amplifier type (P)
analyz	Calculate standard peak height (M)

analyze	Generalized curve fitting (C)
ap	Print out "all" parameters (C)
ap	"All" parameters display control (P)
apa	Plot parameters automatically (M)
aph	Automatic phase adjustment of spectra (C)
aph0	Automatic phase of zero-order term (C)
aphb	Auto phasing for Bruker data (C)
aphx	Perform optimized automatic phasing (M)
appmode	Application mode (P)
apptype	Application type (P)
apt	Set up parameters for APT pulse sequence (M)
Apt	Set up parameters for APT experiment (M)
APT	Change parameters for APT experiment (M)
aptaph	Automatic processing for APT spectra (M)
arccos	Calculate arc cosine of real number (M)
arcsin	Calculate arc sine of real number (M)
arctan	Calculate arc tangent of real number (M)
array	Easy entry of linearly spaced array values (M)
array	Parameter order and precedence (P)
arraydim	Dimension of experiment (P)
asin	Find arc sine of number (C)
asize	Make plot resolution along f_{1} and f_{2} the same (M)
assign	Assign transitions to experimental lines (M)
at	Acquisition time (P)
atan	Find arc tangent of a number (C)
atan2	Find arc tangent of two numbers (C)
atcmd	Call a macro at a specified time (M)
atext	Append string to current experiment text file (M)
attval	Calculate pulse width (M)
au	Submit experiment to acquisition and process data (M)
AuCALch3i	Set up autocalibration with CH3I sample (M)
AuCALch3i1	Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M)
AuCALch3oh	Set up autocalibration with Autotest sample (M)
AuCALch3oh1	Get autocalibration with Autotest sample (M)
Aucalibz0	Automatic Hz to DAC calibration for Z0 (M)
AuCdec	Carbon decoupler calibration macro (M)
AuCgrad	Carbon/proton gradient ratio calibration macro (M)
AuCobs	Carbon observe calibration macro (M)
audiofilter	Audio filter board type (P)
Aufindz0	Automatic adjustment of Z0 (M)
Augcal	Probe gcal calibration macro (M)
Augmap	Automated gradient map generation (M)
Augmapz 0	Automatic lock gradient map generation and z0 calibration (M)
AuHdec	Proton decoupler calibration (M)
AuHobs	Proton observe calibration macro (M)
Aumakegmap	Auto lock gradient map generation (M)
AuNuc	Get parameters for a given nucleus (M)

auto	Prepare for an automation run (C)
auto	Automation mode active (P)
auto_au	Controlling macro for automation (M)
Autobackup	Back up current probe file (M)
autodept	Automated complete analysis of DEPT data (M)
autodir	Automation directory absolute path (P)
autogo	Start automation run (C)
autolist	Set up and start chained acquisition (M)
autoname	Create path for data storage (C)
autoname	Prefix for automation data file (P)
autora	Resume suspended automation run (C)
autosa	Suspend current automation run (C)
autoscale	Resume autoscaling after limits set by scalelimits macro (M)
autostack	Automatic stacking for processing and plotting arrays (M)
autotest	Open Auto Test Window (C)
autotime	Displays approximate time for automation (M)
av	Set abs. value mode in directly detected dimension (C)
av1	Set abs. value mode in 1st indirectly detected dimension (C)
av2	Set abs. value mode in 2nd indirectly detected dimension (C)
averag	Calculate average and standard deviation of input (C)
awc	Additive weighting const. in directly detected dimension (P)
awc1	Additive weighting const. in 1st indirectly detected dimension (P)
awc2	Additive weighting const. in 2nd indirectly detected dimension (P)
axis	Provide axis labels and scaling factors (C)
axis	Axis label for displays and plots (P)
axisf	Axis label for FID displays and plots (P)

aa \quad Abort acquisition with error (C)

Syntax: aa
Description: Aborts an experiment that has been submitted to acquisition. If the experiment is active, it is aborted immediately, all data is discarded, and the experiment is interpreted as an error. Any data collected from an earlier block size transfer is retained. If any werr processing is defined, that processing occurs, followed by any queued experiments. The login name, and the FID directory path in file are used as keys to find the proper experiment to abort.
In some circumstances, there is a delay between the time go is entered and the acquisition is started. During this time, instructions based on the selected pulse sequence are being generated. This is signified by the letters "PSG" appearing in the upper left corner of the status window. An aa command issued under these circumstances reports that no acquisition is active but it instead stops the instruction generation process and the message "PSG aborted" appears.
See also: VnmrJ Liquids NMR

Related:	file	File name of a parameter set (P)
go	Submit experiment to acquisition (C)	
halt	Abort acquisition with no error (C)	
	werr	Specify action when error occurs (C)
werr	When error (P)	

abort \quad Terminate action of calling macro and all higher macros (C)

Syntax: abort
Description: Terminates the action of the calling macro and all higher levels of nested macros. abort is used only in macros and not entered from the keyboard. It generates an error condition, which is the reason why the calling macro and any parent (nested) macros above will also be aborted. To exit from the execution of a macro without generating an error, use return.
See also: VnmrJ User Programming
Related: abortoff Terminate normal functioning of abort in a macro (C)
aborton Restore normal functioning of abort in a macro (C)
return Terminate execution of a macro (C)

abortallacqs Reset acquisition computer in a drastic situation (C)

Syntax: abortallacqs
Description: Reboots the acquisition system from the host computer. Wait at least 30 seconds before attempting new acquisitions.

See also: VnmrJ Liquids NMR
abortof $f \quad$ Terminate normal functioning of abort in a macro (C)
Syntax: abortoff
Description: Changes the action of an abort command in a macro. Normally, abort (or any command aborting with an error condition) terminates the action of the calling macro and all higher levels of nested macros; however if the abortoff command is executed prior to a macro containing the abort command, only the macro containing abort terminates and execution continues to the next macro. The operation of the abortoff command is nullified by the aborton command. abortoff is used only in macros and not entered from the keyboard.

See also: VnmrJ User Programming
Related: abort Terminate action of calling macro and all higher macros (C)
aborton Restore normal functioning of abort in a macro (C)
aborton \quad Restore normal functioning of abort in a macro (C)
Syntax: aborton
Description: Nullifies the operation of abortoff command and restores the normal functioning of the abort command. aborton is used only in macros and not entered from the keyboard.

See also: VnmrJ User Programming
Related: abortoff Terminate normal functioning of abort in a macro (C)
abs \quad Find absolute value of a number (C)
Syntax: abs (number) <: value>
Description: Finds the absolute value of a number. Absolute value is a nonnegative number equal in numerical value to the given number (e.g., abs (-6.5) is 6.5).
Arguments: number is the given real number.
value is the return value with the absolute value of the given number. The default is to display the value in the status window.
Examples: abs (-25)
abs (n) :abs_val
See also: VnmrJ User Programming

AC1S-AC11S Autocalibration macros (M)

Syntax: ACnS, where n is a number from 1 to 11 .
Description: Performs automatic system calibration. When finished with the calibration routines, the current probe file is updated. If the probe is new to the system (i.e., all values in the probe file are zero), system power levels are determined followed by calibration. If power levels are listed in the current probe file, these values are used. The macro AC1S determines ${ }^{1} \mathrm{H}$ pw90, AC5S begins ${ }^{13} \mathrm{C}$ calibration, including decoupler power calibrations. AC1OS performs ${ }^{19} \mathrm{~F}$ calibration, and AC11S performs ${ }^{31} \mathrm{P}$ calibration.
See also: VnmrJ Liquids NMR

ACbackup Make backup copy of current probe file (M)
Syntax: ACbackup
Description: Called by the autocalibration macros AC1S-AC11S to back up the probe file after calibration ends. This macro is not usually called by the user.

See also: VnmrJ Liquids NMR
Related: AC1S-AC11S Autocalibration macros (M)

ACreport \quad Print copy of probe file after autocalibration (M)
Syntax: ACreport
Description: Called by the autocalibration macros AC1S-AC11S to print a copy of the probe file before beginning a new autocalibration run.
See also: VnmrJ Liquids NMR
Related: AC1S-AC11S Autocalibration macros (M)
acos \quad Find arc cosine of number (C)
Syntax: acos (value) <: n>
Description: Finds the arc cosine (also called the inverse cosine) of a number.
Arguments: value is a number in the range of ±-1.0 to +1.0 .
n is a return argument giving the arc cosine, in radians, of value. The default is to display the arc cosine value in the status window.
Examples: acos (.5)
acos (value) : acos_val
See also: VnmrJ User Programming
Related: sin Find sine value of an angle (C)
acosy \quad Automatic analysis of COSY data (C)
Syntax: acosy

Description: Automatically analyzes a 2D COSY data set with $f n=f n 1$ and $s w=s w 1$. In this algorithm, a fuzzy pattern recognition technique is used to detect peaks and cluster the cross peaks into groups. Symmetry measures and chemical shifts for all cross peaks are calculated. Connectivities and the correlation table are displayed on the computer screen. This method is less sensitive to the threshold and rejects most artifacts in the peak list.
See also: VnmrJ Liquids NMR
Related: acosyold Automatic analysis of COSY data (C)

fn	Fourier number in 1st indirectly detected dimension (P)
fn1	Fourier number in directly detected dimension (P)
ll2d	Automatic and interactive 2D peak picking (C)
Sw	Spectral width in directly detected dimension (P)
Sw1	Spectral width in 1st indirectly detected dimension (P)

acosyold Automatic analysis of COSY data, old algorithm (C)
Syntax: acosyold
Description: Analyzes COSY data using an old algorithm.
Related: acosy Automatic analysis of COSY data (C)
acqdisp Display message on the acquisition status line (C)
Syntax: acqdisp (message)
Description: Displays the message specified on the acquisition status line. acqdisp is used primarily by the acquisition process to update the screen.
Arguments: message is a text string, up to 8 characters long.
See also: VnmrJ Liquids NMR

acqi Interactive acquisition display process (C)

Syntax: acqi<('par'|'disconnect'|'exit'|'standby')><:\$ret>
Description: Opens the Acquisition window for interactive locking and shimming on the lock signal, FID, or spectrum. When using a spectrometer, acqi normally automatically starts. On ${ }^{\text {UNITY }}$ INOVA systems only, you can use the Acquisition window to shim on the sample while an acquisition is in progress. This feature is not available on other systems. On all systems, if the console has been recently rebooted, enter su before running acqi.
If acqi is connected to the console and you start an acquisition (su/go/au), acqi automatically disconnects.
The pulse sequence and parameter set for the FID/spectrum display can be selected by entering $g f$. Note that if clicking the FID button in acqi causes acqi to "disconnect," the common cause is that $g \ddagger$ had not been executed.
The FID display is controlled by the parameters lsfid, phfid, and dmgf. These display parameters are automatically sent to acqi when acqi is first invoked. These parameters may subsequently be changed and sent again to acqi with the command acqi ('par'). If phfid is not set to "Not Used" for the FID display in acqi, a slide control will be available in acqi for the interactive adjustment of the phfid parameter. The slide will be in the IPA set of adjustments. If the parameter $d m g f$ exists and is set to ' av^{\prime} ', the FID display in acqi displays the square root of the sum of the squares of the real and imaginary channels.
The spectrum display is controlled by parameters $s p, w p, d m g, r p, l p, r f l$, $r f p, v s, v p, s w$, and $f n$. These parameters are automatically sent to acqi
when acqi is first invoked. These parameters can subsequently be changed and sent again to acqi with the command acqi ('par'). The preparation macro gf also calls acqi ('par'), thereby causing these parameters to be sent to acqi. If fn is greater than 64 K , it is lowered to 64 K .
A convenient method of setting these parameters is to acquire a spectrum with go , then ft and adjust the display with the ds command options. Once the display is set the way you want, enter $g f$. The same display should then appear when the spectrum display is selected from acqi. Note that weighting parameters are not used in the acqi spectrum display.
The manual VnmrJ Liquids NMR has a step-by-step description of using acqi.
Arguments: 'par' causes the current values of parameters lsfid, phfid, dmgf, sp, $w p, d m g, r p, l p, r f l, r f p, v s, s w, ~ a n d ~ f n ~ t o ~ b e ~ s e n t ~ t o ~ a c q i . ~$
'disconnect ' causes acqi to be disconnected. Clicking the Close button in acqi is equivalent, and puts acqi in the standby mode. Lock parameters, the spin parameter, and the shim values are sent back to the current experiment when acqi is "disconnected." If the experiment has the load parameter set to ' y ', then the shim values are not delivered to the experiment.
' exit ' causes an exit from acqi. Clicking the exit button in the Acquisition window is equivalent.
\$ret is a return value with the success or failure of running acqi. The default is a warning displayed in the status window if acqi fails.
' standby' starts acqi and puts it into the standby mode.
Examples: acqi
acqi('par')
acqi('disconnect')
acqi('exit')
acqi: \$ok
See also: VnmrJ Liquids NMR

Related:	Acqstat	Bring up the acquisition status display (U)
	dmg	Display mode in directly detected dimension (P)
	dmgf	Absolute-value display of FID data or spectrum in acqi (P)
	ds	Display a spectrum (C)
	fn	Fourier number in directly detected dimension (P)
	ft	Fourier transform 1D data (C)
	gf	Prepare parameters for FID/spectrum display in acqi (M)
	go	Submit an experiment to acquisition (C)
	load	Load status of displayed shims (P)
	lkof	Track changes in lock frequency (P)
	lp	First-order phase in directly detected dimension (P)
	lsfid	Number of complex points to left-shift the np FID (P)
	phfid	Zero-order phasing constant for np FID (P)
	rfl	Ref. peak position in 1st indirectly detected dimension (P)
	rfp	Ref. peak frequency in directly detected dimension (P)
	rp	Zero-order phase in directly detected dimension (P)
	sp	Start of plot in directly detected dimension (P)
	spin	Sample spin rate (P)
	sw	Spectral width in directly detected dimension (P)
	vp	Vertical position of the spectrum (P)
	vs	Vertical scale (P)
	wp	Width of plot in directly detected dimension (P)

acqmeter Open Acqmeter window (M)

Syntax: acqmeter<(remote system) >

Description: Opens the Acqmeter window and shows a time line of lock level, temperature (VT), and/or spinner speed. When first opened, only lock level is displayed. By clicking anywhere in the lock level window with the right mouse button, a menu pops up with choices to close the lock level window, show a temperature (VT) window, show a spinner window, open a properties window, or close the Acqmeter window. Click on the choice desired in the menu with either the left or right mouse button. In the properties window, the host, font, color, and graphical mode can be changed. Continue to click in any Acqmeter window with the right mouse button to open the menu and then open or close windows, or close the Acqmeter window, as desired.
Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).
Examples: acqmeter
acqmeter('inova500')
See also: VnmrJ Liquids NMR
Related: acqi Interactive acquisition display (C)
Acqmeter Open Acqmeter window (U)

Acqmeter Open Acqmeter window (U)

Syntax: Acqmeter <remote_system> <-f file> <\&>
Description: Opens the Acqmeter window and shows a time line of lock level, temperature (VT), and/or spinner speed. When first opened, only lock level is displayed. By clicking anywhere in the lock level window with the right mouse button, a menu pops up with choices to close the lock level window, show a temperature (VT) window, show a spinner window, open a properties window, or close the Acqmeter window. Click on the choice desired in the menu with either the left or right mouse button. In the properties window, the host, font, color, and graphical mode can be changed. Continue to click in any Acqmeter window with the right mouse button to open the menu and then open or close windows, or close the Acqmeter window, as desired.
Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

- $f \mathrm{file}$ is the name of a template file in the directory \$vnmruser/ vnmrsys/templates/acqstat used to set the attributes of the Acqmeter window when it opens. This allows customizing the Acqmeter window for different users and experiments. The default name of the file is default.
\& (ampersand) character added to the command makes Acqmeter into a background process. For example, if "lab" is the remote machine host name, entering the command Acqmeter lab \& displays the acquisition status of the "lab" remote machine as a background process. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).
Examples: Acqmeter \&
Acqmeter inova400 \&
Acqmeter gem300-f inova500.lisa \&

See also: VnmrJ Liquids NMR
Related: acqi Interactive acquisition display (C)
acqmeter \quad Open Acqmeter window (M)

acqstat Open Acquisition Status window (M)

Syntax: acqstat<(remote_system) >
Description: Opens the Acquisition Status window, which displays acquisition information such as the current acquisition task, experiment number, spinner status, and temperature status. When the host computer is attached to a spectrometer, this window should open automatically when VnmrJ is started. In the properties window, the host, font, color, and graphical mode can be changed. For a complete description of these windows, refer to the manual VnmrJ Liquids NMR.

Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

```
Examples: acqstat
    acqstat('u500')
```

See also: VnmrJ Liquids NMR
Related: Acqstat Open the Acquisition Status window (U)
showstat Display information about status of acquisition (C,U)

Acqstat Open Acquisition Status window (U)
Syntax: Acqstat <remote_system> <-f file> <\&>
Description: Opens the Acquisition Status window, which displays acquisition information such as the current acquisition task, experiment number, spinner status, and temperature status. When the host computer is attached to a spectrometer, this window should open automatically when VnmrJ is started. In the properties window, the host, font, color, and graphical mode can be changed. For a complete description of these windows, refer to the manual VnmrJ Liquids NMR.
Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).
-f file is the name of a template file in the directory \$vnmruser/ vnmrsys/templates/acqstat used to set the attributes of the Acquisition Status window when it opens. This allows customizing the Acquisition Status window for different users and experiments. The default name of the file is default.
\& (ampersand) character added to the command makes Acqstat into a background process. For example, if "lab" is the remote machine host name, entering the command Acqstat lab \& displays the acquisition status of the "lab" remote machine as a background process. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

```
Examples: Acqstat &
    Acqstat inova400 &
    Acqstat gem300 -f inova500.lisa &
```

See also: VnmrJ Liquids NMR
Related: Acqstat Open the Acquisition Status window (U)
showstat Display information about status of acquisition (C,U)

acqstatus Acquisition status (P)

Applicability: All systems, except codes marked with an asterisk $\left(^{*}\right)$ are not used on MERCURYplus/Vx systems.
Description: Whenever wbs, wnt, wexp, or werr processing occurs, the acquisition condition that initiated that processing is available from the parameter acqstatus. This acquisition condition is represented by two numbers, a "done" code and an "error" code. The done code is set in acqstatus [1] and the error code is set in acqstatus [2]. Macros can take different actions depending on the acquisition condition.
The done codes and error codes are listed below and in the file acq_errors in /vnmr/manual. For example, a werr macro could specify special processing if the maximum number of transients is accumulated. The appropriate test in the macro would be:
if (acqstatus[2] = 200) then
"do special processing, e.g. dp='y' au" endif
Done codes:
11. FID complete
12. Block size complete (error code indicates bs number completed)
13. Soft error
14. Warning
15. Hard error
16. Experiment aborted
17. Setup completed (error code indicates type of setup completed)
101. Experiment complete
102. Experiment started

Error codes:
Warnings
101. Low-noise signal
102. High-noise signal
103. ADC overflow occurred
104. Receiver overflow occurred*

Soft errors
200. Maximum transient completed for single-precision data
201. Lost lock during experiment (LOCKLOST)
300. Spinner errors:
301. Sample fails to spin after three attempts at repositioning
302. Spinner did not regulate in the allowed time period (RSPINFAIL)*
303. Spinner went out of regulation during the experiment (SPINOUT)*
395. Unknown spinner device specified (SPINUNKNOWN)*
396. Spinner device is not powered up (SPINNOPOWER)*
397. RS-232 cable not connected from console to spinner (SPINRS232)*
398. Spinner does not acknowledge commands (SPINTIMEOUT)*
400. VT (variable temperature) errors:
400. VT did not regulate in the given time vttime after being set
401. VT went out of regulation during the experiment (VTOUT)
402. VT in manual mode after automatic command (see Oxford manual)*

```
403. VT safety sensor has reached limit (see Oxford manual)*
404. VT cannot turn on cooling gas (see Oxford manual)*
405. VT main sensor on bottom limit (see Oxford manual)*
406. VT main sensor on top limit (see Oxford manual)*
407. VT sc/ss error (see Oxford manual)*
408. VT oc/ss error (see Oxford manual)*
495. Unknown VT device specified (VTUNKNOWN)*
496. VT device not powered up (VTNOPOWER)*
497. RS-232 cable not connected between console and VT (VTRS232)*
498. VT does not acknowledge commands (VTTIMEOUT)
500. Sample changer errors:
501. Sample changer has no sample to retrieve
502. Sample changer arm unable to move up during retrieve
503. Sample changer arm unable to move down during retrieve
504. Sample changer arm unable to move sideways during retrieve
505. Invalid sample number during retrieve
506. Invalid temperature during retrieve
507. Gripper abort during retrieve
508. Sample out of range during automatic retrieve
509. Illegal command character during retrieve*
510. Robot arm failed to find home position during retrieve*
511. Sample tray size is not consistent*
512. Sample changer power failure during retrieve*
513. Illegal sample changer command during retrieve*
514. Gripper failed to open during retrieve*
515. Air supply to sample changer failed during retrieve*
525. Tried to insert invalid sample number*
526. Invalid temperature during sample changer insert*
527. Gripper abort during insert*
528. Sample out of range during automatic insert
529. Illegal command character during insert*
530. Robot arm failed to find home position during insert*
531. Sample tray size is not consistent*
532. Sample changer power failure during insert*
533. Illegal sample changer command during insert*
534. Gripper failed to open during insert*
535. Air supply to sample changer failed during insert*
593. Failed to remove sample from magnet*
594. Sample failed to spin after automatic insert
595. Sample failed to insert properly
596. Sample changer not turned on
597. Sample changer not connected to RS-232 interface
598. Sample changer not responding*
600. Shimming errors:
601. Shimming user aborted*
602. Lost lock while shimming*
604. Lock saturation while shimming*
608. A shim coil DAC limit hit while shimming*
700. Autolock errors:
701. User aborted (ALKABORT)*
702. Autolock failure in finding resonance of sample (ALKRESFAIL)
703. Autolock failure in lock power adjustment (ALKPOWERFAIL)*
704. Autolock failure in lock phase adjustment (ALKPHASFAIL)*
705. Autolock failure, lock lost in final gain adjustment (ALKGAINFAIL)*
800. Autogain errors.
801. Autogain failure, gain driven to 0, reduce pw (AGAINFAIL)
Hard errors
901. Incorrect PSG version for acquisition
```

902. Sum-to-memory error, number of points acquired not equal to np
903. FIFO underflow error (a delay too small?)*
904. Requested number of data points (np) too large for acquisition*
905. Acquisition bus trap (experiment may be lost)*
906. SCSI errors:
907. Recoverable SCSI read transfer from console*
908. Recoverable SCSI write transfer from console**
909. Unrecoverable SCSI read transfer error*
910. Unrecoverable SCSI write transfer error*
911. Host disk errors:
912. Error opening disk file (most likely a UNIX permission problem)*
913. Error on closing disk file*
914. Error on reading from disk file*
915. Error on writing to disk file*

See also: VnmrJ Liquids NMR

Related:	react werr werr	Recover from error conditions during werr processing (M) Specify action when error occurs (C)

acquire \quad Acquire data (M)

Description: Macro to acquire data. It uses execpars to select the prep and prescan method, executes them, and then begins acquisition.

add
 Add current FID to add/subtract experiment (C)

Syntax: (1) add<(multiplier<,'new'>) >
(2) add ('new')
(3) add ('trace', index)

Description: Adds the last displayed or selected FID to the current contents of the add/ subtract experiment (exp5). The parameters lsfid and phfid can be used to shift or phase rotate the selected FID before it is combined with the data in the add/subtract experiment. A multi-FID add/subtract experiment can be created by using the 'new' keyword. Individual FIDs in a multi-FID add/ subtract experiment can subsequently be added to using the ' trace ' keyword followed by the index number of the FID.
Arguments: multiplier is a value that the FID is to be multiplied by before being added to the add/subtract experiment $(\exp 5)$. The default is 1.0 .
' new' is a keyword to create a new FID element in a add/subtract experiment.
'trace' is a keyword to use the next argument (index) as the number of the FID to add to in an add/subtract experiment. The default is to add to the first FID in a multi-FID add/subtract experiment.
index is the index number of the FID to be used as a target in a multi-FID add/ subtract experiment.
Examples: add
add (0.75)
add('new')
add('trace',2)
See also: VnmrJ Liquids NMR

Related:	Clradd	Clear add/subtract experiment (C)
	lsfid	Number of complex points to left-shift ni interferogram (P)
phfid	Zero-order phasing constant for np FID (P)	
select	Select a spectrum without displaying it (C)	

spadd Add current spectrum to add/subtract experiment (C)
sub \quad Subtract current FID from add/subtract experiment (C)

addAstack Add stack

Applicability: Systems with imaging capabilities.
Syntax: addAstack
Description: Adds a stack of the given type. If type is not given, type $=0$; if type $=-1$, the default type will be used.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)

addfids \quad Add a series of FIDs together (M)

Applicability: Systems with LC-NMR accessory.
Syntax: addfids<(start,finish) >
Description: Improves signal-to-noise by adding adjacent FIDs that represent the same peak. Given a series of FIDs that represent separate data, such as occur during an LCNMR run, some of the adjacent FIDs can actually represent the same peak in the LC run.

To obtain the FID numbers to use, you can enter dss or dsww (e.g., enter dsww $(25,35)$ and then determine that peak numbers 28 to 31 contain the peaks of interest), or you can enter dconi and then read the Index counter on line 1 of the display.
Arguments: start is the number of the first FID to be co-added. The default is that you are prompted for the value.
finish is the number of the last FID to be co-added. The default is that you are prompted for the value.
Examples: addfids
addfids $(25,28)$
See also: VnmrJ Liquids NMR

addi \quad Start interactive add/subtract mode (C)

Syntax: addi
Description: Starts the interactive add/subtract mode. Before entering addi, start the process with clradd and spadd, then display a second spectrum on the screen. This may involve changing experiments, selecting a second member of an array of spectra, a different trace of a 2D spectrum, or displaying a spin simulated spectrum. The Fourier numbers (fn) must be the same in the two spectra to be manipulated. The width (sw) of the two spectra need not be identical, although adding spectra of different widths will probably not be meaningful. Having selected the second spectrum and ensuring it is in nm mode, enter addi to begin the interactive process.

After addi is invoked, spectrum 1, the spectrum selected by the spadd command, appears in the center of the display. Spectrum 2, the spectrum that was active when addi was entered, appears on the bottom. The sum or difference of these spectra appears on top of the screen. When addi is first entered, this spectrum will be the sum $(1+2)$ by default. The spectra is manipulated using the mouse.
The select button toggles between different modes of control.

- When the label at the screen bottom reads "active: current", all of the parameters (except wp) control spectrum 2, and spectrum 2 can be phased, scaled, or shifted relative to spectrum 1.
- After clicking on select, the label at the screen bottom reads "active: addsub", and now all of the parameters except wp control spectrum 1 .
- Clicking select again toggles the label to read "active : result", and now parameter changes affect only the sum or difference spectrum.
Note that wp always controls all spectra, because differential expansions of the two spectra are not supported. Note also that the colors of the labels change to match the colors of the different spectra.
The sum/difference spectrum displayed on the screen while addi is active is strictly a temporary display. Once all manipulations have been performed, and assuming the sum/difference is something you wish to perform further operations with (such as plotting), it must be saved into the add/subtract experiment (exp5) by clicking on save. At this point, spectrum 1, which was in the add/subtract experiment, is overwritten by the sum or difference spectrum, and addi ceases operation. In most cases, you will next want to enter jexp 5 ds to display the difference spectrum on the screen, ready for further manipulation (expansion, line listing, etc.) and plotting. If you wish to continue with the add/subtract process by adding in a third spectrum, display that spectrum in the usual way and enter addi again.

See also: VnmrJ Liquids NMR

Related:	clradd	Clear add/subtract experiment (C)
jexp	Join existing experiment (C)	
nm	Select normalized intensity mode (C)	
	spadd	Add current spectrum to add/subtract experiment (C)
spmin	Take minimum of two spectra in add/subtract experiment (C)	
spsub	Subtract current spectrum from add/subtract experiment (C)	
wp	Width of plot in directly detected dimension (P)	

addnucleus Add new nucleus to existing probe file (M)

```
Syntax: addnucleus<(nucleus) >
```

Description: Appends entries for nuclei not in the default probe file to the end of the file.
Arguments: If no argument is entered, a prompt is displayed requesting the nucleus entry.
nucleus is a nucleus entry in the nuctable.
Examples: addnucleus
addnucleus('Si29')
See also: VnmrJ Liquids NMR

Related:	addprobe getparam	Create new probe directory and probe file (M) Receive parameter from probe file (M)
	probe	Probe type (P)
setparams		

addpar \quad Add selected parameters to current experiment (M)
Syntax: addpar<('2d'|'3d'|'3rf'|'4d'|'downsamp'|'fid'|
'image'|'ll2d'|'lp'<,dim>|'oversamp'|'ss')>
Applicability: The '3d', '3rf', '4d', 'fid', and 'image' arguments work on all systems but are only useful if system has the proper hardware.
Description: Creates selected parameters in the current experiment.
Arguments: If no argument is entered, addpar displays instructions for its use.
'2d', '3d', '3rf','4d','downsamp','fid','image','ll2d', 'lp', 'oversamp ', and 'ss' are keywords (only one keyword is used at a time) specifying the parameters to be created:

- ' 2 d ' specifies creating ni, phase, and sw1, which can be used to acquire a 2D data set (functions the same as macro par2d).
- '3d' specifies creating d3, ni2, phase2, and sw2, which can used to acquire a 3D data set (functions the same as macro par3d).
- '3rf' specifies retrieving the ap and dg2 display templates for third rf channel and 3D parameters (functions the same as macro par3rf).
- '4d' specifies creating the acquisition parameters d4, ni3, phase3, and sw3, which can be used to acquire a 4D data set (functions the same as macro par4d).
- 'downsamp ' specifies creating the parameters downsamp, dscoef, dslsfrq, dsfb , and filtfile for digital filtering and downsampling (functions the same as macro pards).
- 'fid' specifies creating FID display parameters axisf, crf, deltaf, dotflag, vpf, and vpfi if the parameter set is older and lacks these parameters (functions the same as macro fidpar).
- 'll2d' specifies creating th2d and xdiag for the ll2d2D peak picking program (functions the same as macro parll2d).
- 'lp' specifies creating lpalg, lpopt, lpfilt, lpnupts, strtlp, lpext, strtext, lptrace, and lpprint for linear prediction in the acquisition dimension (functions the same as macro parlp). The display template for the dglp macro is also created if necessary.
- 'oversamp' specifies creating parameters def_osfilt, filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp for oversampling and digital filtering (functions the same as macro paros).
- 'ss' specifies adding parameters ssorder, ssfilter, ssntaps, and sslsfrq for time-domain solvent subtraction (functions the same as macro parfidss).
dim specifies the dimension when adding linear prediction parameters: 1 for the first implicit dimension or 2 for the second implicit dimension. Default is the acquisition dimension. Therefore, addpar ('lp') creates the parameters listed above; addpar('lp',1) creates lpalg1, lpopt1, lpfilt1, lpnupts1, strtlp1, lpext1, strtext1, lptrace1, and lpprint1; and addpar('lp',2) creates lpalg2, lpopt2, lpfilt2, lpnupts2, strtlp2, lpext2, strtext2, lptrace2, and lpprint2. Each separate dimension of a multidimensional data set can have its own unique parameters.
Examples: addpar
addpar('3d')
addpar('lp',1)
See also: VnmrJ Liquids NMR; VnmrJ Imaging NMR

Related:	def_osfilt	Default value of osfilt (P)
fidpar	Add parameters for FID display in current experiment (M)	
osfilt	Oversampling filter for real-time DSP (P)	
par2d	Create 2D acquisition parameters (M)	
par3d	Create 3D acquisition parameters (M)	
par3rf	Get display templates for 3rd rf channel parameters (M)	
par4d	Create 4D acquisition parameters (M)	
pards	Create digital filtering and downsampling parameters (M)	
parfidss	Set up parameters for time-domain solvent subtraction (M)	

```
paros Create oversampling and digital filtering parameters (M)
parll2d Create parameters for 2D peak picking (M)
parlp Create parameters for linear prediction (M)
```


addparams \quad Add parameter to current probe file (M)

Syntax: addparams (param, value,nucleus<,'tmplt'><,'system'>)
Description: Adds a new parameter and its value for a specified nucleus to the probe file or to the probe template.

Arguments: param is the name of the parameter to be added.
value is a string with the value to be written for the parameter.
nucleus is the nucleus to add in the probe file.
'tmplt ' is a keyword to add the parameter to the local template. The default is the probe file.
'system' is a keyword to add the parameter to the system-level template or probe file, provided that you have write permission to that file. The default is to add the parameter to the local template or probe file.
Examples: addparams('ref_pwr','53',tn)
addparams('ref_pwx','00',dn,'tmplt')
addparams('ref_pwx2','00',dn2,'tmplt','system')
See also: VnmrJ Liquids NMR
Related: getparam Receive parameter from probe file (M)
setparams Write parameter to current probe file (M)
updateprobe Update probe file (M)

addprobe \quad Create new probe directory and probe file (M)

Syntax: addprobe (probe_name<,'stdar'|'system'><,'stdpar'>)
Description: Creates a new probe directory and a probe file. Default nuclei included in this file are ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$. The information is saved in the user's directory vnmrsys/probes.
Arguments: probe_name is the name to be given to the probe directory and probe file.
'stdpar' and 'system' are keywords for the second and third arguments:

- If the second argument is 'stdpar', calibration values from the standard parameter sets (stdpar/H1. par, stdpar/C13. par, etc.) will be read and written into the probe file.
- If the second argument is 'system ' and the user has write permission into the VnmrJ system probes directory (typically /vnmr/probes), then a system-level probe directory will be made.
- If the second argument is 'system' and the third argument is 'stdpar', then both actions in the preceding bullets will occur.
- The default is the probe file is created with all parameters initialized to zero.
Examples: addprobe('idpfg')
addprobe('idpfg','stdpar')
addprobe('idpfg','system','stdpar')
See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
Related: addnucleus Add new nucleus to existing probe file (M)
getparam Receive parameter from probe file (M)

probe	Probe type (P)
setparams	Write parameter to current probe file (M)

addrcvrs \quad Combine data from multiple receivers (M)

Applicability: Imaging systems with multiple receivers.
Syntax: addrcvrs
Description: Combines image data that has been acquired by multiple receivers. First transforms the data from each receiver separately with 'wft2d'. Weights the individual images by the factors specified in the 'rovrwt ' parameter and forms the RMS average.
Related: rcvrwt Weighting for different receivers (M)
wft2d Weight and Fourier Transform 2D data (C)
rmsAddData Add transformed data files with weighting (U)

Automatic DEPT analysis and spectrum editing (C)

Syntax: adept<(<'noll'><,'coef'><,'theory'>) >
Description: Automatically analyzes a set of four DEPT spectra and edits the spectra so that the spectra is arrayed as follows:

- \#4 is CH_{3} carbons only
- \#3 is CH_{2} carbons only
- \#2 is CH carbons only
- \#1 is all protonated carbons

Because adept modifies the transformed data, it should not be repeated without retransforming the data between calls. adept produces a text file dept. out in the current experiment directory, which contains the result of the analysis.

Arguments: The following keyword arguments can be supplied in any order:
' noll' causes the line listing to be skipped. If 'noll' is not supplied as an argument, adept first performs a line listing. In that case, the threshold parameter th must be set properly before starting adept.
'coef ' causes the combination coefficients to be printed.
'theory' causes theoretical coefficients to be used. The default is optimized coefficients.

Examples: adept
adept('coef')
adept('theory','noll')
See also: VnmrJ Liquids NMR
Related: autodept Automated complete analysis of DEPT data (M)
deptproc Process DEPT data (M)
padept Perform adept analysis and plot resulting spectra (C)
pldept Plot DEPT data, edited or unedited (M)
th Threshold (P)

aexppl Automatic plot of spectral expansion (M)

Syntax: aexppl<(expansion_factor) >
Description: Plots automatically expansions of given regions. Regions have to be defined first by using the region command or by using the cursors in ds.

Arguments: expansion_factor is a spectral expansion factor in units of $\mathrm{Hz} / \mathrm{mm}$. The default is $2 \mathrm{~Hz} / \mathrm{mm}$.

Examples: aexppl
aexppl(20)
See also: VnmrJ Liquids NMR

Related:	ds	Display a spectrum (C)
	region	Divide spectrum into regions (C)

ai
Syntax: ai
Description: Selects the absolute-intensity display mode in which the scale is kept constant from spectrum to spectrum to allow comparison of peak heights from one spectrum to another. The alternative is the normalized-intensity display mode (nm) in which spectra are scaled so that the largest peak in the spectrum is vs mm high. The modes are mutually exclusive-the system is always in either nm or ai mode. Enter aig? to determine which mode is currently active.
See also: VnmrJ Liquids NMR
Related: ai
nm
vs
Absolute intensity group (P)
Select normalized-intensity mode (C)
Vertical scale (P)

aig Absolute-intensity group (P)

Description: Contains the result of the ai or nm command. aig is not set in the usual way but can be queried (aig?) to determine which display mode is active.
Values: 'ai' indicates the absolute-intensity display mode is active.
' nm ' indicates the normalized-intensity display mode is active.
See also: VnmrJ Liquids NMR

Related:	ai	Select absolute intensity mode (C)
	dmg	Display mode in directly detected dimension (P)
	nm	Select normalized-intensity mode (C)
	$?$	Display individual parameter value (C)

aipAnnotation Annotation template name (P)

Description: Name of annotation template.
Values: 'short','full','none'
See also: VnmrJ Imaging NMR: Image Processing

aipAutoLayout Turn automatic layout on or off (P)

Description: Integer parameter to turn on/off automatic layout.
Values: 1, for auto layout
0 , for no auto layout.
aipBigFrame Toggle full-screen mode (C)
Syntax: aipBigFrame
Description: Toggle the display between multiple-image display and full-screen display of one image. If the current display is multiple-image, and at least one frame is
selected, the first selected frame is expanded to fill the display area. If no frame is selected, the command has no effect. If the current display is full-screen, the previous multiple-image display is restored. After the command, all frames are unselected.

See also: VnmrJ Imaging User Guide: Image Processing
Related: aipSplitWindow Split the graphics display into frames (C)

aipClearFramesErase all images in displayed frames (C)

Syntax: aipClearFrames
Description: Clears all the currently displayed frames of images. The image data remains loaded. If the current display is full-screen mode, it is toggled to multiple-image mode first.

See also: VnmrJ Imaging User Guide: Image Processing

Related:	aipBigFrame	Toggle full-screen mode (C)
	aipDeleteData	Unload data (C)
	aipDeleteFrames	Clear the graphics screen

aipClickedFrameID of clicked frame (P)
Description: ID (an integer) of the clicked frame.
Values: 1, 2, 3

aipCurrentKey Image key of currently drawing frame (P)

Description: Image key of the currently drawing frame. This key is used to get parameter values for annotation drawing.
Values: directory + space + filename + space + n

```
aipDeleteData Unload data (C)
```

Syntax: (1) aipDeleteData
(2) aipDeleteData ('sel')
(3) aipDeleteData (key)

Description: Unloads all data or selected data. Does not delete the data files.
Using syntax 1 , all loaded data is unloaded, and the screen is cleared (no frames displayed).
Using syntax 2 , the data displayed in all the selected frames is unloaded, and the frames are displayed empty.
Arguments: key is a string data key or a file containing a list of keys. It must begin with a " / ".

Examples: aipDeleteData('/usr/vnmr1/vnmrsys/data/keylist')
Applicability: VnmrJ Imaging User Guide: Image Processing.
Related: aipClearFrames Erase all images in displayed frames (C)
aipDeleteFramesClear the graphics screen (C)
Syntax: aipDeleteFrames

Description: Deletes all frames and displays a blank graphics screen. If the current display is full-screen mode, it is toggled to multiple-image mode first.

See also: VnmrJ Imaging User Guide: Image Processing

Related: | aipClearFrames | Erase all images in displayed frames (C) | |
| :--- | :--- | :--- |
| | aipDeleteData | Unload data (C) |
| | aipSplitWindow | Split the graphics display into frames (C) |

aipDeleteRois Delete selected ROIs (C)

Syntax: aipDeleteRois
Description: Deletes all selected ROIs.
See also: VnmrJ Imaging User Guide: Image Processing

```
Related: aipSelectRois Select or deselect ROIs (C)
aipLoadRois
aipSaveRois
```


aipDisplay Display specified images (C)

Syntax: (1) aipDisplay
(2) aipDisplay(['reset',] 'redisplay')
(3) aipDisplay(['reset',] 'all')
(4) aipDisplay(['reset',] 'batch' [,'show'] [,'next' | 'previous' | 'first' | 'last'])
Description: For any syntax, the optional 'reset ' argument forces VnmrJ to recalculate all the display buffers for the images, rather than using cached values.

Using syntax 1, as many images are displayed as fit in the current frames. The first image is displayed in the first selected frame, and successive images are displayed in successive frames until either the frames are all full or there are no more images. The display will wrap around from the last to the first frame if appropriate.
Using syntax 2 , the current display is refreshed.
Using syntax 3 , the screen is split into enough frames to hold all the loaded images, and they are all displayed simultaneously.

Using syntax 4, a "batch" of images is displayed in the existing frames according to the values in the parameter aipDisplay [1:3]. The 'show' option must be present for anything to actually be displayed.
The 'first ' option initializes the display to the first batch of images.
The 'last' option initializes the display to the last batch of images.
The ' next' option updates aipDisplay [1] (the number of the first image to show) to show the next batch before the images are displayed. This is done after any first/last operation.
The 'previous ' option updates aipDisplay [1] to show the previous batch before the images are displayed. This is done after any first/last operation.

The options can be used in any order. Normally, use the 'show' option alone to do a redisplay function, or one of the first/last/next/previous options plus the 'show' option.
Examples: aipDisplay('batch','next','show') Displays the next "batch" of images.
aipDisplay[2]=2 aipDisplay('batch','show') Sets the number of images to display to 2 , and displays them in the current frames.

See also: VnmrJ Imaging User Guide: Image Processing

Related:	aipRedisplay	
	Refresh image display (C)	
	aipDisplay	
Display specified images (C)		

aipDisplayByKeyDisplay a loaded image in a given frame (C)
Syntax: aipDisplayByKey (\$key, \$frame)
Description: Display the image defined by \$key in \$frame.
Applicability: \$key

AipDisplayModeSelection mode of image display (P)

Description: Integer parameter to hold selection mode of image display.
Values: 1, all loaded images
2 , images in a group
3, images selected in the Review Queue
4, images in selected frames
5 , images selected by user using:
vnmrjcmd('RQ
Rqupdate', aipRoiBind,rqsort, userselection)

aipDupFrame Move an image to another frame (C)

Syntax: aipDupFrame (srcFrame, dstFrame)
Description: Moves an image from one frame to another. (The Dup is really a misnomer.) The n frames are numbered from 1 to n, from left to right and top to bottom. If there is no image in the source frame, the effect is to clear the destination frame. If either argument is outside the range $1<=\arg <=n$, the command does nothing.
Arguments: srcFrame is the number of the frame containing the source image. dstFrame is the number of the frame in which to put the image.
Examples: aipDupFrame (1, 3)
See also: VnmrJ Imaging User Guide: Image Processing
aipExtract Extract slices from a 3D data set (C)
Syntax: aipExtract(['xy'|'yz'|'xz'], first [, last [, incr]])
Description: When a 3D data set is loaded, it is not displayed, but just saved in memory. Only one 3D data set can be loaded at a time. The aipExtract command extracts slices from the current 3D data set that are then displayed.
Arguments: $\mathrm{xy}, \mathrm{yz}, \mathrm{xz}$ are the three possible plane orientations to extract. The X dimension is the fastest data direction and Z is the slowest.
first is the number of the first slice to extract, counting from 1. The slice order is always from the start of the data set.
last is the maximum slice number to extract. If absent, only 1 slice is extracted.
incr is the increment between extracted slice numbers. If absent, it defaults to 1 .
Examples: aipExtract('xy', 10, 22)
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipExtractMip Extract MIP from a 3D data set (C)
aipExtractMip Extract MIP from a 3D data set (C)
Syntax: aipExtractMip(['xy'|'yz'|'xz'], first [, last [, incr]])
Description: Like aipExtract, but instead of extracting a set of slices, constructs one slice in which each pixel contains the maximum value for that pixel in any of the specified slices.

Arguments: $\mathrm{xy}, \mathrm{yz}, \mathrm{xz}$ are the three possible plane orientations to extract. The X dimension is the fastest data direction and Z is the slowest.
first is the number of the first slice to extract, counting from 1. The slice order is always from the start of the data set.
last is the maximum slice number to extract. If absent, only 1 slice is extracted.
incr is the increment between extracted slice numbers. If absent, it defaults to 1 .

Examples: aipExtractMip('xy', 10, 22)
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipExtract Extract slices from a 3D data set (C)
aipGetSelectedFramesGet the location and size of selected frames (C)
Syntax: aipGetSelectedFrames:\$str
Description: Return a string that contains $1+n * 4$ integer numbers. First integer is the number of selected frames, next 4 numbers are the location (x, y) and FOV (width, height) of the first frame, and so on.
aipFlip Reflect selected images (C)
Syntax: aipFlip('0' | '90' | '45' | '135')
Description: Reflects all selected images about one of 4 axes. Axes are defined relative to the screen view. This reflection can be reset by displaying the image with aipDisplay('reset', ...).
Arguments: ' 0 ' reflects about the Y axis.
' 90^{\prime} reflects about the X axis.
'45' reflects about the line $\mathrm{X}=-\mathrm{Y}$.
' 135 ' reflects about the line $\mathrm{X}=\mathrm{Y}$.
Examples: aipFlip('0')
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipRotate Rotate selected images (C)
aipDisplay \quad Display selected images (C)

aipGetDataKey Get the key of a loaded image (C)

Syntax: aipGetDataKey:\$key
aipGetDataKey (x,y) : \$key
Description: Return the key of a loaded image. If mouse position (x, y) is not explicitly given, the key of the image last clicked is returned. If (x, y) is not on an image, or no image has been clicked, an empty string is returned.
Arguments: $\mathrm{x}, \mathrm{y}, \mathrm{a}$ (mouse) position to determine the frame.

aipGetFrame Get frame index (C)

Syntax: aipGetFrame (x, y) : \$frame
Description: Return frame index for mouse position (x, y) Used by Review Queue to drop an image, scan, or study to a frame.

Arguments: x, y, mouse position.

aipGetFrameToStartGet a frame to start image display (C)

Syntax: aipGetFrameToStart: \$frame
Description: Return a frame to start image display. If a frame is selected, return that frame, otherwise if there is empty frame(s), return the first empty frame; otherwise, return the first frame.

aipGetHeaderParam Get parameters from FDF header (C)

Syntax: aipGetHeaderParam(key,name, [index]) : \$value, \$type
Description: Return value and type of a fdf header parameter. If a parameter does not exist, \$value and \$type are empty. This command is used by annotation in macro annPar, where the key of the image being drawing is aipCurrentKey. In other cases, use aipGetDataKey to get the key of a displayed image.
Arguments: key is the key of a loaded image, i.e., directory + space + filename $+n$, where n is a number distinguishing different copies of the same image. By default, n is zero when the image is loaded the first time. It increases by one when the same image is loaded next time.
index is the index of an array parameter, can be omitted if the parameter is not arrayed.
See also: aipCurrentKey (P), aipGetDataKey (C).

aipGetImgKey Get image keys (C)

Syntax: aipGetImgKey (mode) : \$n
aipGetImgKey (mode, image_index): \$key
Description: This command returns the number of images for a given selection mode, or the key of an image in the selected list.
Arguments: mode is an integer for different selection modes:
1, all loaded images
2, images of a group (scan)
3, images selected in the Review Queue
4, images in selected frames
5 , images selected by user using:
vnmrjcmd ('RQ
RQupdate', aipRoiBind,rqsort, userselection)
5 , currently displayed images
image_index is the index of an image in the selected list.
aipLoadDir Load image data (C)
Description: Same as aipLoadFile
aipLoadFile Load image data (C)
Syntax: (1) aipLoadFile(filepath [, frame])
(2) aipLoadFile (dirpath)

Description: Loads a single file or a directory full of files.
Arguments: filepath is the full path to an FDF file.
dirpath is the full path to a directory with FDF files.
frame is the index of the frame in which to display the image, starting from 0.
Examples: aipLoadFile('/vnmr/fidlib/monkey.dat/')
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipDisplay Display selected images (C)
aipLoadRois Load ROIs from a file to selected frames (C)
Syntax: aipLoadRois(fullpath)
Description: Load ROIs from a file to selected frames. If an ROI is loaded to multiple frames, it is bound.

Arguments: full path

aipMathExecuteExecute an Image Math Expression (C)

Syntax: aipMathExecute('gstring' [,'parm'])
Description: Executes the expression string contained in the given parameter. If the parm argument is present, the string pnew 1 parm is sent to VnmrJ after the math expression is executed.
Arguments: gstring is a global string parameter that contains a legal image math expression. parm is any parameter name.
Examples: aip2CExp='\#8=\#1+\#7' aipMathExecute('aip2CExp')
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipSetExpression Set the image math expression template (C)

AipMovieMode Selection mode of movie (P)

Description: Integer parameter to hold selection mode of movie run.
Values: 1, all loaded images
2 , images in a group
3, images selected in the Review Queue
4 , images in selected frames.
5 , images selected by user using:
vnmrjcmd('RQ
RQupdate', aipRoiBind,rqsort, userselection)
6 , currently displayed images
aipMovieSettingsSize of movie (P)
Description: Arrayed parameters of size 3, for image movie settings.
Values: aipMovieSettings [1], 1/0, repeat/not repeat the movie.
aipMovieSettings [2], $1 / 0$, show/not show graphics on movie.
aipMovieSettings [3], 1/0, run movie forward/backward.
Examples: aipMovieSetting=0,1,0
aipNumOfCopiesGet number of times an image is loaded (C)
Syntax: aipNumOfCopies (fdfPath) : \$n
Description: Return number of times an FDF image file is loaded.
Arguments: full FDF path

aipNumOfImgs Get number of loaded images (C)

Syntax: aipNumOfImgs:\$n
Description: Return a number that represents the total number of loaded images. If the same FDF file is loaded n times, it is counted as n images.

aipRedisplay Refresh image display (C)

Syntax: aipRedisplay
Description: Refreshes the image display area, allowing for change in the window size. If the parameter aipFrameResplitOnResize is non-zero, the frames are laid out anew to fit a new window shape. (This feature is buggy, in that the wrong images and the wrong number of images might be displayed.)
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipDisplay Display selected images (C)
aipRotate Rotate selected images (C)
Syntax: aipRotate('90' | '180' | '270' | '-90')
Description: Rotates all selected images counterclockwise by the number of degrees indicated by the argument. Note that the '270' and ' -90 ' arguments are equivalent. This rotation can be reset by displaying the image with aipDisplay('reset', ...).

Examples: aipRotate ('90')
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipFlip Reflect selected images (C) aipDisplay Display selected images (C)
aipRQtest Print image keys for debugging (C)
Syntax: aipRQtest (mode)
Description: Print selected image keys as a list (as ordered in the Review Queue) to a window specified by the VnmrJ command jFunc (55, . . .).
Arguments: mode $=1$, all loaded images
mode $=2$, images of the group
mode $=3$, images selected in Review Queue
mode $=4$, images of selected frames
mode $=5$, images selected by user with the command:
vnmrjcmd('RQ
RQupdate', aipRoiBind,rqsort, userselection)
currently displayed images
aipSaveHeadersSave the auxiliary header files (C)
Syntax: aipSaveHeaders

Description: Write auxillary header files for all loaded images.This contains whatever is in the auxillary symbol table for the data, currently only VS (intensity scaling) information.

See also: VnmrJ Imaging User Guide: Image Processing
Related: aipSaveVs Save intensity scaling (C)

aipSaveRois Save selected ROls to a file (C)

Syntax: aipSaveRois(fullpath)
Description: Save selected ROIs to a file in the format of:
Box
x 1 y 1
x2 y2
Oval
x1 y1
x2 y2
Polygon
n
x 1 y 1
where xi and yi are coordinates of point i.
If ROIs are bound, or are identical, only one copy is saved.
Arguments: full path

aipSaveVs Save intensity scaling (C)

Syntax: aipSaveVs
Description: Updates the VS (intensity scaling) information in the auxillary sympol tables of all loaded images and writes out the auxillary headers.

See also: VnmrJ Imaging User Guide: Image Processing
Related: aipSaveHeaders Save the auxiliary header files (C)
aipScreen \quad Query whether aip owns the graphic area (C)
Syntax: aipScreen:\$b
Description: Return 1 if aip owns the screen; otherwise 0 .
aipSegment Segment images (C)
Syntax: (1) aipSegment [('i')]
(2) aipSegment ('r')
(3) aipSegment ('R')

Description: Segment all selected images, i.e., set all the pixels whose values are outside a given range to 0 . The range is defined by the two parameters aipStatCursMin and aipStatCursMax. If either is inactive, there is no limit for the minimum or maximum value, respectively.

Using syntax 1, all selected images are segmented. This is the default, so the argument is optional.
Using syntax 2, all selected ROIs are segmented, with the region outside the ROI being entirely cleared.
Using syntax 3 , all selected ROIs are segmented, with the region outside the ROI being unaffected.

aipSelectFramesSelect or deselect image frames (C)

Syntax: (1) aipSelectFrames[('all')]
(2) aipSelectFrames ('none')

Description: Using syntax 1, all the displayed frames are selected. This is the default action if there is no argument.

Using syntax 2, all displayed frames are deselected.
See also: VnmrJ Imaging User Guide: Image Processing

aipSelectRois Select or deselect ROIs (C)

Syntax: (1) aipSelectRois[('all')]
(2) aipSelectRois('none')

Description: Using syntax 1, all ROIs are selected. This is the default action if there is no argument.
Using syntax 2, all ROIs are deselected.
See also: VnmrJ Imaging User Guide: Image Processing
aipSetDebug Enable debugging messages (C)
Syntax: aipSetDebug([flag,] bit\# ... [, flag, bit\# ...] ...)
Description: Enables and disables debugging messages from the Vnmrbg AIP modules.
The parameters are processed successively to build up the final bit mask. The flag parameter tells what succeeding bit numbers do.
Arguments: flag is a string indicating the mode for the following bit\# parameters.
Possible values are:
' off ' -- the following indicated bits are turned off.
' on ' -- the following indicated bits are turned on. An initial 'on' flag is the default.
' none ' -- the bit mask is cleared, and the following indicated bits are turned on.
bit\# is the bit number to turn off or on. Meanings of some bits are:
0 -- Log construction and destruction of major classes
1 -- not used
2 -- Log construction and destruction of ROIs
3 -- Print out the rotation matrices for images
4 -- Log calls to aipRedisplay
5 -- Print time required to draw images
6 -- Check memory management of DDL symbol tables
7 -- Track loading and unloading of data files
8 -- Log progress of image math evaluations
Examples: aipSetDebug ('none', 3, 6) Sets bits 3 and 6 only.
aipSetDebug (4) Adds bit 4 to the bits set.
aipSetDebug ('off', 3, 'on' 5) Turns bit 3 off and 5 on.
See also: VnmrJ Imaging User Guide: Image Processing

aipSetExpressionSet the image math expression template (C)

Syntax: aipSetExpression (expr)

Description: Used for initializing the entry box in the image math panel when an expression is selected from the menu. First, the string \#= is prepended to the expr string. Then the parameters aip2CExp and aip2JExp are both set to the resulting expression. Also, the parameters aip2CCaret and aip2JCaret are set to 0 . Finally, the command pnew 1 aip2JExp is sent to VnmrJ.
Arguments: expr is the right-hand-side of an image math expression. Normally the frame numbers are not filled in.

Examples: aipSetExpression('\#+\#')
See also: VnmrJ Imaging User Guide: Math Processing
Related: aipMathExecute Execute image math expression (C)

aipsetState Set AIP mouse state (C)

Syntax: aipSetState(state)
Description:
Arguments: state is the number of the state. Values are:
1 -- select
2 -- vs
3 -- createPoint
4 -- createLine
5 -- createBox
6 -- createPolyline
7 -- createPolygon
8 -- zoom
10 -- createOval
99 -- dragImage
100 -- imageMath
Examples: aipSetState(1)
See also: VnmrJ Imaging User Guide: Image Processing

aipSetVsFunctionModify intensity scaling (C)

Syntax: (1) aipSetVsFunction('hist')
(2) aipSetVsFunction('file')
(3) aipSetVsFunction('cmd', function)

Description: Sets the intensity scaling (the VS) of images. Which images are affected is determined by the value of the aipVsMode parameter.
Using syntax 1, updates the histogram display on the VnmrJ imaging VScale page.
Using syntax 2, modifies the scaling to that specified in the file whose path is given by the aipVsFunctionFile parameter.
Arguments: function is a string that specifies the VS function. Must begin with the word "curve" and be of the following form:
"curve" x y "imin" dark "imax" light "dmin" min "dmax" max where the items in quotes are entered literally, and x and y are the coordinates of the control point in the graph of the VS function, in the range [0, 1]. For a linear function $\operatorname{set} \mathrm{x}=\mathrm{y}=0.5$.
dark and light are the relative screen intensities for the lowest and highest data values, respectively. Black is 0 and 1 is as bright as it can get. \min and max are the minimum and maximum data values that are mapped. Data values outside this range are colored the same as if they were at the limit.

```
Examples: aipSetVsFunction('cmd', 'curve . 5 . 5 imin 0 imax 1
    dmin 0 dmax .01')
See also: VnmrJ Imaging User Guide: Image Processing
    Related: aipVsMode
    aipVsFunctionFile
```

aipshow Load and display images of a given directory (M)
Syntax: aipShow(dir, <framelayout>, <action>)

Description: This macro loads and displays images in a given path. In the Review viewport, it also adds the data to the Review Queue.

Arguments: dir, full path of image directory framelayout, 'all' to display all images n, to automatically layout n frames default, use current frame layout. action, ' dnd ', or 'DragNDrop ' to keep currently displayed images default, unload currently displayed images
Examples: aipShow(sqdir+'/data/sems 001.img', 'all', 'dnd') to append images in the given directory to current display, and show all images.

See also: aipDeleteData, aipDisplay, aipSplitWindow

aipSomeInfoUpdateUpdate Point Info and Line Profile pages (C)

Syntax: aipSomeInfoUpdate
Description: Updates the point and line information displays. For the line information, this involves updating the file pointed to by the aipProfileFile and all the relevant aipProfile... parameters. For the point information, the aipPoint... parameters are updated.
See also: VnmrJ Imaging User Guide: Math Processing
Related: aipStatUpdate Update the statistics page (C)

aipSplitWindowSplit the graphics display area into frames (C)

Syntax: (1) aipSplitWindow
(2) aipSplitWindow('all')
(3) aipSplitWindow (nframes)
(4) aipSplitWindow(nframes, width, height)
(5) aipSplitWindow (nrows, ncols)

Description: Using syntax 1 , the window is split into enough frames to hold all the loaded images, up to the maximum set by the parameter aipFrameDefaultMax. The ratio of the number of rows to the number of columns is chosen to keep the frames as square as possible.

Using syntax 2, the aipFrameDefaultMax parameter is ignored, and the maximum number of frames is limited only by the minimum frame size, 10×10 pixels. Otherwise, this is the same as syntax 1.
Using syntax 3 , the window is split into at least the indicated number of frames.
Using syntax 4 , the window is split into at least the indicated number of frames, and the aspect ratio of the frames is kept close to the specified width/height ratio.
Using syntax 5 , the window is split into the indicated number of rows and columns, subject only to the limit on the minimum allowable frame size.

Arguments: nframes is an integer greater than 0 specifying the minimum number of frames to show. The actual number of frames may be greater, because some numbers will be attainable with a reasonable split of rows and columns.
Examples: aipSplitWindow (10) Makes 10 or more roughly square frames. aipSplitWindow $(10,1,2)$ Makes the frames tall and skinny. aipSplitWindow (3,4) Makes 12 frames in 3 rows and 4 columns.
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipDeleteFrames Clear the graphics screen (C)

aipStatPrint Write ROI statistics to disk (C)

Syntax: aipStatPrint (path [, 'w' | 'a'])
Description: Writes the current ROI statistics that are displayed in the Statistics page. The data is written to the specified file in a human readable, tabular format. If the optional ' a ' argument is given, the new data is appended to any data already in the file. With the ' w ' argument, or no second argument, any previous data in the file is deleted.
Arguments: path is the full path and file name.
Examples: aipStatPrint('/tmp/statistics', 'a')
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipStatUpdate Update the statistics page (C)

aipStatUpdate Update the Statistics page (C)

Syntax: aipStatUpdate
Description: Updates the ROI statistics information page. This involves updating all the relevant aipStat. . . parameters.
See also: VnmrJ Imaging User Guide: Image Processing
Related: aipSomeInfoUpdate Update point info and line profile pages (C)

aipWriteData Save image data (C)

Syntax: aipWriteData[(filename)]:path
Description: Saves image data for the selected frames. The data format is that indicated by the aipWriteFmt Convert parameter. An index number is appended to the given filename in the form . nnnn, where the index number starts at 1 for the first selected image. Another suffix is appended after the index to indicate the data type. This will depend on the format, and is specified in the aipWriteFmt Convert string. This command may overwrite previously written images. If the file name is not specified, the name in the aipWritePath parameter is used. Returns the full path of the last file that was written.
Arguments: filename is either the full path or just the name of the file where the data is written. If it is not a full path, it is relative to the current experiment directory.
Examples: aipWriteData('head'):n1
See also: VnmrJ Imaging User Guide: Image Processing

```
Related: aipWritePath
    aipWriteFmtConvert
```


aipUpdateRQlistUpdate or rebuild the Review Queue list (C)

Syntax: aipUpdateRQlist('update'/'rebuild')
Description: This command called by Review Queue display commands. It updates or rebuilds Review Queue list (a list of images and their information as maintained in the Review Queue) for the Browser to reflect changes in Review Queue table. Current Review Queue table will be written out to a file, the Browser will read the file and update the Rqlist.

Arguments: a string of value 'update' or 'rebuild'.

alfa Set alfa delay before acquisition (P)

Description: After the final event in the pulse sequence, including any receiver gate times occurring following the final pulse, acquisition occurs after a delay. This delay includes a fixed part, alfa, and a variable part, $1 /($ bet $a * f b)$.

- On MERCURYplus/Vx broadband systems, beta is 2 .
- On systems with 4-pole Butterworth filters, beta is 2 .
- On systems with 8-pole Butterworth ($200-\mathrm{kHz}$) filters, beta is 3 . 8 .
- On systems with 8-pole elliptical filters, beta is 1.29.
- On UNITY INOVA with 4-pole Bessel filters, beta is 2.3 (only systems with $2-\mathrm{MHz}$ and $5-\mathrm{MHz}$ Analog-to-Digital Converter boards use this filter).
Because the total delay before acquisition is the sum of alfa and 1/ (beta*fb), it is possible to shorten the delay beyond "normal" values by setting alfa negative (to a maximum of $1 /$ (beta* $f b$)). The macros hoult and calfa frequently result in such negative values of alfa.
To set al fa to a negative number, use either the setvalue command to enter a specific value of alfa, or use the setlimit command to allow entry of negative values of alfa directly from the keyboard.
Values: 0 to $100,000,000$; in $\mu \mathrm{s}$.
See also: VnmrJ Liquids NMR
Related: calfa Recalculate alfa so that first-order phase is zero (M)
$\mathrm{fb} \quad$ Filter bandwidth (P)
hoult Set parameters alfa and rof2 according to Hoult (M)
rof2 Receiver gating time following pulse (P)
setlimit \quad Set limits of a parameter in a tree (C)
setvalue \quad Set value of any parameter in a tree (C)
alock Automatic lock control (P)
Description: Governs Autolock control following the insertion of a sample with change or sample, and following initiation of an acquisition with the go, ga, or au. Manual adjustment of lock power, gain, and phase is possible using the acqi command.

Values: Possible values are 'a', 'auto', 'n', 's', 'samp', 'u', or 'y', where:
'a' or 'auto' selects the optimizing Autolock function, which performs a lock capture and an automatic lock power and gain adjustment before data acquisition begins (lock phase is not optimized).
' n ' leaves the lock in its current state.
's' or 'samp' selects the optimizing Autolock function, which performs a lock capture and an automatic lock power and gain adjustment before data acquisition begins (lock phase is not optimized) but only if the sample has just been changed.
'u' turns lock off so that the experiment runs unlocked.
' y ' turns on the software Autolock function, which searches for the correct Z0 value only.

See also: VnmrJ Liquids NMR
Related: acqi Interactive acquisition display process (C)
au Submit experiment to acquisition and process data (C)
change Submit a change sample experiment to acquisition (M)
ga \quad Submit experiment to acquisition and FT the result (C)
gf Prepare parameters for FID/spectrum display in acqi (M)
go Submit experiment to acquisition (C)
lock Submit an Autolock experiment to acquisition (C)
sample \quad Submit change sample, Autoshim experiment to acquisition (M)

alternateSlicesAlternate slices (C)

Applicability: Systems with imaging capabilities.
Syntax: alternateSlices(intmode)
Description: If mode=0, restores the order; mode=1 alternates slices; mode=-1 toggles between the two modes.

Related: gplan Start interactve image planning (C)

ampmode Independent control of amplifier mode (P)

Applicability: UNITY INOVA systems.
Description: Gives override capability over the default selection of amplifier modes. Unless overridden, the usage of rf channels determines whether the amplifier for a channel is in pulse, CW (continuous wave), or idle mode:

- Observe channel is set to the pulse mode.
- Other used channels are set to the CW mode.
- Any unused channels are set to the idle mode.

The ampmode parameter can be used to override this selection.
ampmode does not normally exist but can be created by the user with the command create ('ampmode','flag').
Values: List of characters in which the mode of the first amplifier is determined by the first character, the mode of the second amplifier by the second character, and so on. For each amplifier, one of the following characters is used:

- ' C' selects CW mode.
- 'i' selects idle mode.
- ' p ' selects pulse mode.
- 'd' selects default behavior.

For example, ampmode= ' ddp ' selects default behavior for the first two amplifiers and forces the third channel amplifier into pulse mode. Additional filtering is usually required when an amplifier in the same band as the observe amplifier is placed in the CW mode.
See also: VnmrJ User Programming

Related:	create	Create new parameter in a parameter tree (C)
	dn	Nucleus for the first decoupler (P)
tn	Nucleus for observe transmitter (P)	

amptype \quad Amplifier type (P)

Description: Specifies the type of amplifier on each rf channel of the spectrometer. The value is set in the CONFIG window (opened from config) using the label Type of Amplifier.
On ${ }^{\text {UNITY }}$ INOVAsystems, for each channel, the types are Class C, Linear Full Band, Linear Low Band, Linear Broadband, or, for the fourth channel only, Shared. Selecting Shared means that the amplifier is fully configured for the third channel, and that the fourth channel shares this amplifier with the third channel.

When a type is selected for a channel, a letter (one of the values described below) is added to the value of amptype. For example, a system already set to Linear Full Band on the observe transmitter channel and the first decoupler channel would have amptype= ' aa'. Selecting the third channel as Linear Low Band would set amptype='aal'. Finally, selecting Shared for the fourth channel would set amptype='aaln'.
On MERCURYplus/Vx systems, amptype specifies the type of amplifier on each rf channel of the spectrometer. The value is set in the CONFIG window (opened from config) using the label Type of Amplifier.
Values: On UNITY INOVA Systems:
' a ' indicates the channel uses a linear full-band amplifier. A full-band amplifier has two outputs: 12 MHz to ${ }^{31} \mathrm{P}$, and ${ }^{19} \mathrm{~F}^{/ 1} \mathrm{H}$.
' b ' indicates the system uses a linear broadband amplifier.
' C' indicates the system uses a class C amplifier.
' I' indicates the channel uses a linear low-band amplifier. A low-band amplifier has one output from 12 MHz to ${ }^{31} \mathrm{P}$ only.
' n ' indicates the fourth channel shares a linear amplifier with the third.
On MERCURYplus/Vx systems:
' aa' indicates the system has a linear 4-Nucleus amplifier with two outputs:
${ }^{13} \mathrm{C} /{ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F} /{ }^{1} \mathrm{H}$ at a nominal 35 W each.
' bb ' indicates the system has a linear broadband amplifier with two outputs:
${ }^{15} \mathrm{~N}$ to ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F} /{ }^{1} \mathrm{H}$ at a nominal 125 W and 75 W respectively.
' CC' indicates the system has a linear CP/MAS amplifier with two outputs:
${ }^{15} \mathrm{~N}$ to ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F} /{ }^{1} \mathrm{H}$ at a nominal 300 W and 100 W respectively.
See also:Software Installation and MERCURYplus CP/MAS Installation, Testing, and Operation
Related: config Display current configuration and possibly change it (M)
analyz Calculate standard peak height (M)
Syntax: analyz (\$option, \$title)
Description: Macro to calculate average peak height and std deviation and or average phase and std deviation.

Arguments: \$option =' n ' for amplitude and phase, ' a ' for amplitude only, and ' p ' for phase only. The \$title option puts a title on the plot.
Examples: analyz - Does analysis for both amplitude and phase analyz ('p') - Does analysis for phase only analyz ('n','Stability') - Does analysis for amplitude and phase and puts title "Stability" on the plot.

analyze \quad Generalized curve fitting (C)

Syntax: (curve fitting) analyze ('expfit', xarray<,options>)
(regression) analyze('expfit','regression'<,options>)
Description: Provides interface to curve fitting program expf it (using the curve fitting syntax), supplying expfit with input data in the form of the text file analyze.inp in the current experiment. expfit can be called from UNIX with the syntax:
expfit options <analyze.inp >analyze.list
expfit does a least-squares curve fitting to the data supplied in analyze.inp. Macros are available for the specialized uses of analyze, such as the 'T1' and 'kinetics' options. These macros avoid the need to select options and get the correct file format.

In the regression mode (using the regression syntax above), the type of curve fitting, ('poly1', . .) must be selected. The regression section in the manual VnmrJ Liquids NMR gives the input file format and describes the menus that permit choices indirectly through menu buttons.
The text file analyze.inp for the options 'T1', 'T2', 'kinetics', ' contact_time', and 'regression' contains the following lines (note that (1), (2), (3), etc. do not appear in the file but are used to identify lines in the explanation):

```
<text line>
<text line>
npeaks npairs <xscale> <yscale>
<NEXT npairsl>
peaks
x y
x Y
<NEXT npairs2>
peaks
x y
x y
```

Line-by-line explanation:
(1) Optional descriptive text line, for regression only. Omit line otherwise.
(2) Optional y-axis title, for regression only. Omit line otherwise.
(3) Line containing an integer for the number of peaks (npeaks) followed by another integer for the number of (x, y) pairs per peak (npairs). If regression, the x-scale type and y-scale type are also listed.
(4) In the regression mode, a line beginning with the keyword NEXT is inserted at the start of each data set when the number of pairs per peak is variable. In this case, the number of (x, y) pairs for the peak (npair1, npair2, etc.) is also given on the line.
(5) Peak index.
(6) Data pairs, one to a line, are listed by peak in the following order:

$\mathrm{x} y$	(first peak, first pair)
x	y
\ldots	(first peak, second pair)
x	y
x	(second peak, first pair)
\ldots	(second peak, second pair)

In the regression mode, the line beginning with NEXT is inserted at the start of the data for each peak when the number of pairs per peak is variable. In this case, the header contains the maximum number of pairs for any peak.

For'T1','T2', 'kinetics', and 'contact time', information from the file fp . out and values of the arrayed parameter xarray are used to construct the file; thus, it is necessary to run $f p$ prior to analyze.
For regression, analyze.inp is made by running expl ('regression'). If the regression mode is not selected, analyze.inp may be slightly different.
In addition to output to the standard output, which is usually directed to analyze.list, expfit makes a file analyze.out, which is used by expl to display the results of the analysis.
User-supplied analysis programs can be called by analyze in place of expfit. Such programs should read their input from stdin and write the output listing to stdout. No analyze. out file needs to be generated unless display by expl is desired. Use the program expfit as a model.
Arguments: 'expfit' is a required first argument.
xarray is the name of the parameter array holding x -values in 'T1', 'T2', 'kinetics', and 'contact_time', and is used only with these options. 'regression' sets regression mode and signifies generalized curve fitting with choices 'poly1', 'poly2', 'poly3', and 'exp'.
options are any of the following keywords:

- 'T1' sets T_{1} analysis (the default).
- 'T2' sets T_{2} analysis.
- 'kinetics ' sets kinetics analysis, with decreasing peak height.
- 'increment ' sets kinetics analysis, with increasing peak height.
- 'list' makes an extended listing for each peak.
- 'diffusion' sets a special analysis for diffusion experiments.
- ' contact_time' sets a special analysis for solids cross-polarization spin-lock experiments.
- 'poly1' sets a linear fitting. It is used in regression mode only.
- 'poly2' sets a quadratic fitting. It is used in regression mode only.
- 'poly3' sets a cubic fitting It is used in regression mode only.
- 'exp' sets exponential curve fitting. It is used in regression mode only.

Examples: analyze('expfit','d2','T1','list') analyze('expfit','pad',kinetics','list') analyze('expfit','p2','contact_time','list') analyze('expfit','regression','poly1','list')
See also: VnmrJ Liquids NMR

Related:	contact_time expfit	MAS cross-polarization spin-lock contact time (M) Least squares fit to polynomial or exponential curve (U)
	expl	Display exponential or polynomial curves (C)
pexpl	Plot exponential or polynomial curves (C)	
kini	Kinetics analysis, increasing intensity (M)	
t1	T_{1} exponential analysis (M)	
t2	T_{2} exponential analysis (M)	

Syntax: ap<(template) >
Description: Prints a parameter list containing "all" parameter names and values.

Arguments: template is the name of the template. The default is a template controlled by the parameter ap, which can be modified with the command paramvi ('ap'). See the manual VnmrJ User Programming for rules on building a template.

Examples: ap
ap('newap')
See also: VnmrJ Liquids NMR; VnmrJ User Programming
Related: addpar Add selected parameters to the current experiment (M)
ap "All" parameters display control (P)
dg Display group of acquisition/processing parameters (C)
hpa Plot parameters on special preprinted chart paper (C)
pap Plot out "all" parameters (C)
paramvi Edit a variable and its attributes with vi text editor (C)
ppa Plot a parameter list in "English" (M)

Plot parameters automatically (M)
Syntax: apa
Description: Selects automatically the appropriate command on different plotter devices to plot the parameter list.
See also: VnmrJ User Programming
Related: hpa Plot parameters on special preprinted chart paper (C)
ppa Plot a parameter list in "English" (M)

aph

Syntax: aph<: \$ok, \$rp,\$lp>
Description: Automatically calculates the phase parameters $1 p$ and $r p$ required to produce an absorption mode spectrum and applies these parameters to the current spectrum. Values calculated do not depend on the initial values of 1 p and rp .
Arguments: \$ok is 1 if the phase adjustment succeeds, or 0 if the adjustment fails.
$\$ r p$ is the calculated value of $r p$. If $\$ r p$ is requested as a return value, $r p$ is returned but not applied to the current spectrum.
$\$ l p$ is the calculated value of $1 p$. If $\$ 1 p$ is requested as a return value, $l p$ is returned but not applied to the current spectrum.
See also: VnmrJ Liquids NMR
Related: aph0 Automatic phase of zero-order term (C)
aphx \quad Perform optimized automatic phasing (M)
$1 \mathrm{p} \quad$ First-order phase in directly detected dimension (P)
$r p \quad$ Zero-order phase in directly detected dimension (P)

Automatic phase of zero-order term (C)

Syntax: aph0<: \$ok, \$rp,\$lp>
Description: Automatically adjusts only the zero-order frequency-independent term rp and does not rely on the frequency-dependent term 1 p being previously adjusted. In favorable circumstances, spectra may be obtained in such a way that only rp is expected to change. In these cases, if 1 p has been determined for one spectrum, then rp only can be computer-adjusted for subsequent spectra by apho ("aphzero"). Note that aph0 does not correctly phase an exactly on-resonance peak.
Arguments: \$ok is 1 if the phase adjustment succeeds, or 0 if the adjustment fails.
$\$ r p$ is the calculated value of $r p$.
$\$ 1 \mathrm{p}$ is the current value of 1 p .
See also: VnmrJ Liquids NMR
Related: aph Automatic phase adjustment of spectra (C)
aphx Perform optimized automatic phasing (M)
$1 \mathrm{p} \quad$ First-order phase in directly detected dimension (P)
rp Zero-order phase in directly detected dimension (P)

aphb Auto phasing for Bruker data (C)

Syntax: aphb<(threshold) >
Description: Phases Bruker data using the autophasing program.
Arguments: threshold determines if a data point is large enough to qualify it as part of a peak. If no argument is given, or if the value is equal to or less than 0 , the threshold is calculated from the spectrum.

Examples: | | aphb |
| ---: | :--- |
| | aphb (2) |

See also: VnmrJ Liquids NMR
Related: aph Automatic phase adjustment of spectra (C)
aph0 Automatic phase of zero-order term only (C)
aphx \quad Perform optimized automatic phasing (M)
Syntax: aphx
Description: Optimizes parameters and arguments for the aph command. aphx first performs an aph then calculates a theoretical value for lp. If lp set by the aph is different from the calculated value by 10 per cent, the calculated value is used and an aph0 is performed.
See also: VnmrJ Liquids NMR
Related:

aph	Automatic phase adjustment of spectra (C)
aph0	Automatic phase of zero-order term only (C)
lp	First order phase along directly detected dimension (P)

Application mode (P)

Description: A global parameter that allows selection of specialized system applications modes, such as imaging, by setting the global parameters sysmaclibpath, sysmenulipath, and syshelppath.

For example, in /vnmr/maclib is a subdirectory maclib.imaging that contains macros used primarily with imaging applications. Similarly, in / vnmr/menulib is a subdirectory menulib.imaging for imaging- related
menus. By separating the imaging macros and menus into subdirectories, access to imaging-specific macros and menus is more convenient. This separation also allows minor modifications to some macros and menus while retaining the names that are in common use or required by other VnmrJ commands.
The value of appmode can be set by entering its value directly from the command line. New applications modes can be added by creating the appropriate subdirectories in /vnmr/maclib, /vnmr/menulib, and / vnmr/help, and adding the desired applications mode name to the _appmode macro. Subdirectories should be named by adding the file extension .appmodename to the corresponding parent directory name (e.g., maclib.solids, menulib.automation).
Values: 'standard' sets standard application mode.
'imaging' sets imaging application mode.
apptype Application type (P)
Description: Specifies the application type, the group of pulse sequences to which a pulse sequence belongs. It is used by the execpars macros to specify the actions executed by the protocol for a pulse sequence. The actions are common to the group of pulse sequences specified by the apptype.
Values: See the execpars directory in /vnmr.
See also: execpars(M), execsetup(P), execprep(P), execprescan(P), execprocess(P), execplot(P)

apt \quad Set up parameters for APT pulse sequence (M)

Syntax: apt<(solvent) >
Description: Converts a parameter set to the APT (attached proton test) experiment.
Arguments: solvent is the name of the solvent used. The default for solvent is CDCl_{3} or, if in the automation mode, the default is read from the file sampleinfo.
See also: VnmrJ Liquids NMR
Related: aptaph Automatic processing for APT spectra (M)
capt Automated carbon and APT acquisition (M)
heapt Automated proton, carbon, and APT acquisition (M)

Apt \quad Set up parameters for APT experiment (M)

Description: Set up parameters for APT experiment

APT Change parameters for APT experiment (M)

Syntax: APT
Description: Converts the current parameter set to an APT experiment. .
Related: apt Set up parameters for APT experiment (M)
aptaph \quad Automatic processing for APT spectra (M)
Syntax: aptaph
Description: Automatically phases APT spectra.
See also: VnmrJ Liquids NMR
Related: apt Set up parameters for APT pulse sequence (M)

arccos \quad Calculate arc cosine of real number (M)

Applicability: Systems with imaging capabilities.
Syntax: $\arccos (\mathrm{x}<$, 'silent' $>$) <: rad, deg>
Description: Calculates the arc cosine value of a real number. The answer is given, in radians and degrees, in the top VnmrJ display window and is optionally returned to two destination variables. The calculation is based on the identity
$\arccos (x)=\arctan (\operatorname{sqrt}(1-x * x) / x)$. Since arccos calls the macro arctan rather than the built-in math function atan, the calculation is somewhat slow.

Arguments: x is a real number in the range of ± 1.0.
' silent ' is a keyword to suppress the display of the results in the top VnmrJ display window.
rad is a return value in radians.
deg is a return value in degrees.
Examples: $\arccos (.5)$
arccos(-.2,'silent'):r1,d1
See also: VnmrJ Imaging NMR

Related:	acos	Find arc cosine of number (C)
	arcsin	Calculate arc sine of a real number (M)
	arctan	Calculate arc tangent of a real number (M)
	atan	Find arc tangent of a number (C)

arcsin \quad Calculate arc sine of real number (M)
Applicability: Systems with imaging capabilities.
Syntax: $\arcsin (\mathrm{x}<$, 'silent'>)<:rad, deg>
Description: Calculates the arc sine value of a real number. The answer is given, in radians and degrees, in the top VnmrJ display window and is optionally returned to two destination variables. The calculation is based on the identity
$\arcsin (x)=\arctan (x / \operatorname{sqrt}(1-x * x))$. Since \arcsin calls the macro arctan rather than the built-in math function atan, the calculation is somewhat slow.
Arguments: x is a real number in the range of ± 1.0.
' silent' is a keyword to suppress the display of the results in the top VnmrJ display window.
rad is a return value in radians.
deg is a return value in degrees.
Examples: arcsin(.5)
arcsin(-.2,'silent'): r1, d1
See also: VnmrJ Imaging NMR

Related:	arccos	Calculate arc cosine of a real number (M)
arctan	Calculate arc tangent of a real number (M)	
asin	Find arc sine of number (C)	
atan	Find arc tangent of a number (C)	

arctan \quad Calculate arc tangent of real number (M)
Applicability: Systems with imaging capabilities.

```
Syntax: arctan(x<,'silent'>)<:rad,deg>
```

Description: Calculates the arc tangent value of a real number. The answer is given, in radians and degrees, in the top VnmrJ display window and is optionally returned to two destination variables. The calculation is based on a rational approximation.

Arguments: x is a real number.
' silent ' is a keyword to suppress the display of the results in the top VnmrJ display window.
rad is a return value in radians.
deg is a return value in degrees.
Examples: arctan (.5)
arctan(-.2,'silent'):r1,d1
See also: VnmrJ Imaging NMR
Related: arccos Calculate arc cosine of a real number (M)
$\arcsin \quad$ Calculate arcsine of a real number (M)
asin Find arc sine of number (C)
atan \quad Find arc tangent of a number (C)

array Easy entry of linearly spaced array values (M)

Syntax: array<(parameter<,number_steps,start,step_size) >
Description: Arrays a parameter to the number of steps, starting value and step size given by the user. All values of the array will satisfy the limits of the parameter.
If array is typed with none or only some of its arguments, you enter an interactive mode in which you are asked for the missing values.

Arguments: parameter is the name of the parameter to be arrayed. The default is an interactive mode in which you are prompted for the parameter. Only numeric parameters can be arrayed.
number_steps is the number of values of the parameter. The default is an interactive mode in which you are prompted for the number of steps.
start is the starting value of the parameter array. The default is an interactive mode in which you are prompted for the starting value.
step_size is the magnitude of the difference between elements in the array.
The default is an interactive mode in which you are prompted for the step size.
Examples: array
array('pw')
array('tof', 40,1400,-50)
See also: VnmrJ Liquids NMR

array \quad Parameter order and precedence (P)

Description: Whenever an array of one or more parameters is set up, the string parameter array tells the system the name of the parameter or parameters that are arrayed and the order and precedence in which the arraying is to take place. The parameter array is automatically updated when acquisition parameters are set. "Diagonal arrays" (those corresponding to using parentheses in the parameter array) must be entered by hand.
Values: ' ' (two single quotes with no space between) indicates no parameter is arrayed. ' x ' indicates the parameter x is arrayed.
' x, y ' indicates the parameters x and y are arrayed, with y taking precedence. That is, the order of the experiments is $x_{1} Y_{1}, x_{1} Y_{2}, \ldots x_{1} Y_{n}, x_{2} Y_{1}, x_{2} Y_{2}, \ldots$ $\mathrm{x}_{2} \mathrm{Y}_{\mathrm{n}}, \ldots \mathrm{x}_{\mathrm{m}} \mathrm{Y}_{\mathrm{n}}$, with a total of $\mathrm{m} \times \mathrm{n}$ experiments being performed.
' y, x ' indicates the parameters x and y are arrayed, with x taking precedence. That is, the order of the experiments is $\mathrm{x}_{1} \mathrm{Y}_{1}, \mathrm{x}_{2} \mathrm{Y}_{1}, \ldots \mathrm{x}_{\mathrm{n}} \mathrm{Y}_{1}, \mathrm{x}_{1} \mathrm{Y}_{2}, \mathrm{x}_{2} \mathrm{Y}_{2}, \ldots$ $x_{m} Y_{2}, \ldots x_{m} Y_{n}$, with total of $m \times n$ experiments being performed.
$'(x, y)$ ' indicates the parameters x and y are jointly arrayed. The number of elements of the parameters x and y must be identical, and the order of experiments is $\mathrm{x}_{1} \mathrm{Y}_{1}, \mathrm{x}_{2} \mathrm{Y}_{2}, \ldots \mathrm{x}_{\mathrm{n}} \mathrm{Y}_{\mathrm{n}}$, with n experiments being performed.
Joint arrays can have up to 10 parameters. Regular multiple arrays can have up to 20 parameters, with each parameter being either a simple parameter or a diagonal array. The total number of elements in all arrays can be $2^{32}-1$.
See also: VnmrJ Liquids NMR
Related: array Easy entry of linearly spaced array values (M)

arraydim Dimension of experiment (P)

Description: After calcdim calculates the dimension of an experiment, the result is put into the parameter arraydim. If an experiment is arrayed, arraydim is the product of the size of the arrays.

See also: VnmrJ Liquids NMR
Related: calcdim Calculate dimension of experiment (C)
celem Completed FID elements (P)

asin

Find arc sine of number (C)
Syntax: asin(value) <:n>
Description: Finds the arc sine (also called the inverse sine) of a number.
Arguments: value is a number in the range of ± 1.0.
n is a return argument giving the arc sine, in radians, of value. The default is to display the arc sine value in the status window.
Examples: asin(.5)
asin(val):asin_val
See also: VnmrJ User Programming
Related: sin Find sine value of an angle (C)
asize \quad Make plot resolution along f_{1} and f_{2} the same (M)
Syntax: asize
Description: Adjusts the 2D display parameters (sc, wc, sc2, and wc2) so that the displayed resolution along both f_{1} and f_{2} is the same. It is not suggested for heteronuclear experiments where the chemical shift spread of one nucleus is much greater than that of the other.
See also: VnmrJ Liquids NMR
Related: SC Start of chart (P)
sc2 Start of chart in second direction (P)
wc Width of chart (P)
wc2 Width of chart in second direction (P)
assign Assign transitions to experimental lines (M)
Syntax: (1) assign<('mark') >
(2) assign (transistion_number, line_number)

Description: Assigns the nearest calculated transition to the lines from a dll or nll listing after spinll has placed them in slfreq. All lines may not be assigned and transitions must be greater than sth. The next spins ('iterate') determines new parameters to minimize the differences in position of the assigned pairs.
Arguments: 'mark' makes assign use the lines selected with the mark button in place of dll. The results of the mark operation are stored in the file markid. out, which is cleared by the command mark ('reset').
transition_number is a single calculated transition number that is assigned to a line from the $d l l$ listing.
line_number is the index of the line from the dll listing. Setting line_number $=0$ removes an assignment from a calculated transition.
Examples: assign
assign('mark')
assign $(4,0)$
See also: VnmrJ Liquids NMR

Related:	dll	Display listed line frequencies and intensities (C)
mark	Determine intensity of the spectrum at a point (C)	
nll	Find line frequencies and intensities (C)	
slfreq	Measured line frequencies (P)	
spinll	Set up slfreq array (M)	
spins	Perform spin simulation calculation (C)	
sth	Minimum intensity threshold (P)	

Acquisition time (P)
Description: Length of time during which each FID is acquired. Since the sampling rate is determined by the spectral width sw, the total number of data points to be acquired ($2 * \mathrm{Sw}^{*}$ at) is automatically determined and displayed as the parameter np. at can be entered indirectly by using the parameter np.
Values: Number, in seconds. A value that gives a number of data points that is not a multiple of 2 is readjusted automatically to be a multiple of 2 .
See also: VnmrJ Liquids NMR; VnmrJ User Programming
Related: $\mathrm{np} \quad$ Number of data points (P)
sw \quad Spectral width in directly detected dimension (P)
atan \quad Find arc tangent of a number (C)
Syntax: atan (value) <: n>
Description: Finds the arc tangent (also called the inverse tangent) of a number.
Arguments: value is a number between $\pi / 2$ and $-\pi / 2$.
n is a return argument giving the arc tangent, in radians, of value. The default is to display the arc tangent value in the status window.
Examples: atan (.5)
atan(val): atan_val
See also: VnmrJ User Programming
Related: sin Find sine value of an angle (C)
atan2
Find arc tangent of two numbers (C)
Syntax: atan2 $(\mathrm{y}, \mathrm{x})<: \mathrm{n}>$

Description: Finds the arc tangent (also called the inverse tangent) of the quotient of two numbers.

Arguments: y and x are two numbers, where the quotient y / x is between $\pi / 2$ and $-\pi / 2$ and x is not equal to zero.
n is a return argument giving the arc tangent, in radians, of y / x. The default is to display the arc tangent value in the status window.
Examples: atan2 $(1,2)$
atan2 (val) :atan2_val
See also: VnmrJ User Programming
Related: sin Find sine value of an angle (C)

Call a macro at a specified time (M)

Description: atcmd< (<'macro'><,'timespec'><,'day'><,'cancel'>) >
Syntax: The atcmd macro calls a macro at the specified time. It only functions on a spectrometer. A background VnmrJ is started to execute the command. This background VnmrJ is not started in an experiment; therefore, the macro executes a jexp or runs commands or macros that do not need experiment parameters. It will have access to global and systemglobal parameters.

Arguments: When called with arguments, atcmd updates the database with the supplied information. It does not start the process that calls the macros at the specified times. at cmd with no arguments starts the program that calls the macros at the specified times.
timespec -- has the format $\mathrm{hh}: \mathrm{mm}<$ mon tue wed thur fri sat sun> A 24 hour clock is used -- midnight is 0:0, noon is 12:00.
day -- If the optional day field is used, the command will be repeated on that day at the appointed time. The day fields are case insensitive. For monday, wednesday, and friday only a single character is needed. More can be used. For tuesday, thursday, saturday, and sunday, at least two characters must be given.
cancel -- If the cancel argument is given, it will cancel all the commands that match the supplied macro. For example, if you specify cmda to be run at $8: 00$ on mon and $9: 00$ on tue, then atcmd ('cancel','cmda') will cancel both of them. If the macro is ' ' , the cancel option will cancel all atcmd macros.
list -- The list argument lists the timespec for all the atcmds that match the supplied macro. If the macro is ' ' , the list option lists all of the atcmd macros and their timespecs. Optional arguments can be returned. The first is the number of atcmds. The macro and timespec for each atcmd can be returned.

When the command specified by atcmd is executed in background, it will be executed using the envirnoment of the user who requested the atcmd. Also, the background VnmrJ will initially not be joined to a specific experiment.
Examples: atcmd('echo(`good morning`)','8:00 mon tue wed thu fri')
Displays a welcome message every weekday at 8:00 am.

```
atcmd('echo(`What are you doing here on a
weekend?`)','8:00 Sat Sun')
Questions your intentions on the weekend.
```

atcmd('startNightQueue', '22:00')
Runs the macro startNightQueue at 22 hr (10:00pm).
atcmd('startNightQueue','cancel')
Cancels the scheduled startNightQueue cmd
atcmd(' ', 'cancel')
Cancels all scheduled commands
atcmd('','list')
Lists all scheduled commands

atext \quad Append string to current experiment text file (M)

Syntax: atext (string)
Description: Adds a line of text to the current experiment text file.
Arguments: string is a single line of text.
Examples: atext('T1 Experiment')
See also: VnmrJ Liquids NMR
Related: ctext Clear the text of the current experiment (C)
text Display text or set new text for current experiment (C)
write Write formatted text to a device (C)
attval Calculate pulse width (M)
Syntax: attval (pw,tpwr)
Description: Calculates the pulse width and B_{1} field at every transmitter power. A low transmitter power should be used where the amplifier is not in compression. Calculation is not valid where amplifier is in compression.
Arguments: pw is the pulse width.
tpwr is the transmitter power.
Examples: attval(7.0,59)
au \quad Submit experiment to acquisition and process data (M)
Syntax: au< (<'nocheck'><,'next'><,'wait'>) >
Description: Performs the experiment described by the current acquisition parameters, checking the parameters loc, spin, gain, wshim, load, and method to determine the necessity to perform various actions in addition to simple data acquisition. This may involve a single FID or multiple FIDs, as in the case of arrays or 2 D experiments. au causes the data to automatically be processed according to the following parameters:

- wbs specifies what happens after each block.
- wnt specifies what happens after each FID is collected.
- wexp specifies what happens when the entire acquisition is complete (which may involve several complete FIDs in the case of 1D arrays or 2D experiments).
Before starting the experiment, au executes the two user-created macros if they exist. The first is usergo, a macro that allows the user to set up general conditions for the experiment. The second is a macro whose name is formed by go_followed by the name of the pulse sequence (from seqfil) to be used (e.g., go_s2pul, go_dept). This macro allows a user to set up experiment conditions suited to a particular sequence.
Arguments: ' nocheck' is a keyword to override checking if there is insufficient free disk space for the complete 1D or 2D FID data set to be acquired.
' next' is a keyword to put the experiment started with au ('next') at the head of the queue of experiments to be submitted to acquisition.
'wait' is a keyword to stop submission of experiments to acquisition until wexp processing of the experiment, started with au ('wait'), is finished.
Examples: au
au('wait')
See also: VnmrJ Liquids NMR
Related: auto_au Controlling macro for automation (M)
change Submit a change sample experiment to acquisition (M)
ga \quad Submit experiment to acquisition and FT the result (M)
gain Receiver gain (P)
go Submit experiment to acquisition (M)
go Pulse sequence setup macro called by go, ga, and au (M)
load Load status of displayed shims (P)
loc Location of sample in tray (P)
lock Submit an Autolock experiment to acquisition (C)
method Autoshim method (P)
sample Submit change sample, Autoshim experiment to acquisition (M)
seqfil Pulse sequence name (P)
shim Submit an Autoshim experiment to acquisition (C)
spin \quad Submit a spin setup experiment to acquisition (C)
spin \quad Sample spin rate (P)
$\mathrm{su} \quad$ Submit a setup experiment to acquisition (M)
usergo Experiment setup macro called by go, ga, and au (M)
wbs \quad Specify action when bs transients accumulate (C)
wexp Specify action when experiment completes (C)
wnt Specify action when $n t$ transients accumulate (C)
wshim Conditions when shimming is performed (P)

AuCALCh3i Set up autocalibration with CH 3 sample (M)

Syntax: AuCALch3i
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe and decouple), carbon (observe and decouple), gcal, and C/H gradient ratio. The AuCALch3i macro is the same as the AuCALch3i1 macro.

Related: AuCALch3i1 Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M)
gcal Gradient calibration constant (P)

AuCALch3i1 Get autocalibration with CH_{3} I sample (M)
Syntax: AuCALch3i1
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe and decouple), carbon (observe and decouple), gcal, and C/H gradient ratio. The AuCALch3il macro is the same as the AuCALch3i macro.

Related: AuCALch3i Set up autocalibration macros with $\mathrm{CH}_{3} \mathrm{I}$ sample (M) geal Gradient calibration constant (P)

AuCALch3oh Set up autocalibration with Autotest sample (M)

Syntax: AuCALch3oh

Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe), carbon (decouple), gcal and C/H gradient ratio. The AuCALch 30 h macro is the same as the AuCALch 30 h 1 macro.

Related: AuCALch3oh1 Autocalibration macros with Autotest sample (M) gcal Gradient calibration constant (P)

AuCALch3oh1 Get autocalibration with Autotest sample (M)
Syntax: AuCALch3oh1
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe), carbon (decouple), gcal and C/H gradient ratio. The AuCALch30h1 macro is the same as the AuCALch30h macro.
Related: AuCALch3oh Autocalibration macros with Autotest sample (M) gcal Gradient calibration constant (P)

Aucalibz $0 \quad$ Automatic Hz to DAC calibration for ZO (M)

Applicability: Autocalibration routine
Syntax: Called by Augmapz0 calibration routine
Description: Called by Augmapz0 calibration routine. Automatically calibrates lock frequency change per Z0 DAC unit change. the calibrated value is written out in the probe file as 1 khzdac parameter.
Related: Augmapzo Automatic lock gradient map generation and Z0 calibration (M)
Aufindzo Automatic adjustment of Z0 (M)

AuCdec \quad Carbon decoupler calibration macro (M)

Syntax: AuCdec
Description: Used by AuCALch3i and AuCALch3oh autocalibration routines to do carbon decoupler calibrations. Calibrates high-power pulse widths and dmf.

Related: AuCALch3i Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M)
AuCALch3oh Get autocalibration with Autotest sample (M)
$\mathrm{dmf} \quad$ Decoupler modulation frequency for first decoupler (P)

AuCgrad Carbon/proton gradient ratio calibration macro (M)

Syntax: AuCgrad
Description: Used by AuCALch3i1 and AuCALch3oh1 autocalibration routines for C/H gradient ratio calibrations.
Related: AuCALch3i1 Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M) AuCALch3oh1 Get autocalibration with Autotest sample (M)

AuCobs Carbon observe calibration macro (M)
Syntax: AuCobs
Description: Used by AuCALch3i1 autocalibration routines for carbon observe calibrations.

Related: AuCALch3i1 Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M)
audiofilter Audio filter board type (P)
Applicability: All systems except MERCURYplus/Vx.
Description: Sets the type of audio filter board used where the spectral width (sw) is less than
100 kHz . The filter type is set in the CONFIG window (opened from config)
using the label Audio Filter Type.
Values: ' b ' indicates the system has a $100-\mathrm{kHz}$ Butterworth filter board (100 kHz
Butterworth choice in the CONFIG window.).
'e' indicates the system has a $100-\mathrm{kHz}$ elliptical filter board (100 kHz
Elliptical choice in the CONFIG window).
' 2 ' indicates the system has a $200-\mathrm{kHz}$ Butterworth filter board (200 kHz
Butterworth choice in the CONFIG window).
' 5 ' indicates the system has a $500-\mathrm{kHz}$ elliptical filter board (500 kHz
Elliptical choice in the CONFIG window).
See also: System Administration
Related: config Display current configuration and possibly change it (M)
Sw \quad Spectral width in directly detected dimension (P)
Aufindz $0 \quad$ Automatic adjustment of Z0 (M)
Syntax: Aufindz0
Description: Finds z0 by doing lock 1D spectrum. The frequency is then used along with the 1 khzdac value in the probe file to calculate the z 0 value for a given solvent and autolocking is done. This requires previous calibration of the hzdac value done using the Aucalibz0 macro.
Related: Aucalibzo Automatic Hz to DAC calibration for Z0 (M)

Augcal Probe gcal calibration macro (M)

Syntax: Augcal
Description: Used by AuCALch3i1 and AuCALch3oh1 autocalibration routines for probe gcal calibrations.
Related: AuCALch3i1 Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M)
AuCALch3oh1 Get autocalibration with Autotest sample (M)
gcal Gradient calibration constant (P)
Augmap \quad Automated gradient map generation (M)
Syntax: Augmap
Description: Automatically adjusts gradient level, offset, window, and pulse width to generate a zl-z4 gradient map using a $2-\mathrm{Hz} \mathrm{D}_{2} \mathrm{O}$ sample. This macro is used by the Aumakegmap auto gradient map generation macro and is applicable only for a lock gradient map.
Related: Aumakegmap Auto lock gradient map generation (M)
gsize \quad Number of z-axis shims used by gradient shimming (P)
Augmapz $0 \quad$ Automatic lock gradient map generation and z0 calibration (M)
Syntax: Augmapz0

Description: Using the $2-\mathrm{Hz} \mathrm{D}_{2} \mathrm{O}$ sample, the augmapz 0 macro automatically creates a lock gradient map, followed by Hz to DAC calibration of Z 0 for the autolocking procedure.

Related: Aucalibzo Automatic Hz to DAC calibration for Z0 (M)
Aufindz $0 \quad$ Automatic adjustment of Z0 (M)

AuHdec Proton decoupler calibration (M)

Syntax: AuHdec
Description: Used by AuCALch3i autocalibration routine to do proton decoupler calibrations. Calibrates high-power pulse widths and dmf.
Related: AuCALch3i Get autocalibration with CH3I sample (M)
$\mathrm{dmf} \quad$ Decoupler modulation frequency for first decoupler (P)

AuHobs Proton observe calibration macro (M)
Syntax: AuHobs
Description: Used by AuCALch3i and AuCALch3oh autocalibration routines for proton observe calibrations.

Related: AuCALch3i Get autocalibration with CH3I sample (M)
AuCALch3oh Get autocalibration with Autotest sample (M)

Aumakegmap Auto lock gradient map generation (M)

Syntax: Aumakegmap ($<1 \mathrm{k}$ or hs or H1 >)
Description: Generates z1-z4 lock gradient ('lk' argument), lock homospoil ('hs' argument), or ${ }^{1} \mathrm{H}$ gradient map (' H 1 ' argument). If no argument is given, the defaults is ' $l k$ ', if gradtype= 'nnh' to 'hs'. The doped $2-H z D_{2} O$ should be used for $h s$ and $l k$ maps. H1 map is typically done on the sample.
Automatically adjusts gradient level, offset, window, and pulse width. The map name is automatically stored in the probe file.

AuNuc Get parameters for a given nucleus (M)
Syntax: AuNuc (nucleus, solvent)
Description: Retrieves standard parameter set for a given nucleus and adds all required parameters for $\mathrm{Tcl} / \mathrm{dg}$ driven parameters. If no parameter set exists in stdpar, then carbon parameters are retrieved and tn changed.

auto \quad Prepare for an automation run (C)

Applicability: Systems with an automatic sample changer.
Syntax: auto<(automation_directory) >
Description: Prepares the automation directory for an automation run. auto aborts if the spectrometer is already in automation mode.
Arguments: automation_directory is the name of the automation directory, either an absolute UNIX path (i.e.the first character is a "/") or a relative path (the first character is not a "/"). The default is the value of the parameter autodir. If for some reason autodir is not defined, you are prompted to provide the location of the automation directory. If not given as an argument, you are prompted for the path. If the automation directory is not present, it is created with full access for all users. auto aborts if it fails to create this directory.

Examples:	auto	
	auto($/$ /home/vnmr1/autorun_62	')

auto Automation mode active (P)

Applicability: Systems with an automatic sample changer.
Description: A global variable that shows whether or not an automation run is in progress. Macros typically test this parameter because actions can differ between the automation and non-automation modes. The value of auto is not enterable by the user. An automation experiment is initiated with the autogo command. The auto parameter is only set to ' y ' for those macros and commands that are run as part of an automation experiment.

Values: ' Y ' indicates automation mode is active.
' n ' indicates automation mode is inactive.
Related: auto_au Controlling macro for automation (M)
autogo Start an automation run (C)
autora Resume suspended automation run (C)
autosa Suspend current automation run (C)
auto_au Controlling macro for automation (M)
Applicability: Systems with an automatic sample changer.
Syntax: auto_au
Description: Reads sampleinfo file (defines an automation experiment) using the lookup facility, sets the solvent and loc parameters based on the SOLVENT and SAMPLE\# fields of sampleinfo, runs exec on the entry in the MACRO field, and writes the experiment text based on the TEXT field. After that, auto_au examines the value of the wexp parameter:

- If wexp is set to 'procplot', then auto_au calls au.
- If wexp is set to 'autolist', then auto_au inserts 'auto' as the first argument to autolist and calls au('wait').
- If wexp is set to anything else, auto_au does not call au.

If no data is generated from the requested MACRO field, due to an error or some other reason, auto_au sets the STATUS field to "No Data Requested."
auto au is used only during automation and should not be called directly. It provides a starting point for all automation experiments. As such, it is a convenient point for user customization of automation.
Related:
au
auto
autolist
exec
loc Location of sample in tray (P)
lookup Look up words and lines from a text file (C)
solvent Lock solvent (P)
wexp When experiment completes (P)

Autobackup Back up current probe file (M)

Syntax: Autobackup
Description: Makes a copy of the probe file before starting the calibrations and prints the current calibration file. Autobackup is called by the autocalibration routines AuCALch3i1 and AuCALch3oh1.

Related: AuCALch3i1 Get autocalibration with $\mathrm{CH}_{3} \mathrm{I}$ sample (M)
AuCALch3oh1 Get autocalibration with Autotest sample (M)
autodept \quad Automated complete analysis of DEPT data (M)
Syntax: autodept
Description: Processes DEPT spectra, plots the unedited spectra, edits the spectra, plots the edited spectra, and prints outs editing information.
Related: adept Automatic DEPT analysis and spectrum editing (C)
deptproc Process DEPT data (M)
padept Perform adept analysis and plot resulting spectra (C)
pldept Plot DEPT data, edited or unedited (M)

autodir \quad Automation directory absolute path (P)

Applicability: Systems with an automatic sample changer or LC-NMR accessory.
Description: When using a sample changer, autodir is a global variable that holds the absolute path of the currently active automation directory. When VnmrJ is started, autodir is set to the absolute path of the last automation run.
When using the LC-NMR accessory, autodir specifies a directory in which experiments using a stored queue are saved.
See also: VnmrJ Liquids NMR
Related: auto Set up an automation directory (C)
autoname Prefix for automation data file (P)

autogo Start automation run (C)

Applicability: Systems with an automatic sample changer.
Syntax: autogo<(file<,automation_directory>) >
Description: Starts an automation run. The autogo parameter cannot be entered while the spectrometer is in automation mode. You must have an enter queue prepared to start an automation run. The queue is checked to verify that it was prepared using the enter command (autogo aborts if an error in the format is found.) Your automation directory is also checked for the presence of a non-empty enter queue (autogo aborts if the current queue in the automation directory is present and not empty). Finally, autogo checks the automation directory and runs the auto command if this directory is not present or another problem is found. When autogo completes, the system is in automation mode and your automation run starts.
Arguments: file is the file name of your enter queue. The default is that the system prompts you for the location of the enter queue.
automation_directory is the pathname of the automation directory. The default is the current value of the parameter autodir.
Examples: autogo
autogo('MySamples')
autogo('MySamples','/home/vnmr1/AutoRun_621')

See also: VnmrJ Liquids NMR

Related:	auto	Set up an automation directory (C)
autodir	Automation directory absolute path (P)	
autoname	Prefix for automation data file (P)	
enter	Enter sample information for automation run (C)	

autolist Set up and start chained acquisition (M)
Syntax: autolist (<options, >experiment1<,experiment2<, . . .>)
Description: Sets up parameters for chained experiments by executing the experiments given as arguments and then starting a chained acquisition. Note that the macro au is executed as part of autolist and should not be included in the arguments to autolist.

Arguments: options is one or more of the following keywords:

- 'auto' is a keyword to add 'wait' to the au call (e.g, au('wait','next')).
- 'start' is a keyword to make the first experiment in the list as one that needs to be acquired rather than processed.
experiment1, experiment $2, \ldots$ are experiments written as strings (e.g., 'dept' or 'c13'). experiment1 is the current experiment and, when it finishes, the macro procplot is called to process the data. If experiment 2 is listed, that experiment is executed and then the macro au ('next') is performed. For subsequent experiments, the text, solvent and temp are used from the preceding experiment. Also, the wexp parameter is reset to 'autolist' with the first experiment removed.
Examples: autolist('h1','c13','dept')
autolist('h1','hcosy')
See also: VnmrJ Liquids NMR
Related: auto_au
au
hc Automated proton and carbon acquisition (M)
hcapt Automated proton, carbon, and APT acquisition (M)
hccorr Automated proton, carbon, and HETCOR acquisition (M)
hcosy Automated proton and COSY acquisition (M)
procplot Automatically process FIDs (M)
solvent Lock solvent (P)
temp Sample temperature (P)
wexp When experiment completes (P)

autoname \quad Create path for data storage (C)

Syntax: autoname< (<text_file><,parameter_name>) >: \$path
Description: Determines a path where data can be stored. This command provides the functionality of the autoname parameter without being in automation mode.

Arguments: text_file is the name of a text file from which information can be extracted to construct the path name. Any file can be used to get information. The file sampleinfo in the current experiment directory is used as the default if a text_file is not specified.
parameter_name is the name of an alternate parameter to be used as the autoname parameter. The default is to use autoname. The specifications of a parameter_name are similar to those used by the autoname parameter
during an automation run. If an alternate parameter is used, it will probably need to be created in the global tree as a string.
\$path is a return argument with the path. If no return argument is present, the result is displayed on line 3.
Examples:
autoname: \$autoname_path
autoname (curexp+'/text') : $\$ \mathrm{p} 1$
See also: VnmrJ Liquids NMR
Related:

auto	Set up an automation directory (C)
autogo	Start automation run (C)
autodir	Automation directory absolute path (P)
autoname	Prefix for automation data file (P)
enter	Enter sample information for automation run (M)
status	Display status of sample changer (C,U)

autoname

Applicability:
Prefix for automation data file (P)

Description:
Stores a string in the global tree that determines a prefix to the file name of the FID data (e.g., 0204 .fid) during an automation run. Percent signs (\%) are used to delimit a string to search for in the sampleinfo file, and the word after the delimited string is used in the file name. This word can be terminated with a space, tab, or carriage return. Dollar signs (\$) delimit a string to search for a parameter to be used in the filename. Text not delimited by percent or Dollar signs is copied from autoname without any changes.
If autoname does not start with a slash mark (/), the file is stored in the path given by autodir; otherwise, the name is used as is. The sample number is not automatically appended, but a revision number is appended.
Values: If autoname is a null string, the file name $\%$ SAMPLE\# : \% \%PEAK\#:\% is the default, resulting in the name sample_number+revison_number.fid (LC-NMR uses PEAK\# : in the sampleinfo file, resulting in the name peak_number+revision_number.fid). Note that the autoname of the user doing the automation run is used for all file names and that the resulting path and file name must be accessible (with read-write permission) by that user.
aut oname controls the version number attached to the name of a file and uses the value of VnmrJ parameters as part of the file's name. For example, autoname= ' \$seqfil\$_\$tn\$ names a file with the current value of the parameters seqfil and t n. The resulting file name might be s2pul_H1 or dept_C13. If a numeric value is used, this value is truncated to an integer. For example, if autoname= ' \$sfrq\$ ' , the file name would be 500 , not 500.456.
$\% \mathrm{Rn} \%$, where n is 0 to 9 (default is 2) is a special substitute string. n determines how the revision number is appended to the FID file name:

- If n is 0 , no revision digits are appended (all names must be uniquely constructed without these revision digits).
- If n is 1 to 9 , the revision number is padded with leading zeroes to form an n-digit number. If more places are needed than specified, more zeroes are used.
If n is greater than 9 (more than one digit), Rnn is still used as a search string in the sampleinfo file. Rn must be specified at the end of the autoname string; the revision digits are always appended.
You can also specify the starting number to be used when constructing the version number by appending a colon (:) and start number after Rn. The default starting value is 1 . A zero is not allowed.
\% keywords are allowed for time specification:

\%DATE\%	YYYYMMDD	
$\%$ TIME $\%$	HHMMSS	
$\%$ YR\%	YYYY	4-digit year
$\%$ YR2\%	YY	2-digit year
$\%$ MO $\%$	MM	2-digit month
$\% D A Y \%$	DD	2-digit day
$\%$ HR\%	HH	2-digit hour
$\%$ MIN\%	MM	2-digit month
$\%$ SEC $\%$	SS	2-digit second

Examples: Using the enter program, a sample is entered with the following information (which is copied to the sampleinfo file):

```
SAMPLE#: 3
    MACRO: h1
        USER: John Doe
SOLVENT: CDCl3
            TEXT: EthylBenzene in CDCl3
                    Page 01-3015
                    This is a text
USERDIR: ..
```

This entry creates the following file names for each autoname string:

autoname string	File name created
''	$0301 . f i d$
'\%USER: \%'	John01.fid
'\%Page\%'	$01-301501 . f i d$
'\%USER:\%/\%Page\%'	John/01-301501.fid
'/export/home/\%TEXT: $\%$ '	/export/home/EthylBenzene01.fid
'\%USER:\%\%R0\%'	John.fid
'\%USER:\%-\%R5\%'	John-00001.fid
'\%USER:\%-\%R1\%'	John-10.fid (iftenth revision)

See also: VnmrJ Liquids NMR

Related:	auto	Set up an automation directory (C)
autogo	Start automation run (C)	
autodir	Automation directory absolute path (P)	
autoname	Create path for data storage (C)	
enter	Enter sample information for automation run (C)	
status	Display status of sample changer (C,U)	

autora Resume suspended automation run (C)

Applicability: Systems with an automatic sample changer.
Syntax: autora
Description: Resumes a previously suspended automation run. No matter what caused the interruption (including autosa, power failure, or system bootup), the system examines the condition of the automation file and resumes acquisition for all experiments that have not finished. If autora is executed while an automation run is in progress, it has no effect.

See also: VnmrJ Liquids NMR
Related: autosa Suspend current automation run (C)

autosa Suspend current automation run (C)

Applicability: Systems with an automatic sample changer.
Syntax: autosa
Description: Suspends the automation mode at the conclusion of the current experiment and changes the system to the manual mode. The currently running experiment is not interrupted.
See also: VnmrJ Liquids NMR
Related: autora Resume suspended automation run (C)

```
autoscale Resume autoscaling after limits set by scalelimits macro (M)
Syntax: autoscale
```

Description: Returns to autoscaling in which the scale limits are determined by the expl command such that all the data in the expl input file is displayed.
See also: VnmrJ Liquids NMR
Related: expl Display exponential or polynomial curves (C)
scalelimits Set limits for scales in regression (M)
autostack Automatic stacking for processing and plotting arrays (M)
Syntax: autostack
Description: When processing and plotting arrayed 1D spectra, VnmrJ automatically determines whether the stacking mode is horizontal, vertical or diagonal from the number of traces and the number of lines in the spectrum. If this automatic function is not desirable (or makes an undesirable decision), it can be overridden by placing the stack macro in the experiment startup macro or by calling stack before processing (or reprocessing) a spectrum. autostack switches back to automatic determination of the stack mode by destroying the stackmode parameter.
See also: VnmrJ Liquids NMR
Related: procarray Process arrayed 1D spectra (M)
plarray Plot arrayed 1D spectra (M)
stack Fix stacking mode for processing / plotting arrayed spectra (M)
stackmode Stacking control for processing (P)
autotest Open Auto Test Window (C)
Syntax: autotest
Description: Opens the Auto Test window.
See also: AutoTest Software manual.
autotime Displays approximate time for automation (M)
Syntax: autotime(<automation directory>)
Description: Displays approximate time for each experiment and for each location in an automation run. If no argument is given, time is calculated for the current automation run (enterQ).
Related: explist Display approximate time for current experiment chain (M)

Set abs. value mode in directly detected dimension (C)

Syntax: av
Description: Selects the absolute-value spectra display mode by setting the parameter dmg to the string value 'av'. In the absolute-value display mode, each real point in the displayed spectrum is calculated as the square root of the sum of the squares of the real and imaginary points comprising each respective complex data point. All information, including noise, is always positive, and the relationship between signal and noise is linear.
For multidimensional data, av has no effect on data prior to the second Fourier transform. If pmode = ' full', av acts in concert with commands ph1, av1, or pwrl to yield the resultant contour display for the 2D data.

See also:	VnmrJ Liquids $N M R$	
Related:	av1	Set abs. value mode in 1st indirectly detected dimension (C)
	av2	Set abs. value mode in 2nd indirectly detected dimension (C)
	dmg	Display mode in directly detected dimension (C)
	$\mathrm{dmg} f$	Absolute-value display of FID data or spectrum in acqi (P)
	ft	Fourier transform 1D data (C)
$\mathrm{ft1d}$	Fourier transform along f_{2} dimension (C)	
$\mathrm{ft2d}$	Fourier transform 2D data (C)	
pa	Set phase angle mode in directly detected dimension (C)	
$\mathrm{pa1}$	Set phase angle mode in 1st indirectly detected dimension (C)	
ph	Set phased mode in directly detected dimension (C)	
ph1	Set phased mode in 1st indirectly detected dimension (C)	
pmode	Processing mode for 2D data (P)	
pwr1	Set power mode in 1st indirectly detected dimension (C)	
wft	Weigh and Fourier transform 1D data (C)	
wft1d	Weigh and Fourier transform of 2D data (C)	
wft2d	Weigh and Fourier transform 2D data (C)	

Set abs. value mode in 1st indirectly detected dimension (C)
Syntax: av1
Description: Selects the absolute-value spectra display mode along the first indirectly detected dimension by setting the parameter $d m g 1$ to the value 'av1'. If the parameter dmg1 does not exist, av1 creates it and set it to 'av1'.
In the absolute-value display mode, each real point in the displayed trace is calculated as the square root of the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data point are used in the summation. In this mode, all information, including noise, is always positive; and the relationship between signal and noise is linear.

The av1 command is only needed if mixed-mode display is desired. If the parameter dmg 1 does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of av1 is the same as for traces provided that pmode= 'partial' or pmode=' ' (two single quotes with no space between).
See also: VnmrJ Liquids NMR
Related: av Set abs. value mode in directly detected dimension (C) dmg1 Data display mode in 1st indirectly detected dimension (P)

Set abs. value mode in 2nd indirectly detected dimension (C)

Syntax: av2
Description: Selects absolute-value spectra display mode for the second indirectly detected dimension by setting the parameter dmg 2 to the value 'av2'. If dmg2 does not exist or is set to the null string, av2 creates dmg2 and set it equal to 'av2'.

In the absolute-value display mode, all information, including noise, is positive; and the relationship between signal and noise is linear. Each real point in the displayed trace is calculated as the square root of the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data point are used in the summation.
The av2 command is only needed if mixed-mode display is desired. If the parameter dmg2 does not exist or is set to the null string, the display mode along the second indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of av2 is the same as for traces provided that pmode='partial' or pmode=' ' (two single quotes with no space between).
See also: VnmrJ Liquids NMR

Related:	av	Set abs. value mode in directly detected dimension (C)
dmg2	Data display mode in 2nd indirectly detected dimension (P)	

averag Calculate average and standard deviation of input (C)
Syntax: averag (number1, number2,...) : average, sd,
number_arguments,sum_numbers,sum_squares
Description: Finds average, standard deviation, and other characteristics of a set of numbers.
Arguments: number1, number $2, \ldots$ is a finite set of numbers.
average is the average of the numbers.
sd is the standard deviation of the numbers.
number_arguments is the number of number1, number $2, \ldots$ arguments.
sum_numbers is the sum of the numbers
sum_squares is the sum of squares of the numbers.
Examples: averag(3.4,4.3,3.5,5.4):r1,r2
See also: VnmrJ User Programming

Description: Adds the current value of awc to each value of the weighting function along the directly detected dimension. This dimension is often referred to as the f_{2} dimension in 2D data sets, the f_{3} dimension in 3D data sets, and so forth. awc is applied after the sinebell and exponential function, but before the Gaussian function. This allows using $g f$ as a Gaussian apodization even when awc is non-zero. Typical value of awc is ' n '.

See also: VnmrJ Liquids NMR

Related:	awcl	Additive weighting const. in 1st indirectly detected dimension (P)
	awc2	Additive weighting const. in 2nd indirectly detected dim. (P)
	$\mathrm{g} f$	Gaussian function in directly detected dimension (P)

awc1	Additive weighting const. in 1st indirectly detected dimension (P)
Description:	Adds the current value of awcl to each value of the weighting function along
the first indirectly detected dimension This dimension is often referred to as the	
	f_{1} dimension of a multidimensional data set. awcl is analogous to the
parameter awc. The "conventional" parameters (lb, gf, etc.) operate on the	
	detected FIDs, while this "2D" parameter is used during processing of the
	interferograms.

For 2D experiments, axis uses two letters, with the first letter describing the detected spectral axis (f_{2}), and the second letter describing the indirectly detected axis (f_{1}). Thus axis='ph' is appropriate for a homonuclear 2D-J experiment, with a referenced ppm scale along the spectral axis and an axis in $\mathrm{Hz}(' \mathrm{~h}$ ') along the J-axis. axis='pp' is appropriate for COSY or NOESY experiments.
For 3D experiments, axis uses three letters with the first letter describing the detected spectral axis (f_{3}), the second letter describing the first indirectly detected axis $\left(\mathrm{f}_{1}\right)$, and the third letter specifying the second indirectly detected axis $\left(\mathrm{f}_{2}\right)$.
The special letter d is used to reference the indirectly detected axis to the parts per million of the decoupler channel, as appropriate for heteronuclear chemical shift correlation experiments, which would typically have axis='pd'. The letter n is used to suppress the axis display on one or both axes (e.g., axis='nn', axis='pn').
For systems with multiple decouplers, the characters '1', '2', and ' 3 ' can be used to reference an axis relative to the frequency of that decoupler. Setting axis='p1' is effectively the same as axis= 'pd'.
For image display, axis can have values ' c ' (for centimeters), ' m ' (for millimeters), and 'u' (for microns). These values rely on the parameters Iro and lpe for scaling. If both f_{1} and f_{2} dimensions are spatial, the display aspect ratio is adjusted to retain the aspect ratio of the imaging.
Values: ' 1 ' sets the axis label for units of ppm relative to the first decoupler. ' 2 ' sets the axis label for units of ppm relative to the second decoupler. $' 3$ ' sets the axis label for units of ppm relative to the third decoupler.
' C' sets the axis label for units of centimeters.
' d' sets the axis label for units of ppm relative to the first decoupler.
' h ' sets the axis label for units of hertz.
' k ' sets the axis label for units of kilohertz.
' m ' sets the axis label for units of millimeters.
' n ' sets no axis label display.
' p ' sets the axis label for units of ppm relative to the observe transmitter.
' u' sets the axis label for units of micrometers.
See also: VnmrJ Liquids NMR

Related:	axis	Provide axis labels and scaling factors (C)
	axisf	Axis label for FID displays and plots (P)
	dscale	Display scale below spectrum or FID (C)
	lpe	Field of view parameter for phase encode, in cm (P)
lro	Field of view parameter for readout, in cm (P)	
	pscale	Plot scale below spectrum or FID (C)

axisf \quad Axis label for FID displays and plots (P)

Description: Specifies the units for the FID axis display and plot. To create the FID display parameters axisf, dotflag, vpf, vpfi, crf, and deltaf (if the parameter set is older and lacks these parameters), enter addpar('fid').
Values: 's sets the axis label for units of seconds.
' m ' sets the axis label for units of ms.
' u ' sets the axis label for units of $\mu \mathrm{s}$.
' n ' sets no axis label display.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M) axis Axis label for displays and plots (P)

A

$$
\begin{array}{ll}
\text { dscale } & \text { Display scale below spectrum or FID (C) } \\
\text { pscale } & \text { Plot scale below spectrum or FID (C) }
\end{array}
$$

Bo	Magnet main static field (P)
bandinfo	Shaped pulse information for calibration (M)
banner	Display message with large characters (C)
bc	1D and 2D baseline correction (C)
beepoff	Turn beeper off (C)
beepon	Turn beeper on (C)
binom	Set up parameters for BINOM pulse sequence (M)
bootup	Macro executed automatically (M)
boresize	Magnet bore size (P)
box	Draw a box on a plotter or graphics display (C)
boxes	Draw boxes selected by the mark command (M)
bpa	Plot boxed parameters (M)
br24	Set up parameters for BR24 pulse sequence (M)
browser	Start Image Browser application (U)
bs	Block size (P)
btune	Tune broadband channel on MERCURYplus/-Vx (M)

B0 Magnet main static field (P)

Applicability: Systems with imaging capabilities.
Description: The field strength, in gauss, of the main magnetic field. This value is used by planning macros in their calculations.
Values: Number, in units of gauss. Nominal value is 234 . $9 *$ h1freq. For example, a 4.7T (200 MHz) system has a value of approximately 47,000 .

See also: VnmrJ Imaging NMR
Related: hlfreq Proton frequency of spectrometer (P)

bandinfo Shaped pulse information for calibration (M)

Applicability: Information only useful on systems capable of shaped pulse generation.
Syntax: bandinfo<(shape,width<,ref_power>) >:duration, power
Description: Displays a table containing the duration and the predicted 90° pulse power setting for the pulse shape and bandwidth given by the arguments. No parameter settings are changed. The necessary data is contained in the shapeinfo file in the shapelib subdirectory.
Arguments: If bandinfo is run without arguments, prompts operator for input shape is the name of the shape. The default is system prompts for a name. width is the bandwidth, in Hz , desired for the pulse. ref_power is value of tpwr to which pw90 is set. The default is 55 dB . duration is the duration, in $\mu \mathrm{s}$, of the pulse.
power is the predicted 90° pulse power setting.

```
Examples: bandinfo
    bandinfo('sinc',10):pw,tpwr
    See also: User Programming
    Related: pulseinfo Shaped pulse information for calibration (M)
    pw90 90 pulse width (P)
    tpwr Observe transmitter power level with linear amplifiers (P)
```

banner \quad Display message with large characters (C)
Syntax: banner (message<,color>)

Description: Displays text as large-size characters on the graphics windows.
Arguments: message is the text to be displayed. If the text includes a single quotation mark ('), it must be preceded by a backslash (\backslash '). Multiline displays are available by inserting two backslashes $(\backslash \backslash)$ between lines. Any undefined characters are displayed as a "bug" shape.
color is the color of text on a color display: 'red', 'yellow', 'green', 'cyan', 'blue', 'magenta', and 'white'. The default is 'yellow'.
Examples: banner('banner sample')
banner('Don\'t Touch','blue')
See also: User Programming

1D and 2D baseline correction (C)
Description: Makes 1D or 2D baseline correction using a spline or a second to twentieth order polynomial fitting of predefined baseline regions. bc defines every other integral (those integrals that disappear when intmod='partial') as baseline and attempts to correct these points to zero.
1D baseline correction
Syntax: $\mathrm{bc}<(\mathrm{n} \mid$ 'unbc'<,nsubregion<,minpoints<,minregion>>>) >
Description: Performs a 1D baseline correction. The nonintegrated parts of the spectrum (i.e., every odd region between integral reset points, or the integral gaps with intmod='partial') are divided into baseline subregions. The number of baseline subregions in each area are adjusted as possible, so that the subregions are more or less equal in size. Finally, the "center of gravity" (midpoint in x and average of the y values in the region) for each of the subregions is calculated.
Arguments: n is an integer from 1 to 20 for the baseline correction step. A polynomial of the ($n-1$)th order is calculated "through" the "baseline points" using the Chebychev least-squares fitting algorithm, and that polynomial function is subtracted from the spectrum. The coefficients of the polynomial are written into the file cureexp+ '/bc.out '. The default is 1 (a spline fit).
' unbc ' is a keyword to make bc read in the coefficients from the file written by the previous bc operation and reverse that operation. This option is only functional for polynomials with two or more coefficients performing baseline correction operations on 1D spectra or individual 2D traces (i.e., baseline corrections cannot be undone with the default spline correction).
nsubregion defines the number of subregions (minimum 3, maximum 400). By default, the total number of subregions is 20 (if $\mathrm{fn}<2048$), 40 (if $\mathrm{fn}=2048$ or $f n=4096$), or 80 (if $f n>4096$).
minpoints sets the minimum number of data points required in an integral gap for bc to regard it as baseline. Use this to exclude small, nonintegrated areas between close signals. The default is $\mathrm{fn} / 1000$ (but at least 3).
minregion defines the minimum number of subregions assigned to each baseline area. The default is 1 .
Examples: bc
bc (3)
bc('unbc')
bc ($1,200,8,2$) gives a spline correction using 200 baseline subregions, a gap of 8 data points between two (even) integral regions is regarded as baseline, and each baseline area is split into at least two subregions.
See also: VnmrJ Liquids NMR
2D baseline correction
Syntax: bc(trace_direction<, num_coeff><,trace_start> <,trace_end>)
Description: 2D baseline correction can be performed on three types of 2D data:

- f2 spectra (trace_direction= 'f2') after the first half of a 2D FT (wftlda).
- f2 traces (trace_direction='f2') after a full 2D FT (wft2da).
- f1 traces (trace_direction='f1') after a full 2D FT (wft2da).

Arguments: trace_direction specifies the direction, 'f1' or 'f2', along which the 2 D baseline correction is to take place.
num_coeff is the number of coefficients, from 1 to 20, used in the fitting procedure. The default value is 1 , which gives a spline fit. A value of 2 gives a linear baseline fit $(a+b x)$, a value of 3 gives a quadratic fit $\left(a+b x+c x^{2}\right)$, etc. The maximum value (20) gives a 19th-order polynomial fit with 20 coefficients. trace_start is the trace number for the spectrum on which the 2D baseline correction is to start. It must lie within the appropriate range or an error results.
trace_end is the trace number for the spectrum on which the 2D baseline correction is to end. It must lie within the appropriate range or an error results.
Examples: bc('f1')
bc ('f2', 3)
bc('f2', 3,10,60)
See also: VnmrJ Liquids NMR

Related:	dc	Calculate spectral drift correction (C)
	fn	Fourier number in directly detected dimension (P)
intmod	Integral display mode (P)	
	trace	Mode for 2D data display (P)
	wftida	Weight and Fourier transform phase-sensitive data (M)
	wft2da	Weight and Fourier transform phase-sensitive data (M)

beepoff Turn beeper off (C)

Description: Turns off the beeper sound so that the system does not use sound to warn the user when errors occur. The default is the beeper is turned on.
See also: User Programming
Related: beepon Turn beeper on (C)

beepon Turn beeper on (C)

Syntax: beepon
Description: Turns on the beeper sound so that the user hears a sound when errors occur. The default is the beeper is turned on.

binom Set up parameters for BINOM pulse sequence (M)

Applicability: Sequence is not supplied with MERCURYplus/-Vx.
Description: Sets up a binomial water suppression pulse sequence.
See also: VnmrJ Liquids NMR

bootup Macro executed automatically (M)

Syntax: bootup< (foreground) >
Description: Executed automatically when VnmrJ is started up. The bootup macro displays a message, looks for a macro login in the user's local maclib directory and executes it (if found), starts Acqstat and acqi (acqi is not run if system is configured as a workstation), and then starts the menu system. This set of actions can be modified on a per user basis by constructing custom bootup or login macros in the user's maclib directory. A custom login macro is preferred because all custom bootup macros are overridden whenever a new VnmrJ release is installed.

Arguments: foreground is 0 if VnmrJ is being run in the foreground or nonzero if being run in the background. This argument is passed to the login macro.
See also: User Programming

Related:	acqi	Interactive acquisition display process (C)
	Acqstat	Bring up the acquisition status display (U)

boresize Magnet bore size (P)

Applicability: Systems with imaging capabilities.
Description: Holds the internal usable diameter of the gradient set. This parameter is used by various pulse sequence setup macros to determine the validity of the field of view and slice offset input. It is defined in the system gradient table files found in \$vnmrsystem/imaging/gradtables, and is automatically set from one of those files when a value is entered for gcoil.
Values: 18, 31, 33, 40 (nominal, in cm)
See also: VnmrJ Imaging NMR

Related:	creategtable	Generate new gradient calibration file (M)
gcoil	Current gradient coil (P)	
gmax	Maximum gradient strength (P)	
setgcoil	Update system gcoil configuration (M)	
	sysgcoil	System gradient coil (P)
trise	Gradient rise time (P)	

box
Draw a box on a plotter or graphics display (C)
Syntax: box(<'keywords',>x1mm,x2mm,y1mm,y2mm
<,'nolimit'>) <:r1,r2>
Description: Draws a box on a plotter or a graphics display.
Arguments: 'keywords' identifies the output device ('graphics'|'plotter'), drawing mode ('xor'|'normal'), and drawing capability ('newovly'|'ovly'|'ovlyc').

- 'graphics'|'plotter' is a keyword for the output device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands and remains active until a different output is specified.
- 'xor','normal' is a keyword for the drawing mode when using the 'graphics' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous ' xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent pen, move, and draw commands and remains active until a different mode is specified.
- 'newovly', 'ovly' and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the ' xor' mode but more consistent in color. ' newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multi-segment figures can be created. 'ovlyc' clears without drawing.
x 1 mm is the left edge of the box, x 2 mm is the right edge, y 1 mm is the bottom, and Y 2 mm is the top. The location of the edges are given in plotter units (mm on most plots) and are scaled in mm for the graphics display. (If units are in Hz or ppm, you can use the hztomm command to convert units.)
' nolimit' allows the box to extend outside the limits determined by the parameters SC, wC, Sc2, and wc 2 .
$r 1, r 2$ return the location of the upper left corner of the box.
Examples: box('plotter',20,100,40,150)
box(25,105,45,155,'nolimit'):r1,r2
See also: VnmrJ Liquids NMR

Related:	gin	Return current mouse position and button values (C)
hztomm	Convert positions from Hz or ppm to plotter units (C)	
SC	Start of chart (P)	
Sc2	Start of chart in second direction (P)	
WC	Width of chart (P)	
Wc2	Width of chart in second direction (P)	
wcmax	Maximum width of chart (P)	

boxes \quad Draw boxes selected by the mark command (M)
Syntax: boxes<('graphics'|'plotter') >
Description: Draws boxes on a plotter or a graphics display with the location of the edges given in Hz . The data to make the boxes is stored in the mark2d. out file produced by the mark command. If there is no data in mark 2 d . out, a box is drawn from the current cursor positions. The boxes command also numbers the boxes above the upper left corner.
Arguments: 'graphics'|'plotter' is a keyword to send output to the graphics display or to the plotter, respectively. The default is 'graphics'.
Examples: boxes
boxes('plotter')
See also: VnmrJ Liquids NMR
Related: mark Determine intensity of spectrum at a point (C)

Syntax: bpa:\$sc2_minimum
Description: Plots a box around the entire chart (assuming blank paper) and then plots "chemist-style" parameters in boxes along the lower edge of the chart. bpa is the same as ppa, but with a different layout. Both ppa and bpa behave somewhat naively if the pulse sequence is more complex, but they were designed primarily for chemists, not for spectroscopists.

Arguments: sc2_minimum returns the minimum value for sc2 to plot a scale properly. To use the command pir, vp has to be set to a non-zero value.
See also: VnmrJ Liquids NMR
Related:

apa	Plot parameters automatically (M)
pap	Plot out "all" parameters (C)
pir	Plot integral amplitudes below spectrum (C)
ppa	Plot a parameter list in "English" (M)
sc2	Start of chart in second direction (P)
vp	Vertical position of spectrum (P)

br24 Set up parameters for BR24 pulse sequence (M)
Applicability: Systems with solids hardware. Sequence not supplied with MERCURYplus/Vx.
Description: Converts a FLIPFLOP, MREV8, or S2PUL parameter set into a BR24 solids line-narrowing multiple-pulse sequence.

See also: User Guide: Solid-State NMR
Related: cylbr24 Set up parameters for cycled BR24 pulse sequence (M)
flipflop Set up parameters for FLIPFLOP pulse sequence (M)
mrev8 Set up parameters for MREV8 pulse sequence (M)
s2pul Set up standard two-pulse sequence (M)

browser Start Image Browser application (U)

Applicability: Systems with imaging capabilities.
Syntax: (From UNIX) browser <macro_name> <XView_arguments> <-image path> <-imagelist path>

Description: Starts up the Image Browser application. Image Browser requires the environment variable BROWSERDIR to be set to point to the user's directory ib_initdir, which contains initialization files and directories. The environment variable and the initialization directory can be created when the makeuser command is run.

Image Browser reads in files in Flexible Data Format (FDF) for displaying and processing. To generate files in FDF format, the following macros are available to write out single or multislice images:

- For the current imaging software, which includes sequences sems, mems, and flash, use the svib macro.
- For older style SIS imaging sequences and microimaging sequences, use the macro svsis.
- 3D data can be saved in the FDF format by the ft 3 d macro.

The FDF format is an ASCII header describing the data, followed by the data. For more information on FDF, see the User Programming manual.
After images are read into Image Browser, image data can be written in a number of other formats for use with other imaging applications. browser can be used to extract up to three Maximum Intensity Projections (MIPs).

Arguments: Arguments can appear in any order.
macro_name is the file name of a macro, which must be stored in \$BROWSERDIR/macro/macro_name. The macro is executed when Image Browser starts. If no macro name is specified, the macro startup is executed.

XView_arguments are any type of standard XView arguments, which can be found by typing man xview on a UNIX command line.
-image path specifies the path of an image that should be loaded at startup. It is loaded after the startup macro is executed. Multiple -image arguments can be used to load multiple images.
-imagelist path specifies the path of a file containing a list of image files to be loaded.

See also: VnmrJ Imaging NMR; User Programming
Related: fdfgluer Make FDF file from header and data parts (C)
ft3d Perform a 3D Fourier transform on a 3D FID data set (M,U)
svib Generate and save images as Image Browser FDF files (M)
svsis \quad Generate and save images as FDF files (M)

Block size (P)
Description: Directs the acquisition computer, as data are acquired, to periodically store a block of data on the disk, from where it can be read by the host computer.

CAUTION: If bs=' n ', block size storage is disabled and data are stored on disk only at the end of the experiment. If the experiment is aborted prior to termination, data will be lost.

Values: 1 to 32767 transients, ' n '
See also: VnmrJ Liquids NMR
Related: wbs \quad Specify action when bs transients accumulate (C)
wbs \quad When block size (P)
btune Tune broadband channel on MERCURYplus/-Vx (M)
Applicability: MERCURYplus/Vx systems
Description: Turns on the broadband transmitter, directing to the probe about 0.5 watts of rf at frequency sfrq, enabling the user to tune the probe coil. Before entering btune, be sure to move the proper cable on the back of the left-hand magnet leg to the BNC connector labeled TUNE, and also to move the proper cable leading to the probe to the BNC connector labeled TUNE. Enter tuneoff to turn off the transmitter. btune cannot be executed while the console is acquiring. For the full tuning procedure, see the probe installation manual.
See also: VnmrJ Liquids NMR; Autoswitchable NMR Probes Installation

Related:	acqi sethw	Interactive acquisition display process (C)
Set values for hardware in acquisition system (C)		
	sfrq	Transmitter frequency of observe nucleus (P)
	su	Submit a setup experiment to acquisition (M)
	tuneoff	Turn off probe tuning mode, MERCURYplus/-Vx (M)

B

C

```
c13
c13p
calcdim
calfa
calibflag
calibrate
capt
Carbon
cat
cattn
cd
cdc
cdept
cdump
celem
center
centersw
centersw1
centersw2
cexp
cf
cfpmult
change
Cigar2j3j
cla
cla
clamp
cleanexp
clear
cleardosy
clearStacks()
clfreq
clindex
clradd
color
combiplate
combishow
compressfid
config
confirm
Console
contact_time
continueMovie
```

Automated carbon acquisition (M)
Process 1D carbon spectra (M)
Calculate dimension of experiment (C)
Recalculate alfa so that first-order phase is zero (M)
Correct systematic errors in DOSY experiments (P)
Start a dialog for autocalibration routines (M)
Automated carbon and APT acquisition (M)
Set up parameters for 13C experiment (M)
Display one or more text files in text window (C)
Coarse attenuator type (P)
Change working directory (C)
Cancel drift correction (C)
Automated carbon and DEPT acquisition (M)
Prints the current graphics screen (M)
Completed FID elements (P)
Set display limits for center of screen (C)
Move cursor to center of spectrum (M)
Move cursor to center of spectrum in 1st indirect dimension (M)
Move cursor to center of spectrum in 2nd indirect dimension (M)
Create an experiment (M)
Current FID (P)
Calculate first-point multiplier for 2D experiments (M)
Submit a change sample experiment to acquisition (M)
Convert the paramaeter to a CIGAR2j3j experiement (M)
Clear all line assignments (M)
Calculated transition number (P)
Calculated transition amplitude (P)
Remove old files and directories from an experiment (M)
Clear a window (C)
Delete temporarily saved data in current subexperiment (M)
Clear stack (C)
Calculated transition frequency (P)
Index of experimental frequency of a transition (P)
Clear add/subtract experiment (C)
Select plotting colors from a graphical interface (M)
View a color map for visual analysis of VAST microtiter plate (U)
Display regions (red, green, and blue) in CombiPlate window (M)
Compress double-precision FID data (M,U)
Display current configuration and possibly change it (M)
Confirm message using the mouse (C)
System console type (P)
MAS cross-polarization spin-lock contact time (M)
Continue movie in either forward or backward direction (C)

conv2ta	Convert imaging 3D transform to absolute value (U)
convert	Convert data set from a VXR-style system (M,U)
convertbru	Convert Bruker data (M,U)
copy	Copy a file (C)
cos	Find cosine value of an angle (C)
cosy	Set up parameters to a COSY pulse sequence (M)
Cosy	Convert the paramaeter to a COSY experiement (M)
COSY	Change parameters for COSY experiment (M)
cosyps	Set up parameters for phase-sensitive COSY pulse sequence (M)
cp	Copy a file (C)
cp	Cycle phase (P)
cpmgt2	Set up parameters for CPMGT2 pulse sequence (M)
cpos_cvt	Convert data set from a VXR-style system (M,U)
cptmp	Copy experiment data into experiment subfile (M)
cpx	Create pbox shape file (M)
cr	Cursor position in directly detected dimension (P)
cr1	Cursor position in 1st indirectly detected dimension (P)
cr2	Cursor position in 2nd indirectly detected dimension (P)
crcom	Create user macro without using text editor (M)
create	Create new parameter in a parameter tree (C)
creategtable	Generate system gradient table (M)
crf	Current time-domain cursor position (P)
crl	Clear reference line in directly detected dimension (M)
crll	Clear reference line in 1st indirectly detected dimension (M)
crl2	Clear reference line in 2nd indirectly detected dimension (M)
crmode	Current state of the cursors in df, ds, or dconi programs (P)
crof2	Recalculate rof2 so that $\mathrm{lp}=0(\mathrm{M})$
cryoclient	Start the CryoBay Monitor program (M, U)
ct	Completed transients (P)
ctext	Clear the text of the current experiment (C)
curecc	Name of eddy current compensation file (P)
curexp	Current experiment directory (P)
curscan	Scan currently in progress (P)
curwin	Current window (P)
cutoff	Data truncation limit (P)
cyclenoe	Set up parameters for CYCLENOE pulse sequence (M)
cylbr24	Set up parameters for cycled BR24 pulse sequence (M)
cylmrev	Set up parameters for cycled MREV8 pulse sequence (M)
cz	Clear integral reset points (C)

c13
 Automated carbon acquisition (M)

Syntax: c13<(solvent) >
Description: Prepares parameters for automatically acquiring a standard ${ }^{13} \mathrm{C}$ spectrum. The parameter wexp is set to 'procplot' for standard processing. If c13 is used as the command for automation via the enter command, the au is supplied automatically and should not be entered on the MACRO line of the enter
program. However, it is possible to customize the standard c13 macro on the MACRO line by following it with additional commands and parameters. For example, c13 nt=1 uses the standard c13 setup but with only one transient.
Arguments: solvent is the name of the solvent. In automation mode the solvent is supplied by the enter program. The default is ' CDCl 3 '.

```
    Examples: c13
            c13('DMSO')
        See also: VnmrJ Liquids NMR
        Related:
```

```
c13p Process 1D carbon spectra (M)
```

c13p Process 1D carbon spectra (M)
Syntax: c13p

```
    Syntax: c13p
```

au	Submit experiment to acquisition and process data (M)
c13p	Process of 1D carbon spectra (M)
enter	Enter sample information for automation run (C)
proc1d	Processing macro for simple (non-arrayed) 1D spectra (M)
procplot	Automatically process FIDs (M)
wexp	When experiment completes (P)

Description: Processes non-arrayed 1D carbon spectra using a set of standard macros. c13p is called by the proc1d macro, but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using pre-set weighting functions), automatic phasing (aphx macro), automatic integration (integrate macro if required only), vertical scale adjustment (vsadjc macro), avoiding excessive noise (noislm macro), threshold adjustment (thadj macro), and referencing to the TMS signal if present (setref macro then tmsref macro).
See also: VnmrJ Liquids NMR, VnmrJ Liquids NMR
Related: aphx Perform optimized automatic phasing (M)
C13 Automated carbon acquisition (M)
integrate Automatically integrate 1D spectrum (M)
noislm Limit noise in spectrum (M)
proc1d Processing macro for simple (non-arrayed) 1D spectra (M)
setref \quad Set frequency referencing for proton spectra (M)
thadj Adjust threshold (M)
tmsref \quad Reference spectrum to TMS line (M)
vsadjc Adjust vertical scale for carbon spectra (M)

calcdim Calculate dimension of experiment (C)
 Syntax: calcdim

Description: Calculates the dimension of an experiment and puts the result into the parameter arraydim. If an experiment is arrayed, arraydim is the product of the size of the arrays.
See also: VnmrJ Liquids NMR
Related: arraydim Dimension of experiment (P)

calfa Recalculate alfa so that first-order phase is zero (M)
 Syntax: calfa

Description: Based upon the current alfa and lp values, calfa calculates a new value for alfa so that the first-order phase parameter 1 p is rendered approximately 0 . When digital filtering is active ($\mathrm{d} s p=\mathrm{I}^{\prime} \mathrm{r}$ ' or $\mathrm{dsp}=$ 'i'), calfa also adjusts
rof 2 as well as alfa. For calfa to work properly, a trial spectrum must be obtained and phased to pure absorption. This spectrum provides calfa with the current alfa and $1 p$ values. calfa pertains to processing 2D data. Unless $l p$ is approximately $0, f p m u l t$ will affect both the dc offset and the curvature of the spectrum.
See also: VnmrJ Liquids NMR

Related:	alfa	Set alfa delay before acquisition (P)
cfpmult	Calculate first-point multiplier for 2D experiments (M)	
	$c r o f 2$	Recalculate rof2 so that lp $=0(\mathrm{M})$
	dc	Calculate spectral drift correction (C)
	dsp	Type of DSP for data acquisition (P)
fpmult	First-point multiplier for np FID data (P)	
hoult	Set parameters alfa and rof2 according to Hoult (M)	
$l p$	First-order phase in directly detected dimension (P)	
rof2	Receiver gating time following pulse (P)	

calibflag Correct systematic errors in DOSY experiments (P)
Syntax: calibflag
Description: Corrects systematic errors in DOSY experiments.
Values: ' Y ' corrects systematic deviations in DOSY analysis.
' n ' omits gradient correction in DOSY analysis.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
calibrate \quad Start a dialog for autocalibration routines (M)
Syntax: calibrate
Description: Starts a dialog for autocalibration routines.
capt \quad Automated carbon and APT acquisition (M)
Syntax: capt<(solvent) >
Description: Prepares parameters for automatically acquiring a standard ${ }^{13} \mathrm{C}$ spectrum, followed by an APT experiment. In non-automation mode, the carbon and APT spectra are acquired in the experiment in which capt is entered. Following acquisition completes, the commands rttmp ('C13') and rttmp ('apt') can be used for further processing of the carbon and APT spectra, respectively.
Arguments: solvent is name of the solvent used. In automation mode, the enter program supplies name. In non-automation mode, the default is 'cdcl3'.
Examples: capt au
capt('dmso')
See also: VnmrJ Liquids NMR

Related:	apt	Prepare parameters for APT experiment (M)
	c13	Automated carbon acquisition (M)
	enter	Enter sample information for automation run (C)
	rttmp	Retrieve experiment subfile (M)

Carbon Set up parameters for 13C experiment (M)

Description: Set up parameters for ${ }^{13} \mathrm{C}$ experiment

```
cat Display one or more text files in text window (C)
    Syntax: cat(file1<,file2,...>)
```

Description: Displays the contents of one or more text files on the text window. It pauses after the window has filled and waits for the user to indicate whether it should display more or should terminate.
Arguments: file1,file2, . . are the names of the files to be displayed.
Examples: cat('/vnmr/manual/cat') cat('/vnmr/manual/cat','/vnmr/manual/cattn')
See also: VnmrJ Liquids NMR

cattn Coarse attenuator type (P)

Applicability: Systems with a coarse attenuator.
Description: Identifies the type of coarse attenuator if this attenuator is present on the current rf channel. The value of cattn is set in the CONFIG window (opened by entering config) using the label Coarse Attenuator.
Values: 0 for no coarse attenuator, as in the case with class C amplifiers (Not Present choice in CONFIG window).
79 for standard UNITY INOVA (79 dB choice in CONFIG window).
127 for imaging attenuator (63.5 dB SIS choice in CONFIG window).
63 for UNITYINOVA deuterium decoupler channel.
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)
fattn Fine attenuator (P)
tpwr Observe transmitter power level with linear amplifiers (P)

```
cd Change working directory (C)
        Syntax: cd<(directory)>
```

Description: Changes current working directory to another directory.
Arguments: directory is the name of the directory that becomes the new current working directory. The change is made only if the directory name already exists and the user has permission to be in the directory. If no argument is included, cd changes the current working directory to the user's home directory.
Examples: cd
cd (userdir+'/exp1')
cd('/home/george/vnmrsys')
See also: VnmrJ Liquids NMR
Related: pwd Display current working directory (C)

cdc Cancel drift correction (C)
 Syntax: cdc

Description: Turns off the drift correction started by the dc command and resets the spectral drift correction parameters lvl (level) and tl t (tilt) to zero.

Related:	dc	Calculate spectral drift correction (C)
	dcg	Drift correction group (P)
	lvl	Zero-order baseline correction (P)
	tlt	First-order baseline correction (P)

cdept Automated carbon and DEPT acquisition (M)
 Syntax: cdept<(solvent) >

Description: Prepares parameters for automatically acquiring a standard ${ }^{13} \mathrm{C}$ spectrum, followed by a DEPT experiment. In non-automation mode, the carbon and DEPT spectra are acquired in the experiment in which cdept was entered. Following the completion of the acquisition, the rttmp ('C13') and rttmp ('dept ') commands can be used for further processing of the carbon and DEPT spectra, respectively.

Arguments: solvent is name of the solvent used. In automation mode, the enter program supplies name. In non-automation mode, the default is 'cdcl3'.
Examples: cdept au
cdept ('DMSO')
See also: VnmrJ Liquids NMR
Related: adept Automatic DEPT analysis and spectrum editing (C)
c13 Automated carbon acquisition (M)
dept Prepare parameters for DEPT experiment (M)
enter Enter sample information for automation run (C)
rttmp Retrieve experiment subfile (M)
cdump \quad Prints the current graphics screen (M)
Syntax: cdump('filename')
Description: cdump takes the current display and sends it to the current printer. If an optional filename is passed as an argument, the current display will be saved in the print subdirectory of the user's vnmrsys directory. This directory will be created if is does not already exist. If the filename passed to the cdump macro is an absolute pathname, i.e., it starts with a $1 /$ ' character, that pathname will be used.

If the current display is saved as a file, the format of the file is specified by the printformat parameter. It can be set to the following values. ps for PostScript formatted output.
jpeg for Joint Photographic Experts Group JFIF formatted output.
png for Portable Network Graphics formatted output.

celem Completed FID elements (P)

Description: Indicates the current number of completed FIDs in an experiment. When go or au is entered, celem is set to 0 . As each FID acquisition is completed, celem is updated to reflect this. This parameter is most useful in conjunction with wbs, wnt, wexp, and werr processing commands.

See also: VnmrJ Liquids NMR
Related: arraydim Dimension of experiment (P)
au \quad Submit experiment to acquisition and process data (C)
go Submit experiment to acquisition (C)
ni \quad Number of increments in 1st indirectly detected dimension (P)

wbs	Specify action when bs transients accumulate (C)
werr	Specify action when error occurs (C)
wexp	Specify action when experiment completes (C)
wnt	Specify action when nt transients accumulate (C)

center \quad Set display limits for center of screen (C)
Description: Sets parameters Sc and wc (horizontal control) and parameters Sc2 and wc 2 (vertical control) to produce a display (and subsequent plot) in the center portion of the screen (and page). For 2D data, space is left for the scales.
See also: VnmrJ Liquids NMR
Related: full Set display limits for a full screen (C)
fullt \quad Set display limits for full screen with room for traces (C)
left Set display limits for left half of screen (C)
right \quad Set display limits for right half of screen (C)
sc Start of chart (P)
sc2 Start of chart in second direction (P)
wc Width of chart (P)
wc2 Width of chart in second direction (P)

centersw Move cursor to center of spectrum (M)

Description: Sets cursor position parameter cr in the directly detected dimension for the center of the spectrum.
See also: VnmrJ Liquids NMR
Related: centersw1 Move cursor to center of spectrum in 1st indirect dimension (M)
centersw2 Move cursor to center of spectrum in 2nd indirect dimension (M)
$\mathrm{cr} \quad$ Cursor position in directly detected dimension (P)
centersw1 Move cursor to center of spectrum in 1st indirect dimension (M)
Description: Sets cursor position parameter crl in the first indirectly detected dimension to the center of the spectrum.
See also: VnmrJ Liquids NMR
Related: centersw Move cursor to center of spectrum (M)
cr1 Cursor position in 1st indirectly detected dimension (P)
centersw2 Move cursor to center of spectrum in 2nd indirect dimension (M)
Description: Sets cursor position parameter cr 2 in the second indirectly detected dimension to the center of the spectrum.
See also: VnmrJ Liquids NMR

Related:	centersw	Move cursor to center of spectrum (M)
cr2	Cursor position in 2nd indirectly detected dimension (P)	

cexp \quad Create an experiment (M)
Syntax: cexp(<experiment_dir,>experiment_number)
Description: Creates an experiment as a temporary workspace that can hold a complete 1D, 2D, or 3D data set. Up to 9999 experiments can be created. Experiment 5 is special because it is the add-subtract experiment. cexp creates the appropriate jexpxxx macro so that the newly created experiment can be joined.

Arguments: experiment_dir specifies the path of the directory in which the particular experiment is to be created. If experiment_dir is not entered, the default is the user directory specified by userdir.
experiment_number specifies the number, from 1 to 9999 , of the experiment to be created.
Examples: cexp(3)
cexp('/data',2)
See also: VnmrJ Liquids NMR

Related:	delexp	Delete an experiment (C)
	jexp	Join existing experiment (C)
	userdir	User directory (P)

cf Current FID (P)

Description: Specifies which FID to operate on when working with multi-FID data. All subsequent operations such as Fourier transformation are applied to the selected data block.

When an experiment acquires $n f$ number of data segments through explicit acquisition, cf indicates the cfth FID to use. For example, in the COSYNOESY experiment with $\mathrm{nf}=2, \mathrm{cf}=1$ would select the COSY part of the experiment, and $\mathrm{cf}=2$ would select the NOESY part.
Values: 1 through the value of parameter $n f$.
See also: VnmrJ Imaging NMR
Related: nf Number of FIDs (P)
cfpmult Calculate first-point multiplier for 2D experiments (M)
Description: Calculates an f pmult value for the dataset, which is then used by wft2da. For 2D experiments, such as NOESY, run cfpmult on the transformed first increment, prior to entering wft 2 da , to minimize " f_{2} ridges" in the final 2D spectrum. To do this manually for a 2D dataset, enter f pmult $=1.0 \mathrm{wft}$ (1) cdc in the command line and note whether the spectrum (essentially the baseline) moves up or down when dc is typed. Vary the value of f pmult until the dc correction (jump in the baseline) is as small as possible. With care, fpmult can be set to two decimal places. Typical values for fpmult range from 1.00 to 2.00 . The default value is 1.0 .
This calculation only needs to be performed for cosine-type experiments, such as NOESY, where both the t_{2} FID and the t_{1} interferogram decay. cfpmult might give incorrect values for first increments of experiments having baseline distortions (e.g., water suppression with 11 -echo or 1331); in such cases, manual optimization of $£$ pmult is more suitable.
When processing 2 D data, unless the parameter 1 p is approximately 0 , fpmult affects both the dc offset and the curvature of the spectrum. See the entries for alfa and calfa for more information.
See also: VnmrJ Liquids NMR
Related:

alfa	Set alfa delay before acquisition (P)
calfa	Recalculate alfa so that first-order phase is zero (M)
crof2	Recalculate rof2 so that $\mathrm{lp}=0(\mathrm{M})$
dc	Calculate spectral drift correction (C)
fpmult	First point multiplier for np FID data (P)
lp	First-order phase in directly detected dimension (P)
wft2da	Weight and Fourier transform phase-sensitive data (M)

change Submit a change sample experiment to acquisition (M)

Applicability: Systems with automatic sample changer.
Description: Removes the sample currently in the probe and loads the sample currently in sample location loc. change runs in the acquisition computer and is inoperative if loc is 0 and/or traymax is ' n ' or 0 . change also sets all hardware according to the current parameters.
See also: VnmrJ Liquids NMR
Related: au Submit experiment to acquisition and process data (C)
ga Submit experiment to acquisition and FT the result (C)
go Submit experiment to acquisition (C)
loc Location of sample in tray (P)
lock Submit an autolock experiment to acquisition (C)
sample Submit change sample, Autoshim experiment to acquisition (M)
shim Submit an Autoshim experiment to acquisition (C)
spin \quad Submit a spin setup experiment to acquisition (C)
su Submit a setup experiment to acquisition (M)
traymax \quad Sample changer tray size (P)

Cigar2j3j Convert the paramaeter to a CIGAR2j3j experiement (M)
Syntax: Convert the paramaeter to a CIGAR2j3j experiement.

cla Clear all line assignments (M)
 Syntax: cla

Description: Clears the line assignment parameters clindex and slfreq for spin simulation iteration, which matches simulated spectra to actual data.

See also: VnmrJ Liquids NMR
Related: assign Assign transitions to experimental lines (M)
dla Display line assignments (M)
clindex Index of experimental frequency of a transition (P)
slfreq Measured line frequencies (P)
cla Calculated transition number (P)
Description: A global arrayed parameter that stores the transition number of calculated transitions of the spin simulation program when they are above a threshold set by sth. In the iterative mode, the cla value of an assigned transition is associated with an experimental frequency whose index is the clindex value.

See also: VnmrJ Liquids NMR

Related: clamp Calculated transition amplitude (P)
clfreq Calculated transition frequency (P)
clindex Index of experimental frequency of a transition (P)
sth Minimum intensity threshold (P)
clamp Calculated transition amplitude (P)
Description: A global arrayed parameter that stores the transition amplitude of calculated transitions of the spin simulation program when they are above a threshold set by the parameter sth. Enter dla('long') to display clamp.

```
    See also: VnmrJ Liquids NMR
    Related: cla Calculated transition number (P)
    clfreq Calculated transition frequency (P)
    clindex Index of experimental frequency of a transition (P)
    dla Display line assignments (C)
    sth Minimum intensity threshold (P)
cleanexp Remove old files and directories from an experiment (M)
Syntax: cleanexp<(file1<,file2<,...>>) >
    Description: Removes experiment subfiles from chained experiments that exist in an
    experiment directory. cleanexp only cleans the currently active experiment.
    Arguments: file1, file2, . . . are specific experiment subfiles to be removed. If no
    argument is given, all files in curexp/subexp are removed.
Examples: cleanexp
    cleanexp('H1','relayh')
    See also: VnmrJ Liquids NMR
    Related: curexp Current experiment directory (P)
    hccorr Automated proton, carbon, and HETCOR acquisition (M)
    hcosy Automated proton and COSY acquisition (M)
clear Clear a window (C)
    Syntax: clear<(window_number) >
    Description: Clears one of the four windows on the GraphOn terminal (status, input,
    graphics, text) or one of the two windows on the Sun (text and graphics).
    Arguments: window_number is the number (1 to 4) of the window to be cleared:
        -1 clears the status window (GraphOn only)
        -2 clears the graphics window
        - 3 clears the input window (GraphOn only)
        - 4 clears the text window (the default value).
    Examples: clear
        clear(2)
        See also: User Programming
cleardosy Delete temporarily saved data in current subexperiment (M)
    Syntax: cleardosy
    Description: Deletes any copies of DOSY data temporarily saved in the current
    subexperiment.
    See also: VnmrJ Liquids NMR
    Related: dosy Process DOSY experiments (M)
clearStacks() Clear stack (C)
Applicability: Systems with imaging capabilities.
```

```
    Syntax: clearStacks()
```

 Syntax: clearStacks()
 Description: Deletes all stacks.

```

\section*{clfreq Calculated transition frequency (P)}

Description: A global arrayed parameter that stores the transition frequency of calculated transitions of the spin simulation program when they are above a threshold set by the parameter sth. Enter dla to display clfreq.

See also: VnmrJ Liquids NMR
Related: Cla Calculated transition number (P)
clamp Calculated transition amplitude (P)
clindex Index of experimental frequency of a transition (P)
dla Display line assignments (M)
sth Minimum intensity threshold (P)
clindex Index of experimental frequency of a transition (P)
Description: A global arrayed parameter where each value contains the index of an experimental frequency assigned to the associated calculated transition for use in iterative spin simulation. Use assign to make the assignments. A value of zero indicates no assignment.
See also: VnmrJ Liquids NMR
Related: assign Assign transitions to experimental lines (M)
cla Clear line assignments (M)
cla Calculated transition number (P)
dla Display line assignments (M)
clradd Clear add/subtract experiment (C)
Description: Deletes the add/subtract experiment (exp5).
See also: VnmrJ Liquids NMR
Related: add Add current FID to add/subtract experiment (C)
sub \(\quad\) Subtract current FID from add/subtract experiment (C)
color \(\quad\) Select plotting colors from a graphical interface (M)
Description: Displays a window with color palettes for selecting colors for plotting the background of the display screen, spectrum, integral, FID, etc.
See also: VnmrJ Liquids NMR
Related: pl Plot spectra (C)
setcolor Set colors for graphics window and for plotters (C)
combiplate View a color map for visual analysis of VAST microtiter plate (U)
Syntax: (From UNIX) combiplate
Description: Opens the CombiPlate window, which provides a map of microtiter plate, allowing data to be viewed from individual sample wells. The window enables viewing integral region intensities by colors and color densities.
See also: VnmrJ Liquids NMR
Related: combishow Display regions as red, green, and blue in CombiPlate window (M) dlivast Produce text file and process last wells (M)

Description: Displays integral regions shown on the spectrum as red (r), green ( g ), and blue (b) in the CombiPlate window. CombiPlate reads the regions automatically. 1, 2 , or 3 integral regions can be designated. At least one integral region must be specified. Combishow displays spectra associated with individual wells.
See also: VnmrJ Liquids NMR
Related: combiplate View a color map for visual analysis of VAST microtiter plate (U) dlivast Produce text file and process last wells (M)
compressfid Compress double-precision FID data (M,U)
Syntax: compressfid(<inFIDdir,>outFIDdir)
(From UNIX) compressfid -i inFIDdir -o outFIDdir -f (From UNIX) compressfid -e exp_number -o outFIDdir -f
Description: Compresses double-precision FID data to single-precision and updates the parameter dp in the file procpar. compressfid can be run through a macro interface in VnmrJ or directly at the UNIX level. In entering FID directory names, leave off the .fid directory extension.
Arguments: inFIDdir is the double-precision FID directory to be compressed. If inFIDdir is not entered, the default FID directory is curexp/acqfil. outFIDdir is the FID directory to receive the output.
exp_number is the number of the experiment that contains the FID data.
-i specifies that the next argument is the input FID directory.
- - specifies that the next argument is the output FID directory.
-e specifies that the next argument is the number of the experiment that contains the FID data. The -e and the - i options are mutually exclusive.
\(-£\) specifies that any existing directory with the name outFIDdir. \(f i d\) is to be overwritten. Note that the macro interface always overwrites any preexisting directory with the name specified by outFIDdir.fid.
Examples: compressfid('/vnmr/fidlib/fidld',
'testfidid') compressfid('testfidid')
(From UNIX) compressfid -e 5 -o testfid1d -f
(From UNIX) compressfid -i /vnmr/fidlib/fidld -o testfidld -f

See also: VnmrJ Liquids NMR
Related: dp Double precision (P)
config Display current configuration and possibly change it (M)
Syntax: config <('display')>
Description: Displays the current system configuration parameters in a window (called the CONFIG window). The values of the configuration parameters can be changed if config is entered from the console without any arguments and the user has write access to the directories / vnmr and /vnmr/conpar. If so, the user can interactively make changes to the choices in the window.
If the user does not meet the conditions above, or if the VnmrJ administrator enters the command config('display'), instead of the interactive mode, the user is restricted to the display mode, where system information is listed in the Process tab -> Text page. On MERCURYplus/Vx, the mode is always interactive.

If config is entered without any arguments, or if Utilities->System Settings is selected, the program checks if the user is logged in as the administrator. If so, it runs in interactive mode; if not, it runs in display mode. By entering config('display'), vnmrl can run in the display mode instead of interactively.
In the interactive mode, a separate panel displays the options with the current choice appearing to the right. Position the mouse over the choice to be modified, then use the left button to cycle through each choice or use the right button to display a menu of all possible choices.
The Use Console Data button sets parameter values in the CONFIG window using information captured during console startup.
- On Unity INOVA, this button makes config capture from the system all values shown in the CONFIG window except Sample Changer, Sample Changer Serial Port, Rotor Synchronization, Frequency Overrange, and Upper Limit of decoupler power. For the Gradients entry, config recognizes the Performa I and Performa II modules but not other gradients. For the VT Controller entry, if VT is found, config does not change the value set, and if VT is not found, config changes the value to Not Present.
- On MERCURYplus/-Vx systems, this button captures all the values except Sample Changer and Sample Changer Serial Port. The VT Controller entry is set the same way as UnITY INOVA systems (see above).
The EXIT, and SAVE button writes a new conpar configuration file before leaving. The QUIT, no SAVE button terminates the session with no modifications to the conpar file, but remember that the parameters are always set. These two buttons require use of the left button on the mouse. In the display mode, the current choices are displayed in the text window.
To send output to the printer, enter the sequence of commands printon config('display') printoff.
Commands for working with parameters (such as create, destroy, exists and setvalue) have an option to select which parameter tree the parameter is in. The systemglobal tree is the internal name for /vnmr/ conpar, and it can be used to search for, modify, or create a parameter in conpar. But note that any changes made, either directly (e.g., by typing vttype \(=0\) ) or by using create and similar commands, only affect parameters in memory. To permanently change parameters:
- For parameters in config, enter the change in the CONFIG window and then quit using the Exit \& Save button.
- For other parameters, after creating or changing the parameter, enter fsave('/vnmr/conpar','systemglobal').
Both methods, usually restricted to vnmr1 only, overwrite conpar.
The CONFIG labels listed below can be changed in the interactive mode. For each label, the choices available and a short description of the label is provided. Shown in parentheses is the associated parameter, which you should refer to for further information.

\section*{CONFIG window for \({ }^{\text {UNITY INO }}\) INOVA and Imaging systems:}
- System Type: Spectrometer or Data Station. Sets the basic type of system (system).
- Console:Unity INOVA, MERCURYplus/-Vx, or Imager. Sets the type of system console (Console). When go, au, or ga is entered, the value set is copied to the current experiment as the console parameter (lowercase c).
- Proton Frequency: \(085,100,200,300,400,500,600,700,750,800,900\), 3 T , and 4 T . Sets the resonant frequency, in MHz or tesla, of \({ }^{1} \mathrm{H}\) as determined by magnet field strength (h1freq).
- Sample Changer: For UNITY INOVA - None, Carousel, SMS 50 Sample, SMS 100 Sample, VAST, NMS, LC-NMR, 768 AS. Sets the type of sample changer. Set to none if a sample changer is not present or is to be disabled (traymax).
- Sample Changer Comm Port: Not Used, Port A, Port B, Ethernet. Sets the serial port used to connect the sample changer. Select Not Used if no sample changer is present (smsport).
- Shimset: Varian 13 Shims, Varian 14 Shims, Oxford 15 Shims, Oxford 18 Shims, Varian 18 Shims, Varian 20 Shims, Varian 23 Shims, Varian 26 Shims, Varian 28 Shims, Varian 29 Shims, Varian 35 Shims, Varian 40 Shims, Ultra 18 Shims, Ultra 39 Shims, and Whole Body Shims. Sets type of shim sets on system (shimset).
- Audio Filter Type: 100 kHz Elliptical, 100 kHz Butterworth 200 kHz Butterworth, 500 kHz Elliptical. If the spectral width (sw) is less than 100 kHz , sets type of audio filters used (audiofilter).
- VT Controller: Not Present, Present. Sets whether a variable temperature controller is present or not on the system (vttype).
- Maximum DMF: 9900, 32700, 2.0e6. Sets maximum frequency, in Hz , for decoupler modulation (parmax [11]).
- Max. Spectral Width: 100 kHz, \(200 \mathrm{kHz}, 500 \mathrm{kHz}, 2 \mathrm{MHz}, 5 \mathrm{MHz}\). Sets maximum spectral width available to a system (parmax [5] ).
- Max. Narrowband Width: \(100 \mathrm{kHz}, 200 \mathrm{kHz}, 500 \mathrm{kHz}\). Defines the maximum spectral width of the Input board (maxsw_loband).
- AP Interface Type: Type 1, Type 2, Type 3, N/A. Sets type of AP bus interface board in the system.
- Fifo Loop Size: 63, 1024, 2048. Sets size of FIFO loop, which depends on the type of controller board in the system.
- Rotor Synchronization: Not Present, Present. Sets whether system supports the solids rotor synchronization module (rotorsync).
- Lock Frequency: (frequency entered directly). Sets lock frequency of the system. To observe NMR signals, the lock frequency value must be set correctly (lockfreq).
- IF Frequency: \(10.5 \mathrm{MHz}, 20.0 \mathrm{MHz}\).
- Number of RF Channels: \(1,2,3,4,5\). Selects which rf channel is listed in the Configure panel that appears in the lower section of the CONFIG window (numrfch).
- Gradients: Not Present, Present. Sets whether system has optional gradients for the \(\mathrm{X}, \mathrm{Y}\), or Z axis. If present, the gradients are listed in the Configure panel in lower section of CONFIG window (Gradients is not associated with any parameter).
- Configure: RF Channel 1 (Obs), RF Channel 2 (Dec), RF Channel 3 (Dec2), RF Channel 4 (Dec 3), RF Channel 5 (Dec4), Gradients. Sets which labels appear in the Configure panel in lower section of CONFIG window (Configure is not associated with any parameter)
- Type of RF: U+ Direct Synthesis, U+ H1 Only, Direct Synthesis, Broadband, Fixed Frequency, Deuterium Decoupler ( \({ }^{\text {UNITY }}\) INOVA only),

SIS Modulator. Sets type of frequency generation on the current rf channel (rftype and rfchtype).
- Synthesizer: Not Present, PTS 160, PTS 200, PTS 250, PTS, 320, PTS 500, PTS 620, PTS 1000. Sets type of PTS frequency synthesizer on the current rf channel (ptsval).
- Latching: Not Present, Present. On systems equipped with a special version of the PTS frequency synthesizer, sets how frequency values are sent on the current rf channel (latch).
- Frequency Overrange: Not Present, \(10000 \mathrm{~Hz}, 100000 \mathrm{~Hz}\). On systems equipped with a special version of the PTS frequency synthesizer, sets the presence of a signal phase stability option on the current rf channel (overrange).
- Step Size: \(0.1 \mathrm{~Hz}, 0.2 \mathrm{~Hz}, 1 \mathrm{~Hz}, 100 \mathrm{~Hz}\). Sets frequency step size on current rf channel. (parstep [7], parstep [8], parstep [16], parastep [20]).
- Coarse Attenuator: Not Present, \(63 \mathrm{~dB}, 79 \mathrm{~dB}, 63.5 \mathrm{~dB}\) (SIS). Sets range of coarse attenuator if this attenuator is present on the current rf channel (cattn).
- Upper Limit: (number entered directly). Sets upper limit of the coarse attenuator if this attenuator is present on the current rf channel (parmax [17], parmax [9],parmax[18], parmax[21]).
- Fine Attenuator: Not Present, Present. Sets whether a fine attenuator is present or not on the current rf channel (fattn).
- Waveform Generator: Not Present, Present. Sets whether a waveform generator board is present or not on current rf channel (rfwg).
- Type of Amplifier: Class C, Linear Full Band, Linear Low Band, Shared, Linear Broadband. (Shared is fourth channel only.) Sets type of amplifier on the current rf channel (amptype).
- X Axis, Y Axis, Z Axis: None, WFG + GCU, Performa I, Performa II/III, Performa II/III+WFG, Performa XYZ, Performa XYZ+WFG, SIS (12 bit), Homospoil. On systems with gradients, sets type of gradient for each axis. The value is set separately for each axis (gradtype).
- Imaging Gradient Coil. Detects the gradient coil configuration file that defines the current installed gradient coil (sysgcoil).

\section*{CONFIG window for MERCURYplus/-Vx systems:}

Several parameters, other than those listed below, are set automatically because they have only one choice (e.g., Console is set to ' mercury').
- System Type: 4-Nucleus, Broadband. Sets the basic type of system (rftype).
The MERCURY-Vx 300-MHz 4-Nucleus system uses the Hi/Lo Reference Generator board. For this system, in CONFIG window set System Type to Broadband (rftype='fe').
If the board type is unknown, look at the rf card cage in the back of the console. The third rf board from the left is the reference generator. If the top of the board is labeled \(\mathrm{Hi} / \mathrm{Lo}\), select Broadband, but if it is labeled 4-Nucleus or 5-Nucleus select 4-Nucleus as the system type
- Proton Frequency: 200, 300, 400. Sets the resonant frequency, in MHz, of \({ }^{1} \mathrm{H}\), as determined by magnet field strength (h1freq).
- VT Controller: Not Present, Present. Sets whether a variable temperature controller is present or not on the system (vttype).
- Type of Amplifier: 4-Nucleus (35W/35W), Broadband (75W/125W), CP/MAS( \(100 \mathrm{~W} / 300 \mathrm{~W}\) ). Sets type of amplifier in the system (amptype: aa on 4-Nucleus, bb on Broadband, cc on CP/MAS).
- Sample Changer: - None, Carousel, SMS 50 Sample, SMS 100 Sample, VAST, NMS. Sets the type of sample changer. Set to None if a sample changer is not present or is to be disabled (traymax).
- Sample Changer Comm Port: Not Used, Port A, Port B, Com1. Sets the serial port used to connect the sample changer. Select Not Used if no sample changer is present (smsport).
- Shim Set: Varian 14 Shims, Varian 18 Shims, Varian 23 Shims.
- Pulsed Field Gradient: Not Present, Homospoil, Performa I, Performa II. Sets whether the PFG hardware is present or not on the system (gradtype). Homospoil can be used for gradient shimming, but not for experiments like gHMQC .
- Lock Frequency: (number entered directly). Sets the lock frequency of the system. This value must be set correctly to observe NMR signals (lockfreq).
- Homodecoupler: Not Present, Present. Sets whether a homonuclear decoupler board is present or not (homdec). Standard on MERCURY-Vx.
- Max. Decoupler: (number entered directly). On broadband systems, sets maximum power level for CW decoupling (parmax [9]).
Arguments: 'display' is a keyword that the system administrator can use to make config run in the display mode rather than the interactive mode.
Examples: config
config('display')
See also: VnmrJ Installation and Administration
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
amptype \\
audiofilter \\
cattn
\end{tabular} & \begin{tabular}{l} 
Amplifier type (P) \\
Audio filter type (P) \\
Console
\end{tabular} \\
fattn & Coarse attenuator (P) \\
fifolpsize & Fine attenuator (P) \\
gradtype & FIFO loop size (P) \\
h1freq & Gradients for X, Y, and Z axes (P) \\
latch & Froton frequency of spectrometer (P) \\
lockfreq & Lock frequency (P) \\
maxsw_loband & Maximum spectral width of Input board (P) \\
numrfch & Number of rf channels (P) \\
overrange & Frequency synthesizer overrange (P) \\
parmax & Parameter maximum values (P) \\
parmin & Parameter minimum values (P) \\
parstep & Parameter step size values (P) \\
ptsval & PTS frequency synthesizer value (P) \\
rfchtype & Type of rf channel (P) \\
rftype & Type of rf generation (P) \\
rfwg & RF waveform generator (P) \\
rotorsync & Rotor synchronization (P) \\
shimset & Type of shim set (P) \\
sysgcoil & System gradient coil (P) \\
system & System type (P) \\
traymax & Sample changer tray slots (P) \\
vttype & Variable temperature controller present (P)
\end{tabular}
```

confirm Confirm message using the mouse (C)

```

Syntax: confirm(message): response
Description: Displays a dialog box with the specified message and two buttons: Confirm and Cancel. Clicking on the buttons with the mouse produces a return value.

Arguments: message is a single-line muticharacter string to be shown in the dialog box.
response is 1 if the user clicks the left button of the mouse on the Confirm button or presses the Return key; response is 0 if the user clicks the mouse on the Cancel button.
Examples: confirm('Are you sure you want pw>100?'):\$response
See also: User Programming

\section*{Console System console type (P)}

Description: A global parameter that sets the type of system console: UNITY INOVA, MERCURYplus/Vx, SISCO Imager. The value is usually set using the Console label in the CONFIG window (opened from config); however, on MERCURYplus/Vx systems, the value is automatically set.
When go, au, or ga is entered, the value of the Console parameter is copied from the systemglobal parameter tree to the current experiment and named as the console parameter (lowercase c). If console does not exist in an old parameter set, rt via fixpar creates it and sets it to ' ' . Both console and Console are type acquisition. Macros can use Console and console to take conditional action based on spectrometer type.
Values: ' inova' is a UnITr INOVA console (UnityInova choice in CONFIG window).
'mercury' is a MERCURYplus/Vx console.
' sisco' is a SISCO imager console (sisco choice in CONFIG window).
See also: VnmrJ Installation and Administration
\begin{tabular}{lll} 
Related: & au & Submit experiment to acquisition and process data (M) \\
config & Display current configuration and possibly change it (M) \\
fixpar & Correct parameter characteristics in experiment (M) \\
ga & Submit experiment to acquisition and FT the results (M) \\
rt & Retrieve FIDs (M) \\
go & Submit experiment to acquisition (M) \\
system & System type (P)
\end{tabular}
contact_time MAS cross-polarization spin-lock contact time (M)
Applicability: Systems with solids module.
Description:
Processes data obtained using an array of values for a pulse-length parameter. It runs the UNIX program \(\operatorname{expfit}\), which does an exponential curve fitting that determines the value of Tch and Tlrho. The output is matched to the equation \(\left.I=\left[S 0-\left(S 0-S_{-} i n f\right) * \exp (-T / T c h)\right) * \exp (-T / T 1 r h o)\right)+S_{-} i n f\)
where \(T_{c h}\) is the time constant of a spin-locked cross-polarization process, and Tlrho is relaxation time of \({ }^{13} \mathrm{C}\) polarization in the proton rotating field.
The required input is file \(f p\). out from the program \(£ p\) and the values of the arrayed parameter. The output table is file analyze. list in the current experiment. The file analyze. out is used by the expl to display the results.
See also: User Guide: Solid-State NMR
\begin{tabular}{lll} 
Related: & expfit & Least-squares fit to polynomial or exponential curve (U) \\
& expl & Display polynomial/exponential curves (C) \\
& \(£ p\) & Find peak heights (C)
\end{tabular}
continueMovie Continue movie in either forward or backward direction (C)
Syntax: continueMovie (rate)
Description: Like startMovie, but can continueMovie can play a movie forward or back ward, and, instead of always starting from the beginning, it starts from the beginning if movie has not started yet, or continues from where it was stopped (by stopMovie). Movie direction is controlled by parameter aipMovieSetting[3]=1 or -1 .
Arguments: aipMovieRate, or a number for the rate
See also: startMovie, stopMovie, resetMovie.
conv2ta Convert imaging 3D transform to absolute value (U)
Applicability: Systems with imaging capabilities.
Syntax: (From UNIX) conv2ta in_file out_file scaling_factor
Description: Converts a complex 3D transformed data file into a 3D 8-bit absolute value data file suitable for viewing by using disp3d. The conv2ta command reads the header in the transformed file, typically named filename.transform, to determine the dimensions of the data, takes the magnitude of the complex data, scales the data, and writes out only the data (with no header) in 8-bit pixels. It also prints out the dimensions of the file that will be needed by disp3d.
Arguments: in_file is a valid UNIX file name of the 3D transformed data file.
out_file is a valid UNIX file name of the output file in 8-bit bytes.
scaling_factor is a value to scale the data so that it is in a range for viewing by disp3d. Reasonable values generally range from 1 to 4000 . A value of 1000 is typical.
Examples: (From UNIX) conv2ta kiwi3d.transform kiwi3d.av 1000
See also: VnmrJ Imaging NMR
Related: acqmeter Open Acqmeter window (M)
acqstat Open Acquisition status window (U)
disp3d Convert 3D data (U)
sa \(\quad\) Stop acquisition (C)
convert \(\quad\) Convert data set from a VXR-style system (M,U)
Syntax: convert (VXR_file)
(From UNIX) cpos_cvt VXR_file
Description: Converts data stored on a VXR-style system (VXR, XL, or Gemini) to the format used in software. The macro convert loads the data from VXR_file into the current experiment and converts it to the new format. The UNIX command cpos_cvt writes the converted data in a subdirectory of the current working directory, using the original name of the data set.
Arguments: VXR_file is the name of a VXR-style file to be converted to VnmrJ style
See also: VnmrJ Liquids NMR
Related: cpos_cvt Convert data set from a VXR-style system (C,U)
decomp Decompose a VXR-style directory (C)
convertbru Convert Bruker data (M,U)
Syntax: (From UNIX) convertbru file <options> convertbru(file<,options>)

Description: A C-language program for converting 32-bit Bruker AMX data and 24- and 32bit Bruker AM data into a 32-bit format compatible with the Varian sread program. After converting the Bruker data into the new format, the converted data can be read into VnmrJ using sread and can then be processed normally. The parameters proc and proci are set appropriately by sread, so that wft or wft 2 da correctly processes the data.
Bruker AM parameters are converted to Varian parameters as shown in the table "AM Parameter Conversion." Bruker parameter names that do not conflict with a Varian parameter name are converted under the original name: \(t d, f w, d s\), ○1, o2, ns, te, id, sfo1, sfo2, and ro. Parameters proc and proc1 are set to 'rft' for all spectra (assuming TPPI data in both dimensions).
AM Parameter Conversion
\begin{tabular}{llll}
\hline Bruker & Varian & Bruker & Varian \\
\hline sweeps completed & ct & sp & satdly \\
td & np & dp & dpwr \\
dw & dw & te & temp=te-273 \\
fw & fb=1.1*sw/2 & id & sw1=1/id \\
ds & ss & sfo1 & sfrq=sfo1+o1 \\
sw & sw & sfo2 & dfrq=sfo2+o2 \\
experiments done & ni & p\# & p\# \\
o1 & tof & d\# & d\# \\
o2 & dof & s\# & s\# \\
rd (or d1 if rd=0) & rd & rg & spin \\
pw (or p0 if pw=0) & pw & pw90 & date \\
p1 & de & time & date \\
de & nt & & \\
ns & & &
\end{tabular}

Bruker AMX parameters are converted to Varian parameters as shown in the table "AMX Parameter Conversion." All Bruker parameters are converted under their original names if the name doesn't conflict with the name of a Varian parameter. Arrayed Bruker parameters like \(P\) and \(D\) are converted to the names P \# and \(\mathrm{D} \#\), where \# is the index into the array.
Because sread is limited to 8-character parameter names, the parameters routwdi\# and routwd2\# are converted to rtwdi\# and rtwd2\#.
The parameter proc is set to ' ft ' when the Bruker parameter aq_mod is 1 , and proc is set to 'rft' when aq_mod is 2 . proc 1 is always set to rft, assuming TPPI in \(t 1\).
If there is a file named info in the directory with the Bruker data, it is read in and put into the text file for the converted data set.
AMX Parameter Conversion
\begin{tabular}{llll}
\hline Bruker & Varian & Bruker & Varian \\
\hline ns (from acqu) & nt & te & temp=te-273 \\
ns (from acqus) & ct & sfo1 & sfrq=sfo1 \\
td (from acqus) & np & sfo2 & dfrq=sfo2 \\
td (from acqu2s) & ni & o1 & tof \\
sw_h & sw & o2 & dof \\
sw_h & dw=1.0e6/sw & ro & spin
\end{tabular}
\begin{tabular}{llll}
\hline Bruker & Varian & Bruker & Varian \\
\hline \begin{tabular}{lll} 
sw_h (from & sw1 & rg
\end{tabular} & gain \\
fw & & & \\
ds & fb=1.1*sw/2 & date & date \\
rd (or d1 ifrd=0) & rd & date & time \\
de & de & nucleus & tn \\
pw (or p0 if pw=0) & pw & decnuc & dn \\
p1 & pw90 & pulprog & pslabel \\
\hline
\end{tabular}

Arguments: file is the input file name. For AMX data, file should be the name of the directory that contains the acqus, acqu2s, and fid or ser files. For AM data, file should be the name of the file containing the AM data. The file argument is not required to have a .bru extension, but if it does, the .bru extension is removed before creating the output file. Unless the -cfile option is present, the output file will have the same name as the input file, but with a.cv extension, and will be written into the current working directory.
options for AMX and AM data are the following, which can be entered in any order as long as file comes first (options are usually not necessary, but can be used to override the default actions of convertbru):
- -bam or -bamx specifies whether input is AM or AMX data. The default is determined from name of the input file given.
- -cfile specifies that the output file is given the name specified by file and is written with . Cv appended to the name
- -dxxx, where xxx is the decoupler frequency (it must be a value between 10.0 and 640.0 MHz ). The default is to read from data set.
- -f specifies that old output file is to be overwritten. The default is to not overwrite old files.
- -olsb or -omsb specifies whether the data has the least- or mostsignificant byte first. For AM data, the default is determined from data set. For AMX data, the default is -olsb .
- -pxxx, where \(\operatorname{xxx}\) is the number of 24- or 32-bit words to skip before converting data. This option is for use with \(-t\) option to skip the header in AM data without converting it. Typical header sizes are 216 or 256 words. The default is 0 .
- -s3 or -s4 specifies if AM data is 24-bit (3-byte) or 32-bit (4-byte). All AMX data is 32-bit. The default is determined from the data set.
- -tall, -thdr, or -tdata specifies whether convertbru should convert the header and the data, just the header, or just the data. The default is -tall.

Examples: Convert AM data from a UNIX shell (in all these examples, the file name is arbitrarily named br_data):
- convertbru br_data determines the file format and converts the header and data in the file br_data.
- convertbru br_data -d250.0 -cout determines the file format, converts the header and data in the br_data, sets the decoupler frequency to 250.0 MHz , and writes to an output file named out. cv in the current working directory.
- convertbru br_data -thdr determines file format and converts only the header in the file br_data.
- convertbru br_data -tdata -p256 -s3 -omsb converts only the data in br_data after skipping the 256 -word header. The data is converted assuming it is 24-bit AM data words with the most-significant byte first.
Convert AM data from VnmrJ:
- convertbru('br_data','-tdata','-p256','-s3', '-oms.b ') converts only the data in br_data after skipping the 256word header. The data is converted assuming it is 24-bit AM data words with the most-significant byte first.
Convert AMX data from a UNIX shell:
- convertbru br_data -f converts acqus and acqu2s files to ASCII, if needed, and then converts data and overwrites the existing br_data.cv file.

\section*{Convert AMX data from VnmrJ:}
- convertbru('br_data','-f') converts acqus and acqu2s files to ASCII, if needed, and then converts data and overwrites the existing br_data.cv file.
- convertbru('br_data','-c/home/vnmr1/bdata/datal') converts acqus and \(\bar{a}\) cqu \(2 s\) files to ASCII, if needed, and then converts the data and writes it to /home/vnmr1/bdata/datal.cv.
See also: VnmrJ Liquids NMR
Related: readbrutape Read Bruker data files from 9-track tape (U)
sread Read converted data into VnmrJ (C)
wft2da Weight and Fourier transform phase-sensitive data (M)

\section*{copy}

Copy a file (C)
Syntax: copy(<'-r',>from_file,to_file)
Description: Makes a copy of a file using the UNIX cp command. All arguments are passed. copy operates the same as the cp command.
Arguments: \(\quad-r\) ' is a keyword requesting a recursive copy (i.e., copy a directory).
from_file is the name of the file (or directory if ' \(-r^{\prime}\) used) to be copied.
to_file is the name of the copy of the file (or directory). If the from_file argument has an extension (e.g., .fid), be sure the to_file argument has the same extension.
Examples: copy('-r','/home/vnmrl/vnmrsys/seqlib','/vnmr/seqlib')
copy('/home/vnmrl/vnmrsys/seqlib/d2pul', \}
'/vnmr/seqlib/d2pul')
See also: VnmrJ Liquids NMR
Related: \(\mathrm{cp} \quad\) Copy a file (C)

Find cosine value of an angle (C)
Syntax: cos(angle)<:n>
Description: Finds the cosine of an angle.
Arguments: angle is the angle, given in radians.
n is the return value with the cosine of angle. The default is to display the cosine value in the status window.
Examples: cos(.5)
cos(val) :cos_val
See also: User Programming
Related: sin Find sine value of an angle (C)
cosy \(\quad\) Set up parameters to a COSY pulse sequence (M)
Description: Sets up for a COSY (correlated spectroscopy) experiment.
See also: VnmrJ Liquids NMR
Related: cosyps Set up parameters for phase-sensitive COSY pulse sequence (M)
dqcosy Set up parameters for double-quantum filtered COSY (M)
relayh Set up parameters for RELAYH pulse sequence (M)

Cosy \(\quad\) Convert the paramaeter to a COSY experiement (M)
Description: Convert the paramaeter to a COSY experiement.
\(\operatorname{COSY} \quad\) Change parameters for COSY experiment (M)
Description: Converts the current parameter set to a COSY experiment.
cosyps \(\quad\) Set up parameters for phase-sensitive COSY pulse sequence (M)
Description: Sets up a phase-sensitive COSY (homonuclear correlation) experiment.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cosy & Set up parameters for COSY pulse sequence (M) \\
& dqcosy & Set up parameters for double-quantum filtered COSY (M) \\
relayh & Set up parameters for RELAYH pulse sequence (M)
\end{tabular}
cp
Copy a file (C)
Syntax: cp(<'-r',>from_file,to_file)
Description: Makes a copy of a file using the UNIX cp command. All arguments are passed. cp operates the same as the copy command.
Arguments: \(\quad-r\) ' is a keyword requesting a recursive copy (i.e., copy a directory).
from_file is the name of the file (or directory if ' \(-r\) ' used) to be copied.
to_file is the name of the copy of the file (or directory). If the from_file argument has an extension (e.g., .fid), be sure the to_file argument has the same extension.
Examples: \(\quad \mathrm{cp}(' / h o m e / v n m r l / v n m r s y s / s e q l i b / d 2 p u l ', ~\)
'/vnmr/seqlib/d2pul')
See also: VnmrJ Liquids NMR
Related: copy Copy a file (C)
cp
Cycle phase (P)
Description: Sets the values that real-time variable oph is calculated as, either \(0,1,2,3\) \(\left(c p=' y^{\prime}\right)\) or \(0(c p=' n ')\). The only circumstance where setting \(c p=' n '\)
may be useful is when displaying an FID with acqi. If there is an imbalance between the two receiver channels, the FID displayed for acqi may show alternating dc levels. The standard \(g f\) macro that prepares parameters for the FID display in acqi automatically handles this issue.
Values: ' \(Y\) ' makes oph calculate as \(0,1,2,3\); this is the typical value.
' n ' makes oph calculate as 0 .
See also: User Programming
Related: acqi Interactive acquisition display process (C)
go Submit experiment to acquisition (C)
gf Prepare parameters for FID/spectrum display in acqi (M)
```

cpmgt2 Set up parameters for CPMGT2 pulse sequence (M)

```

Description: Macro to set up a CPMGT2 (Carr-Purcell Meiboom-Gill \(T_{2}\) ) experiment.
See also: VnmrJ Liquids NMR
Related: t2 \(\quad T_{2}\) exponential analysis (M)
cpos_cvt Convert data set from a VXR-style system (M,U)
Syntax: (From UNIX) cpos_cvt VXR_file convert (VXR_file)
Description: Converts data stored on a VXR-style system (Gemini, VXR, or XL) to the format used in VnmrJ software. cpos_cvt writes the converted data in a subdirectory of the current working directory, using the original name of the data set. The command convert loads the data from VXR_file into the current experiment and converts it to the new format.
Arguments: VXR_file is the file name in the VXR-style format to be converted to the VnmrJ style.
Related: convert Convert data set from a VXR-style system (C,U)
decomp Decompose a VXR-style directory (C)
rt Retrieve FIDs (C)
```

cptmp Copy experiment data into experiment subfile (M)
Syntax: cptmp<(file)>

```

Description: Copies the data (parameters, FID, and transformed spectrum) from the current experiment into a subdirectory inside curexp+ '/subexp '
Arguments: file is the name of the subfile to receive the data. The default is to take the name from the transmitter nucleus (if seqfil='s2pul') or to use the pulse sequence name.
Examples: cptmp
cptmp('cosy')
\begin{tabular}{lll} 
Related: & curexp & Current experiment directory (P) \\
rttmp & Retrieve experiment data from experiment subfile (M) \\
& seqfil & Pulse sequence name (P) \\
& svtmp & Move experiment data into experiment subfile (M)
\end{tabular}
cpx
Create pbox shape file (M)
Syntax: cpx<(ref_pw90,ref_pwr) > or cpx<('g') >

Description: Calls UNIX command Pbox, which generates the specified pulse shape or decoupling/spin locking pattern, as defined by the shapelib/Pbox.inp file.
Arguments: ref_pw90 is the reference \(90^{\circ}\) pulse width
ref_pwr is the reference power level.
' \(g\) ' is a keyword that is required only when generating gradient shapes and if the file type is not specified otherwise.
Examples: cpx
cpx('g')
cpx (pw90*compH, tpwr)
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
cr
Description: Contains the current cursor position. The \(r l\) macro uses cr to set the reference line.

See also: VnmrJ Liquids NMR
Related: centersw Move cursor to center of spectrum (M)
crf \(\quad\) Current time-domain cursor position (P)
crl Clear ref. line in directly detected dimension (M)
delta Difference of two frequency cursors (P)
\(r 1 \quad\) Set reference line in directly detected dimension (M)
cr1 Cursor position in 1st indirectly detected dimension (P)
Description: Contains the current cursor position along the first indirectly detected dimension. Analogous to the cr parameter except that crl applies to the first indirectly detected dimension of a multidimensional data set. The rl1 macro uses cr1 to set the reference line along this dimension.
See also: VnmrJ Liquids NMR
Related: centersw1 Move cursor to center of spectrum in 1st indirect dimension (M)
\(\mathrm{cr} \quad\) Cursor position in directly detected dimension (P)
cr2 Cursor position in 2nd indirectly detected dimension (P)
rl1 Set ref. line in 1st indirectly detected dimension (M)
cr2 Cursor position in 2nd indirectly detected dimension (P)
Description: Contains the current cursor position along the second indirectly detected dimension. Analogous to the cr parameter except that cr2 applies to the second indirectly detected dimension of a multidimensional data set. The rl2 macro uses cr 2 to set the reference line along this dimension.
See also: VnmrJ Liquids NMR
Related: centersw2 Move cursor to center of spectrum in 2nd indirect dimension (M)
\(\mathrm{Cr} \quad\) Cursor position in directly detected dimension (P)
cr1 Cursor position in 1st indirectly detected dimension (P)
rl2 Set ref. line in 2nd indirectly detected dimension (M)
crcom \(\quad\) Create user macro without using text editor (M)
Syntax: crcom(file,actions)

Description: Creates a macro file in the user's macro library (maclib) with the contents given in the actions argument.
Arguments: file is the file name of the user macro to be created. If a macro of the same name already exists, the user is asked whether or not to overwrite it.
actions is a string containing the actions making up the user macro. The string cannot include a carriage return. If a single quote is needed within the string, it must be preceded by a backslash (see second example below).
Examples: crcom('plot','pl pscale pap page')
crcom('lds','load=\'y\' su load=\'n\'')
See also: User Programming
create \(\quad\) Create new parameter in a parameter tree (C)
Syntax: create (parameter<,type<,tree>>)
Description: Creates a parameter in one of the parameter trees. A parameter tree is a UNIX file containing the attributes of parameters as formatted text. Refer to the command paramvi for a description of the file contents.
Arguments: parameter is the name of the parameter to be created.
type is the type of values in the parameter to be created and can be one of the following values (default is 'real'):
- 'real' is a value with no limits on range and can be positive or negative.
- 'string' is a value composed of characters. Entry of strings can be limited to selected words by enumerating the possible values with the command setenumeral. For example, the enumerated values of intmod are 'off', 'partial', and 'full'. Therefore, intmod can be set only to one of these three string values, such as intmod='full'.
- 'delay' is a value from 0 to 8190 , in unit of seconds.
- 'frequency' is a positive real number value.
- 'flag', like 'string', is a value composed of characters. Entry of flags can be limited to selected characters by enumerating the possible values with the command setenumeral. For example, the enumerated values of dmm are 'c', 'f', 'g','m', 'p', 'r','u','w', and 'x'. Therefore, \(d \mathrm{~mm}\) can only be set to a combinations of these nine characters, such as dmm= ' ccw '. If enumerated values are not set, the 'string ' and 'flag' types are identical.
- 'pulse' is a value from 0 to 8190 , in units of \(\mu \mathrm{s}\).
- 'integer' is a value composed of integers ( \(0,1,2,3, \ldots\) ).
tree is one of the following types of parameter trees (default is ' current'):
- ' current ' contains parameters that are adjusted to set up an experiment. The parameters are from the file curpar in the current experiment.
- 'global ' contains user-specific parameters from the file global in the vnmrsys directory of the present UNIX user.
- 'processed' contains parameters with which the data was obtained. These parameters are from the file procpar in the current experiment.
- 'systemglobal ' contains instrument-specific parameters from the text file /vnmr/conpar. Most of these parameters are defined using the config program. All users have the same systemglobal tree. Note that conpar is not written out when you exit; the only time conpar is ever modified is by the config program. Thus, any changes you make to
conpar using create (or destroy, setvalue, etc.) are not permanent. To permanently create a parameter in conpar, you must use a text editor to change/vnmr/conpar.

Examples: create('a')
create('b', 'string')
create ('c', 'real', 'global')
See also: User Programming
Related: destroy Destroy a parameter (C)
display Display parameters and their attributes (C)
fread Read parameters from file and load them into a tree (C)
fsave \(\quad\) Save parameters from a tree to a file (C)
paramvi \(\quad\) Edit a parameter and its attributes using vi text editor (M)
prune Prune extra parameters from current tree (C)
setenumeral Set values of a string variable in a tree (C)
setgroup \(\quad\) Set group of a parameter in a tree (C)
setprotect Set protection mode of a parameter (C)

\section*{creategtable Generate system gradient table (M)}

Applicability: Systems with imaging capabilities.
Description: Generates a gradient table in the \$vnmrsystem/imaging/gradtables directory (/vnmr/imaging/gradtables) needed to run an imaging experiment. The system prompts the user for the boresize of the magnet, the maximum gradient strength (gmax), and the gradient rise time. The directory / vnmr/imaging/gradtables is set up to have group write permission mode for all users; however, the administrator, vnmr1, may want to set the write permission mode for vnmrl only.
Systems with three-axis pulse field gradients (PFGs) or microimaging gradients might not have the same gradient strength on each axis. If the gradient strength varies, creategtable prompts for the maximum gradient strength for each axis (gxmax, gymax, and gzmax). Additionally, three-axis PFG amplifiers may be limited in their total current output, and hence the gradient strength, when gradients are simultaneously applied on all three axes. If this limitation exists, the user can enter the maximum combined gradient strength, which will be the combination of \(x+y+z\), in gauss/cm.
The macro expects gradient strength entered in gauss/cm, risetime in \(\mu \mathrm{s}\) (it is converted to seconds when it is put in the table), and boresize in cm .
Gradient tables are needed when using the obliquing, phase encode, or magicangle gradient PSG statements.
See also: VnmrJ Imaging NMR
Related: gmax Maximum gradient strength (P)
gxmax, gymax, gzmax Maximum gradient strengths for each axis ( P )

\section*{crf Current time-domain cursor position (P)}

Description: Contains current time-domain cursor position. To create crf and the other FID display parameters axisf, dotflag, vpf, vpfi, and deltaf (if the parameter set is older and lacks these parameters), enter addpar('fid').
Values: Number, in seconds.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
crl1 Clear ref. line in 1st indirectly detected dimension (C)
```

deltaf Difference of two time cursors (P)
fidpar Add parameters for FID display in current experiment (M)

```
crl Clear reference line in directly detected dimension (M)

Description: Clears frequency referencing along the directly detected dimension by setting the reference parameters \(r f l\) and \(r f p\) to zero. crl also resets the referencing parameters refpos and reffrq.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & crl1 & Clear ref. line in 1st indirectly detected dimension (C) \\
& crl2 & Clear ref. line in 2nd indirectly detected dimension (C) \\
rl & Set ref. line in directly detected dimension (M) \\
reffrq & Reference frequency of reference line (P) \\
refpos & Position of reference frequency (P) \\
rfl & Ref. peak position in directly detected dimension (P) \\
rfp & Ref. peak frequency in directly detected dimension (P)
\end{tabular}
crl1 Clear reference line in 1st indirectly detected dimension (M)
Description: Clears frequency referencing along the first indirectly detected dimension by setting the reference parameters rfll and rfpl to zero. crll also resets the referencing parameters refposi and reffrq1.
See also: VnmrJ Liquids NMR
Related: crl Clear ref. line in directly detected dimension (C) rl1 Set ref. line in 1st indirectly detected dimension (M)
reffrq1 Ref. frequency of reference line in 1st indirect dimension (P)
refpos1 Position of reference frequency in 1st indirect dimension (P)
rfll Ref. peak position in 1st indirectly detected dimension (P)
\(r f p 1 \quad\) Ref. peak frequency in 1st indirectly detected dimension (P)
crl2 Clear reference line in 2nd indirectly detected dimension (M)
Description: Clears frequency referencing along the second indirectly detected dimension by setting the reference parameters rfl2 and rfp 2 to zero. crl2 also resets the referencing parameters refpos2 and reffrq2.
See also: VnmrJ Liquids NMR
Related: \(\mathrm{crl} \quad\) Clear ref. line in directly detected dimension (C)
rl2 Set ref. line in 2nd indirectly detected dimension (M)
reffrq2 Ref. frequency of reference line in 2nd indirect dimension (P)
refpos2 Position of reference frequency in 2nd indirect dimension (P)
rfl2 Ref. peak position in 2nd indirectly detected dimension (P)
rfp2 Ref. peak frequency in 2nd indirectly detected dimension (P)
crmode \(\quad\) Current state of the cursors in df, ds, or dconi programs ( P )
Description: Stores the current state (box mode or cursor mode) of cursors in the \(\mathrm{df}, \mathrm{ds}\), or dconi interactive display programs. crmode is mostly used by programmable menus to determine the status of the cursors. It is stored in the file vnmrsys / global.
Values: 'b' signifies the box mode, ' C ' signifies the cursor mode.
```

 See also: User Programming
 Related: dconi Interactive 2D data display (C)
 df Display a single FID (C)
 ds Display a spectrum (C)
 crof2 Recalculate rof2 so that lp=0(M)
Syntax: crof2<(alfa)>
Description: Recalculates a new value for rof 2 (receiver gating time following a pulse) based upon the current rof 2 and 1 p (first-order phase) values, so that 1 p is rendered approximately 0 . For crof 2 to work properly, a trial spectrum must be obtained and phased to pure absorption. This spectrum provides the current rof 2 and $1 p$ values for crof 2 . The value of the alfa delay is left constant, provided rof 2 does not become less than $1 \mu \mathrm{~s}$.
crof 2 pertains to processing 2D data. Unless 1 p is approximately $0, f p m u l t$ affects both the dc offset and the curvature of the spectrum.
Arguments: alfa specifies a value for the alfa delay before acquisition.
Related: alfa Set alfa delay before acquisition (P)
cfpmult Calculate first point multiplier for 2D experiments (P)
fpmult First point multiplier for np FID data (P)
$1 \mathrm{p} \quad$ First-order phase along directly detected dimension (P)
rof2 \quad Receiver gating time following a pulse (P)
cryoclient Start the CryoBay Monitor program (M, U)
Applicability: Systems with Cold Probes and CryoBay Monitor software.
Description: Starts the CryoBay Monitor software in a separate window. This program is a CORBA client that requires an active CORBA server running on the CryoBay PC.
See also: Cryogenic Systems Installation and Operation
ct Completed transients (P)
Description: Stores a nonuser-enterable informational parameter that changes during the course of an experiment to reflect the number of completed transients. During most experiments, an accurate transient counter is displayed in the acquisition status window, updated every five seconds.
The value of ct is displayed in the acquisition parameter group by the dg command and is only updated when data processing occurs on the FID. In an experiment that is accumulating and not processed until the acquisition is complete, ct always indicates 0 until the end of the acquisition.
See also: VnmrJ Liquids NMR
Related: dg Display parameters of acquisition/processing group (C)

```

\section*{ctext \(\quad\) Clear the text of the current experiment (C)}
```

Description: Clears the text from the current experiment text file (a block of text that may be used to describe the sample and experiment).

See also:	VnmrJ Liquids $N M R$	
Related:	atext	Append string to the current experiment text (M)
	text	Display text or set new text for current experiment (C)

```

\section*{curecc \(\quad\) Name of eddy current compensation file ( \(\mathbf{P}\) )}

Applicability: Systems with the imaging capabilities.
Description: A global string parameter containing the name of the file containing the last eddy current compensation file set. eddysend updates this parameter from ECC Tool window or from the keyboard.
See also: VnmrJ Imaging NMR
Related: eccTool Pop-up ECC Tool window (M)
eddysend Update acquisition eddy current settings (M)
curexp \(\quad\) Current experiment directory ( \(\mathbf{P}\) )
Description: Contains the full UNIX path to the currently active experiment. This parameter is useful when accessing text files generated by various commands (e.g., cat (curexp+'/fp.out')).
See also: VnmrJ Liquids NMR
Related: systemdir VnmrJ system directory (P)
userdir VnmrJ user directory (P)
curscan Scan currently in progress ( \(\mathbf{P}\) )
Applicability: Systems with LC-NMR accessory.
Description: Keeps track of which "scan" is currently in progress. If curscan does not exist, the parlc macro can create it.
See also: VnmrJ Liquids NMR
Related: nscans Number of scout/real scan repetitions (P)
parlc Create LC-NMR parameters (M)
curwin Current window (P)
Description:
An arrayed global parameter. The first value is the index of the selected window pane in the graphics window. The second value is the number of window pane rows. The third value is the number of columns.
See also: VnmrJ Liquids NMR
Related: fontselect Open FontSelect window (C)
jwin Activate current window (M)
mapwin List of experiment numbers ( P )
setgrid Activate selected window (M)
setwin Activate selected window (C)

\section*{cutoff Data truncation limit ( P )}

Description: Defines the distance above and below the current vertical position vp at which spectra and integrals are truncated. By arraying cutoff to have two different values, the truncation limits above and below the current vertical position can be controlled independently (e.g., cutoff \(=50\) truncates data at \(v p+50 \mathrm{~mm}\) and \(v p-50 \mathrm{~mm}\), and cutoff \(=50,10\) truncates data at \(v p+50 \mathrm{~mm}\) and \(\mathrm{vp}-10 \mathrm{~mm}\) ). cutoff=' n ' disables the action of cutoff.
cutoff is not active during interactive spectral displays (i.e., for the ds command), but is active during non-interactive spectral displays and plots (for the dss and pl commands).
Values: ' n ', number in mm.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{See also: VnmrJ Liquids NMR} \\
\hline Related: & ds Display a spectrum (C) \\
\hline & dss Display stacked spectra (C) \\
\hline & pl Plot spectra (C) \\
\hline & vp \(\quad\) Vertical position of spectrum (P) \\
\hline cyclenoe & Set up parameters for CYCLENOE pulse sequence (M) \\
\hline Applicability: & Systems in which the observe channel is equipped with direct synthesis rf and a linear amplifier. Sequence is supplied with MERCURYplus/Vx as noedif. \\
\hline Description: & Sets up a difference NOE experiment. \\
\hline cylbr24 & Set up parameters for cycled BR24 pulse sequence (M) \\
\hline Applicability: & Systems with solids module. Sequence is not supplied with MERCURY \\
\hline Description: & Sets up a BR24 sequence with quadrature detection and prepulse for solids multiple-pulse line narrowing. \\
\hline See also: & User Guide: Solid-State NMR \\
\hline Related: & br24 Set up parameters for BR24 pulse sequence (M) \\
\hline cylmrev & Set up parameters for cycled MREV8 pulse sequence (M) \\
\hline Applicability: & Systems with a solids module. \\
\hline Description: & Sets up a MREV8 sequence with quadrature detection and prepulse for solids multiple-pulse line narrowing. \\
\hline See also: & User Guide: Solid-State NMR \\
\hline Related: & mrev8 Set up parameters for MREV8 pulse sequence (M) \\
\hline Cz & Clear integral reset points (C) \\
\hline Syntax: & \(\mathrm{cz}<(\mathrm{frequency1,frequency2}, \mathrm{.}. \mathrm{)} \mathrm{>}\) \\
\hline Description: & Removes currently defined integral reset points. \\
\hline Arguments: & frequency1,frequency2, . . are reset points corresponding to specified frequencies to be removed. The default is remove all reset points. \\
\hline Examples: & Cz \\
\hline & Cz (800, 600, 250,60) \\
\hline See also: & VnmrJ Liquids NMR \\
\hline Related & dli Display listed integral values (C) \\
\hline & dlni Display listed normalized integral values (C) \\
\hline & nli Find normalized integral values (C) \\
\hline & z Add integral reset point at the cursor position (C) \\
\hline
\end{tabular}
d0
d1
d2
d2pul
d3
d4
DAC to G
da
daslp
date
daxis
Dbppste
Dbppsteinept
dbsetup
dbupdate
dc
dc2d
dcg
dcon
dconi
dconi
dconn
dcrmv
ddf
ddff
ddfp
ddif
dds
dds seqfil
debug
deccwarnings
decomp
def osfilt
defaultdir
delcom
delete
deleteSelected
deleteslice
delexp
dels
delta
delta1
delta2
Overhead delay between FIDs ( P )
First delay (P)
Incremented delay in 1st indirectly detected dimension (P)
Set up parameters for D2PUL pulse sequence (M)
Incremented delay for 2nd indirectly detected dimension (P)
Incremented delay for 3rd indirectly detected dimension (P)
Store gradient calibration value in DOSY sequences (P)
Display acquisition parameter arrays (C)
Increment for t 1 dependent first-order phase correction ( P )
Date (P)
Display horizontal LC axis (M)
Set up parameters for Dbppste pulse sequence (M)
Set up parameters for Dbppsteinept pulse sequence (M)
Set up VnmrJ database (U)
Update the VnmrJ database (U)
Calculate spectral drift correction (C)
Apply drift correction to 2D spectra (C)
Drift correction group (P)
Display noninteractive color intensity map (C)
Interactive 2D data display (C)
Control display selection for the dconi program ( P )
Display color intensity map without screen erase (C)
Remove dc offsets from FIDs in special cases (P)
Display data file in current experiment (C)
Display FID file in current experiment (C)
Display phase file in current experiment (C)
Synthesize and show DOSY plot (C)
Default display (M)
Sequence-specific default display (M)
Trace order of macro and command execution (C)
Control reporting of DECC warnings from PSG (P)
Decompose a VXR-style directory (M)
Default value of osfilt parameter (P)
Default directory for Files menu system (P)
Delete a user macro (M)
Delete a file, parameter directory, or FID directory (C)
Delete selected stack or slice (C)
Delete selected slice (C)
Delete an experiment (M)
Delete spectra from \(T_{1}\) or \(T_{2}\) analysis (C)
Cursor difference in directly detected dimension (P)
Cursor difference in 1st indirectly detected dimension (P)
Cursor difference in 2nd indirectly detected dimension (P)
\begin{tabular}{|c|c|}
\hline deltaf & Difference of two time-domain cursors (P) \\
\hline dept & Set up parameters for DEPT pulse sequence (M) \\
\hline Dept & Set up parameters for DEPT experiment (M) \\
\hline DEPT & Change parameters for DEPT experiment (M) \\
\hline deptgl & Set up parameters for DEPTGL pulse sequence (M) \\
\hline deptproc & Process array of DEPT spectra (M) \\
\hline destroy & Destroy a parameter (C) \\
\hline destroygroup & Destroy parameters of a group in a tree (C) \\
\hline df & Display a single FID (C) \\
\hline df2d & Display FIDs of 2D experiment (C) \\
\hline dfid & Display a single FID (C) \\
\hline dfmode & Current state of display of imaginary part of a FID (P) \\
\hline dfrq & Transmitter frequency of first decoupler (P) \\
\hline dfrq2 & Transmitter frequency of second decoupler (P) \\
\hline dfrq3 & Transmitter frequency of third decoupler (P) \\
\hline dfrq4 & Transmitter frequency of fourth decoupler (P) \\
\hline dfs & Display stacked FIDs (C) \\
\hline dfsa & Display stacked FIDs automatically (C) \\
\hline dfsan & Display stacked FIDs automatically without screen erase (C) \\
\hline dfsh & Display stacked FIDs horizontally (C) \\
\hline dfshn & Display stacked FIDs horizontally without screen erase (C) \\
\hline dfsn & Display stacked FIDs without screen erase (C) \\
\hline dfww & Display FIDs in whitewash mode (C) \\
\hline dg & Display group of acquisition/processing parameters (C) \\
\hline dg & Control dg parameter group display (P) \\
\hline dg1 & Display group of display parameters (M) \\
\hline dg1 & Control dg1 parameter group display (P) \\
\hline dg2 & Display group of 3rd and 4th rf channel/3D parameters (M) \\
\hline dg2 & Control dg2 parameter group display (P) \\
\hline dga & Display group of spin simulation parameters (M) \\
\hline DgcsteSL & Set up parameters for DgcsteSL pulse sequence (M) \\
\hline Dgcstecosy & Set up parameters for Dgcstecosy pulse sequence (M) \\
\hline Dgcstehmqc & Set up parameters for Dgcstehmqc pulse sequence (M) \\
\hline dglc & Display group of LC-NMR parameters (M) \\
\hline dglc & Control dglc parameter group display (P) \\
\hline dgm & Display menu to view parameter screens (C) \\
\hline dgs & Display group of shims and automation parameters (M) \\
\hline dgs & Control dgs parameter group display (P) \\
\hline dhp & Decoupler high-power control with class C amplifier (P) \\
\hline dialog & Display a dialog box from a macro (C) \\
\hline diffparams & Report differences between two parameter sets (U) \\
\hline diffshims & Compare two sets of shims (M,U) \\
\hline digfilt & Write digitally filtered FIDs to another experiment (M) \\
\hline dir & List files in directory (C) \\
\hline disCenterLines & Show overlay as center lines (C) \\
\hline disp3d & Display 3D data (U) \\
\hline display & Display parameters and their attributes (C) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline disStripes & Show overlay as stripes (C) \\
\hline dla & Display spin simulation parameter arrays (M) \\
\hline dlalong & Long display of spin simulation parameter arrays (C) \\
\hline dli & Display list of integrals (C) \\
\hline dlivast & Produce text file and process wells (M) \\
\hline dll & Display listed line frequencies and intensities (C) \\
\hline dlni & Display list of normalized integrals (M) \\
\hline dlp & Decoupler low-power control with class C amplifier (P) \\
\hline dm & Decoupler mode for first decoupler (P) \\
\hline dm2 & Decoupler mode for second decoupler (P) \\
\hline dm3 & Decoupler mode for third decoupler (P) \\
\hline dm4 & Decoupler mode for fourth decoupler (P) \\
\hline dmf & Decoupler modulation frequency for first decoupler (P) \\
\hline dmf 2 & Decoupler modulation frequency for second decoupler (P) \\
\hline dmf 3 & Decoupler modulation frequency for third decoupler (P) \\
\hline dmf 4 & Decoupler modulation frequency for fourth decoupler (P) \\
\hline dmfadj & Adjust tip-angle resolution time for first decoupler (M) \\
\hline dmf2adj & Adjust tip-angle resolution time for second decoupler (M) \\
\hline dmf3adj & Adjust tip-angle resolution time for third decoupler (M) \\
\hline dmf 4 adj & Adjust tip-angle resolution time for fourth decoupler (M) \\
\hline dmg & Data display mode in directly detected dimension (P) \\
\hline dmg1 & Data display mode in 1st indirectly detected dimension (P) \\
\hline dmg2 & Data display mode in 2nd indirectly detected dimension (P) \\
\hline dmgf & Absolute-value display of FID data or spectrum in acqi (P) \\
\hline dmi & Display multiple images (M) \\
\hline dmm & Decoupler modulation mode for first decoupler (P) \\
\hline dmm2 & Decoupler modulation mode for second decoupler (P) \\
\hline dmm 3 & Decoupler modulation mode for third decoupler (P) \\
\hline dmm4 & Decoupler modulation mode for fourth decoupler (P) \\
\hline dn & Nucleus for first decoupler (P) \\
\hline dn2 & Nucleus for second decoupler (P) \\
\hline dn 3 & Nucleus for third decoupler (P) \\
\hline dn4 & Nucleus for fourth decoupler (P) \\
\hline dnode & Display list of valid limNET nodes (M,U) \\
\hline doautodialog & Start a dialog window using def file (M) \\
\hline dodialog & Start a dialog window with dialoglib file (M) \\
\hline dof & Frequency offset for first decoupler (P) \\
\hline dof 2 & Frequency offset for second decoupler (P) \\
\hline dof3 & Frequency offset for third decoupler (P) \\
\hline dof4 & Frequency offset for fourth decoupler (P) \\
\hline Doneshot & Set up parameters for Doneshot pulse sequence (M) \\
\hline dopardialog & Start a dialog with dialoglib/experiment def file (M) \\
\hline do_pess & Calculate proton chemical shifts spectrum (C) \\
\hline dosy & Process DOSY experiments (M) \\
\hline dosyfrq & Larmor frequency of phase encoded nucleus in DOSY (P) \\
\hline dosygamma & Gyromagnetic constant of phase encoded nucleus in DOSY (P) \\
\hline dosytimecubed & Gyromagnetic constant of phase encoded nucleus in DOSY (P) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline dot1 & Set up a \(T_{1}\) experiment (M) \\
\hline dotflag & Display FID as connected dots (P) \\
\hline downsamp & Downsampling factor applied after digital filtering (P) \\
\hline dp & Double precision (P) \\
\hline dpcon & Display plotted contours (C) \\
\hline dpconn & Display plotted contours without screen erase (C) \\
\hline dpf & Display peak frequencies over spectrum (C) \\
\hline dpir & Display integral amplitudes below spectrum (C) \\
\hline dpirn & Display normalized integral amplitudes below spectrum (M) \\
\hline dpl & Default plot (M) \\
\hline dpl_seqfil & Sequence-specific default plot (M) \\
\hline dplane & Display a 3D plane (M) \\
\hline dpr & Default process (M) \\
\hline dpr_seqfil & Sequence-specific default process (M) \\
\hline dprofile & Display pulse excitation profile (M) \\
\hline dproj & Display a 3D plane projection (M) \\
\hline dps & Display pulse sequence (C) \\
\hline dpwr & Power level for first decoupler with linear amplifier (P) \\
\hline dpwr2 & Power level for second decoupler with linear amplifier (P) \\
\hline dpwr3 & Power level for third decoupler with linear amplifier (P) \\
\hline dpwr4 & Power level for fourth decoupler amplifier (P) \\
\hline dpwrf & First decoupler fine power (P) \\
\hline dpwrf2 & Second decoupler fine power (P) \\
\hline dpwrf3 & Third decoupler fine power (P) \\
\hline dpwrm & First decoupler linear modulator power (P) \\
\hline dpwrm2 & Second decoupler linear modulator power ( P ) \\
\hline dpwrm3 & Third decoupler linear modulator power (P) \\
\hline dqcosy & Set up parameters for double-quantum filtered \(\operatorname{COSY}(\mathrm{M})\) \\
\hline Dqcosy & Convert the paramaeter to a DQCOSY experiement (M) \\
\hline DQCOSY & Change parameters for DQCOSY experiment (M) \\
\hline draw & Draw line from current location to another location (C) \\
\hline drawslice & Display target slices (M) \\
\hline drawvox & Display target voxels (M) \\
\hline dres & Measure linewidth and digital resolution (C) \\
\hline dres & Tip-angle resolution for first decoupler (P) \\
\hline dres2 & Tip-angle resolution for second decoupler (P) \\
\hline dres3 & Tip-angle resolution for third decoupler (P) \\
\hline dres 4 & Tip-angle resolution for fourth decoupler (P) \\
\hline ds & Display a spectrum (C) \\
\hline ds2d & Display 2D spectra in whitewash mode (C) \\
\hline ds2dn & Display 2D spectra in whitewash mode without screen erase (C) \\
\hline dscale & Display scale below spectrum or FID (C) \\
\hline dscoef & Digital filter coefficients for downsampling (P) \\
\hline dseq & Decoupler sequence for first decoupler (P) \\
\hline dseq2 & Decoupler sequence for second decoupler (P) \\
\hline dseq3 & Decoupler sequence for third decoupler (P) \\
\hline dseq4 & Decoupler sequence for fourth decoupler (P) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
dsfb & Digital filter bandwidth for downsampling (P) \\
dshape & Display pulse shape or modulation pattern (M) \\
dshapef & Display last generated pulse shape (M) \\
dshapei & Display pulse shape or modulation pattern interactively (M) \\
dshim & Display a shim "method" string (M) \\
dslsfrq & Bandpass filter offset for downsampling (P) \\
dsn & Measure signal-to-noise (C) \\
dsnmax & Calculate maximum signal-to-noise (M) \\
dsp & Display calculated spectrum (C) \\
dsp & Type of DSP for data acquisition (P) \\
dsplanes & Display a series of 3D planes (M) \\
dsptype & Type of DSP (P) \\
dss & Display stacked spectra (C) \\
dssa & Display stacked spectra automatically (C) \\
dssan & Display stacked spectra automatically without erasing (C) \\
dssh & Display stacked spectra horizontally (C) \\
dsshn & Display stacked spectra horizontally without erasing (C) \\
dssl & Label a display of stacked spectra (M) \\
dssn & Display stacked spectra without screen erase (C) \\
dsvast & Display VAST data in a stacked 1D-NMR matrix format (M) \\
dsvast2d & Display VAST data in a pseudo-2D format (M) \\
dsww & Display spectra in whitewash mode (C) \\
dtext & Display a text file in graphics window (M) \\
dtrig & Delay to wait for another trigger or acquire a spectrum (P)
\end{tabular}

\section*{do Overhead delay between FIDs (P)}

Applicability:
UNITY INOVA systems
Description: Defines the extra overhead delay at the start of each FID or array element. Overhead times between increments and transients on the \({ }^{\text {UNITY }}\) INOVA are deterministic, i.e., both known and constant. However, the time between increments (typically x ) is longer than the time between transients ( y , not including times that are actually part of the pulse sequence, such as d1). Some experiments may benefit if it is ensured that these two times are not only constant but equal. To ensure that the times are constant and equal, insert the time do at the start of each transient (before the pulse sequence actually starts); the actual delay is then \(y+d 0\). However, the overhead time may differ with different system configurations. To keep the do delay consistent across systems, set do greater than the overhead delay. The inter-FID delay \(x\) is then padded so that \(\mathrm{y}+\mathrm{d} 0=\mathrm{x}+(\mathrm{d} 0-(\mathrm{x}-\mathrm{y}))\).
Currently, do only takes into account the extra delay at the start of each array element. It does not take into account the overhead delays at the start and end of each scan. It also does not take into account delays when arraying status statements, shims, or spinner speeds.

The do parameter does not exist in any parameter set and must be created by the user. To create do, enter create ('do ', 'delay'). If do is nonexistent, do not insert a delay between transients.
Values: ' n ', ' Y ', or 0 to the maximum delay time (in seconds).

If \(d 0=\) ' \(n\) ', the software calculates the overhead time for an array element and then delays that length of time at the beginning of subsequent transients for every array element. The calculated value of do can be viewed by entering \(\mathrm{d} 0=\mathrm{I}^{\prime} \mathrm{Y}\) ' in the input window.
If do is set to a value, that value is the length of delay time at the beginning of subsequent transients for every array element. If the value is greater than the array overhead time, the array overhead time is padded to do.
See also: User Programming
Related: create \(\quad\) Create new parameter in parameter tree (C)

\section*{First delay (P)}

Description: Length of the first delay in the standard two-pulse sequence and most other pulse sequences. This delay is used to allow recovery of magnetization back to equilibrium, if such a delay is desired.
Values: On MERCURYplus/Vx : 0, \(0.2 \mu \mathrm{~s}\) to \(150,000 \mathrm{sec}\).
On INOVA : \(0.1 \mu\) s to 8190 sec , smallest value possible is \(0.1 \mu \mathrm{~s}\), finest increment possible is 12.5 ns .
See also: VnmrJ Liquids NMR
Related: alfa Set alfa delay before acquisition (P)
d2 Incremented delay in 1st indirectly detected dimension (P)
d3 Incremented delay in 2nd indirectly detected dimension (P)
d4 Incremented delay in 3rd indirectly detected dimension (P)
pad Preacquisition delay (P)
d2 Incremented delay in 1st indirectly detected dimension (P)
Description: Length of the second delay in the standard two-pulse sequence. The delay is controlled by the parameters ni and sw1 in a 2D experiment.
Values: On MERCURYplus/Vx: \(0,0.2 \mu\) s to \(150,000 \mathrm{sec}\).
On INOVA : \(0.1 \mu\) s to 8190 sec , smallest value possible is \(0.1 \mu \mathrm{~s}\), finest increment possible is 12.5 ns .
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & di & First delay (P) \\
& ni & Number of increments in 1st indirectly detected dimension (P) \\
& sw1 & Spectral width in 1st indirectly detected dimension (P)
\end{tabular}

\section*{d2pul Set up parameters for D2PUL pulse sequence (M)}

Applicability: D2PUL is not available on MERCURYplus/Vx systems.
Description: Sets up a standard two-pulse sequence using the decoupler as transmitter.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{ll} 
dhp \\
dn
\end{tabular} & \begin{tabular}{l} 
Decoupler high power with class C amplifier (P) \\
dof
\end{tabular} \\
dpwr & Frequency offset for first decoupler (P) \\
homo & Power level for first decoupler with linear amplifiers (P) \\
s2pul & Homodecoupling control for first decoupler (P) \\
tn & Set up parameters for standard two-pulse sequence (M) \\
tof & Nucleus for the observe transmitter (P) \\
tpwr & Frequency offset for observe transmitter (P) \\
& Power level of observe transmitter with linear amplifiers (P)
\end{tabular}

Description: Length of a delay controlled by the parameters ni2 and sw2 in a 3D experiment. The d2 delay, which is controlled by ni and sw1, is incremented through its entire implicit array first before \(d 3\) is incremented. To create parameters d3, ni2, phase2, and sw2 to acquire a 3D data set in the current experiment, enter addpar('3d').
Values: On MERCURYplus/Vx: 0, \(0.2 \mu\) s to \(150,000 \mathrm{sec}\). On INOVA : \(0.1 \mu\) s to 8190 sec , smallest value possible is \(0.1 \mu \mathrm{~s}\), finest increment possible is 12.5 ns .
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & addpar & Add selected parameters to the current experiment (M) \\
d1 & First delay (P) \\
ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
par3d & Create 3D acquisition, processing, display parameters (C) \\
phase2 & Phase selection for 3D acquisition (P) \\
sw2 & Spectral width in 2nd indirectly detected dimension (P)
\end{tabular}
d4 Incremented delay for 3rd indirectly detected dimension (P)
Description: Length of a delay controlled by the parameters ni3 and sw3 in a 4D experiment. The d 3 delay, which is controlled by ni 2 and sw2, is incremented through its entire implicit array first before d 4 is incremented. To create parameters d4, ni3, phase3, and sw3 to acquire a 4D data set in the current experiment, enter addpar('4d').
Values: On MERCURYplus/Vx: \(0,0.2 \mu\) s to \(150,000 \mathrm{sec}\).
On INOVA : \(0.1 \mu\) s to 8190 sec , smallest value possible is \(0.1 \mu \mathrm{~s}\), finest increment possible is 12.5 ns .

See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
d1 First delay (P)
ni3 Number of increments in 3rd indirectly detected dimension (P)
par4d Create 4D acquisition parameters (C)
phase3 Phase selection for 4D acquisition (P)
sw3 Spectral width in 3rd indirectly detected dimension (P)

DAC_to_G Store gradient calibration value in DOSY sequences ( P )
Description: DAG_to_G is automatically set by the setup_dosy macro by retrieving the gradient strength from the probe calibration file if probe<> ' ' and storing it in DAC_to_G. If probe \(=\) ' ' (i.e., the probe is not defined), then DAC_to_G is set to the current value of the global parameter gcal
See also: VnmrJ Liquids NMR.
\begin{tabular}{lll} 
Related: & dosy & Process DOSY experiments (M) \\
& setup_dosy & Set up gradient levels for DOSY experiments (M) \\
setgcal & Set the gradient calibration constant (M)
\end{tabular}
setgcal Set the gradient calibration constant (M)
da Display acquisition parameter arrays (C)
Syntax: da<(par1<,par2><,par3...>) >
Description: Displays arrayed acquisition parameters.
Arguments: par1, par2, par3, . . are names of parameters to be displayed.The default is to display all such parameters.

D
\[
\begin{aligned}
& \text { Examples: da } \\
& \text { da('d2') } \\
& \text { See also: VnmrJ Liquids NMR } \\
& \text { Related: dg Display parameters of acquisition/processing group (C) } \\
& \text { daslp Increment for } \mathbf{t 1} \text { dependent first-order phase correction ( } \mathrm{P} \text { ) } \\
& \text { Applicability: UNITY INOVA systems. } \\
& \text { Description: Causes "shearing" of } f_{1} \text { traces of a 2D dataset and is used to rotate the narrow } \\
& \text { projection of some solids correlations into the } f_{1} \text { dimension. Several solids } \\
& \text { experiments for Dynamic Angle Spinning (DAS) and a triple-quantum filtered } \\
& \text { 2D MAS experiment require the use of daslp. (Note that the command } \\
& \text { rotate shears two traces and is inapplicable for these experiments.) } \\
& \text { When created, the value of } 1 p \text { for each increment of a } 2 \mathrm{D} \text { experiment is } \\
& \text { incremented by the value of daslp after the first Fourier transformation. The } \\
& \text { incremented phase correction is applied to the interferogram created from the } \\
& \text { coefficient table by ft1d, ft2d, wft1d and wft } 2 d \text {, when coefficients are } \\
& \text { present. daslp is also used with } f t 1 d a, f t 2 d a, w f t 1 d a \text { and wft } 2 d a \text {. } \\
& \text { Values: Real values, typically similar in size to the value of parameter } 1 \mathrm{p} \text {. } \\
& \text { See also: VnmrJ Liquids NMR; User Guide: Solid-State NMR } \\
& \text { Related: ft1d Fourier transform along } f_{2} \text { dimension (C) } \\
& \text { ft1da Fourier transform phase-sensitive data (M) } \\
& \text { ft2d Fourier transform 2D data (C) } \\
& \text { ft2da Fourier transform phase-sensitive data (M) } \\
& \text { lp } \quad \text { First-order phase in directly detected dimension ( } \mathrm{P} \text { ) } \\
& \text { rotate Rotate 2D data (C) } \\
& \text { wft1d Weight and Fourier transform f2 for 2D data (C) } \\
& \text { wft1da Weight and Fourier transform phase-sensitive data (M) } \\
& \text { wft2d Weight and Fourier transform 2D data (C) } \\
& \text { wft2da Weight and Fourier transform phase-sensitive data (M) } \\
& \text { date Date (P) } \\
& \text { Description: An informational parameter taken from the UNIX-level calendar (which is set } \\
& \text { by the UNIX system operator only and cannot be entered by the user). } \\
& \text { Whenever data are acquired, the date is copied from UNIX and written into the } \\
& \text { acquisition parameters, thus maintaining a record of the date of acquisition. } \\
& \text { See also: VnmrJ Liquids NMR } \\
& \text { Applicability: Systems with LC-NMR accessory. } \\
& \text { Syntax: daxis(time,major_tic,minor_tic) } \\
& \text { Description: Displays a horizontal LC axis. Horizontal axes are assumed to be used with "LC } \\
& \text { plots" of an entire LC run and are labeled accordingly. } \\
& \text { Arguments: time is the time scale, in minutes (decimal values are fine), of the axis. } \\
& \text { major_tic is spacing, in minutes (decimal values are fine), of major tics. } \\
& \text { minor_tic is spacing, in minutes (decimal values are fine), of minor tics. } \\
& \text { See also: VnmrJ Liquids NMR } \\
& \text { Related: paxis Display horizontal LC axis (M) }
\end{aligned}
\]

\section*{Dbppste Set up parameters for Dbppste pulse sequence (M)}

Description: Converts a parameter set to Dbppste experiment; replaces the macro bppste.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
fiddle Perform reference deconvolution (M)
setup_dosy Set up gradient levels for DOSY experiments (M)

\section*{Dbppsteinept Set up parameters for Dbppsteinept pulse sequence (M)}

Description: Converts a parameter set to Dbppsteinept experiment.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
fiddle Perform reference deconvolution (M)
setup dosy Set up gradient levels for DOSY experiments (M)
dbsetup Set up VnmrJ database (U)
Syntax: dbsetup <vnmr_adm|remove|standard|imaging>
dbsetup vnmr_adm <remove|standard|imaging>
As Root:
dbsetup vnmr_adm VnmrJ_Home_dir <standard|imaging>
Arguments: vnmr_adm is the login ID of the VnmrJ systm administrator.
remove only removes the data-database; does not recreate a database.
standard creates the database for standard use.
imaging creates the database for imaging spectroscopy.
Description: The UNIX script dbsetup is used during the installation of VnmrJ software and can only be run by the VnmrJ administrator (vnmr_adm) or the UNIX administrator (root). Normally it is never used again. dbsetup creates and deletes the data-database in /vnmr/pgsql/data and the user information in /vnmr/adm/users.

When run as root at least two arguments must be supplied, the login ID of the VnmrJ administrator and the VnmrJ home directory. When run as root dbsetup will delete and recreate the data-database in /vnmr/pgsql/data for all users in /vnmr/adm/users. If no user list exists yet, the list is created with the VnmrJ administrator as the only user. The mode can be specified with the third argument as 'standard ' or 'imaging'; if neither is specified the mode is taken from the global file of the VnmrJ administrator. It defaults to standard. The VnmrJ administrator does not need to supply any of the arguments.
Note that additional users are created using vnmrj adm.
Examples: dbsetup
dbsetup vnmr1
See also: VnmrJ Liquids NMR
VnmrJ Imaging NMR
VnmrJ Installation and Administration
dbupdate Update the VnmrJ database (U)
Applicability: Systems with the VnmrJ software.
Syntax: dbsupdate stop|once [slow_ms]|forever [slow_ms]
Arguments: slow_ms is an optional argument used to slow down the database update so as not to use all of the available CPU time. slow_ms=0 is full speed.
slow_ms \(=1000\) uses about \(2-5 \%\) of the CPU.
The dbupdate command is runs under nice so that any other process will be able to take the CPU away from this update anyway. The default slow_ms for forever is 1000 . The default slow_ms for once is 0 .
Description: A UNIX command to start and stop a program to update the VnmrJ database used by the Locator. This command might be needed at a data station to view newly acquired data. The database at the spectrometer will automatically be updated.

\section*{Calculate spectral drift correction (C)}

Description: Turns on a linear baseline correction. The beginning and end of the straight line to be used for baseline correction are determined from the display parameters sp and wp. dc applies this correction to the spectrum and stores the definition of the straight line in the parameters \(\operatorname{lv} \mathrm{l}\) (level) and tl t (tilt). The correction is turned off by the command cdc .
Care must be taken to ensure that a resonance does not appear too close to either end of the spectrum, or dc can produce the opposite effect from that intended; namely, it induces a sloping baseline where none was present!
See also: VnmrJ Liquids NMR
\begin{tabular}{cll} 
Related: & bc & 1D and 2D baseline correction (C) \\
& cdc & Cancel drift correction (C) \\
& dc & Drift correction group (P) \\
& \(l v 1\) & Zero-order baseline correction (P) \\
& sp & Start of plot (P) \\
& tlt & First-order baseline correction (P) \\
& wp & Width of plot \((\mathrm{P})\)
\end{tabular}

\section*{dc2d Apply drift correction to 2D spectra (C)}

Syntax: dc2d('f1'|'f2')
Description: Computes a drift correction and applies it to each individual trace.
Arguments: ' \(f 1\) ' is a keyword to apply drift correction in the \(f_{1}\) axis direction.
' \(f 2\) ' is a keyword to apply drift correction in the \(f_{2}\) axis direction.
Examples: dc2d('f1')
dc2d('f2')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & axis & Axis label for displays and plots (P) \\
bc & 1D and 2D baseline correction (C)
\end{tabular}

Drift correction group ( P )
Description: Contains the results of the dc or cdc command. This parameter cannot be set in the usual way but it can be queried by entering dcg? to determine whether drift correction is active.

Values: ' dc' indicates drift correction is active.
' cdc ' indicates drift correction is inactive.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cdc & Cancel drift correction (C) \\
& dc & Calculate spectral drift correction (C)
\end{tabular}

Syntax: dcon<(options) >
Description: Produces a "contour plot," actually a color intensity map, in the graphics window. The parameters sp and \(\mathrm{wp}, \mathrm{sp} 1\) and wp 1 , and sp 2 and wp 2 control which portion of the spectrum is displayed. The parameters \(s f\) and \(w f, s f 1\) and \(w f 1\), and \(s f 2\) and \(w f 2\) control which portion of time-domain data (FIDs and interferograms) is displayed. The parameter trace selects which dimension is displayed along the horizontal axis. The parameters sc, wc, sc2, and wC2 control where on the screen the display occurs. The parameter th is active as a threshold to black out all contours whose intensity is below th. That is, if \(t h=7\), the colors 1 to 6 are not used for the display. The parameter vs controls the vertical scale of the spectrum.
dcon displays either absolute-value mode or phase-sensitive 2D data. In av mode, data are shown in 15 different colors (starting with black), with each color representing a factor of two in intensity (a single color is used on monochrome screens). In the ph mode, the normal display of colors ranges from -6 to +6 , each representing a factor of two in intensity, with the color black representing intensity 0 in the center.
Arguments: options can be any of the following:
- 'linear' is a keyword to use linear instead of logarithmic increments.
- 'phcolor' is a keyword to use a phased color set with positive and negative peaks.
- 'avcolor' is a keyword to use an absolute-value color set with positive peaks. Negative contours only cannot be displayed, but if the data can be rephased, \(180^{\circ}\) added to rp1, and dcon ('avcolor') entered again, the same thing is accomplished by inverting the phase of all peaks. Alternatively, dpcon can display negative peaks only.
- 'gray' is a keyword to use a gray scale color set.
- 'noaxis' is a keyword to omit the display outline and any horizontal or vertical axis.
- 'plot ' causes the dcon display to be sent to the plotter instead of being drawn on the graphics window.

Examples:
dcon
dcon('gray')
dcon('linear','phcolor','plot')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dconi & Interactive 2D data display (C) \\
dconi & Control display selection for the dconi program (P) \\
dconn & Display color intensity map without screen erase (C) \\
dpcon & Display plotted contours (C) \\
image & Display noninteractive gray scale image (M) \\
imageprint & Plot noninteractive gray scale image (M) \\
sc & Start of chart (P) \\
sc2 & Start of chart in second direction (P) \\
sf & Start of FID (P) \\
sp & Start of plot (P) \\
\(\mathrm{sp1}\) & Start of plot in 1st indirectly detected dimension (P) \\
\(\mathrm{sp2}\) & Start of plot in 2nd indirectly detected dimension (P) \\
th & Threshold (P) \\
trace & Mode for \(n\)-dimensional data display (P) \\
wc & Width of chart (P)
\end{tabular}
\begin{tabular}{ll} 
wc2 & Width of chart in second direction (P) \\
wf & Width of FID (P) \\
wp & Width of plot (P) \\
wp1 & Width of plot in 1st indirectly detected dimension (P) \\
wp2 & Width of plot in 2nd indirectly detected dimension (P)
\end{tabular}

\section*{dconi Interactive 2D data display (C) \\ Syntax: dconi<(options)>}

Description: Opens a 2D data display that can be interactively adjusted. The dconi program can accommodate any data set that can be displayed by dcon, dpcon, and ds2d, including 2D FIDs, interferograms, 2D spectra, planes from 3D data sets, and images. These data sets are generated by the commands \(d f 2 d, f t 1 d\), ft2d, and ft 3 d .
Arguments: options can be any of the following (note that the dconi parameter is also available to control the dconi program display):
- 'dcon' is a keyword to display a color intensity map; this is the default mode, but 'dcon' is provided for compatibility with certain macros. If 'dcon' is the first argument, it can be followed by any of the keywords 'linear', 'phcolor','avcolor', 'gray', and 'noaxis'; all of these keywords have the same meaning as when used with dcon.
- 'dpcon' is a keyword to display a true contour plot. If 'dpcon' is the first argument, it can be followed by any of the keywords 'pos ', 'neg', and 'noaxis', and then followed by values for levels and spacing. All of these options have the same meaning as when used with dpcon.
- 'ds2d' is a keyword to display a stacked plot in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra). If ' ds 2 d ' is the first argument, it can be followed by any of the keywords 'nobase', 'fill', 'fillnb', and 'noaxis'. All of these keywords have the same meaning as used with ds2d.
- 'again' is a keyword to make dconi identify which display mode is currently being used and redraw the screen in that mode.
- 'restart' is a keyword to activate dconi without redrawing the 2D data set. This action causes dconi to make sure that 2D data is already displayed.
- 'toggle' is a keyword to toggle between the cursor and box modes.
- 'trace' is a keyword to draw a trace above the spectrum.
- ' expand ' is a keyword to toggle between the expand and full views of the spectrum.
- 'plot ' is a keyword to plot a projection or a trace.
- 'hproj_max' is a keyword to do a horizontal projection of the maximum trace.
- 'hproj_sum' is a keyword to do a horizontal projection of the sum of all traces.
- 'vproj_max' is a keyword to do a vertical projection of the maximum trace.
- 'vproj_sum' is a keyword to do a vertical projection of the sum of all traces.
```

Examples: dconi
dconi('dcon','gray','linear')
dconi('dpcon')

```

See also: VnmrJ Liquids NMR
\begin{tabular}{|c|c|c|}
\hline Related: & boxes & Draw boxes selected by the mark command (C) \\
\hline & crmode & Current state of cursors in dfid, ds, or dconi (P) \\
\hline & dcon & Display noninteractive color intensity map (C) \\
\hline & dconi & Control display selection for the dconi program (P) \\
\hline & dconn & Display color intensity map without screen erase (C) \\
\hline & deltal & Cursor difference in 1st indirectly detected dimension (P) \\
\hline & df2d & Display FIDs of 2D experiment (C) \\
\hline & dpcon & Display plotted contours (C) \\
\hline & ds2d & Display 2D spectra in whitewash mode (C) \\
\hline & ft1d & Fourier transform along \(\mathrm{f}_{2}\) dimension (C) \\
\hline & ft2d & Fourier transform 2D data (C) \\
\hline & ft3d & Perform a 3D Fourier transform on a 3D FID data set (M,U) \\
\hline & image & Display noninteractive gray scale image (M) \\
\hline & imconi & Display 2D data in interactive gray-scale mode (M) \\
\hline & is & Integral scale (P) \\
\hline & 112d & Automatic and interactive 2D peak picking (C) \\
\hline & proj & Project 2D data (C) \\
\hline & sf & Start of FID (P) \\
\hline & sp & Start of plot (P) \\
\hline & sp1 & Start of plot in 1st indirectly detected dimension (P) \\
\hline & th & Threshold (P) \\
\hline & vs2d & Vertical scale for 2D displays (P) \\
\hline & vsadj & Automatic vertical scale adjustment (M) \\
\hline & wf & Width of FID (P) \\
\hline & wp & Width of plot (P) \\
\hline & wp1 & Width of plot in 1st indirectly detected dimension (P) \\
\hline
\end{tabular}

\section*{dconi \(\quad\) Control display selection for the dconi program (P)}

Description: Controls the selection of the 2D display that follows entering the dconi command. Because dconi is implicitly executed by \(f t 2 d\), the dconi parameter also controls the display that follows the \(f t 2 d\) or \(w f t 2 d\) command. dconi can be a string parameter in the "current" parameter set. Its syntax is similar to an argument string passed to the dconi program. For example, if dconi = 'dpcon,pos,12,1.2', the dconi command displays twelve positive contours with dpcon, using a spacing of 1.2. The first component of the dconi string must be the name of the display program, such as dcon, dconn, dpcon, dpconn, ds2d, or ds2dn. Subsequent components of the string are arguments appropriate for that display program. Because the entire dconi parameter is a string, single quotes around words are not necessary and mixing words and numbers is not a problem, as the example above shows.
If the dconi parameter does not exist or is set to the null string ( \({ }^{\prime}\) '), the dconi program uses its normal default. If the dconi parameter is set to a string (e.g., dconi= 'dcon, gray, linear' for image display), and arguments are supplied to the dconi program, (e.g., dconi ('dpcon') ), the supplied arguments to the command take precedence. In the case of the examples above, a contour map, not an image, is displayed.
If the dconi parameter does not exist in the current experiment, it can be created by the commands create('dconi','string')
setgroup ('dconi','display')
Values: ' ' (two single quotes) indicates that this parameter is ignored.

String 'display_program' selects the named program for 2D displays. String 'display_program, option1,option2' selects the named program for 2D displays with options appropriate to the program.
Examples: dconi='dpcon' selects contour drawing rather than default color map dconi='dcon, gray, linear' selects image display mode.
See also: VnmrJ Liquids NMR; VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
dcon \\
dconi \\
dconn
\end{tabular} & \begin{tabular}{l} 
Display noninteractive color intensity map (C) \\
Interactive 2D data display (C)
\end{tabular} \\
& dpcon & Display color intensity map without screen erase (C) \\
dpconn & Display plotted contours (C) \\
& Display plotted contours without screen erase (C) \\
\(d s 2 d\) & Display 2D spectra in whitewash mode (C) \\
ds2dn & Display 2D spectra in whitewash mode without screen erase (C) \\
ft2d & Fourier transform 2D data (C) \\
imconi & Display 2D data in interactive gray-scale mode (M) \\
wft2d & Weight and Fourier transform 2D data (C)
\end{tabular}

\section*{dconn \(\quad\) Display color intensity map without screen erase (C)}

Syntax: dconn<(options) >
Description: Produces a "contour plot," actually a color intensity map, on the screen the same as the dcon command, but without erasing the screen before starting the plot. The options available are the same as the dcon command.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dcon & Display noninteractive color intensity map (C) \\
& dconi & Control display selection for the dconi program (P)
\end{tabular}
dcrmv \(\quad\) Remove dc offsets from FIDs in special cases (P)
Description: If dcrmv exists and is set to ' y ', hardware information is used to remove the dc offset from the FID providing \(\mathrm{ct}=1\). This only works on systems with sw less than 100 kHz . If this feature is desired for a particular experiment, create dcrmv in that experiment by entering create ('dcrmv', 'string') setgroup('dcrmv','processing') dcrmv='y'
To create image parameters dcrmv, grayctr and graysl in the current experiment, enter addpar('image').
See also: VnmrJ Liquids NMR; VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
create
\end{tabular} & Add selected parameters to the current experiment (M) \\
ct & Create new parameter in a parameter tree (C) \\
dc & Completed transients (P) \\
setgroup & Set group of a variable in a tree (C)
\end{tabular}
ddf \(\quad\) Display data file in current experiment (C)
Syntax: ddf<(block_number,trace_number,first_number) >
Description: Displays the file header of the data file in the current experiment. If entered with arguments, it also displays a block header and part of the data file of that block.
Arguments: block_number is the block number. Default is 1 .
trace_number is the trace number within the block. Default is 1 .
first_number is the first data element number within the trace. Default is 1 .

See also: User Programming
\begin{tabular}{lll} 
Related: & \(d d f f\) & Display FID file in current experiment (C) \\
& \(d d f p\) & Display phase file in current experiment (C)
\end{tabular}
ddff
Display FID file in current experiment (C)
Syntax: ddff<(block_number,trace_number,first_number) >
Description: Displays the file header of the FID file in the current experiment. If entered with arguments, it also displays a block header and part of the FID data of the block.
Arguments: block_number is the block number. Default is 1 .
trace_number is the trace number within the block. Default is 1 .
first_number is the first data element number within the trace. Default is 1 .
See also: User Programming
Related: ddf Display data file in current experiment (C)
ddfp \(\quad\) Display phase file in current experiment (C)
ddfp \(\quad\) Display phase file in current experiment (C)
Syntax: ddfp<(block_number,trace_number,first_number) >
Description: Displays the file header of the phase file in the current experiment. With arguments, it also display a block header and part of the phase file data of that block.

Arguments: block_number is the block number. Default is 1 .
trace_number is the trace number within the block. Default is 1 .
first_number is the first data element number within the trace. Default is 1 .
See also: User Programming
Related: ddf Display data file in current experiment (C)
ddff \(\quad\) Display FID file in current experiment (C)
ddif \(\quad\) Synthesize and show DOSY plot (C)
Syntax: ddif(<option>,lowerlimit,upperlimit)
Description: Synthesizes a 2D spectrum from 1D spectra using the information produced by the dosy macro. ddif takes the 1D spectrum and a table of diffusion data stored in the file diffusion_display.inp in the current experiment and synthesizes a 2D DOSY spectrum. It is normally run by dosy, but can be directly run, for example, to recalculate a 2D DOSY spectrum with different digitization.
Arguments: option is either 'i'or 'c'.
' \(i\) ' is for a display in which the 2D peak volume is proportional to 1D peak height.
' C ' is for a display in which the 2D peak height equals the 1 D .
lowerlimit is the lower diffusion limit (in units of \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\) ).
upperlimit is the upper diffusion limit (in units of \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\) ).
If arguments are not supplied, ddif defaults to showing the full range of diffusion coefficients in the file diffusion_display.inp in the current experiment. Make sure that the first increment of the DOSY data set has been transformed with the desired fn 2 D before using ddif. Digitization of the resultant spectrum is determined by \(f n 2 D\) in the spectral (F2) domain and \(f n 1\) in the diffusion (F1) domain. Make sure that the product fn2D*fn1 is not too large, or memory and processing time problems might result. Typical values are
\(\mathrm{fn} 2 \mathrm{D}=16384\) (max: 64 k ) and \(\mathrm{fn} 1=512\). After dosy or ddif, 1D data is overwritten by the 2D (the dosy macro keeps a copy of the 1D data, which can be retrieved with the command undosy). Similarly, after a DOSY spectrum has been calculated, it can be retrieved with the command redosy.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
fn2D Fourier number to build up 2D DOSY display in frequency domain (P)
redosy Restore the previous 2D DOSY display from the subexperiment (M)
undosy Restore original 1D NMR data from the subexperiment (M)

\section*{dds \(\quad\) Default display (M)}

Description: Looks for sequence-specific default display macro (dds_seqfil) and executes if one is found. If not, the dds macro displays \(1 \mathrm{D}, 2 \mathrm{D}\), or array spectrum as the case may be.
Related: dds_seqfil Sequence-specific default display (M)
\(\mathrm{dpl} \quad\) Default plot (M)
dpr Default process (M)

\section*{dds_seqfil Sequence-specific default display (M)}

Description: Sequence-specific default display. These macros are called by the dds macro.
\(\left.\begin{array}{cll}\text { Examples: } & \text { dds_NOESY1D } \\
& \text { dds_TOCSY1D }\end{array}\right]\)\begin{tabular}{cll} 
Related: & \(d d s\) & Default display (M) \\
& \(d p l\) & Default plot (M) \\
& \(d p r\) & Default process (M)
\end{tabular}
debug Trace order of macro and command execution (C)
Syntax: debug ('c'|'C')
Description: Controls VnmrJ command and macro tracing. When turned on, debug displays a list of each command and macro in the shell tool from which VnmrJ was started. If VnmrJ is started when the user logs in, or if it was started from a dropdown menu or the CDE tool, the output goes to a Console window. If no Console window is present, the output goes into a file in the /var/tmp directory. This last option is not recommended. Nesting of the calls is indicated by indentation of the output. This feature is primarily a debugging tool for MAGICAL programming.

To associate the \(\operatorname{debut}(\) 'c') output with a particular terminal, enter tty. The system respons with / dev/pts / yyy, where yyy is a numberical value. On the VnmrJ command line, enter jFunc (55, '/dev/pts/yyy'), substituting the numerical value for the yyy.
Arguments: ' C ' is a keyword to turn on command and macro tracing.
' C ' is a keyword to turn off command and macro tracing.
Examples: debug('c')
debug('C')
See also: User Programming

\section*{deccwarnings Control reporting of DECC warnings from PSG (P)}

Applicability: Systems with DECC (Digital Eddy Current Compensation) boards for gradient compensation.
Description: A global parameter that controls whether PSG will warn the user when the ECC corrections are large enought that they could exceed the capabilities of the DECC board. By default, this parameter does not exist, and a warning is printed whenever an experiment is started if the ECC amplitudes are possibly too large. The warning does indicate a definite be a problem, only that not enough ECC drive capability is available to compensate for an instantaneous grandien swing from minus the maximum gradient strength to the maximum positive gradient. To disable the warnings, create this global string parameter and set it to ' n '.
Values: ' n ' or ' N ' to suppress warnings. If the value starts with any other character, the normal warnings are printed.
decomp Decompose a VXR-style directory (M)
Syntax: decomp< (VXR_file) >
Description: Takes a library, as loaded from a VXR-style system (VXR, XL, or Gemini), and extracts each entry into a separate UNIX file. The file can be obtained from a magnetic tape or over limNET. decomp creates a UNIX subdirectory in the current working directory and uses that to write each entry as a UNIX file. The name of the UNIX subdirectory is derived from the library name.
Arguments: VXR_file is the name of the original file. It must have an extension in the form .NNN, where NNN is the number of entries in the original library. A limit of 432 entries is imposed.
See also: VnmrJ Liquids NMR
Related: convert Convert data set from a VXR-style system (C,U)

\section*{def_osfilt Default value of osfilt parameter (P)}

Description: A global parameter that establishes the default type of digital filter, AnalogPlus \({ }^{\mathrm{TM}}\) or brickwall, when DSP is configured. The actual filter used in any experiment is set by the local parameter osfilt. Usually, def_osfilt is set to the value for normal use, and then osfilt is changed within a given experiment if different filter characteristics are desired.

Values: 'a ' or 'A' for the AnalogPlus digital filter. This filter is flatter in the passband and drops off somewhat more sharply than analog filters.
'b ' or ' B' for the brickwall digital filter. This filter is extremely flat across the passband and drops off sharply on the edge; however, the enhanced filtering comes at the expense of somewhat reduced baseline performance.
See also: VnmrJ Liquids NMR
Related: dsp Type of DSP for data acquisition (P)
osfilt Oversampling filter for real-time DSP (P)

\section*{defaultdir Default directory for Files menu system (P)}

Description: Stores the name to the default directory for use with the Directory Menu in the Files menu system. Initial value for defaultdir is the home or login directory of the user. Selecting the Default button in the Directory Menu sets the current directory to the value of defaultdir. The opposite action, setting the value of defaultdir to the current directory, occurs when the Set Default button in the Directory Menu is selected. If the entry for a directory is marked
and the Set Default button is selected, the directory marked becomes the new value of defaultdir.

See also: VnmrJ Liquids NMR

\section*{delcom Delete a user macro (M)}

Syntax: delcom(file)
Description: Deletes a macro file in a user's macro library (maclib). Note that delcom will not delete a macro in the VnmrJ system macro library or a macro in a macro directory specified by the maclibpath parameter.
Arguments: file is the file name of the user's macro to be deleted.
\begin{tabular}{cll} 
Examples: & delcom('lds') \\
See also: & User Programming \\
Related: & crcom & Create user macro without using a text editor (C) \\
& maclibpath & Path to user's macro directory (P) \\
& macrorm & Remove a user macro (C)
\end{tabular}
delete \(\quad\) Delete a file, parameter directory, or FID directory (C)
Syntax: delete(file1<,file2,...>)
Description: Delete files and directories in a somewhat safer manner than the rm command. Using rm is not recommended in VnmrJ because rm allows wildcard characters (* and ?) in the file description and recursive file deletion with the \(-r\) option. The delete command does not allow wildcard characters or the \(-r\) option, but you can still use the delete command to delete a file as well as remove .fid and . par directories, normally the only directories that need to be removed (experiment directories are deleted with the delexp macro).
Arguments: file1, file2, . . . are the names of one or more files or directories to be deleted. When the delete command is entered, it first searches for file1. If it finds that file and it is not a directory, file1 is deleted. If file1 is not found,.\(f i d\) is appended to the file name and delete searches for the file in that.fid directory. If the file is found, it is removed; otherwise, . par is appended to the file name and delete searches for the file in that.par directory. If the file is found, it is removed; otherwise, the command takes no action and continues to the next file name. The process is repeated for each file name given as an argument.

Examples: delete('/home/vnmrl/memo')
delete('/vnmr/fidlib/fidld')
See also: VnmrJ Liquids NMR
Related: delexp Delete an experiment (M)
rm Delete file (C)
rmdir \(\quad\) Remove directory (C)

\section*{deleteSelectedDelete selected stack or slice (C)}

Applicability: Systems with imaging capabilities.
Description: Deletes selected stack or slice (only one is selected at a time).
Related: gplan Start interactve image planning (C)

\section*{deleteSlice Delete selected slice (C)}

Applicability: Systems with imaging capabilities.
Description: Deletes selected slice.
Related: gplan Start interactve image planning (C)

\section*{delexp Delete an experiment (M)}

Syntax: delexp (experiment_number)
Description: Deletes an experiment.
Arguments: experiment_number is the number (from 2 through 9999) of the experiment to be deleted (experiment 1 cannot be deleted). delexp also deletes the corresponding jexpXXX macro if necessary.
Examples: delexp (321)
See also: VnmrJ Liquids NMR
Related: cexp Create an experiment (M)
jexp Join existing experiment (C)
dels
Delete spectra from \(T_{1}\) or \(T_{2}\) analysis (C)
Syntax: dels(index1<,index2, ...>)
Description: Deletes the spectra selected from the file fp . out (the output file of fp ) used by the \(t 1\) or \(t 2\) analysis. Spectra may be restored by rerunning \(f p\).

Arguments: index1, index2, ... are the indexes of the spectra to be deleted.
Examples: dels(7)
dels \((2,5)\)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dll & Display listed line frequencies and intensities (C) \\
& fp & Find peak heights or phases (C) \\
getll & Get frequency and intensity of a line (C) \\
& t 1 & \(T_{1}\) exponential analysis \((\mathrm{M})\) \\
& \(\mathrm{t2}\) & \(T_{2}\) exponential analysis \((\mathrm{M})\)
\end{tabular}

\section*{delta \(\quad\) Cursor difference in directly detected dimension (P)}

Description: Difference between two frequency cursors along the directly detected dimension. The value is changed by moving the right cursor, relative to the left, in the ds or dconi display.

Values: Positive number, in Hz.
See also: VnmrJ Liquids NMR
Related: dconi Interactive 2D data display (C)
delta1 Cursor difference in 1st indirectly detected dimension (P)
delta2 Cursor difference in 2nd indirectly detected dimension (P)
ds \(\quad\) Display a spectrum (C)
split \(\quad\) Split difference between two cursors (M)

\section*{delta1 Cursor difference in 1st indirectly detected dimension (P)}

Description: Difference of two frequency cursors along the first indirectly detected dimension. Analogous to the delta parameter except that deltal applies to the first indirectly detected dimension of a multidimensional data set.

D
Values: Positive number, in Hz .
See also: VnmrJ Liquids NMR
Related: delta Cursor difference in directly detected dimension (P)
delta2 Cursor difference in 2nd indirectly detected dimension (P)
Description: Difference of two frequency cursors along the second indirectly detected dimension. Analogous to the delta parameter except that delta2 applies to the second indirectly detected dimension of a multidimensional data set.
Values: Positive number, in Hz .
See also: VnmrJ Liquids NMR
Related: delta Cursor difference in directly detected dimension (P)
deltaf Difference of two time-domain cursors (P)
Description: Difference between the two time-domain cursors of the \(d f\) (or dfid) display. To create this parameter and the other FID display parameters axisf, dotflag, vpf, vpfi, and crf (if the parameter set is older and lacks these parameters), enter addpar('fid').
Values: Number, in seconds.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
crf \(\quad\) Current time-domain cursor position (P)
df Display a single FID (C)
dfid Display a single FID (C)

\section*{dept \(\quad\) Set up parameters for DEPT pulse sequence (M)}
Description: Macro for the DEPT (Distortionless Enhancement by Polarization Transfer) experiment.
See also: VnmrJ Liquids NMR
Related: adept Automatic DEPT analysis and spectrum editing (C)
autodept Automated complete analysis of DEPT data (M)
deptgl Set up parameters for DEPTGL pulse sequence (M)
deptproc Process array of DEPT spectra (M)
padept Plot automatic DEPT analysis (C)
ppcal Proton decoupler pulse calibration (M)
Dept \(\quad\) Set up parameters for DEPT experiment (M)
Description: Set up parameters for DEPT experiment
DEPT Change parameters for DEPT experiment (M)
Description: Converts the current parameter set to a DEPT experiment.

\section*{deptgl Set up parameters for DEPTGL pulse sequence (M)}
Applicability: Sequence is not supplied with MERCURYplus/Vx .
Description: Macro for the DEPTGL pulse sequence for spectral editing and polarization transfer experiments.

See also: VnmrJ Liquids NMR
Related: dept Set up parameters for DEPT pulse sequence (M)

\section*{deptproc \\ Process array of DEPT spectra (M)}

Description: Automatically processes arrays of DEPT-type spectra. The FIDs are transformed (using \(1 . b=2.5\) ), phased, and scaled. In foreground operation, a stacked display is produced. By default, an automatic DEPT analysis (adept) is performed.

See also: VnmrJ Liquids NMR
Related: adept Automatically edit DEPT spectra (C)
dept Set up parameters for DEPT pulse sequence (M)
lb Line broadening along the directly detected dimension (P)
pldept Plot DEPT type spectra (M)
procplot Automatically process FIDs (M)

\section*{destroy Destroy a parameter (C)}

Syntax: destroy (parameter<,tree>)
Description: Removes a parameter from one of the parameter trees. If the destroyed parameter was an array, the array parameter is automatically updated.

If destroy is called for a non-existent parameter, the command will abort with a message. If an optional return value is given, it will indicate success (1) or failure (0) and the command will not abort.
Arguments: parameter is the name of the parameter to be destroyed.
tree is a keyword for the type of parameter tree: 'global ', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on types of trees.
Examples: destroy('a')
destroy('c','global')
See also: User Programming
Related: array Parameter order and precedence (P)
create \(\quad\) Create new parameter in a parameter tree (C)
display Display parameters and their attributes (C)
paramvi Edit a variable and its attributes using vi text editor (C)
prune Prune extra parameters from current tree (C)

\section*{destroygroup Destroy parameters of a group in a tree (C)}

Syntax: destroygroup (group<,tree>)
Description: Removes parameters of a group from one of the parameters trees.
Arguments: group is a keyword for the type of parameter group: 'all ', 'sample',
'acquisition', 'processing', 'display', or 'spin'.
tree is a keyword for the type of parameter tree: 'global', 'current ', or 'processed'. The default is 'current'. Refer to the create command for more information on trees.
Examples: destroygroup('sample') destroygroup('all','global')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
destroy \(\quad\) Destroy a parameter (C)
```

display Display parameters and their attributes (C)
groupcopy Copy parameters of group from one tree to another (C)
setgroup Set group of a variable in a tree (C)

```

Syntax: (1) df< (index) >
(2) \(d f\) (options)

Description: Displays a single FID. Parameter entry after an FID has been displayed causes the display to be updated. The FID is left-shifted by the number of complex data points specified by the parameter lsfid. The FID is also phase-rotated (zeroorder only) by the number of degrees specified by the parameter phfid. Left shifting and phasing can be avoided by setting lsfid and phfid to 'n'. df is identical in function to the dfid command.
Arguments: index (used with syntax 1) is the number of a particular FID for arrayed 1D experiments or for 2 D experiments. Default is 1 .
options (used with syntax 2) is any of the following:
- 'toggle' is a keyword to switch between box and cursor modes.
- 'restart' is a keyword to redraw the cursor if it has been turned off.
- 'expand ' is a keyword to switch between expanded and full views of the FID.
- 'imaginary' is a keyword to switch on and off the display of the imaginary FID.
- 'sfwf' is a keyword to interactively adjust the start and width of the FID display.
- 'phase' is a keyword to enter an interactive phasing mode.
- 'dscale' is a keyword to toggle the scale below the FID on and off.

Examples: df
df (4)
df('restart')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & crmode & Current state of cursors in dfid, ds, or dconi (P) \\
dfid & Display a single FID (C) \\
df2d & Display FIDs of 2D experiment (C) \\
dfmode & Current state of display of imaginary part of a FID (P) \\
lsfid & Number of complex points to left-shift the np FID (P) \\
phfid & Zero-order phasing constant for the np FID (P)
\end{tabular}
df2d

\section*{Display FIDs of 2D experiment (C)}

Syntax: df2d<(<'nf',><array_index>) >
Description: Produces a color intensity map of the raw 2D FIDs as a function of \(t_{1}\) and \(t_{2}\). The display can be modified by subsequent display commands, for example, df2d dconn will display the 2D FIDs without clearing the graphics screen.
Arguments: 'nf ' is a keyword specifying that the data has been collected in the compressed form using nf. In other words, each array element is collected as one 2D FID or image comprised of nf FIDs or traces.
array_index is the index of the array to be displayed.
Examples: df2d
df2d(1)

See also: VnmrJ Liquids NMR
Related: dconi Interactive 2D data display (C)
df Display a single FID (C)
dfid Display a single FID (C)
Syntax: (1) dfid< (index) >
(2) dfid< (options) >

Description: Functions the same as the \(d f\) command. See \(d f\) for information.
See also: VnmrJ Liquids NMR
Related: df Display a single FID (C)

\section*{dfmode \(\quad\) Current state of display of imaginary part of a FID (P)}

Description: Holds a string variable that reflects the state of display of the imaginary part of a FID. dfmode is primarily used by the programmable menu dfid to determine the status of the display of the imaginary part of a FID.
Values: 'r' indicates the current display is real only.
' \(i\) ' indicates the current display is imaginary.
' \(z\) ' indicates the display is zero imaginary.
See also: User Programming

\section*{dfrq Transmitter frequency of first decoupler ( \(P\) )}

Description: Contains the transmitter frequency for the first decoupler. dfrq is automatically set when the parameter \(d n\) is changed and should not be necessary for the user to manually set.
Values: Frequency, in MHz. The value is limited by synthesizer used with the channel.
See also: VnmrJ Liquids NMR
Related: dfrq2 Transmitter frequency of second decoupler (P)
dfrq3 Transmitter frequency of third decoupler (P)
dfrq4 Transmitter frequency of fourth decoupler (P)
dn \(\quad\) Nucleus for first decoupler (P)
dof \(\quad\) Frequency offset for first decoupler (P)
sfrq Transmitter frequency of observe nucleus (P)
\(\operatorname{spcfrq} \quad\) Display frequencies of \(r f\) channels (M)

\section*{dfrq2 Transmitter frequency of second decoupler (P)}

Applicability: Systems with a second decoupler.
Description: Contains the transmitter frequency for the second decoupler. dfrq2 is automatically set when parameter dn2 is changed and should not be necessary for the user to manually set.

Values: Frequency, in MHz. Value is limited by synthesizer used with the channel. If \(\mathrm{dn} 2=\mathrm{I}\) ' (two single quotes with no space in between) and a second decoupler is present in the console, dfrq2 is internally set to 1 MHz .
See also: VnmrJ Liquids NMR
\(\begin{array}{lll}\text { Related: } & \operatorname{dn2} & \text { Nucleus for second decoupler (P) } \\ & \text { dof2 } & \text { Frequency offset for second decoupler (P) }\end{array}\)

\section*{dfrq3 Transmitter frequency of third decoupler (P)}

Applicability: Systems with a third decoupler.
Description: Contains the transmitter frequency for the third decoupler. dfrq3 is automatically set when the parameter dn 3 is changed and should not be necessary for the user to manually set.

Values: Frequency, in MHz. Value is limited by synthesizer used with the channel. If dn \(3=1\) ' (two single quotes with no space in between) and a third decoupler is present in the console, dfrq 3 is internally set to 1 MHz .
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dn3 & Nucleus for third decoupler (P) \\
dof3 & Frequency offset for third decoupler (P)
\end{tabular}

\section*{dfrq4 Transmitter frequency of fourth decoupler ( P )}

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Contains the transmitter frequency for the fourth decoupler. dfrq4 is automatically set when the parameter dn 4 is changed and should not be necessary for the user to manually set.
Values: Frequency, in MHz. Value is limited by a synthesizer used with the channel. If dn4 = ' ' (two single quotes with no space in between) and a fourth decoupler is present in the console, dfrq4 is internally set to 1 MHz .
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dn 4 & Nucleus for fourth decoupler (P) \\
& dof 4 & Frequency offset for fourth decoupler (P) \\
& spcfrq & Display frequencies of rf channels (M) \\
& rftype & type of rf generation
\end{tabular}

\section*{dfs \\ Display stacked FIDs (C)}

Syntax: dfs<(<start><,finish><,step><,'all'|'imag'><, color>) >
Description: Displays one or more FIDs. The position of the first FIDs is governed by the parameters wC, SC, and vpf. A subsequent FID is positioned relative to the preceding FID by the parameters vo and ho.
Arguments: start is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
finish is the index number of the last FID for multiple FIDs. To include all FIDs, set start to 1 and finish to arraydim (see example below).
step is the increment for the FID index. The default is 1 .
'all' is a keyword to display all of the FIDs. This is the default.
'imag ' is a keyword to display only the imaginary FID channel.
color is the color of the display: 'red', 'green', 'blue', 'cyan',
'magenta', 'yellow', 'black', or 'white'.
Examples: dfs(1,arraydim,3)
dfs('imag')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{ll} 
arraydim \\
\(d f s a\) & Dimension of experiment (P) \\
& \(d f s a n\)
\end{tabular} & Display stacked FIDs automatically (C) \\
& \(d f s h\) & Display stacked FIDs automatically without screen erase (C) \\
& \(d f s h n\) & Display stacked FIDs horizontally (C) \\
& Display stacked FIDs horizontally without screen erase (C)
\end{tabular}
```

$d f s n$	Display stacked FIDs without screen erase (C)
$d f w w$	Display FIDs in whitewash mode (C)
ho	Horizontal offset (P)
plfid	Plot FID (C)
pfww	Plot FIDs in whitewash mode (C)
sc	Start of chart (P)
vo	Vertical offset (P)
vpf	Current vertical position of FID (P)
wC	Width of chart (P)

dfsa Display stacked FIDs automatically (C)
Syntax: dfsa<(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Displays one or more FIDs automatically by adjusting the parameters vo and
ho to fill the screen in a lower left to upper right presentation (wc must be set to less than full screen width for this to work). The position of the first FID is governed by parameters wc, sc, and vpf.
Arguments: start is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
finish is the index number of the last FID for multiple FIDs.
step is the increment for the FID index. The default is 1.
'all' is a keyword to display all of the FIDs. This is the default.
'imag ' is a keyword to display only the imaginary FID channel.
color is the color of the display: 'red', 'green', 'blue', 'cyan',
'magenta', 'yellow', 'black', or 'white'.
See also: VnmrJ Liquids NMR

Related:	dfs	Display stacked FIDs (C)
	dfsan	Display stacked FIDs automatically without screen erase (C)

dfsan Display stacked FIDs automatically without screen erase (C)
Syntax: dfsan<(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Functions the same as the command dfsa except the graphics window is not erased before starting the display. This allows composite displays of many FIDs to be created. The arguments are the same as dfsa.
See also: VnmrJ Liquids NMR
Related: dfsa Display stacked FIDs automatically (C)

```

\section*{dfsh Display stacked FIDs horizontally (C)}
```

Syntax: dfsh<(<start><,finish><,step><,'all'|'imag'><, color>)>
Description: Displays one or more FIDs horizontally by setting vo to zero and adjusting ho, sc , and wc to fill the screen from left to right with the entire array. The position of the first FID is governed by parameters wc, sc, and vpf.
Arguments: start is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
finish is the index number of the last FID for multiple FIDs. To display all FIDs, set finish to the parameter arraydim.
step is the increment for the FID index. The default is 1 .
'all' is a keyword to display all of the FIDs. This is the default.

```
```

 'imag ' is a keyword to display only the imaginary FID channel.
 color is the color of the display:'red','green', 'blue', 'cyan',
 'magenta','yellow','black',or'white'.
 See also: VnmrJ Liquids NMR
 Related: dfs Display stacked FIDs (C)
 dfshn Display stacked FIDs horizontally without screen erase (C)
 dfshn Display stacked FIDs horizontally without screen erase (C)
Syntax: dfshn<(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Functions the same as the command dfsh except the graphics window is not
erased before starting the display. This allows composite displays of many FIDs
to be created. The arguments are the same as dfsh.
See also: VnmrJ Liquids NMR
Related: dfsh Display stacked FIDs horizontally (C)
dfsn Display stacked FIDs without screen erase (C)
Syntax: dfsn<(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Functions the same as the command dfs except the graphics window is not
erased before starting the display. This allows composite displays of many FIDs to be created. The arguments are the same as dfs.
See also: VnmrJ Liquids NMR
Related: dfs Display stacked FIDs (C)

```

\section*{dfww Display FIDs in whitewash mode (C)}
```

Syntax: dfww<(<start><,finish><,step><,'all'|'imag'><, color>) >
Description: Displays FIDs in whitewash mode (after the first FID, each FID is blanked out in regions in which it is behind an earlier FID). The position of the first FIDs is governed by parameters wC, sc, and vpf.
Arguments: start is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
finish is the index number of the last FID for multiple FIDs.
step is the increment for the FID index. The default is 1 .
'all' is a keyword to display all of the FIDs. This is the default.
' imag ' is a keyword to display only the imaginary FID channel.
color is the color of the display: 'red', 'green', 'blue', 'cyan',
'magenta', 'yellow', 'black', or 'white'.
See also: VnmrJ Liquids NMR

Related:	dfs	Display stacked FIDs (C)
	pfww	Plot FIDs in whitewash mode (C)

Display group of acquisition/processing parameters (C)
Syntax: dg<(template) >
Description: Displays the group of acquisition and $1 \mathrm{D} / 2 \mathrm{D}$ processing parameters. To display an individual parameter, enter the name of the parameter followed by a question mark (e.g., sw?). Parameters do not have to be displayed in order to be entered or changed. The dg display is controlled by the string parameter dg.

```

Arguments: template is the name of the template parameter. The default is 'dg'. See the manual User Programming for rules on constructing a template. Commands such as dg1, dg2, and dgs (but not da) are macros that activate dg with the appropriate template argument ('dg1', 'dg2', 'dgs', etc.).

Examples: dg
dg('dgexp')
See also: VnmrJ Liquids NMR; User Programming
Related:
? Display individual parameter value (C)
da Display acquisition parameter arrays (C)
dg Control dg parameter group display (P)
dg1 Display group of display parameters (M)
dg2 Display group of 3rd and 4th rf channel/3D parameters (M)
dgs Display group of special/automation parameters (M)
da Display acquisition parameter arrays (C)

Description: Controls the display of the dg command for the group of acquisition and 1D/2D processing parameters. dg , a string parameter, can be modified with the command paramvi('dg').
See also: VnmrJ Liquids NMR
Related: dg Display group of acquisition/processing parameters (C)
paramvi Edit a parameter and its attributes with vi text editor (C)

\section*{dg1 Display group of display parameters (M)}

Description: Displays the group of display parameters. To display an individual parameter, enter the name of the parameter followed by a question mark (e.g., sp?). Parameters do not have to be displayed in order to be entered or changed. The dg 1 display is controlled by the string parameter dg 1 .

See also: VnmrJ Liquids NMR
Related: ?
Display individual parameter value (C)
dg1 Control dg1 parameter group display (P)
dg Display group of acquisition/processing parameters (C)

\section*{dg1}

Description: Controls the display of the dg1 command for the group of display parameters. dg1, a string parameter, can be modified with paramvi (' dg1').
See also: VnmrJ Liquids NMR
Related: dg1 Display group of display parameters (M)
paramvi \(\quad\) Edit a parameter and its attributes with \(v i\) text editor (C)

Display group of 3rd and 4th rf channel/3D parameters (M)
Description: Displays the group of acquisition parameters associated with a second decoupler channel on a system with a third rf channel. It also displays the group of parameters associated with selective 2D processing of 3D data sets. To display an individual parameter, enter the name of the parameter followed by a question mark (e.g., sw?). Parameters do not have to be displayed in order to be entered or changed. The dg2 display is controlled by the string parameter dg2.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{See also: VnmrJ Liquids \(N M R\)} \\
\hline Related: & \begin{tabular}{l}
dg \\
dg2
\end{tabular} & Display group of acquisition/processing parameters (C) Control dg2 parameter group display (P) \\
\hline \multirow[t]{2}{*}{\({ }^{\operatorname{dg} 2}\) Description:} & \multicolumn{2}{|l|}{Control dg2 parameter group display (P)} \\
\hline & \multicolumn{2}{|l|}{Controls the display of the dg2 command for the group of 3rd and 4th rf channel/3D parameters. dg 2 , a string parameter, can be modified with the command paramvi ('dg2'). To retrieve the dg2 and ap display templates for the current experiment, enter addpar ('3rf').} \\
\hline See also: & \multicolumn{2}{|l|}{VnmrJ Liquids NMR} \\
\hline Related: & \begin{tabular}{l}
addpar \\
dg2 \\
paramvi
\end{tabular} & Add selected parameters to the current experiment (M) Display group of 3rd and 4th rf channel/3D parameters (M) Edit a parameter and its attributes with vi text editor (M) \\
\hline dga & \multicolumn{2}{|l|}{Display group of spin simulation parameters (M)} \\
\hline Description: & \multicolumn{2}{|l|}{Displays the file of spin simulation parameters (Group A). There is one such group of parameters in the data system, not one per experiment as with normal NMR parameters.} \\
\hline See also: & \multicolumn{2}{|l|}{VnmrJ Liquids NMR} \\
\hline Related: & \begin{tabular}{l}
dg \\
dla
\end{tabular} & Display group of acquisition/processing parameters (C) Display spin simulation parameter arrays (C) \\
\hline DgcstesL & \multicolumn{2}{|l|}{Set up parameters for DgcsteSL pulse sequence (M)} \\
\hline Description: & \multicolumn{2}{|l|}{Converts a parameter set to DgcsteSL experiment.} \\
\hline See also: & \multicolumn{2}{|l|}{VnmrJ Liquids NMR} \\
\hline Related: & dosy & Process DOSY experiments (M) \\
\hline & fiddle & Perform reference deconvolution (M) \\
\hline & setup_dosy & Set up gradient levels for DOSY experiments (M) \\
\hline Dgcstecosy & \multicolumn{2}{|l|}{Set up parameters for Dgcstecosy pulse sequence (M)} \\
\hline Description: & \multicolumn{2}{|l|}{Converts a parameter set to Dgcstecosy experiment} \\
\hline See also: & \multicolumn{2}{|l|}{VnmrJ Liquids NMR} \\
\hline \multirow[t]{4}{*}{Related:} & dosy & Process DOSY experiments (M) \\
\hline & makeslice & Synthesize 2D projection of a 3D DOSY spectrum (C) \\
\hline & setup_dosy & Set up gradient levels for DOSY experiments (M) \\
\hline & & Restore first 2D spectrum in 3D DOSY spectrum (M) \\
\hline Dgcstehmqc & \multicolumn{2}{|l|}{Set up parameters for Dgcstehmqc pulse sequence (M)} \\
\hline Description: & \multicolumn{2}{|l|}{Converts a parameter set to Dgcstehmqc experiment} \\
\hline See also: & \multicolumn{2}{|l|}{VnmrJ Liquids NMR} \\
\hline \multirow[t]{4}{*}{Related:} & dosy & Process DOSY experiments (M) \\
\hline & makeslice & Synthesize 2D projection of 3D DOSY spectrum (C) \\
\hline & setup_dosy & Set up gradient levels for DOSY experiments (M) \\
\hline & showoriginal & Restore first 2D spectrum in 3D DOSY spectrum (M) \\
\hline
\end{tabular}
dglc Display group of LC-NMR parameters (M)
    Applicability: Systems with LC-NMR accessory.
        Description: Displays parameters related to LC-NMR on a separate screen. This macro is
    equivalent to the command dg (' \(\left.\mathrm{dglc} \mathrm{C}^{\prime}\right)\).
        See also: VnmrJ Liquids NMR
            Related: dglc Control LC-NMR parameter display (P)
dglc \(\quad\) Control dglc parameter group display (P)
    Applicability: Systems with LC-NMR accessory.
        Description: Controls the display of the LC-NMR parameters by the macro dglc and the
    equivalent command \(\mathrm{dg}(\mathrm{dglc} \mathrm{l})\). If this parameter does not exist, the
    parlc macro can create it.
            See also: VnmrJ Liquids NMR
            Related: dglc Display LC-NMR parameters (M)
    parlc Create LC-NMR parameters (M)
dgm Display menu to view parameter screens (C)
    Applicability: Systems with imaging capabilities.
        Description: Displays a menu for selecting and viewing a list of parameter screens.
            See also: VnmrJ Imaging NMR
dgs \(\quad\) Display group of shims and automation parameters (M)
    Description: Displays the group of shims and automation parameters. To display an
    individual parameter, enter name of the parameter followed by a question mark
    (e.g., sw?). Parameters do not have to be displayed in order to be entered or
    changed. The dgs display is controlled by the parameter dgs.
        See also: VnmrJ Liquids NMR
        Related: dg Display group of acquisition/processing parameters (C)
        dgs \(\quad\) Control dgs parameter group display (P)
    dgs \(\quad\) Control dgs parameter group display (P)
    Description: Controls display of the dgs command for the group of shims and automation
    parameters. dgs, a string parameter, can be modified by paramvi('dgs').
        See also: VnmrJ Liquids NMR
        Related: dgs Display group of special/automation parameters (M)
        paramvi Edit a parameter and its attributes with vi text editor (C)
    dhp Decoupler high-power control with class \(C\) amplifier (P)
    Applicability: System with a class \(C\) amplifier.
    Description: dhp selects a decoupler high-power level for systems with class C amplifiers
    on the decoupler channel. Specific values of dhp should be calibrated
    periodically for any particular instrument and probe combination. As a rough
    guide, dhp \(=75\) corresponds to approximately 2 watts at 200 MHz .
    CAUTION: Decoupler power greater than 2 watts in a switchable probe will
    damage the probe. Always carefully calibrate high-power decoupling
    to avoid exceeding 2 watts of power.

For systems equipped with a linear amplifier on the decoupler channel, dhp is nonfunctional and is replaced by the parameter dpwr.
Note that dhp runs in the opposite direction from \(d l p\) (i.e., for dhp a higher number means more power, for dlp a higher number means less power).
Values: 0 to 255 (where 255 is maximum power) in uncalibrated, non-linear units.
' n ' selects low-power decoupling under the control of the parameter dl p .
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dlp & Decoupler low power with class C amplifier (P) \\
dpwr & Power level for first decoupler with linear amplifier (P) \\
tn & Nucleus for observe transmitter (P)
\end{tabular}

\section*{dialog Display a dialog box from a macro (C)}

Syntax: dialog(definition_file,output_file<,'nowait'>)
Description: Opens a dialog box from a macro. The output is written to a file that can be read by the macro using the lookup command.
Arguments: definition_file is the name of the file (specified by an absolute path) that defines the layout of the dialog box.
output_file is the name of the file (specified by an absolute path) where the results of the dialog box are written.
'nowait' is a keyword to return immediately, without waiting for input into the dialog box.
Examples: dialog(userdir+'/dialoglib/array,'/tmp/array')
See also: User Programming
Related: lookup Look up words and lines from a text file (C)
diffparams Report differences between two parameter sets (U)
Syntax: diffparams <-list> file1 file2 <macroname>
Description: Reports differences between parameter sets. A macro can optionally be created that will convert file1 into file2.
Arguments: file1 and file2 are parameter files, like \$HOME/vnmrsys/exp1/ procpar \$HOME/vnmrsys/exp1/curpar \$HOME/vnmrsys/ global /vnmr/conpar xyz.fid/procpar file1 and file2 can also be directories (xyz.fid or xyz . par, or a local experiment like ~/ vnmrsys / exp1); in this case diffparams will look for a subfile procpar in these directories. The optional-list argument will cause a list of the parameters which are different to be printed. If the -list option is used, the macro feature is turned off. If a parameter exists in file1 but not file2, it is not listed. If a parameter exists in file2 but not file1, it is listed. If the parameter exists in both files, it is listed if the values are different. It is not listed if other information associated with the parameter is different. This other information is things like protection bits, maximum values, group, type, etc.
An optional third argument spectifies the pathname of a macro to output. This macro will contain the MAGICAL commands necessary to convert file1 into file2.
Examples: diffparams abc.fid xyz.fid
diffparams -list abc.fid xyz.fid
diffparams ~/vnmrsys/exp1 ~/vnmrsys/exp3
diffparams ~/vnmrsys/exp1 ~/vnmrsys/exp3 ~/vnmrsys/ maclib/change1to3

Syntax: diffshims(shimfile1,shimfile2)
(From UNIX) diffshims shimfile1 shimfile2
Description: Compares values for room-temperature shims stored in two separate files.
Arguments: shimfile1 and shimfile2 are names of separate files containing shim values. Both files must have been written using the svs command.
See also: VnmrJ Liquids NMR
Related: Svs Save shim coil settings (C)

\section*{digfilt \(\quad\) Write digitally filtered FIDs to another experiment (M)}

Syntax: digfilt (exp_number<,option>)
Description: Saves digitally filtered FIDs to another experiment.
Arguments: exp_number specifies the number of the experiment, from 1 to 9 , for saving the FIDs.
option is one of the keywords 'nodc', 'zero', 'lfs', 'zfs', or
't2dc'. Use a keyword for an option if the same option was used when processing the data with \(f t, w f t, f t 2 d\), or \(w f t 2 d\).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & downsamp & Sampling factor applied after digital filtering (P) \\
& ft & Fourier transform 1D data (C) \\
& \(\mathrm{ft2d}\) & Fourier transform 2D data (C) \\
& wft & Weight and Fourier transform 1D data (C) \\
& wft2d & Weight and Fourier transform 2D data (C)
\end{tabular}

\section*{dir List files in directory (C)}

Syntax: dir<(string) >
Description: Displays files in a directory on the text window. The dir command is identical to the 1 s and lf commands.

Arguments: string is a string argument containing the options and/or directory names used if this were the UNIX ls command (e.g., dir ('-l *.fid') requests a long listing ( -1 ) of all files ending with.fid (*.fid)). If no argument is entered, dir lists all files in the current working directory.
Examples:
dir
dir('data')
dir('-l *.fid')
See also: VnmrJ Liquids NMR
Related: lf List files in directory (C)
1s List files in directory (C)
disCenterLinesShow overlay as center lines (C)
Applicability: Systems with imaging capabilities.
Description: Shows intersection overlay of stack as center lines or stripes.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)
```

disp3d Display 3D data (U)
Applicability: Systems with imaging capabilities.
Syntax: (From UNIX) disp3d <fdf_file>
Description: Displays a 3D FDF (Flexible Data Format) file or a raw 8-bit 3D data file with no header. Compatible FDF files are produced by $f t 3 d$ with the ' $£ d f$ ' option (or by default if appmode=' imaging ').
FDF data can also be loaded either by entering the file name as an argument to disp3d or by typing the file name into the File field in the disp3d control panel and clicking the Load button. If the FDF data word size is larger than 8 bits, the data are scaled and truncated to 8 bits for display. Raw data files can only be loaded from the control panel.
Besides the file name, the user must enter the size of the data matrix in the fast, medium, and slow dimensions in the Data size field. Typically, these would be the values $£ n / 2$, $£ n 1 / 2$, and $£ n 2 / 2$, respectively.
Furthermore, the desired size of the image in screen pixels-also in the fast, medium, and slow dimensions-must be entered in the Display size fields. Typically, these values would be near 100 and the relative ratio of the parameters 1 ro, 1 pe, and 1 pe2, respectively.
After loading the data, a 3 D volume appears in the display panel.
Arguments: fdf_file is the name of a file containing FDF data.
See also: VnmrJ Imaging NMR

Related:	appmode	Application mode (P)
fn	Fourier number in directly detected dimension (P)	
fn1	Fourier number in 1st indirectly detected dimension (P)	
fn2	Fourier number in 2nd indirectly detected dimension (P)	
ft3d	Perform a 3D Fourier transform on a 3D FID data set (M,U)	
lpe	Field of view size for phase encode axis (P)	
lpe2	Field of view size for 2nd phase-encode axis (P)	
lro	Field of view size for readout axis (P)	

```

\section*{display Display parameters and their attributes (C)}
```

Syntax: display(parameter|'*'|'**'<,tree>)
Description: Displays one or more parameters and their attributes from a parameter tree.
Arguments: Three levels of display are available: parameter, '*', and '**'.

- parameter is the name of a single parameter and the display is of its attributes (e.g., display ('a') displays the attributes of parameter a in the (default) current tree).
- ' $*$ ' is a keyword to display the name and values of all parameters in a tree (e.g., display('*', 'global') displays all parameter names and values in the global tree).
- ' **' is a keyword to display the attributes of all parameters in a tree (e.g., display('**','processed') displays the attributes of all parameters in the processed tree).
tree is the type of parameter tree and can be 'global' ', 'current ',
'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on types of trees.
Examples: display('a')
display('*','global')
display('**','processed')

```

See also: User Programming
Related: create Create new parameter in a parameter tree (C)
destroy Destroy a parameter (C)
paramvi Edit a parameter and its attributes with the vi text editor (C)
prune \(\quad\) Prune extra parameters from current tree (C)
disStripes Show overlay as stripes (C)
Applicability: Systems with imaging capabilities.
Description: Shows intersection overlay of stack as stripes.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)

\section*{dla \\ Display spin simulation parameter arrays (M)}

Syntax: dla<('long') >
Description: Displays the parameters containing the line assignments for spin simulation iteration (matching simulated spectra to actual data). A clindex value of a calculated transition gives the index of the assigned measured line. The value is zero for unassigned transitions.
Arguments: ' long ' is a keyword to display the parameters containing the line assignments for spin simulation iteration (matching simulated spectra to actual data) and put the line assignments into the file spini.la. This option is most useful when the dla display is too large to display all the calculated transitions in the text window. The dlalong command operates the same as the dla('long') command.

Examples: dla
dla('long')
See also: VnmrJ Liquids NMR
Related: assign Assign transitions to experimental lines (M)
clindex Index of experimental frequency of a transition (P)
dga Display parameters of spin simulation group (C)
dlalong Long display of spin simulation parameter arrays (C)
dlalong Long display of spin simulation parameter arrays (C)
Syntax: dlalong
Description: Puts line assignments into the file spini.la in a more complete form, then displays this file in the text window. It is most useful when the dla display is too large to display all the calculated transitions in the text window. The dla('long') command operates the same as dlalong.

See also: VnmrJ Liquids NMR
Related: dla Display spin simulation parameter arrays (M)

\section*{dli Display list of integrals (C)}

Description: Displays a list of integrals at the integral reset points. The frequency units of the displayed list of integrals is controlled by the parameter axis. The reset points may be defined with the \(z\) command and these frequencies are stored in lifrq. The calculated amplitudes of the integral region are stored in liamp. The reset points are stored as hertz and are not referenced to rfl and rfp. The
amplitudes are stored as the actual value; they are not scaled by ins or by insref. When the integral blanking mode is used (i.e., intmod='partial'), only the integrals corresponding to the displayed integral regions are listed.
The displayed integral value can be scaled with the setint macro. The integral is scaled by the parameters ins and insref.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & axis & Axis label for displays and plots (P) \\
cz & Clear integral reset points (C) \\
dlni & Display list of normalized integrals (M) \\
ins & Integral normalization scale (P) \\
insref & Fourier number scaled value of an integral (P) \\
liamp & Amplitudes of integral reset points (P) \\
lifrq & Frequencies of integral reset points (P) \\
nli & Find integral values (C) \\
rfl & Reference peak position in directly detected dimension (P) \\
rfp & Reference peak frequency in directly detected dimension (P) \\
setint & Set value of an integral (M) \\
z & Add integral reset point at cursor position (C)
\end{tabular}

\section*{dlivast Produce text file and process wells (M)}

Applicability: VAST accessory.
Syntax: dlivast<(last)>
Description: Produces a text file containing the integral of the partial regions and processes the wells.
Arguments: last is the number of the last well. The default is 96.
See also: VnmrJ Liquids NMR
Related: combiplate View a color map for visual analysis of VAST microtiter plate (U)
combishow Display regions as red, green, and blue in CombiPlate window (M)

Syntax: dll<('pos'<,noise_mult>) ><:number_lines,scale>
Description: Displays a list of line frequencies and amplitudes that are above a threshold defined by th. Frequency units are defined by the parameter axis. The results of this calculation are stored in llfrq and llamp. The frequencies are stored as Hz and are not referenced to \(r f 1\) and rfp. Amplitudes are stored as the actual data point value; they are not scaled by vs.
Arguments: 'pos' is a keyword to list only positive lines.
noise_mult is a numerical value that determines the number of noise peaks listed for broad, noisy peaks. The default value is 3 . A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold th. Negative values of noise_mult are changed to 3 .
number_lines is a return argument with the number of lines above the threshold.
scale is a return argument with a scaling factor for line amplitudes. This scaling factor accounts for vs and whether the lines are listed in absolute intensity mode or normalized mode.
Examples: dll
dll('pos')
```

dll(2.5)
dll:r1,sc

```

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & axis & Axis label for displays and plots (P) \\
dels & Delete spectra from \(T_{l}\) or \(T_{2}\) analysis (C) \\
fp & Find peak heights (C) \\
getll & Get frequency and intensity of a line (C) \\
\(l l a m p\) & List of line amplitudes (P) \\
\(l l f r q\) & List of line frequencies (P) \\
nl & Position the cursor at the nearest line (C) \\
nll & Find line frequencies and intensities (C) \\
rfl & Reference peak position in directly detected dimension (P) \\
rfp & Reference peak frequency in directly detected dimension (P) \\
th & Threshold (P) \\
vs & Vertical scale (P)
\end{tabular}

\section*{dlni Display list of normalized integrals (M)}

Description: Displays integrals in a normalized format. The parameter ins represents the value of the sum of all the integrals. When the integral blanking mode is used (i.e., intmod= 'partial'), only the integrals corresponding to the displayed integral regions are listed and are used in the summation.
See also: VnmrJ Liquids NMR
\begin{tabular}{ll}
cz & Clear integral reset points (C) \\
dli & Display list of integrals (C) \\
ins & Integral normalization scale (P) \\
nli & Find integral values (C) \\
z & Add integral reset point at cursor position (C)
\end{tabular}

\section*{dlp \\ Decoupler low-power control with class \(C\) amplifier ( \(P\) )}

Applicability: Systems with a class C amplifier.
Description: dlp controls the decoupler power level for systems with a class C decoupler amplifier in the low-power mode, generally used for homonuclear decoupling. dlp specifies dB of attenuation of the decoupler, below a nominal 1 watt value. \(d l p\) is active only if \(d h p=' n '\).
On systems with a decoupler linear amplifier, dlp is nonfunctional and dpwr controls decoupler power.
Values: 0 to 39 (in dB of attenuation, 0 is maximum power).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dhp & Decoupler high-power control with class C amplifier (P) \\
& dm & Decoupler mode for first decoupler (P) \\
& dmf & Decoupler modulation frequency for first decoupler (P) \\
& dpwr & Power level for first decoupler with linear amplifier (P)
\end{tabular}

\section*{dm Decoupler mode for first decoupler (P)}

Description: Determines the state of first decoupler during different status periods within a pulse sequence (refer to the manual User Programming for a discussion of status periods). Pulse sequences may require one, two, three, or more different decoupler states. The number of letters that make up the dm parameter vary appropriately, with each letter representing a status period (e.g., dm= 'yny ' or

\section*{dm2 Decoupler mode for second decoupler (P)}

Applicability: Systems with a second decoupler.
Description: Determines the state of second decoupler during different status periods within a pulse sequence. It functions analogously to dm .

Values: Same as \(d m\), except that if \(d n 2=1\) ' (two single quotes with no space in between) and a second decoupler is present in the console, dm2 assumes a default value of ' n ' when go is executed.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d m\) & Decoupler mode of first decoupler (P) \\
& \(d m f 2\) & Decoupler modulation frequency for second decoupler (P) \\
& \(d m m 2\) & Decoupler modulation mode for second decoupler (P) \\
& \(d n 2\) & Nucleus for second decoupler (P)
\end{tabular}

\section*{dm3 Decoupler mode for third decoupler (P)}

Applicability: Systems with a third decoupler.
Description: Determines the state of third decoupler during different status periods within a pulse sequence. It functions analogously to dm.
Values: Same as \(d m\), except that if \(d n 3={ }^{\prime}\) ' (two single quotes with no space in between) and a third decoupler is present in the console, dm3 assumes a default value of ' n ' when go is executed.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d m\) & Decoupler mode of first decoupler (P) \\
& \(d m f 3\) & Decoupler modulation frequency for third decoupler (P) \\
& \(d m m 3\) & Decoupler modulation mode for third decoupler (P) \\
& \(d n 3\) & Nucleus for third decoupler (P)
\end{tabular}

\section*{dm4 Decoupler mode for fourth decoupler (P)}

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Determines the state of fourth decoupler during different status periods within a pulse sequence. It functions analogously to dm .

Values: Same as \(d m\), except that if \(d n 4=1\) ' (two single quotes with no space in between) and a fourth decoupler is present in the console, dm4 assumes a default value of ' n ' when go is executed.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d m\) & Decoupler mode of first decoupler (P) \\
& \(d \mathrm{mf} 4\) & Decoupler modulation frequency for fourth decoupler (P) \\
& \(d \mathrm{~mm} 4\) & Decoupler modulation mode for fourth decoupler (P) \\
& \(d \mathrm{~m} 4\) & Nucleus for fourth decoupler (P)
\end{tabular}
dmf Decoupler modulation frequency for first decoupler (P)
Description: Controls modulation frequency of the first decoupler. It specifies 1/pw90 at the particular power level used. After calibrating the decoupler field strength \(\gamma \mathrm{H}_{2}\) (expressed in units of Hz ), dmf should be set equal to \(4^{*} \gamma \mathrm{H}_{2}\) for WALTZ, MLEV16, GARP, and XY32 (when available).
dmf is inactive for CW mode decoupling ( \(\mathrm{dmm}=\mathrm{I}^{\prime} \mathrm{C}^{\prime}\) ).
\(d m f\) is also active for square wave mode decoupling ( \(d m m=' r\) ') and fm-fm mode ( \(d m m=' f '\) ) decoupling. For \(d m m=' f '\), the modulation frequency is swept back and forth between about \(0.5 \%\) and \(5 \%\) of the dmf frequency (e.g., if dmf is 100 kHz , the modulation is swept between approximately 500 Hz and 5 kHz ). A reasonable optimum value for dmf when \(\mathrm{dmm}=\) ' f ' is the decoupler frequency divided by 4000.
Values: 5 Hz to 2 MHz in steps of 5 Hz (steps are actually approximately 4.768 Hz ).
For GARP modulation, the \(d m f\) value is internally multiplied by 45 , making the limit of possible dmf values to 5 Hz to 44.4 kHz when dmm= ' g '.
See also: VnmrJ Liquids NMR
Related: dmf2 Decoupler modulation frequency for second decoupler (P)
dmf3 Decoupler modulation frequency for third decoupler (P)
dmf4 Decoupler modulation frequency for fourth decoupler (P)
dmm Decoupler modulation mode for first decoupler (P)
pw90 \(90^{\circ}\) pulse width ( P )

\section*{dmf2 Decoupler modulation frequency for second decoupler (P)}

Applicability: Systems with a second decoupler.
Description: Controls the modulation frequency of the second decoupler. It functions analogously to the parameter dmf.
Values: Same as \(d m f\) except that if \(d n 2=\) ' ' (two single quotes with no space in between) and a second decoupler is present in the console (numrfch greater than 2), dmf 2 assumes a default value of 1000 Hz when go is executed.
See also: VnmrJ Liquids NMR
Related: dm2 Decoupler mode for second channel (P)
\(\mathrm{dmf} \quad\) Decoupler modulation frequency for first decoupler (P)
dmm2 Decoupler modulation mode for second decoupler (P)
dn2 Nucleus for second decoupler (P)
numrfch Number of rf channels ( P )
dmf3 Decoupler modulation frequency for third decoupler (P)
Applicability: Systems with a third decoupler.

\section*{dmf4 Decoupler modulation frequency for fourth decoupler ( P )}

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Controls the modulation frequency of the fourth decoupler. It functions analogously to the parameter dmf.
Values: Same as dmf except that if \(\mathrm{dn} 4=\mathrm{I}\) ' (two single quotes with no space in between) and a fourth decoupler is present in the console (numrfch equals 5), dmf 4 assumes a default value of 1000 Hz when go is executed.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d \mathrm{~m} 4\) & Decoupler mode for fourth channel (P) \\
& \(d \mathrm{mf}\) & Decoupler modulation frequency for first decoupler (P) \\
& \(d \mathrm{~mm} 4\) & Decoupler modulation mode for fourth decoupler (P) \\
& dn 4 & Nucleus for fourth decoupler (P) \\
numrfch & Number of rf channels (P)
\end{tabular}

\section*{dmfadj \(\quad\) Adjust tip-angle resolution time for first decoupler (M)}

Applicability: All systems except MERCURYplus/Vx .
```

 Syntax: dmfadj<(tipangle_resolution) >
    ```

Description: Adjusts the parameter dmf so that time associated with the first decoupler tipangle resolution is an integral multiple of 50 ns . This eliminates time truncation error in execution of programmable decoupling or spin-locking sequence by the waveform generator. For example, the tip-angle resolution for an MLEV-16 decoupling sequence should be \(90.0^{\circ}\) since every pulse in that sequence can be represented as an integral multiple of \(90.0^{\circ}\); however, the tip-angle resolution for a GARP decoupling sequence should be \(1.0^{\circ}\).
Arguments: tipangle_resolution specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter dres.
Examples: dmfadj
dmfadj(90.0)
See also: VnmrJ Liquids NMR
Related: dmf Decoupler modulation frequency for first decoupler (P)
dmf2adj Adjust tip-angle resolution time for second decoupler (M)
dmf3adj Adjust tip-angle resolution time third decoupler (M)
dmf4adj Adjust tip-angle resolution time fourth decoupler (M)
dres

Applicability: Systems with a second decoupler.
Syntax: dmf2adj<(tipangle_resolution) >
Description: Adjusts the parameter dmf 2 to make time associated with the second decoupler tip-angle resolution an integral multiple of \(50 \mathrm{~ns} . \mathrm{dmf} 2 \mathrm{adj}\) functions analogously to the macro dmfadj.
Arguments: tipangle_resolution specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter dres 2 .

Examples: dmf2adj
dmf2adj(90.0)
See also: VnmrJ Liquids NMR
Related: \(\quad \mathrm{dmf} 2 \quad\) Decoupler modulation frequency for second decoupler (P)
dmfadj Adjust decoupler tip-angle resolution time (M)
dres2 Tip angle resolution for second decoupler (P)
dmf3adj \(\quad\) Adjust tip-angle resolution time for third decoupler (M)
Applicability: Systems with a third decoupler.
Syntax: dmf3adj<(tipangle_resolution) >
Description: Adjusts the parameter dmf 3 to make time associated with the third decoupler tip-angle resolution an integral multiple of \(50 \mathrm{~ns} . d \mathrm{mf} 3 \mathrm{adj}\) functions analogously to the macro dmfadj.

Arguments: tipangle_resolution specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter dres 3 .
Examples: dmf3adj
dmf3adj(90.0)
See also: VnmrJ Liquids NMR
Related: \(\quad \mathrm{dmf} 3 \quad\) Decoupler modulation frequency for third decoupler (P)
dres3 Tip-angle resolution for third decoupler (P)
dmf4adj \(\quad\) Adjust tip-angle resolution time for fourth decoupler (M)
Applicability: Systems with a deuterium decoupler as the fourth decoupler.
Syntax: dmf4adj<(tipangle_resolution) >
Description: Adjusts the parameter \(\operatorname{dmf} 4\) to make time associated with the fourth decoupler tip-angle resolution an integral multiple of \(50 \mathrm{~ns}\left({ }^{U N I T Y} I N O V A\right) . d m f 4 \mathrm{adj}\) functions analogously to the macro dmfadj.
Arguments: tipangle_resolution specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter dres 4 .

Examples: dmf4adj
See also: VnmrJ Liquids NMR
Related: dmf4 Decoupler modulation frequency for fourth decoupler (P)
dres \(4 \quad\) Tip-angle resolution for fourth decoupler (P)

\section*{dmg \(\quad\) Data display mode in directly detected dimension (P)}

Description: Controls the mode of data display along the directly detected dimension. dmg is in the display group and can be set manually or by executing the commands ph, av, pwr, or pa for the values 'ph', 'av', 'pwr', or 'pa', respectively.
Values: ' ph ' sets the phased mode in which each real point in the displayed spectrum is calculated from a linear combination of real and imaginary points comprising each respective complex data point.
' av ' sets the absolute-value mode in which each real point in the displayed spectrum is calculated as the square root of the sum of squares of the real and imaginary points comprising each respective complex data point.
' pwr ' sets the power mode in which each real point in the displayed spectrum is calculated as the sum of squares of the real and imaginary points comprising each respective complex data point.
' pa ' sets the phase angle mode in which each real point in the displayed spectrum is calculated as the phase angle from the arc tangent of the real and imaginary points comprising each respective complex data point.
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
aig & Absolute intensity group (P) \\
av & Set absolute-value mode in directly detected dimension (C) \\
dcg & Drift correction group (P) \\
dmg 1 & Data display mode in 1st indirectly detected dimension (P) \\
dmg 2 & Data display mode in 2nd indirectly detected dimension (P) \\
ft & Fourier transform 1D data (C) \\
\(\mathrm{ft1d}\) & Fourier transform along \(\mathrm{f}_{2}\) dimension (C) \\
\(\mathrm{ft2d}\) & Fourier transform 2D data (C) \\
pa & Set phase angle mode in directly detected dimension (C) \\
ph & Set phased mode in directly detected dimension (C) \\
pmode & Processing mode for 2D data (P) \\
pwr & Set power mode in directly detected dimension (C) \\
wft & Weigh and Fourier transform 1D data (C) \\
wft1d & Weigh and Fourier transform of 2D data (C) \\
wft2d & Weigh and Fourier transform 2D data (C)
\end{tabular}

\section*{dmg1 Data display mode in 1st indirectly detected dimension (P)}

Description: Controls the mode of data display along the first indirectly detected dimension of a multidimensional data set. dmg1 is in the display group and can be set manually or by executing the commands phi, av1, pwr1, or pal for the values 'ph1', 'av1', 'pwr1', or 'pa1', respectively. If dmg1 does not exist or if it is set to the empty string ( \(\mathrm{dmg} 1=\mathrm{I} ~ ' ~), ~ V n m r J ~ u s e s ~ t h e ~ v a l u e ~ o f ~ d m g ~\) to decide the display mode along the first indirectly detected dimension.
Values: 'ph1 ' sets phased mode.
' av1' sets absolute-value mode.
'pwr1' sets power mode.
'pa1' sets phase angle mode.
See also: VnmrJ Liquids NMR
Related: av1 Set absolute-value mode in 1st indirectly det. dim. (C)
dmg \(\quad\) Data display mode in directly detected dimension (P)
pal Set phase angle mode in 1st indirectly detected dimension (C)
ph1 Set phased mode in 1st indirectly detected dimension (C)
pwr1 Set power mode in 1st indirectly detected dimension (C)

\section*{dmg2 Data display mode in 2nd indirectly detected dimension (P)}

Applicability:
All systems except MERCURYplus/Vx .
Description: Controls the mode of data display along the second indirectly detected dimension of a multidimensional data set. dmg2 is in the display group and can be set manually or by executing the commands ph2, av2, or pwr2 for the values 'ph2', 'av2', or 'pwr2', respectively. If dmg2 does not exist or if it is set to the empty string ( \(\mathrm{dmg} 2==^{\prime}\) ), VnmrJ uses the value of the parameter dmg instead of dmg2 to decide the display mode along the second indirectly detected dimension.

Values: 'ph2' sets phased mode.
'av2' sets absolute-value mode.
' pwr2 ' sets power mode.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
av2 \\
dmg
\end{tabular} & \begin{tabular}{l} 
Set absolute-value mode in 2nd indirectly det. dim. (C) \\
ph2
\end{tabular} \\
& Dwr2 display mode in directly detected dimension (P) \\
& Set phased mode in 2nd indirectly det. dim. (C) \\
& Set power mode in 2nd indirectly det. dim. (C)
\end{tabular}

\section*{dmgf \(\quad\) Absolute-value display of FID data or spectrum in acqi (P)}

Description: If the parameter dmgf exists and is set to 'av', the FID display in the acqi program is set to the absolute-value mode, which displays the square root of the sum of the squares of the real and imaginary channels. dmgf has no function outside of the acqi program. This display mode may cause the displayed FID to exceed the displayed ADC limits in acqi by as much as a factor of the square root of 2 .

See also: VnmrJ Liquids NMR
Related; acqi Interactive acquisition display process (C)
av \(\quad\) Set absolute-value mode in directly detected dimension (C)
gf Prepare parameters for FID/spectrum display in acqi (M)
dmi \(\quad\) Display multiple images (M)
Applicability: Systems with imaging capabilities.
Syntax: dmi
Description: Displays a series of multiple images from a single arrayed and/or multislice/ multiecho experiment in the graphics window. The resulting display is noninteractive. The layout and size of the images are optimized to maximize the image display size.
See also: VnmrJ Imaging NMR
Related: svib Generate and save images as ImageBrowser FDF files (M)
dmm Decoupler modulation mode for first decoupler (P)
Description: Sets the modulation modes for the first decoupler. In the standard two-pulse sequence, dmm typically has a single state because the decoupler modulation is normally not changed during the pulse sequence, but this is not fixed. For example, \(d \mathrm{~mm}=\) ' \(\mathrm{CCW}{ }^{\prime}\) gives single-frequency CW decoupling during the first part of the sequence and WALTZ-16 decoupling during acquisition.

In pulse sequences using the decoupler for pulsing (INEPT, DEPT, HETCOR, etc.), decoupler modulation must be set to ' C ' during periods of the pulse sequence when the decoupler is to be pulsed.
Values: On Unity INOVA, 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x' are available; on MERCURYplus/Vx 'c','f', 'g','m','r','w', and 'x' are available:
- ' C' sets continuous wave (CW) modulation.
- ' \(f\) ' sets fm -fm modulation (swept-square wave).
- ' \(g\) ' sets GARP modulation.
- 'm ' sets MLEV-16 modulation.
- ' \(n\) ' sets noise modulation.
- ' \(p\) ' sets programmable pulse modulation using the dseq parameter to specify the decoupling sequence.
- 'r' sets square-wave modulation.
- 'u' sets user-supplied modulation using external hardware.
- ' w' sets WALTZ-16 modulation.
- ' x ' sets XY32 modulation.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d m\) & Decoupler mode for first decoupler (P) \\
\(d m f\) & Decoupler modulation frequency for first decoupler (P) \\
\(d m m 2\) & Decoupler modulation mode for second decoupler (P) \\
\(d m m 3\) & Decoupler modulation mode for third decoupler (P) \\
\(d m m 4\) & Decoupler modulation mode for fourth decoupler (P) \\
\(d s e q\) & Decoupler sequence for the first decoupler (P)
\end{tabular}

\section*{dmm2 Decoupler modulation mode for second decoupler (P)}

Applicability: Systems with a second decoupler.
Description: Sets the type of decoupler modulation for the second decoupler during different status periods within a pulse sequence. It functions analogously to dmm.
Values: For UNITYINOVA 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x' are available. Refer to dmm for the definition of these values (note that if the mode ' \(p\) ' is selected, dseq2 specifies the decoupling sequence). If \(d n 2=\) ' ' (two single quotes) and a second decoupler is present in the console (numrfch greater than 2), dmm2 is internally set to ' C ' when go is executed.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d m 2\) & Decoupler modulation for the second decoupler (P) \\
& \(d m f 2\) & Decoupler modulation frequency for the second decoupler (P) \\
\(d m m\) & Decoupler modulation mode for first decoupler (P) \\
\(d n 2\) & Nucleus for the second decoupler (P) \\
& \(d s e q 2\) & Decoupler sequence for the second decoupler (P) \\
numrfch & Number of rf channels (P)
\end{tabular}

\section*{dmm3 Decoupler modulation mode for third decoupler (P)}

Applicability: Systems with a third decoupler.
Description: Sets type of decoupler modulation for the third decoupler during different status periods within a pulse sequence. It functions analogously to dmm.

Values: For \({ }^{\text {UNITY} I N O V A, ~ ' c ', ~ ' f ', ~ ' g ', ~ ' m ', ~ ' p ', ~ ' r ', ~ ' u ', ~ ' w ', ~ a n d ~ ' x ' ~ a r e ~}\) available. Refer to \(d \mathrm{~mm}\) for the definition of these values (note that if the mode ' \(p\) ' is selected, dseq 3 specifies the decoupling sequence). If dn \(3=1\) ' (two single quotes) and a third decoupler is present in the console (numrfch equal to 4 ), dmm3 is internally set to ' c ' when go is executed.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d \mathrm{~m} 3\) & Decoupler modulation for third decoupler (P) \\
\(d m f 3\) & Decoupler modulation frequency for third decoupler (P) \\
\(d m m\) & Decoupler modulation mode for first decoupler (P) \\
\(d \mathrm{dn} 3\) & Nucleus for the third decoupler (P) \\
& dseq3 & Decoupler sequence for the third decoupler (P) \\
numrfch & Number of rf channels (P)
\end{tabular}
dmm4 Decoupler modulation mode for fourth decoupler ( \(P\) )
Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Sets type of decoupler modulation for the fourth decoupler during different status periods within a pulse sequence. It functions analogously to dmm.
Values: For UNiTY INOVA, 'c', 'f', 'g', 'm', 'r', 'u', 'w', and 'x' are available. Refer to dmm for the definition of these values. If \(\mathrm{dn} 4=^{\prime}\) ' (two single quotes) and a fourth decoupler is present in the console (numrfch greater than 4), dmm4 is internally set to ' C ' when go is executed.

See also: VnmrJ Liquids NMR
\begin{tabular}{|c|c|c|}
\hline Related: & dm4 & Decoupler modulation for the fourth decoupler (P) \\
\hline & dmf 4 & Decoupler modulation frequency for the fourth decoupler (P) \\
\hline & dmm & Decoupler modulation mode for first decoupler (P) \\
\hline & dn4 & Nucleus for the fourth decoupler (P) \\
\hline & dseq4 & Decoupler sequence for the fourth decoupler (P) \\
\hline & numrfeh & Number of rf channels (P) \\
\hline
\end{tabular}

\section*{dn \(\quad\) Nucleus for first decoupler (P)}

Description: Changing the value of \(d n\) causes a macro (named _dn) to be executed that extracts values for dfrq and dof from lookup tables. The tables, stored in the directory/vnmr/nuctables, are coded by atomic weights.
Values: In the lookup tables, typically 'H1', 'C13', 'P31', etc.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dfrq & Transmitter frequency of first decoupler (P) \\
dn2 & Nucleus for second decoupler (P) \\
dn3 & Nucleus for third decoupler (P) \\
& dn4 & Nucleus for fourth decoupler (P) \\
dof & Frequency offset for first decoupler (C) \\
tn & Nucleus for observe transmitter (P)
\end{tabular}

\section*{dn2 \(\quad\) Nucleus for second decoupler (P)}

Applicability: Systems with a second decoupler.
Description: Changing the value of dn2 causes a macro (named _dn2) to be executed that extracts values for dfrq 2 and dof 2 from lookup tables. Otherwise, dn2 functions analogously to the parameters tn and dn . If an experiment does not use the second decoupler channel, the channel can be disabled by setting \(d n 2=\) ' ' (two single quotes with no space in between). This sets \(d m 2=\) ' \(n\) ',
\(d m m 2=' c ', d m f 2=1000(i n H z), d f r q 2=1(i n M H z), \operatorname{dof} 2=0, d p w r 2=0\),
homo2 = 'n', dseq2 \(=\) ' ', and dres \(2=1\).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dfrq2 & Transmitter frequency of second decoupler (P) \\
& dn & Nucleus for first decoupler (P) \\
& dof2 & Frequency offset for second decoupler (C) \\
& numrfch & Number of rf channels (P) \\
tn & Nucleus for observe transmitter (P)
\end{tabular}

\section*{\(\operatorname{dn} 3 \quad\) Nucleus for third decoupler (P)}
Applicability: Systems with a third decoupler.
Description: Changing the value of dn3 causes a macro (named _dn3) to be executed that extracts values for dfrq3 and dof 3 from lookup tables. Otherwise, dn3 functions analogously to the parameters tn and dn . If an experiment does not use the third decoupler channel, the channel can be disabled by setting \(\mathrm{dn} 3=1\) ' (two single quotes with no space in between). This sets \(d m 3=\) ' \(n\) ', \(d m m 3=\) ' \(c\) ', \(\mathrm{dmf} 3=1000\) (in Hz), dfrq3=1 (in MHz), dof3=0, dpwr3=0, homo3='n', dseq3 \(=\) ' ', and dres \(3=1\).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dn & Nucleus for first decoupler (P) \\
& dfrq3 & Transmitter frequency of third decoupler (P) \\
dof3 & Frequency offset for third decoupler (C) \\
& numrfch & Number of rf channels (P) \\
tn & Nucleus for observe transmitter (P)
\end{tabular}

\section*{dn4 \(\quad\) Nucleus for fourth decoupler (P)}
Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Changing the value of dn4 causes a macro (named _dn4) to be executed that extracts values for dfrq 4 and dof 4 from lookup tables. Otherwise, dn4 functions analogously to the parameters \(t n\) and \(d n\) except that the only valid value for dn 4 is ' H 2 '. If an experiment does not use the fourth decoupler channel, the channel can be disabled by setting \(d n 4=\) ' ' (two single quotes with no space in between). This sets \(d m 4=^{\prime} n ', d m m 4=' c ', d m f 4=1000(i n H z)\), dfrq4=1 (in MHz), dof4=0, dpwr4=0,homo4='n', dseq4 = ' ', and dres4=1.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dfrq4 & Transmitter frequency of fourth decoupler (P) \\
& \(d n\) & Nucleus for first decoupler (P) \\
& dof4 & Frequency offset for fourth decoupler (C) \\
& numrfch & Number of rf channels (P) \\
tn & Nucleus for observe transmitter (P)
\end{tabular}

\section*{dnode \(\quad\) Display list of valid limNET nodes (M,U)}
Applicability: Systems with limNET.
Description: Displays the contents of the user's limNET node database (i.e., all remote nodes available to limNET). Each node is listed by name, Ethernet address (6 hexadecimal bytes), and burst size
See also: VnmrJ Liquids NMR
Related: eaddr Display Ethernet address (M,U)

\section*{doautodialog Start a dialog window using def file (M)}

Applicability: Systems with automation.
Syntax: doautodialog
Description: Internal macro used by enter to start a dialog window using the def file for an experiment in the dialoglib directory.
Related: enter Enter sample information for automation run (M,U)
dodialog \(\quad\) Start a dialog window with dialoglib file (M)
Syntax: dodialog
Description: Internal macro that starts a dialog window using a dialog file in the dialoglib directory.

\section*{dof \(\quad\) Frequency offset for first decoupler (P)}

Description: Controls the frequency offset of the first decoupler. Higher numbers move the decoupler to higher frequency (toward the left side of the spectrum). The frequency accuracy of the decoupler offset is generally 0.1 Hz . The value is specified in the config program.
Description: -100000 to 100000 Hz (approximate, depends on frequency), in steps of 0.1 Hz .
See also: VnmrJ Liquids NMR
Related: config Display current configuration and possible change it (M)
dof2 Frequency offset for second decoupler (P)
dof3 Frequency offset for third decoupler (P)
dof4 Frequency offset for fourth decoupler (P)
tof Frequency offset for observe transmitter (P)

\section*{dof2 Frequency offset for second decoupler (P)}

Applicability: Systems with a second decoupler.
Description: Controls the frequency offset for the second decoupler. dof 2 functions analogously to the parameters tof and dof.
Values: -100000 to 100000 Hz (approximate, depends on frequency), in steps of 0.1 Hz . If dn2 = ' ' (two single quotes with no space in between) and a second decoupler channel is present in the console, dof 2 assumes a default value of 0 when \(g o\) is executed.
See also: VnmrJ Liquids NMR
Related: dn2 Nucleus for second decoupler (P)
dof \(\quad\) Frequency offset for first decoupler (P)
tof Frequency offset for observe transmitter (P)
dof3 Frequency offset for third decoupler (P)
Applicability: Systems with a third decoupler.
Description: Controls the frequency offset for the third decoupler. dof 3 functions analogously to the parameters tof and dof.
Values: -100000 to 100000 Hz (approximate, depends on frequency), in steps of 0.1 Hz . If \(\operatorname{dn} 3=\) ' ' (two single quotes with no space in between) and a third decoupler channel is present in the console, dof 3 assumes a default value of 0 when go is executed.

D

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dn3 & Nucleus for third decoupler (P) \\
& dof & Frequency offset for first decoupler (P) \\
& tof & Frequency offset for observe transmitter (P)
\end{tabular}

\section*{dof4 Frequency offset for fourth decoupler (P)}

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Controls the frequency offset for the fourth decoupler. dof 4 functions analogously to the parameters tof and dof.
Values: -100000 to 100000 Hz (approximate, depends on frequency), in steps of 2.384 Hz. If \(d n 4=1\) ' (two single quotes with no space in between) and a fourth decoupler channel is present in the console, dof 4 assumes a default value of 0 when go is executed.

See also: VnmrJ Liquids NMR
Related: dn4 Nucleus for fourth decoupler (P)
dof \(\quad\) Frequency offset for first decoupler (P)
tof \(\quad\) Frequency offset for observe transmitter (P)

\section*{Doneshot Set up parameters for Doneshot pulse sequence (M)}

Description: Converts a parameter set to Doneshot experiment.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
fiddle Perform reference deconvolution (M)
setup_dosy Set up gradient levels for DOSY experiments (M)
dopardialog Start a dialog with dialoglib/experiment def file (M)
Description: Internal macro that starts a dialog window using a def file in the directory dialoglib/experiment.
do_pcss Calculate proton chemical shifts spectrum (C)
Syntax: do_pcss<(<threshold><,max_cc><,max_width) >
Description: Strips a high-resolution proton spectrum down to a list of chemical shifts. The list is saved in the file pcss. outpar. If no argument is given, do_pcss automatically calculates the threshold and uses default values for the maximum allowable coupling constant and the maximum width of a spin multiplet.

Arguments: threshold sets the level whether a point belongs to a peak or is noise.
max_CC is the maximum allowable coupling constant in the spectrum. Default is 20 Hz .
max_width is the maximum width of a spin multiplet in the spectrum. Default is 60 Hz .
Examples: do_pcss
do_pcss(10)
do_pcss (9,20,80)
See also: VnmrJ Liquids NMR
Related: pcss Calculate and show proton chemical shifts spectrum (M)

Syntax: dosy(<'prune'>,<lowerlimit,upperlimit>)
Description: Performs a DOSY (diffusion ordered spectroscopy) analysis of the data in an array of spectra.
dosy uses the commands \(d l l\) and \(f p\) to determine the heights of all signals above the threshold defined by the parameter th and then fits the decay curve for each signal to a Gaussian using the program dosyfit. It stores a summary of all diffusion coefficients and their estimated standard errors and various other results as follows:
- In the directory \$HOME/vnmrsys/Dosy: diffusion_display.inp, general_dosy_stats, calibrated_gradients, fit_errors, and diffusion_spectrum
- In the current experiment: a second copy of diffusion_display.inp.

The command showdosy has been incorporated into dosy.
Arguments: prune starts a dialog to allow one or more spectra to be omitted from the analysis.
lowerlimit is the lower diffusion limit (in units of \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\) ) to be displayed.
upperlimit is the upper diffusion limit (in units of \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\) ) to be displayed.

Without arguments, dosy uses all the experimental spectra and covers the whole diffusion range seen in the experimental peaks.
See also: VnmrJ Liquids NMR
Related: ddif Synthesize and display DOSY plot (C)
fiddle Perform reference deconvolution (M)
setup_dosy Set up gradient levels for DOSY experiments (M)
dosyfrq Larmor frequency of phase encoded nucleus in DOSY (P)
Description: Stores the NMR frequency of the phase encoded nucleus in DOSY experiments. It is directly set by the DOSY sequences.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)

\section*{dosygamma Gyromagnetic constant of phase encoded nucleus in DOSY (P)}

Description: Stores the gyromagnetic constant of the phase encoded nucleus in DOSY experiments. It is automatically set by the DOSY sequences and used by the dosy macro.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
dosytimecubed Gyromagnetic constant of phase encoded nucleus in DOSY (P)
Description: Timecubed factor in the expression for diffusional attenuation. It is automatically set by the DOSY sequences and used by the dosy macro.

See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)

Syntax: dot1<(min_T1_estimate,max_T1_estimate,time) >
Description: Sets up all parameters to perform a \(T_{1}\) experiment, including d1, pw, p1, nt, and an array of d2 values, based on information entered you enter. Make sure that the parameter pw90 is set properly and contains the correctly calibrated \(90^{\circ}\) pulse width because dot 1 uses this information. If you have not done a pulse width calibration recently, you may wish to do so now.

Minimum and maximum \(T_{1}\) for the peaks of interest are estimates. Do the best you can. Your estimates are used to select optimum values of d2. If the \(T_{1}\) does not fall between your two guesses, your experiment may not be optimum, but it should still be usable unless your estimates are extremely far off. When you are satisfied with the parameters, enter ga or au to acquire the data.
Arguments: min_T1_estimate is the estimated minimum expected \(T_{1}\). The default is the system prompts the user for the value.
max_T1_estimate is the estimated maximum expected \(T_{1}\). The default is the system prompts the user for the value.
time is the total time in hours that the experiment should take. The default is the system prompts the user for the value.
Examples: dot1
dot1 (1,2,.5)
See also: VnmrJ Liquids NMR
\begin{tabular}{cll} 
Related: & d1 & First delay (P) \\
& d2 & Incremented delay in 1st indirectly detected dimension (P) \\
ga & Submit experiment to acquisition and FT the result (C) \\
go & Submit experiment to acquisition (C) \\
nt & Number of transients (P) \\
p1 & First pulse width (P) \\
pw & Pulse width (P) \\
pw90 & \(90^{\circ}\) pulse width (P)
\end{tabular}

\section*{dotflag Display FID as connected dots (P)}

Description: When sparse FID data points are displayed, they are displayed as unconnected dots. If dotflag exists and is set to ' \(n\) ', the FID dots will be connected. To create dotflag, enter create('dotflag','flag'). To create dotflag and the FID display parameters axisf, vpf, vpfi, crf, and deltaf (if the parameter set is older and lacks these parameters), enter addpar('fid').
Values: ' n ' sets connecting the dots. ' y ' sets not connecting the dots.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
create Create new parameter in a parameter tree (C)
df Display a single FID (C)

\section*{downsamp Downsampling factor applied after digital filtering (P)}

Description: Specifies the downsampling factor applied after digital filtering. The spectral width of the data set after digital filtering and downsampling is sw divided by downsamp, where sw is the acquired spectral width. If downsamp does not exist in the current experiment, enter addpar ('downsamp') to add it. addpar ('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile.

Values: Number for the downsampling factor. 1 sets digital filtering with a filter bandwidth specified by \(\mathrm{ds} £ \mathrm{~b}\) without downsampling.
' n ' sets normal data processing without digital filtering.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to current experiment (M)
digfilt Write digitally filtered FID to another experiment (M)
dscoef Digital filter coefficients for downsampling (P)
dsfb Digital filter bandwidth for downsampling (P)
dslsfrq Bandpass filter offset for downsampling (P)
filtfile File of FIR digital filter coefficients (P)
pards Create additional parameters used by downsampling (M)
sw \(\quad\) Spectral width in directly detected dimension ( P )

\section*{\(\mathrm{dp} \quad\) Double precision ( P )}

Description: Sets whether data are acquired in a 16-bit or 32-bit integer format.
Values: ' n ' sets 16 -bit format, ' y ' sets 32 -bit format. If the \(200-\mathrm{kHz}\) receiver option is installed (Max. Narrowband Width set to 200 kHz in the CONFIG window), dp is forced to ' n ' if \(120000<\mathrm{sw}<=200000\). If \(\mathrm{sw}>200000\), dp is forced to ' y '. On wideline systems, \(\mathrm{dp}=\) ' y ' is required when \(\mathrm{sw}>100000\). On MERCURYplus/Vx \(\mathrm{dp}=\) ' Y ' only.
See also: VnmrJ Liquids NMR
Related: sw Spectral width in directly detected dimension (P)
dpcon Display plotted contours (C)
Syntax: dpcon(<options,><levels,spacing>)
Description: Produces a true contour plot display.
Arguments: options must precede levels and spacing in the argument list and can be one or more of the following:
- 'pos' is a keyword to limit the display to positive peaks only in phased spectra. The default is both positive and negative peaks.
- ' neg' is a keyword to limit the display to negative peaks only in phased spectra.
- 'noaxis' is a keyword to omit outlining the display and drawing the horizontal or vertical axis.
levels is the maximum number of contours to be shown. The default is 4 .
spacing is the spacing by relative intensity of successive contour levels. The default is 2 .
Examples: dpcon
dpcon('pos', 6)
dpcon \((15,1.4)\)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
dcon \\
dconi \\
dpconn \\
pcon
\end{tabular} & \begin{tabular}{l} 
Display noninteractive color intensity map (C) \\
Control display selection for the dconi program (P)
\end{tabular} \\
& Display plotted contours without screen erase (C) \\
& Plot contours on plotter (C)
\end{tabular}
```

dpconn Display plotted contours without screen erase (C)
Syntax: dpconn(<options,><levels,spacing>)
Description: Produces a true contour plot display exactly the same as the dpcon command, but without erasing the screen before drawing. The arguments are entered the same as dpcon.
See also: VnmrJ Liquids NMR
Related: dpcon Display plotted contours (C)

Display peak frequencies over spectrum (C)

```
Syntax: (1) dpf<(<'noll'><,'pos'><,noise_mult><,'top'>) >
(2) dpf<(<'noll'><, 'pos'><,noise_mult><,'leader'> <, length>) >
Description: Displays peak frequencies in the graphics window, with units specified by the axis parameter. Only those peaks greater than th high are selected. If the interactive command ds is active, dpf deactivates it.
Two basic modes of label positioning are available: labels placed at the top, with long leaders extending down to the tops of the lines (syntax 1 using ' top ' keyword) or labels positioned just above each peak, with short leaders (syntax 2 using 'leader' keyword). The default is short leaders.
Arguments: ' noll' is a keyword to display frequencies using last previous line listing. 'pos ' (or 'noneg') is a keyword to display positive peaks only. noise_mult is a numerical value that determines the number of noise peaks displayed for broad, noisy peaks. The default is 3 . A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold th. Negative values of noise_mult are changed to a value of 3 . The noise_mult argument is inactive when the 'noll' keyword is specified.
'top ' is a keyword to display peak labels at the top with long leaders. In this mode, the height of labels is varied by changing the parameter wc 2 .
' leader' is a keyword to display labels positioned just above each peak.
length specifies the leader length, in mm , if labels are positioned just above each peak. The default is 20 .
Examples:
dpf('pos')
dpf('leader', 30)
dpf('top','noll')
dpf('pos',0.0,'leader', 30)
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
axis & Axis label for displays and plots (P) \\
dpir & Display integral amplitudes below spectrum (C) \\
dpirn & Display normalized integral amplitudes below spectrum (M) \\
pir & Plot integral amplitudes below spectrum (C) \\
pirn & Plot normalized integral amplitudes below spectrum (M) \\
ppf & Plot peak frequencies over spectrum (M) \\
th & Threshold (P) \\
vp & Vertical position of spectrum (P) \\
wc2 & Width of chart in second direction (P)
\end{tabular}
dpir Display integral amplitudes below spectrum (C)
Description: Displays integral amplitudes below the appropriate spectral regions.
```

```
    See also: VnmrJ Liquids NMR
    Related: dpf Display peak frequencies over spectrum (C)
    dpirn Display normalized integral amplitudes below spectrum (M)
    pir Plot integral amplitudes below spectrum (C)
    pirn Plot normalized integral amplitudes below spectrum (M)
    ppf Plot peak frequencies over spectrum (M)
dpirn Display normalized integral amplitudes below spectrum (M)
Description: Equivalent to the command dpir except that the sum of the integrals is normalized to the value of the parameter ins.
See also: VnmrJ Liquids NMR
Related: dpir Display integral amplitudes below spectrum (C)
ins Integral normalization scale (P)
pirn Plot normalized integral amplitudes below spectrum (M)
```


dpl Default plot (M)

```
Description: Looks for sequence-specific default plot macro (dpl_seqfil) and executes if one is found.
Related: dpl_seqfil Sequence-specific default plot (M)
dpr \(\quad\) Default process (M)
dds \(\quad\) Default display (M)
```


dpl_seqfil Sequence-specific default plot (M)

```
Description: Sequence-specific default plot. These macros are called by the dpl macro.
Examples: dpl_NOESY1D
dpl_TOCSY1D
Related: dpl Default plot (M)
dpr \(\quad\) Default process (M)
dds Default display (M)
```


dplane \quad Display a 3D plane (M)

```
Applicability: All systems; however, although dplane is available on MERCURYplus/Vx , such systems can only process 3D data and cannot acquire 3D data.
Syntax: dplane (<plane_type, >plane_number)
Description: Displays the 2D color map of a particular data plane from a 3D spectral data set. The 3D parameters are loaded into VnmrJ each time dplane is executed. The parameter path3d specifies the absolute path to the directory (without the . extr file extension) where the 2D planes extracted from the 3D spectral data set reside.
Arguments: plane_type is one of the keywords 'f1f3', 'f2f3', and 'f1f2'for the \(f_{1} f_{3}, f_{2}, f_{3}\), and \(f_{1} f_{2}\) planes, respectively. If \(p l a n e\) type is specified, the parameter \(p l a n e\) is updated with that new value. pl ane is then used to determine the type of 3D plane to be displayed.
plane_number specifies which plane of a particular type is to be displayed:
- For plane \(f_{1} f_{3}\), the range of plane_number is 1 to \(f n 2 / 2\)
- For plane \(f_{2} f_{3}\), the range of plane_number is 1 to \(f n 1 / 2\)
- For plane \(f_{1} f_{2}\), the range of plane_number is 1 to \(f n / 2\)
```

D

```
Examples: dplane(3)
    dplane('f1f2',2)
```

See also: VnmrJ Liquids NMR
Related: dsplanes Display a series of 3D planes (M)
dproj Display a 3D plane projection (M)
getplane Extract planes from a 3D spectral data set (M)
nextpl Display the next 3D plane (M)
path3d Path to currently displayed 2D planes from a 3D data set (P)
plane \quad Currently displayed 3D plane type (P)
prevpl Display the previous 3D plane (M)
plplanes Plot a series of 3D planes (M)

dpr \quad Default process (M)

Description: Looks for sequence-specific default plot macro (dpr_seqfil) and executes if one is found.

Related: dpr_seqfil Sequence-specific default process (M)
dpl Default plot (M)
dds \quad Default display (M)
dpr_seqfil Sequence-specific default process (M)
Description: Sequence-specific default plot. These macros are called by the dpr macro.
Examples: dpr_NOESY1D
dpr_TOCSY1D
Related: dpr Default process (M)
dpl Default plot (M)
dds Default display (M)

dprofile \quad Display pulse excitation profile (M)

Syntax: dprofile<(axisflag<,profile<,shapefile>>) >
Description: Displays the X, Y and Z excitation (inversion) profile for a pulse shape generated by the Pbox software. If shapefile is not provided, the last simulation data stored in the shapelib/pbox.sim file are displayed.

Arguments: The axisflag and profile arguments can be given in any order.
axisflag is ' y ' to display the full spectrum and a frequency scale, or ' n ' to suppress the scale and spectrum. The default is ' n '.
profile is a character string identifying the desired profile. 'xyz ' selects X , Y , and Z (inversion) profiles; ' Xy ' selects only the excitation (transverse) profiles; ' x ' selects only the X transverse excitation profile; and ' z ' selects only the inversion profile. The default is ' $x y z$ '.
shapefile is the name of a *.RF or *.DEC file, including the extension.
Examples: dprofile
dprofile('y','xy')
dprofile('xy','n','softpls.RF')
See also: VnmrJ Liquids NMR
Related: pprofile Plot pulse excitation profile (M)
Pbox Pulse shaping software (U)

dproj \quad Display a 3D plane projection (M)

Applicability: All systems; however, although dproj is available on MERCURYplus/Vx , such systems can only process 3D data and cannot acquire 3D data.
Syntax: dproj<(plane_type) >
Description: Displays 2D color map of the 2D projection plane from a 3D spectral data set. The projection is a skyline projection. The 3D parameters are loaded into VnmrJ each time dproj is executed. For this macro, the parameter path3d specifies the directory (without the . extr extension) where the 2D projection resides that has been created from the 3D spectral data set.

Arguments: plane_type is one of the keywords 'f1f3', 'f2f3', and 'f1f2'for the $f_{1} f_{3}, f_{2}, f_{3}$, and $f_{1} f_{2}$ planes, respectively. If $p l a n e$ type is specified, the parameter pl ane is updated with that value. pl ane is then used to determine the type of 2 D projection to be displayed.
Examples: dproj
dproj('f1f2')
See also: VnmrJ Liquids NMR

| Related: | dplane
 dsplanes
 getplane | Display a 3D plane (M)
 Display a series of 3D planes (M)
 nextpl |
| :--- | :--- | :--- |
| path3d | Display planes from a 3D spectral data set (M) | |
| plane plane (M) | | |
| plplanes | Path to currently displayed 2D planes from a 3D data set (P) | |
| prevpl | Currently displayed 3D plane type (P) | |
| | Pisplay the previous 3D plane (M) | |

dps \quad Display pulse sequence (C)
Syntax: dps<(file), x,y,width,height>
Description: Displays a picture of pulse sequences consisting of three to five parts. The top part is the transmitter pulse sequence (Tx). The second part is the decoupler pulse sequence (Dec). The third part might be the second or third decoupler (Dec2 or Dec3) pulse sequence or gradients (X, Y, or Z), depending on the program. The lowest part is the status.
The pulse parameters are displayed if there is enough space an if the length of the parameter name is less than thirty letters. The value of each pulse is also displayed. If the value delay or width is less than zero, a question mark (?) is displayed. The time units are displayed in color (on a color monitor). The height of pulses is scaled according to their power level.
dps also displays spin lock, transmitter gating, observe transmitter power, and other information.
Arguments: file specifies the name of the file containing the pulse sequences. The default is the file seqfil.
x, y specifies the start of the position with respect to the lower-left corner of the window.
width, height are in proportion to wcmax and wc 2 max.
See also: VnmrJ Liquids NMR
Related:

| pps | Plot pulse sequence (C) |
| :--- | :--- |
| seqfil | Pulse sequence name (P) |
| WC | Width of chart (P) |
| wcmax | Maximum width of chart (P) |
| wc2max | Maximum width of chart in second direction (P) |

dpwr \quad Power level for first decoupler with linear amplifier (P)
 Applicability: Systems with a linear amplifier.

Description: On systems equipped with a linear amplifier, a $63-\mathrm{dB}$ or $79-\mathrm{dB}$ attenuator between the decoupler transmitter and the amplifier controls the power level.

The system value for the attenuator upper safety limit is set fin the CONFIG window (opened by config). The Upper Limit entry in CONFIG sets this value. For broadband decoupling of ${ }^{1} \mathrm{H}$ nuclei, typical values range from 36 to 49 dB . For homonuclear decoupling, typical values range from 5 to 15 dB .
Values: On INOVA, $79 \mathrm{~dB},-16$ to +63 , in steps of 1 dB .
On MERCURYplus/Vx, $63 \mathrm{~dB}, 0$ to 63 , in steps of 1 dB .
Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate decoupling to avoid exceeding 2 watts. The maximum value for dpwr on a $200-, 300-$, or $400-\mathrm{MHz}$ system with a linear amplifier on the decoupler channel has been set to 49 , corresponding to about 2 watts of power. Before using dpwr=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.
See also: VnmrJ Installation and Administration

| Related: | cattn | Coarse attenuator (P) |
| :--- | :--- | :--- |
| | config | Display current configuration and possible change it (M) |
| | dpwrf | First decoupler fine power (P) |
| dpwr2 | Power level for second decoupler (P) | |
| dpwr3 | Power level for third decoupler (P) | |
| dpwr4 | Power level for fourth decoupler (P) | |
| fattn | Fine attenuator (P) | |
| tpwr | Power level of observe transmitter with linear amplifiers (P) | |
| tpwrf | Observe transmitter fine power (P) | |

dpwr2 Power level for second decoupler with linear amplifier (P)

Applicability: Systems with a linear amplifier as the second decoupler.
Description: Controls the coarse attenuator (63 dB or 79 dB) that resides between the transmitter board and the linear amplifier associated with the second decoupler. The system value for the attenuator upper safety limit is set in the CONFIG window (opened by config).
Values: On INOVA, $79 \mathrm{~dB},-16$ to +63 , in steps of 1 dB . On MERCURYplus/Vx, $63 \mathrm{~dB}, 0$ to 63 , in steps of 1 dB .

If dn2 = ' ' (two single quotes) and a second decoupler channel is present in the console, dpwr2 assumes a default value of 0 when $g o$ is executed.

CAUTION: Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate decoupling to avoid exceeding 2 watts. The maximum value for dpwr2 on a 200 -, 300 -, or $400-\mathrm{MHz}$ system with a linear amplifier on the decoupler channel has been set to 49 , corresponding to about 2 watts of power. Before using dpwr2=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.

See also: VnmrJ Liquids NMR

| Related: | cattn | Coarse attenuator type (P) |
| :--- | :--- | :--- |
| | config | Display current configuration and possible change it (M) |
| | dn 2 | Nucleus for second decoupler (P) |

Applicability:
Description:
Systems with a linear amplifier as the third decoupler.
Controls the coarse attenuator (63 dB or 79 dB) that resides between the transmitter board and the linear amplifier associated with the third decoupler. The system value for the attenuator upper safety limit is set in the CONFIG window (opened by config).

Values: If $63-\mathrm{dB}$ attenuator installed: 0 to 63 (63 is max. power), in units of dB . If $79-\mathrm{dB}$ attenuator installed: -16 to 63 (63 is max. power), in units of dB. If $\operatorname{dn} 3=1$ ' (two single quotes) and a third decoupler channel is present in the console, dpwr3 assumes a default value of 0 when go is executed.
CAUTION: Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate decoupling to avoid exceeding 2 watts. The maximum value for dpwr3 on a 200 -, 300 -, or $400-\mathrm{MHz}$ system with a linear amplifier on the decoupler channel has been set to 49 , corresponding to about 2 watts of power. Before using dpwr $3=49$ for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.
See also: VnmrJ Liquids $N M R$
Related: cattn Coarse attenuator type (P)
config Display current configuration and possible change it (M)
dn3 Nucleus for third decoupler (P)
dpwr4 Power level for fourth decoupler amplifier (P)
Applicability: Systems with deuterium decoupler channel as the fourth decoupler.
Description: Controls the coarse attenuator (45 dB range) that resides on the Lock Transceiver board and the amplifier associated with the fourth decoupler. The system value for the attenuator upper safety limit is set in the CONFIG window (opened by config).
Values: $48-\mathrm{dB}$ attenuator: 15 to 63 (63 is max. power), in units of dB.
If $\operatorname{dn} 4=1$ ' (two single quotes) and a third decoupler channel is present in the console, dpwr 4 assumes a default value of 0 when go is executed.

CAUTION: Decoupling power greater than 5 watts applied to a triple-resonance probe will damage the probe. The maximum value for dpwr 4 is 63 , corresponding to about 35 watts to the probe. A value of dpwr 4 equal to 52 corresponds to about 5 watts and will produce approximately a 1 kHz decoupling field. Always carefully calibrate decoupling power to avoid exceeding 5 watts. Before using dpwr $4=52$ continuous decoupling, ensure safe operation by measuring the output power. Measurement should be taken during system installation and checked periodically by the user.

See also: VnmrJ Liquids NMR

| Related: | cattn | Coarse attenuator type (P) |
| :--- | :--- | :--- |
| | config | Display current configuration and possible change it (M) |
| dn3 | Nucleus for third decoupler (P) | |

dpwrf \quad First decoupler fine power (P)
Applicability: Systems with an optional fine attenuator on the decoupler channel.
Description: Controls the first decouple fine attenuator on ${ }^{\text {UNITY }}$ INOVA, or on solids systemsSystems with this attenuator are designated within the CONFIG
window (opened by config) by the status of the Fine Attenuator entry. The fine attenuator is linear and spans 6 dB .

On MERCURYplus/Vx systems, dpwrf controls the decoupler by simulating a fine attenuator. The fine power control is linear and spans 0 to dpwr.
Values: 0 to 4095 (where 4095 is maximum power). If dpwrf does not exist in the parameter table, a value of 4095 is assumed.
On MERCURYplus/Vx systems, 0 to 255 (where 255 is maximum power). If dpwrf or dpwrm does not exist in the parameter table, a value of 255 is assumed. If both exist, dpwrm is used.
See also: User Programming;User Guide: Solids; MERCURYplus and MERCURY-Vx CP/MAS Installation, Testing, and Operation

Related: config Display current configuration and possibly change it (M)
dpwr \quad Power level for first decoupler with linear amplifiers (P)
dpwrf2 Second decoupler fine power (P)
dpwrf3 \quad Third decoupler fine power (P)
dpwrm \quad First decoupler linear modulator power (P)
fattn Fine attenuator (P)
tpwr Power level of observe transmitter with linear amplifiers (P)
tpwrf \quad Transmitter fine power (P)

dpwrf2 Second decoupler fine power (P)

Applicability: Systems with an optional fine attenuator on the second decoupler channel.
Description: Controls the second decoupler fine attenuator, functioning analogously to dpwrf.
Values: 0 to 4095 (where 4095 is maximum power). If dpwrf 2 does not exist in the parameter table, a value of 4095 is assumed.
See also: User Programming
Related: dpwrf \quad First decoupler fine power (P)

dpwrf3 Third decoupler fine power (P)

Applicability: Systems with an optional fine attenuator on the third decoupler channel.
Description: Controls the third decoupler fine attenuator, functioning analogously to dpwrf.
Values: 0 to 4095 (where 4095 is maximum power). If dpwrf 3 does not exist in the parameter table, a value of 4095 is assumed.
See also: User Programming
Related: dpwrf \quad First decoupler fine power (P)

dpwrm \quad First decoupler linear modulator power (\mathbf{P})

Applicability: UNITY INOVA, and MERCURYplus/Vx systems with a first decoupler linear modulator.
On MERCURY systems, dpwrm controls the decoupler by simulating a fine attenuator. The fine power control is linear and spans 0 to dpwr.
Values: 0 to 4095 (where 4095 is maximum power). If dpwrm does not exist in the parameter table, a value of 4095 is assumed.
On MERCURYplus/Vx systems, 0 to 255 (where 255 is maximum power). If dpwrm does not exist in the parameter table, a value of 255 is assumed.
dpwrm2 Second decoupler linear modulator power (P)
Applicability: UNITYINOVA systems with a second decoupler linear modulator.
Description: Controls the second decoupler linear modulator systems.
Values: 0 to 4095 (where 4095 is maximum power). If dpwrm2 does not exist in the parameter table, a value of 4095 is assumed.

See also: User Programming
Related: dpwrm First decoupler linear modulator power (P)

dpwrm3 Third decoupler linear modulator power (\mathbf{P})

Applicability: UNITY INOVA systems with a third decoupler linear modulator.
Description: Controls the third decoupler linear modulator systems.
Values: 0 to 4095 (where 4095 is maximum power). If dpwrm3 does not exist in the parameter table, a value of 4095 is assumed.

See also: User Programming
Related: dpwrm First decoupler linear modulator power (P)
dqcosy Set up parameters for double-quantum filtered COSY (M)
Description: Macro to set up a double-quantum filtered COSY (homonuclear correlation) experiment.
See also: VnmrJ Liquids NMR

| Related: | cosyps | | |
|---|---|---|---|
| relayh | |\quad| Set up parameters for phase-sensitive COSY (M) |
| :--- |
| Set up parameters for COSY pulse sequence (M) |

Dqcosy \quad Convert the paramaeter to a DQCOSY experiement (M)
Description: Convert the paramaeter to a DQCOSY experiement

DQCOSY Change parameters for DQCOSY experiment (M)
Description: Converts the current parameter set to a DQCOSY experiment.
draw Draw line from current location to another location (C)
Syntax: draw (<'keywords'>x,y)
Description: Draws a line from the current location to the absolute location with coordinates given by the arguments.

Arguments: 'keywords' identifies the output device ('graphics'|'plotter'), drawing mode ('xor'|'normal'), and drawing capability ('newovly'|'ovly'|'ovlyC').

- 'graphics'|'plotter' is a keyword for the output device. The default is 'plotter'. The output selected is passed to subsequent pen,
move, or draw commands and remains active until a different output is specified.
- 'xor','normal ' is a keyword for the drawing mode when using the 'graphics' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous ' xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent draw, pen, and move commands and remains active until a different mode is specified.
- 'newovly', 'ovly', and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the 'xor' mode but more consistent in color. ' newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multisegment figures can be created. ' ovlyC' clears without drawing.
x, y are the absolute coordinates, in mm , of the endpoint of the line to be drawn. The range of x is 0 at the left edge of the chart and wcmax at the right edge. The range of y is -20 at the bottom of the chart and $w \in 2$ max at the top.
Examples: draw('graphics','xor'.wcmax-sc,vp+th) draw (wcmax-sc-wc* (cr-delta-sp)/wp,wc2max)
See also: VnmrJ Liquids NMR
Related: gin Return current mouse position and button values (C)
move Move to an absolute location (C)
pen \quad Select a pen or color for drawing (C)
wemax Maximum width of chart (P)
wc2max \quad Maximum width of chart in second direction (P))

drawslice Display target slices (M)

Applicability: Systems with imaging capabilities.
Description: Displays target slices defined by the file curexp+ '/mark2d. out '. The program shows graphically the position and orientation of the selected target slices on a scout image. This macro is also called by the Show Target button in the slice planner menu. See the plan macro for more details.
See also: VnmrJ Imaging NMR

| Related: | curexp | Current experiment directory (P) |
| :--- | :--- | :--- |
| drawvox | Display target voxels (M) | |
| plan | Display menu for planning a target scan (M) | |
| ssplan | Set slice parameters for target slice (M) | |
| | voxplan | Set voxel parameters for voxel defined by 2D box cursor (M) |

drawvox Display target voxels (M)

Applicability: Systems with imaging capabilities.
Description:
Displays target voxels defined by the file curexp+ '/mark2d.out '. This program shows graphically the position of the selected target voxels on the scout image. The user can plan and then display more than one voxel with this macro. This macro is also called by the Show Target button in the voxel planner menu. See the plan macro for more details.

See also: VnmrJ Imaging NMR
Related: curexp Current experiment directory (P)
drawslice Display target slices (M)

| plan | Display menu for planning a target scan (M) |
| :--- | :--- |
| planlock | Planner lock out (P) |
| ssplan | Set slice parameters for target slice (M) |
| voxplan | Set voxel parameters for voxel defined by 2D box cursor (M) |

dres
Measure linewidth and digital resolution (C)
Syntax: dres<(<freq<,fractional_height>>) >
:linewidth, digital_resolution
Description: Analyzes the line defined by the current cursor position for its linewidth (width at half-height) and digital resolution.

Arguments: freq is the frequency of the line. The default is the parameter cr. This overrides using the current cursor position as the frequency.
fractional_height is the linewidth is measured at this height.
linewidth is the value returned for the linewidth of the line.
digital_resolution is the value returned for the digital resolution of the line.

Examples: dres:\$width,\$res
dres (cr, 0.55)
See also: VnmrJ Liquids NMR; User Programming
Related: Cr Current cursor position (P)
dsn Measure signal-to-noise (C)

dres \quad Tip-angle resolution for first decoupler (P)

Applicability: Systems with waveform generators.
Description: Controls the tip-angle resolution to be used within a waveform generator decoupling sequence on the first decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, dres $=90.0$; for MLEV16-240, dres=30.0; and for GARP1, dres=1. 0 .
Values: 1.0 to 90.0 , in units of degrees. In reality, dres can assume values as small of 0.7 (but no smaller) and can be specified in units of 0.1°. To use this capability, change the limits of dres by using destroy ('dres') create('dres','real') setlimit('dres', 360,0.7,0.1). Making corresponding changes within the fixpar macro ensures that dres is created in the desired way with each new parameter set.
See also: VnmrJ Liquids NMR
Related: dmfadj Adjust decoupler tip-angle resolution time (M)
dres2 Tip angle resolution for second decoupler (P)
dres3 Tip angle resolution for third decoupler (P)
fixpar Correct parameter characteristics in experiment (M)

dres2 Tip-angle resolution for second decoupler (P)

Applicability: Systems with waveform generators.
Description: Controls the tip-angle resolution to be used within a waveform generator decoupling sequence on the second decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, dres $2=90.0$; for MLEV16-240, dres2=30.0; and for GARP1, dres2=1. 0 .
Values: 1.0 to 90.0 , in units of degrees.

See also: VnmrJ Liquids NMR
Related: dmf2adj Adjust second decoupler tip-angle resolution time (M)
dres \quad Tip-angle resolution for first decoupler (P)

dres3 Tip-angle resolution for third decoupler (P)

Applicability: Systems with waveform generators.
Description: Controls the tip-angle resolution to be used within a waveform generator decoupling sequence on the third decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, dres $3=90.0$; for MLEV16-240, dres3=30.0; and for GARP1, dres3=1. 0 .
Values: 1.0 to 90.0 , in units of degrees.
See also: VnmrJ Liquids NMR
Related: dmf3adj Adjust third decoupler tip-angle resolution time (M)
dres \quad Tip-angle resolution for first decoupler (P)

dres $4 \quad$ Tip-angle resolution for fourth decoupler (P)

Applicability: Systems with deuterium decoupler channel as the fourth decoupler.
Description: Controls the tip-angle resolution to be used for the decoupling sequence on the fourth decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, dres $4=90.0$; for MLEV16-240, dres $4=30.0$; and for GARP1, dres $4=1.0$.

Values: 1.0 to 90.0 , in units of degrees.
See also: VnmrJ Liquids NMR
Related: $\quad \mathrm{dmf} 4 \mathrm{adj} \quad$ Adjust fourth decoupler tip-angle resolution time (M)
dres \quad Tip-angle resolution for first decoupler (P)

Syntax: (1) ds< (index) >
(2) $\mathrm{d} s<($ options) $>$

Description: Displays a single spectrum. Parameter intmod controls integral display:

- intmod='Off' turns off the integral display
- intmod='full' displays the entire integral
- intmod='partial' displays every other integral region

Parameter entry after a spectrum has been displayed with the ds command causes the spectrum to be updated.
Two additional parameters control the behavior of the ds command:

- The parameter phasing (in the "global" parameter set) controls the percentage of the spectrum updated during interactive phasing. This parameter can be set in the range of 10 to 100 . A value of 100 causes the entire spectrum to be updated. A value of 20 causes the area between the two horizontal cursors to be updated.
- The parameter lvltlt (in the "current" parameter set) controls the sensitivity of the interactive $l \mathrm{vl}$ and tl t adjustments. $l \mathrm{vl} \mathrm{t}$ l t can be set to any positive real number. It is basically a multiplier for the sensitivity. The default value is 1.0 . Larger values make the adjustments larger. Smaller values make the adjustments smaller.

For arrayed 1D spectra or for 2D spectra, a particular trace can be viewed by supplying the index number as an argument. For 2D data sets, spectra can be displayed from either the f_{1} or f_{2} domain by setting the parameter trace equal to 'f1' or 'f2', respectively. After entering $f t 1 d$, interferograms can be viewed by setting trace= 'f1' and then typing ds.
Spectra are scaled according to the number of completed transients $c t$. If $n t$ is arrayed ($n t=1,2,4,8$), each spectrum is scaled by its own ct.
Arguments: index (used with syntax 1) is the index number of a particular trace to be displayed in arrayed 1D spectra or in 2D spectra (syntax 1).
options (used with syntax 2) is any of the following keywords:

- 'toggle' switches between the box and the cursor modes.
- 'restart' redraws the cursor if it has been turned off.
- 'expand ' toggles between expanded and full view of the spectrum.
- 'spwp ' interactively adjusts start and width of the spectrum display.
- 'phase' enters an interactive phasing mode.
- 'thresh' interactively adjusts the threshold.
- ' z ' interactively sets integral resets.
- 'dscale' toggles the scale below the spectrum on and off.
- 'lvltlt' interactively adjusts the lvl and tlt parameters.
- 'scwc ' interactively adjusts the start and width of chart.

Examples: ds
ds (7)
ds('restart')
See also: VnmrJ Liquids NMR

| Related: | crmode | Current state of cursors in dfid, ds, or dconi (P) |
| :--- | :--- | :--- |
| ct | Completed transients (P) | |
| ftld | Fourier transform along f f dimension (C) | |
| intmod | Integral display mode (P) | |
| lp | First-order phase in directly detected dimension (P) | |
| lvl | Zero-order baseline correction (P) | |
| lvltlt | Control sensitivity of lvl and tlt adjustments (P) | |
| nt | Number of transients (P) | |
| phasing | Control update region during ds phasing (P) | |
| rp | Zero-order phase in directly detected dimension (P) | |
| select | Select a spectrum without displaying It (C) | |
| tlt | First-order baseline correction (P) | |
| trace | Mode for n-dimensional data display (P) | |
| wftld | Weight and Fourier transform f2 for 2D data (C) | |

ds2d Display 2D spectra in whitewash mode (C)

Syntax: ds2d<(options) >
Description: Displays a stacked plot of 2D spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra). Color does not represent intensity (unlike dcon), because intensity can be seen visually, but instead successive traces are displayed in different colors so that color represents frequency.

Arguments: options can be any of the following keywords:

- 'nobase' is a keyword to activate the th parameter to suppress all intensity below the th level.
- 'fill' is a keyword to fill in the peaks. When using 'fill', th operates linearly and not logarithmically (factors of 2) as it does in the contour or color intensity displays.
- 'fillnb' is a keyword to combine base suppression and peak filling. When using ' fillnb', th operates linearly and not logarithmically (factors of 2) as it does in the contour or color intensity displays.
- 'noaxis' is a keyword to omit outlining the display and drawing the horizontal and vertical axis.

```
Examples: ds2d
ds2d('fillnb')
```

See also: VnmrJ Liquids NMR

| Related: | dcon
 dconi | Display noninteractive color intensity map (C)
 Control display selection for the dconi program (P)
 ds2dn |
| :--- | :--- | :--- |
| pl2d | Display 2D spectra in whitewash mode without screen erase (C) | |
| th | Plot 2D spectra in whitewash mode (C) | |
| | Threshold (P) | |

ds2dn Display 2D spectra in whitewash mode without screen erase (C)

Syntax: ds2dn<(options) >
Description: Displays a stacked plot of 2D spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra) the same as ds 2 d but without erasing the screen before drawing. The arguments are the same as ds 2 d .

Examples: ds2dn
ds2dn('fillnb')
See also: VnmrJ Liquids NMR
Related: ds2d Display 2D spectra in whitewash mode (C)

dscale Display scale below spectrum or FID (C)

Syntax: dscale<(<rev><,axis><,label><, vp0><, sp0><, color><, pen>) >
Description: Displays a scale under a spectrum or FID.
Arguments: rev - reverses the direction of the scale. That is, the smaller numbers will be at the left side of the scale. If used, 'rev' must be the first argument.
axis - If the letter p, h, k, etc. is supplied, it will be used instead of the current value of the parameter axis. For an FID scale, if the letter s, m, or u is supplied, it will be used instead of the current value of the parameter axisf.
label - If a string of 2 or more characters is supplied, it will be used as the axis label.
$\operatorname{vp} 0-$ This is supplied as the first real number. It defines the vertical position where the scale is drawn. The default is 5 mm below the current value of the parameter vp.
sp0 - This is supplied as the second real number. It is a modified start of plot. If, for example, the display is from 347 to 447 hz , but the scale is desired to read 0 to 100 hz ., sp0 would be input as 0 .
wp 0 - This is supplied as the third real number. It is a modified width of plot. If, for example, the display is from 347 to 447 hz , but the scale is desired to read 0 to 550 Units. sp0 would be input as 0 , wp 0 would be 550 , and the label would be 'Units'.

An optional color or pen number can be supplied to dscale or pscale. The available colors and pens are: 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', 'white'
'pen1', 'pen2', 'pen3', ..., 'pen8'
Examples: dscale
dscale('rev')
dscale('h',0,'green')
dscale('h', vp-10,0)
See also: VnmrJ Liquids NMR

| Related: | axis | Axis label for displays and plots (P) |
| :--- | :--- | :--- |
| | axisf | Axis label for FID displays and plots (P) |
| | pscale | Plot scale below spectrum or FID (C) |
| | vp | Vertical position of spectrum (P) |

dscoef \quad Digital filter coefficients for downsampling (P)
Description: Specifies the number of coefficients used in the digital filter. This parameter does not need to be changed as the parameter downsamp is changed, because dscoef is automatically adjusted by VnmrJ to give filter cutoffs that are the same, regardless of the value of downsamp. This is done by using dscoef*downsamp / 2 coefficients in the digital filter. VnmrJ always rounds dscoef*downsamp/2 to an odd number. If dscoef does not exist in the current experiment, enter addpar ('downsamp') to add it. Entering addpar ('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile.
Values: Number of digital filter coefficients. The default is 61. A larger number of coefficients gives a filter with sharper cutoffs; a smaller number gives a filter with more gradual cutoffs.
See also: VnmrJ Liquids NMR

| Related: | addpar | Add selected parameters to current experiment (M) |
| :--- | :--- | :--- |
| | downsamp | Downsampling factor applied after digital filtering (P) |
| | ds $£ b$ | Digital filter bandwidth for downsampling (P) |
| | dslsfrq | Bandpass filter offset for downsampling (P) |
| | filtfile | File of FIR digital filter coefficients (P) |
| | pards | Create additional parameters used for downsampling (M) |

dseq Decoupler sequence for first decoupler (P)
Applicability: Systems with waveform generators.
Description: Specifies the decoupling sequence (without the . DEC file extension) to be used during any period of programmable decoupling on the first decoupler under status control (i.e., $d m m=' p$ '). The decoupling sequence must be located in the user's shapelib directory or in the VnmrJ system's shapelib directory.
See also: VnmrJ Liquids NMR

| Related: | dmm
 dseq2 | Decoupler modulation mode for first decoupler (P)

 dseq3 |
| :--- | :--- | :--- |

dseq2 Decoupler sequence for second decoupler (P)

Applicability: Systems with waveform generators.
Description: Specifies the decoupling sequence (without the . DEC file extension) to be used during any period of programmable decoupling on the second decoupler under status control (i.e., dmm2 = ' p '). The decoupling sequence must be located in the user's shapelib directory or in the VnmrJ system shapelib directory.
See also: VnmrJ Liquids NMR

| Related: | dmm2 | Decoupler modulation mode for second decoupler (P)
 dseq |
| :--- | :--- | :--- |
| Decoupler sequence for first decoupler (P) | | |

dseq \quad Decoupler sequence for first decoupler (P)

dseq3 Decoupler sequence for third decoupler (P)

Applicability: Systems with waveform generators.
Description: Specifies the decoupling sequence (without the .DEC file extension) to be used during any period of programmable decoupling on the third decoupler under status control (i.e., dmm $3=$ ' p '). The decoupling sequence must be located in the user's shapelib directory or in the shapelib directory.
See also: VnmrJ Liquids NMR
Related: dmm3 Decoupler modulation mode for third decoupler (P)
dseq \quad Decoupler sequence for first decoupler (P)

dseq4 Decoupler sequence for fourth decoupler (P)

Applicability: Systems with waveform generators.
Description: Specifies the decoupling sequence (without the .DEC file extension) to be used during any period of programmable decoupling on the third decoupler under status control (i.e., dmm $4=$ ' p '). The decoupling sequence must be located in the user's shapelib directory or in the system's shapelib directory.
See also: VnmrJ Liquids NMR
Related: dmm4 Decoupler modulation mode for third decoupler (P)
dseq \quad Decoupler sequence for first decoupler (P)
dsfb Digital filter bandwidth for downsampling (P)
Description: Specifies the bandwidth of the digital filter used for downsampling. If $\mathrm{ds} £ \mathrm{fb}$ does not exist in the current experiment, enter addpar ('downsamp ') to add it. addpar ('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile.
Values: Number, in Hz. A smaller value rejects frequencies at the spectrum edges; a larger value aliases noise and signals at frequencies outside of \pm sw/ 2 .
' n ' makes dsfb default to the final $\mathrm{sw} / 2$.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to current experiment (M)
downsamp Downsampling factor applied after digital filtering (P)
dscoef Digital filter coefficients for downsampling (P)
dslsfrq Bandpass filter offset for downsampling (P)
filtfile File of FIR digital filter coefficients (P)
pards \quad Create additional parameters used for downsampling (M)
sw \quad Spectral width in directly detected dimension (P)
dshape \quad Display pulse shape or modulation pattern (M)
Syntax: dshape<(pattern.ext) >

Description: Displays the real (X) and imaginary (Y) components of a shaped pulse. Any type of waveform (.RF, .DEC or .GRD) can be displayed.

Arguments: pattern is the name of a shape or pattern file specified by an absolute file name, relative file name, or a simple pattern file name. ext is a file name extension that specifies the file type. In the case of a simple file name, dshape searches for the file in the local directory, then in the user's shapelib, and finally in the directory /vnmr/shapelib. If pattern. ext is not given, dshape displays the last created waveform stored in the pbox.fid file.

Examples: dshape
dshape('Pbox.RF')
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pshape \quad Plot pulse shape or modulation pattern (M)
dshapef \quad Display last generated pulse shape (M)
Description: Displays the real (X) and imaginary (Y) components of last generated shaped pulse, stored in pbox.fid file.
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pshapef Plot last generated pulse shape (M)

dshapei \quad Display pulse shape or modulation pattern interactively (M)

Syntax: dshapei<(pattern.ext)>
Description: Displays the real (X) and imaginary (Y) components of a pulse shape, modulation pattern or gradient shape interactively. dshapei overwrites the existing data (FID) after the permission is granted by the user. It also asks for the duration of the waveform and displays the timescale.
Arguments: pattern is the name of a shape or pattern file specified by an absolute file name, relative file name, or a simple pattern file name. ext is a file name extension that specifies the file type. In the case of a simple file name, dshapei searches for the file in the local directory, then in the user's shapelib, and finally in the directory/vnmr/shapelib. If no file name is given, dshapei displays the last created waveform stored in the pbox.fid file.

Examples: dshapei
dshapei('myfile.DEC')
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

dshim Display a shim "method" string (M)

Syntax: (1) dshim<(file) >
(2) dshim('method'|'help')

Description: Looks in the user's shimmethods directory and then in the system shimmethods directory for a file and displays the file (syntax 1) or displays information about method strings (syntax 2).
Arguments: file is the name of a file to be searched for in the shimmethods directories. The default is to display the contents of the shimmethods directories.
'method' is a keyword to explain the structure of method strings.
'help' is a keyword to describe the method strings in the system's shimmethods directory.
Examples: dshim
dshim('method')
dshim('help')
See also: VnmrJ Liquids NMR
Related: method Autoshim method (P) newshm Interactively create a shim "method" with options (M)
shim Submit an Autoshim experiment to acquisition (C)
stdshm Interactively create a shim "method" (M)

dslsfrq \quad Bandpass filter offset for downsampling (P)

Description: For downsampling, selects a bandpass filter that is not centered about the transmitter frequency. In this way, dslsfrq works much like lsfrq. If dslsfrq does not exist in the current experiment, add it by entering addpar('downsamp'). The command addpar('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile.
Values: A number, in Hz. A positive value selects a region upfield from the transmitter frequency; a negative value selects a downfield region.
See also: VnmrJ Liquids NMR

| Related: | addpar
 downsamp | Add selected parameters to current experiment (M)
 Downsampling factor applied after digital filtering (P) |
| :--- | :--- | :--- |
| | dscoef | Digital filter coefficients for downsampling (P) |
| dsfb | Digital filter bandwidth for downsampling (P) | |
| filtfile | File of FIR digital filter coefficients (P) | |
| lsfrq | Frequency shift of the fn spectrum in Hz (P) | |
| movedssw | Set parameters for digital filtering and downsampling (M) | |
| pards | Create additional parameters used by downsampling (M) | |

dsn Measure signal-to-noise (C)

Syntax: dsn<(low_field,high_field) >:signal_to_noise, noise
Description: Measures the signal-to-noise ratio of the spectrum by first measuring the intensity of the largest peak in the spectral range defined by sp and wp, and then measuring the noise in the spectral region defined by the position of the two cursors. The noise value returned from dsn is not scaled by vs. The interrelations between the signal-to-noise ratio, the noise, and peak intensities can be illustrated by comparing dsn : \$sn, \$noise and peak: \$signal. In this case, $\$ \mathrm{sn}$ is equal to (\$signal /\$noise)/vs.

Calculate noise by first doing a drift correction on the noise region. Noise is defined as

$$
\text { noise }=\left(\sum_{1=1}^{n p} Y_{i^{2}} / n p\right)^{\frac{1}{2}}
$$

where Y_{i} values are the square of the drift-corrected amplitude and np is the number of points in the noise region.
Arguments: low_field and high_field are the upper and lower frequencies of the noise region to be measured. The default is the position of the two cursors.
signal_to_noise is the calculated value of signal-to-noise ratio. noise is the noise value measured within the defined spectral region.

Examples: | | $d s n: \$ s t o n$ |
| ---: | :--- |
| | $d s n(s p+s p, s p+w p-100)$ |
| | $d s n(10000,8000): r 1$ |

See also: User Programming

| Related: | dres | Measure linewidth and digital resolution (C) |
| :---: | :--- | :--- |
| peak | Find tallest peak in specified region (C) | |
| sp | Start of plot (P) | |
| | vs | Vertical scale (P) |
| | wp | Width of plot (P) |

dsnmax Calculate maximum signal-to-noise (M)

Syntax: dsnmax<(noise_region) >
Description: Finds the best signal-to-noise in a specified region.
Arguments: noise_region is the size, in Hz , of the region. The default is the region between the cursors as defined by the parameter delta.
Examples: dsnmax
dsnmax (400)
See also: User Programming
Related: delta Cursor difference in directly detected dimension (P)

Display calculated spectrum (C)
Syntax: dsp<(file<,'nods'>) >
Description: Using the current table of transitions and intensities, dsp recalculates the simulated spectrum (using the current value for the linewidth $s 1 w$) and displays the spectrum. dsp can only be used after the spins program has been run. If only the linewidth slw or vertical scale svs have been changed, dsp can be used to redisplay the spectrum. If a chemical shift or coupling constant has been changed, however, dsp will not display a spectrum reflecting the changes in the parameter; spins must be run again to recalculate the new spectrum.
The number of points in the calculated spectrum is $\mathrm{fn} / 2$. To increase the number of points, change $f n$ and rerun dsp without doing a transform.
To display a synthetic spectrum, prepare a file in the following format:

```
Freq1, Intens1, LineWidth1, GaussFrac1
Freq2, Intens2, LineWidth2, GaussFrac2
FreqN, IntensN, LineWidthN, GaussFracN
```

The units for frequency and line width are Hz. The Gaussian fraction, which is the percentage of the line shape that is Gaussian (the rest is Lorentzian) should be between 0 and 1 (i.e., 0 is pure Lorentzian, 1 is pure Gaussian). Units for intensity are not particularly important. Given numbers in a file myshape, it is only necessary to enter dsp ('myshape') to display the synthetic spectrum. This approach is often preferred over deconvolution for quantifying small shoulders on large peaks.
Arguments: file is the name of a file containing spectral information that displays the result of a spectrum deconvolution. Any file in the proper format can be used to generate a display. The default is the file spins. outdata in the experiment directory. This file contains information about frequencies, intensities, line widths, and Gaussian/Lorentzian fractions.
' nods ' is a keyword for dsp to recalculate the simulated spectrum but not to display the spectrum. The spectrum can be displayed with the ds or dss command.

| Examples: | dsp |
| ---: | :--- |
| | dsp('fitspec.outpar') |
| See also: | VnmrJ Liquids $N M R$ |

| Related: | ds | Display a spectrum (C) |
| :--- | :--- | :--- |
| | dss | Display stacked spectra (C) |
| fn | Fourier number in directly detected dimension (P) | |
| slw | Spin simulation linewidth (P) | |
| | spins | Perform spin simulation calculation (C) |
| | svs | Spin simulation vertical scale (P) |

dsp
 Type of DSP for data acquisition (P)

Description: Selects the type of DSP (digital signal processing) for data acquisition:

- Inline DSP performs digital filtering and downsampling on the workstation immediately after each oversampled FID is transferred from the console. sw and at should be set to the values desired for the final spectrum. Only the digital filtered and downsampled data is written to the disk. Selective detection of a region of a spectrum is available using the moveossw macro.
- Real-time DSP uses optional hardware (not available on all systems) to filter the data prior to summing to memory. Real-time DSP is not compatible with pulse sequences that use explicit acquisition to acquire less than the full number of data points (np) in a single acquire statement (e.g., solids sequences such as BR24 and FLIPFLOP).
If either type is active, the filter bandwidth parameter fb is not active. The actual analog filter is active and is automatically set by the software to a value that matches (sw/2) *oversamp as closely as possible.
Another type of DSP is available that allows post-processing of data. See the description of the pards macro for details.
Values: 'i' selects inline DSP and calls addpar ('oversamp ') to create the DSP parameters def_osfilt,filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp. A value of oversamp greater than 1 causes the next experiment run to be oversampled, digitally filtered, and downsampled back to the selected sw prior to saving it to disk. On systems other than UNITY INOVA, inline DSP is not possible if interleaving is active ($\mathrm{il}=\mathrm{I} \mathrm{y}^{\prime}$). Also, the command sa can be used to stop acquisition, but ra cannot be used to resume it. On UNITY INOVA, inline DSP is completely compatible with interleaving and with stopping and restarting on acquisition with sa and ra. Set $\mathrm{f} s \mathrm{q}=$ ' y ' to use frequency-shifted quadrature detection on ${ }^{\text {UNITY }}$ INOVA.
'r' selects real-time DSP and calls the macro addpar ('oversamp') to create the DSP parameters def_osfilt, filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp (although only oversamp and osfilt are user adjustable for real-time DSP). Use dsp= 'r' only if the optional DSP hardware is present in the system. On UNITY INOVA systems, set $\mathrm{f} s q=$ ' y ' to use frequency-shifted quadrature detection.
' n ' (or parameter dsp is not present) disables both types of DSP. Set $d s p=$ ' n ' if you wish to turn off DSP on a permanent or semi-permanent basis. To turn off DSP within just a single experiment, set oversamp= ' n '.

See also: VnmrJ Liquids NMR

| Related: | addpar
 at | Add selected parameters to current experiment (M)
 Acquisition time (P) |
| :--- | :--- | :--- |
| def_osfilt | Default value of osfilt (P) | |
| fb | Filter bandwidth (P) | |
| filtfile | File of FIR digital filter coefficients (P) | |
| fsq | Frequency-shifted quadrature detection (P) | |
| il | Interleave arrayed and 2D experiments (P) | |
| moveossw | Set oversampling parameters for selected spectral region (M) | |
| np | Number of data points (P) | |
| oscoef | Digital filter coefficients for oversampling (P) | |
| os£b | Digital filter bandwidth for oversampling (P) | |
| osfilt | Oversampling filter for real-time DSP (P) | |
| oslsfrq | Bandpass filter offset for oversampling (P) | |
| oversamp | Oversampling factor for acquisition (P) | |
| pards | Create additional parameters used by downsampling (M) | |
| paros | Create additional parameters used by oversampling (M) | |
| ra | Resume acquisition stopped with sa command (C) | |
| sa | Stop acquisition (C) | |
| sw | Spectral width in the directly detected dimension (P) | |

dsplanes Display a series of 3D planes (M)

Applicability: All systems; however, although dsplanes is available on MERCURYplus/Vx systems, such systems can only process 3D data and cannot acquire 3D data.
Syntax: dsplanes(start_plane,stop_plane)
Description: Produces a graphical 2D color or contour map for a subset of 3D planes. The dconi program is used to display the planes.

Arguments: start_plane specifies the number of the 3D plane with which display is to begin. It must be greater than 0 .
stop_plane specifies the number of the 3D plane with which the display is to end. If start_plane is greater than stop_plane, only the first plane, whose number is start_plane, is plotted. The range of stop_plane depends on the value of the parameter $p l a n e$ as follows:

- If plane='f1f3', range of stop_plane is between 0 and fn2/2
- If plane='f2f3', range of stop_plane is between 0 and fn1/2
- If plane='f1f2', range of stop_plane is between 0 and fn/2

Examples: dsplanes (1,3)
See also: VnmrJ Liquids NMR
Related: dconi Interactive 2D data display (C)
dplane Display a 3D plane (M)
dproj Display a 3D plane projection (M)
getplane Extract planes from 3D spectral data set (M)
nextpl Display the next 3D plane (M)
plane \quad Currently displayed 3D plane type (P)
plplanes Plot a series of 3D planes (M)
prevpl Display the previous 3D plane (M)

dsptype Type of DSP (P)

Description: Indicates the existence of digital signal processing (DSP).
Values: 0 indicates no digital signal processing. 1 indicates DSP exists.

Examples: dsptype?=0 dsptype?=1
See also: VnmrJ Liquids NMR
Related: dsp Type of DSP for data acquisition (P)

Display stacked spectra (C)

Syntax: dss<(<start,finish<,step>><,options>)>
Description: Displays one or more spectra on the screen, but not interactively like the command ds . When a single spectrum is displayed, integral display is controlled by the parameter intmod, which has the following values:

- intmod= 'off' turns off the integral display.
- intmod= 'full' displays the entire integral.
- intmod= 'partial ' displays every other integral region.

For arrayed 1D spectra or for 2D spectra, a particular trace can be viewed by supplying the index number as an argument. For 2D data sets, spectra can be displayed from either the f_{1} or f_{2} domain by setting the parameter trace equal to ' $£ 1$ ' or ' $£ 2$ ', respectively. After entering ft 1 d , interferograms can be viewed by setting trace='f1' and then entering dss. Multiple spectra can be displayed by supplying indexes of the first and last spectra.
The position of the first spectrum is governed by the parameters wc, sc, and vp . For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the parameters vo (vertical offset) and ho (horizontal offset). For 2D data, ho defines the total horizontal offset between the first and last spectrum. Also for 2D data, vo is inactive while the parameter wc2 defines the total vertical offset between the first and last spectrum.
The parameter cutoff, if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying cutoff to have two different values, the truncation limits above and below the current vertical position can be controlled independently. For example, cutoff $=50$ truncates peaks at $v p+50 \mathrm{~mm}$ and $v p-50 \mathrm{~mm}$. cutoff $=50,10$ truncates peaks at $v p+50 \mathrm{~mm}$ and $\mathrm{vp}-10 \mathrm{~mm}$.
Arguments: start is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra.
finish is the index of the last spectra when displaying multiple spectra. Since the parameter arraydim is automatically set to the total number of spectra, it can be used to set finish to include all spectra (e.g., dss (1, arraydim, 3)).
step is the increment for the spectral index when displaying multiple spectra. The default is 1 .
options can be any of the following:

- 'all' is a keyword to display all of the spectra.
- 'int ' is a keyword to only display the integral, independently of the value of the parameter intmod
- 'top' or 'side' are keywords that cause the spectrum to be displayed either above or at the left edge, respectively, of a contour plot. This assumes that the parameters sc, wc, sc2, and wc2 are those used to position the contour plot.
- 'dodc' is a keyword for all spectra to be drift corrected independently.
- 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', and 'white' are keywords that select a color.

| Examples: | $\mathrm{dss}(1,3)$ | |
| :---: | :---: | :---: |
| See also: | VnmrJ Lid | |
| Related: | cutoff | Data truncation limit (P) |
| | dssa | Display stacked spectra automatically (C |
| | dssan | Display stacked spectra automatically without erasing (C) |
| | dssh | Display stacked spectra horizontally (C) |
| | dsshn | Display stacked spectra horizontally without erasing (C) |
| | dssn | Display stacked spectra without screen erase (C) |
| | dsww | Display spectra in whitewash mode (C) |
| | ft1d | Fourier transform along f_{2} dimension (C) |
| | ho | Horizontal offset (P) |
| | intmod | Integral display mode (P) |
| | pl | Plot spectra (C) |
| | plww | Plot spectra in whitewash mode (C) |
| | sc | Start of chart (P) |
| | sc2 | Start of chart in second direction (P) |
| | trace | Mode for 2D data display (P) |
| | vo | Vertical offset (P) |
| | vp | Vertical position of spectrum (P) |
| | wc | Width of chart (P) |
| | wc2 | Width of chart in second direction (P) |

Display stacked spectra automatically (C)

Syntax: dssa<(<start,finish<,step>><,options>) >
Description: Displays one or more spectra automatically. When a single spectrum is displayed, integral display is controlled by the parameter intmod, which has the following values:

- intmod='off' turns off the integral display.
- intmod='full' displays the entire integral.
- intmod='partial' displays every other integral region.

For arrayed 1D spectra or for 2D spectra, a particular trace can be viewed by supplying the index number. For 2D data sets, spectra can be displayed from either the f_{1} or f_{2} domain by setting the parameter trace equal to ' $f 1$ ' or 'f2 ', respectively. Following the command ft1d, interferograms may be viewed by setting trace $=$ ' $f 1$ ' and then entering dssa. Multiple spectra can be displayed by supplying indexes of the first and last spectra.
The position of the first spectrum is governed by the parameters wc, sc, and vp . For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the parameters vo (vertical offset) and ho (horizontal offset). For 2D data, ho defines the total horizontal offset between the first and last spectrum. Also for 2D data, vo is inactive while the parameter wc 2 defines the total vertical offset between the first and last spectrum. To display spectra "automatically," the command dssa adjusts the parameters vo and ho to fill the screen in a lower left to upper right presentation (wC must be set to less than full screen width for this to work)
The parameter cutoff, if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying cutoff to have two different values, the truncation limits above and below the current vertical position can be controlled independently. For example, cutoff $=50$ truncates peaks at $v p+50 \mathrm{~mm}$ and $v p-50 \mathrm{~mm}$. cutoff=50,10 truncates peaks at $v p+50 \mathrm{~mm}$ and $\mathrm{vp}-10 \mathrm{~mm}$.

Arguments: start is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra.
finish is the index of the last spectra when displaying multiple spectra.
step is the increment for the spectral index when displaying multiple spectra. The default is 1 .
options can be any of the following:

- 'all' is a keyword to display all of the spectra.
- 'int ' is a keyword to only display the integral, independently of the value of the parameter intmod
- 'dodc' is a keyword for all spectra to be drift corrected independently.

Examples: dssa $(1,3)$
See also: VnmrJ Liquids NMR

| Related: | cutoff | Data truncation limit (P) |
| :--- | :--- | :--- |
| | dss | Display stacked spectra (C) |
| dssan | Display stacked spectra automatically without erasing (C) | |
| dssh | Display stacked spectra horizontally (C) | |
| dsshn | Display stacked spectra horizontally without erasing (C) | |
| dssn | Display stacked spectra without screen erase (C) | |
| dsww | Display spectra in whitewash mode (C) | |
| ftld | Fourier transform along fi dimension (C) | |
| ho | Horizontal offset (P) | |
| intmod | Integral display mode (P) | |
| pl | Plot spectra (C) | |
| plww | Plot spectra in whitewash mode (C) | |
| sc | Start of chart (P) | |
| sc2 | Start of chart in second direction (P) | |
| trace | Mode for 2D data display (P) | |
| vo | Vertical offset (P) | |
| vp | Vertical position of spectrum (P) | |
| wc | Width of chart (P) | |
| wc2 | Width of chart in second direction (P) | |

dssan
 Display stacked spectra automatically without erasing (C)

Syntax: dssan<(<start,finish<,step>><,options>) >
Description: Functions the same as the command dssa except the graphics window is not erased before starting the display. This allows composite displays of many spectra to be created. The arguments are the same as dssa.
Examples: dssan $(1,3)$
See also: VnmrJ Liquids NMR
Related: dssa Display stacked spectra automatically (C)

Display stacked spectra horizontally (C)
Syntax: dssh<(<start,finish<,step>><,options>) >
Description: Displays one or more spectra horizontally. When a single spectrum is displayed, integral display is controlled by the parameter intmod., which can have the following values:

- intmod='Off' turns off the integral display.
- intmod='full' displays the entire integral.
- intmod= 'partial' displays every other integral region.

For arrayed 1D spectra or for 2D spectra, a particular trace can be viewed by supplying the index number as an argument. For 2D data sets, spectra can be displayed from either the f_{1} or f_{2} domain by setting the parameter trace equal to 'f1' or 'f2', respectively. After entering ft1d, interferograms can be viewed by setting trace='f1' and then entering dss. Multiple spectra can be displayed by supplying indexes of the first and last spectra.

The position of the first spectrum is governed by the parameters wc, sc, and vp . For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the parameters vo (vertical offset) and ho (horizontal offset). For 2D data, ho defines the total horizontal offset between the first and last spectrum. Also for 2D data, vo is inactive while the parameter wc 2 defines the total vertical offset between the first and last spectrum. To display spectra horizontally, the command dssh causes vo to be set to zero and for ho, sc, and wc to be adjusted to fill the screen from left to right with the entire array.
The parameter cutoff, if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying cutoff to have two different values, the truncation limits above and below the current vertical position may be controlled independently. For example,
cutoff $=50$ truncates peaks at $v p+50 \mathrm{~mm}$ and $v p-50 \mathrm{~mm}$, and cutoff $=50,10$ truncates peaks at $v p+50 \mathrm{~mm}$ and $\mathrm{vp}-10 \mathrm{~mm}$.
Arguments: start is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra.
finish is the index of the last spectra when displaying multiple spectra.
step is the increment for the spectral index when displaying multiple spectra. The default is 1 .
options can be any of the following:

- 'all' is a keyword to display all of the spectra.
- 'int ' is a keyword to only display the integral, independently of the value of the parameter intmod
- ' dode' is a keyword that causes all spectra to be drift corrected independently.

| Examples: | dssh $(1,3)$ | |
| ---: | :--- | :--- |
| See also: | VnmrJ Liquids NMR | |
| Related: | cutoff | Data truncation limit (P) |
| | dss | Display stacked spectra (C) |
| | dssa | Display stacked spectra automatically (C) |
| | dssan | Display stacked spectra automatically without erasing (C) |
| | dsshn | Display stacked spectra horizontally without erasing (C) |
| | dssn | Display stacked spectra without screen erase (C) |
| | dsww | Display spectra in whitewash mode (C) |
| | ft1d | Fourier transform along f_{2} dimension (C) |
| ho | Horizontal offset (P) | |
| intmod | Integral display mode (P) | |
| | pl | Plot spectra (C) |
| | plww | Plot spectra in whitewash mode (C) |
| sc | Start of chart (P) | |
| sc2 | Start of chart in second direction (P) | |
| trace | Mode for 2D data display (P) | |
| vo | Vertical offset (P) | |
| vp | Vertical position of spectrum (P) | |

| wc | Width of chart (P) |
| :--- | :--- |
| wc2 | Width of chart in second direction (P) |

dsshn

Display stacked spectra horizontally without erasing (C)
Syntax: dsshn<(<start,finish<,step>><,options>) >
Description: Functions the same as the command dssh except the graphics window is not erased before starting the display. This allows composite displays of many spectra to be created. The arguments are the same as dssh.

Examples: dssh $(1,3)$
See also: VnmrJ Liquids NMR
Related: dssh Display stacked spectra horizontally (C)

Label a display of stacked spectra (M)
Syntax: dssl(<options>)
Description: Displays a label for each element in a set of stacked spectra. The label is an integer value from 1 up to the number of spectra in the display.

Note that if wysiwyg= 'n', labels can appear at incorrect positions. The positions were empirically determined for a large screen display and are not guaranteed to be correct for all displays.
Arguments: options control the display (more than one option can be entered as long as the options do not conflict with each other):

- 'center', 'left', 'right', 'top', 'bottom', 'above', and ' below' are keywords setting the position of the displayed index relative to each spectrum.
- 'value' is a keyword that produces a display of the values of each array element, instead of an integer index.
- 'list=xxx' produces a display of the values contained in the arrayed parameter xxx.
- 'format=yyy' uses the format yyy to control the display of each label. See the write command for information about formats.

Examples: dssl
dssl('top','left')
dssl('value','format=\%3.1f')
See also: VnmrJ Liquids NMR
Related: dss Display stacked spectra (C)
write \quad Write formatted text to a device (C)

dssn
 Display stacked spectra without screen erase (C)

Syntax: dssn<(<start,finish<,step>><,options>) >
Description: Functions the same as the command dss except the graphics window is not erased before starting the display. This allows composite displays of many spectra to be created. The arguments are the same as dss.
Examples: dssn $(1,3)$
See also: VnmrJ Liquids NMR
Related: dss Display stacked spectra (C)

dsvast Display VAST data in a stacked 1D-NMR matrix format (M)

Applicability: Systems with the VAST accessory.
Syntax: dsvast<(display order, number of columns displayed) >
Description: dsvast will arrange and display the traces from a reconstructed 2D data set (see (see vastglue)as an array of 1D spectra in a matrix of 1D spectra. If no arguments are provided, the number of rows and columns will be determined by the periodicity of the display order based on the doneQ. For example, if a block of 96 spectra (typical for a microtiter-plate) have been acquired using VAST automation, the spectra will be displayed in a matrix 8 rows and 12 columns with the well label using the format $[A->H][1->12]$.

The spectra can be plotted using the macro plvast.
Arguments: display order is optional and its default value is the glue order as listed in glueorderarray. A display order can be defined using the plate_glue program.
number of columns displayed. The default value of is deduced by examining the periodicity of the requested display order. The number of columns displayed can entered as the second argument or as the first argument if the default display order is used.
Examples: dsvast
dsvast(12)
dsvast('glue_file', 4)VnmrJ Liquids NMR
Related: dsast2d Display VAST data in a pseudo-2D format (M)
plvast Plot VAST data in a stacked 1D-NMR matrix (M)
plvast2d Plot VAST data in a pseudo-2D format (M)
plate_glue Define a display order (U)

dsvast2d Display VAST data in a pseudo-2D format (M)

Applicability: Systems with the VAST accessory.

Syntax: dsvast2d(number)

Description: If an array of 1D spectra have been acquired (in particular if a block of 96 spectra has been acquired using VAST automation, especially in a microtiterplate format), and if these spectra have been glued into a reconstructed 2D dataset (see vastglue), this macro will arrange and display them (on the screen) in a convenient pseudo-2D format (almost like an LC-NMR chromatogram). Well labels are not attached to the spectra and spectra are plotted with 8 spectra per row.
Arguments: The default is to display all the spectra (from 1 through arraydim) with 8 columns (spectra) and 12 rows. An optional argument dsvast2d (number) allows specifying that only spectra from 1 through number should be plotted. The number of spectra displayed is rounded up to the nearest multiple of 8 .

Related: dsast Display VAST data in a 1D-NMR matrix format (M)
plvast Plot VAST data in a stacked 1D-NMR matrix (M)
plvast2d Plot VAST data in a pseudo-2D format (M)
dsww Display spectra in whitewash mode (C)
Syntax: dsww<(<start,finish<,step>><,'int'>) >
Description: Displays one or more spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind a prior spectra).

Arguments: start is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra; default is to display all spectra.
finish is the index of the last spectra when displaying multiple spectra.
step is the increment for the spectral index when displaying multiple spectra. The default is 1 .
' int ' is a keyword to display only the integral, independently of the value of the parameter intmod
Examples: dsww (1, 3)

| Related: | dss | Display stacked spectra (C) |
| :--- | :--- | :--- |
| | dssa | Display stacked spectra automatically (C) |
| | dssan | Display stacked spectra automatically without erasing (C) |
| | dssh | Display stacked spectra horizontally (C) |
| | dsshn | Display stacked spectra horizontally without erasing (C) |
| dssn | Display stacked spectra without screen erase (C) | |
| pl | Plot spectra (C) | |
| plww | Plot spectra in whitewash mode (C) | |

dtext Display a text file in graphics window (M)
Syntax: dtext<(file, x,y)><:\$x_next, \$y_next, \$increment>
Description: Displays a text file in the graphics window.
Arguments: file is the name of a text file. The default is the current experiment text file. x and y are coordinates of the first line of text. This positions the location of the output. The default is the upper left-hand corner of the screen.
\$x_next and \$y_next are the coordinates where the start of the next line would have been displayed. This is useful for subsequent character display.
\$increment is the increment between lines.
Examples: dtext
dtext (userdir+'/exp3/text')
dtext (100,100)
dtext: \$x, \$y, \$dy
Related: pltext Plot a text file (M)
ptext Print out a text file (M)
text Display text or set new text for current experiment (C)
write Write formatted text to a device (C)
dtrig Delay to wait for another trigger or acquire a spectrum (P)
Applicability: Systems with LC-NMR accessory.
Description: If ntrig is greater than 0 after a trigger is detected, a pulse sequence waits for dtrig seconds before either waiting for another trigger or acquiring a spectrum. Typically, after the LC has positioned the sample in the NMR probe and stopped the pump, there is a small time (30 seconds) during which conditions (pressure, etc.) in the NMR probe are still settling; better NMR performance is obtained if an appropriate delay is inserted using dtrig. If dtrig does not exist, a value of 0 is assumed. If dtrig does not exist, the parlc macro can create it.
Related: ntrig Number of trigger signals to wait before acquisition (P)
parlc Create LC-NMR parameters (M)

```
e
eaddr
ecc
ecctabl
ecctool
echo
echo
eddyout
eddysend
edit
eff_echo
eject
elist
element
enter
enterdialog
epift
epiph
epirs
epirun
episet
episvib
eread
ernst
errlog
errloglen
ewrite
exec
execpars
execplot
execprep
execprescan
execprocess
execsetup
exists
exit
exp
expactive
expfit
expl
expladd
explib
explist
```


e

eaddr
ecc
ecctabl
ecctool
echo
echo
eddyout
eddysend
edit
eff_echo
eject
elist
element
enter
enterdialog
epift
epiph
epirs
epirun
episet
episvib
eread
ernst
errlog
errloglen
ewrite
exec
execpars
execplot
execprep
execprescan
execprocess
execsetup
exists
exit
exp
expactive
expfit
expl
expladd
explib
explist

Eject sample (M)
Display Ethernet address (M, U)
Set up parameters to get eddy current compensation data (M)
Put gcal value and ecc file into table (M)
Open eccTool window (M)
Display strings and parameter values in text window (C)
Current echo index for transformed image (P)
Data analysis of eddy current compensation (M)
Update acquisition eddy current settings (M)
Edit a file with user-selectable editor (M)
Effective echo position in EPI experiments (P)
Eject sample (M)
Display directory on remote VXR-style system (M,U)
Current array index for transformed image (P)
Enter sample information for automation run (M,U)
Start a dialog window using enterexp file (M)
Process and display image in EPI experiments (M)
Generate phasemap file in EPI experiments (M)
Reverse spectral data in EPI experiments (C)
Collect, process, and display EPI data (M)
Set up parameters for EPI experiments (M)
Save EPI images in FDF for ImageBrowser (M)
Transfer file from remote source (M, U)
Calculate the Ernst angle pulse (C)
Display recent error messages (C)
Number of lines in error message display (P)
Transfer file to remote destination (M,U)
Execute a command (C)
Set up the exec parameters (M)
Execute plotting macro (P)
Execute prepare macro (P)
Execute prescan macro (P)
Execute processing macro (P)
Execute setup macro (P)
Checks if parameter, file, or macro exists and file type (C)
Call the vnmrexit command (M)
Find exponential value of a number (C)
Determine if experiment has active acquisition (C)
Make least-squares fit to polynomial or exponential curve (U)
Display exponential or polynomial curves (C)
Add another diffusion analysis to current display (M)
Display experiment library (M)
Display current experiment chain and approx. time for each (M)

E

| explog | Display log file for experiment (M) |
| :--- | :--- |
| exptime | Display experiment time (C) |

e
 Eject sample (M)

Description: Ejects the sample from the probe by turning on the eject air and the slow drop air. The e macro functions the same as the eject macro.

See also: VnmrJ Liquids NMR

| Related: | eject | Eject sample (M) |
| :--- | :--- | :--- |
| | i | Insert sample (M) |
| | insert | Insert sample (M) |

eaddr \quad Display Ethernet address (M,U)
Description: Displays the name of the local host and its hardware Ethernet address. The 48bit address is presented in octal, decimal, and hexadecimal formats.
See also: VnmrJ Liquids NMR
Related: dnode Display list of valid limNET nodes (M,U)
ecc Set up parameters to get eddy current compensation data (M)
Applicability: Systems with the imaging module.
Description: Loads parameter sets during imaging installation for a pulse sequence to obtain eddy current compensation data using balance gradients.
See also: Imaging Module Installation Manual
Related: eddyout Data analysis of eddy current compensation (M)
ecctabl Put gcal value and ecc file into table (M)
Applicability: Systems with the imaging module.
Syntax: ecctabl<(ecc_file><,gcal>) >
Description: Moves the gcal value and ecc file into the reference table ecctabl in \$vnmrsystem/imaging/eddylib. If the gcal value or file name would overwrite data already in the table, the monitor displays a prompt to confirm the overwrite.

Arguments: ecc_file specifies the name of the ecc file to be placed in the ecctabl reference table. The default value is the file name 'curecc '.
gcal specifies the gcal value to be placed in the ecctabl reference table. The default is the current gcal value.
Examples: ecctabl
ecctabl('test1',0.001)
See also: VnmrJ Imaging NMR

| Related: | ecc | Set up parameters to obtain compensation data (M) |
| :--- | :--- | :--- |
| | gcal | Gradient calibration constant (P) |
| | getgcal | Get gcal value from table (M) |

ecctool Open eccTool window (M)
Applicability: Systems with imaging capabilities.

Description: Opens the eccTool window to adjust eddy current compensation parameters.
See also: VnmrJ Imaging NMR
echo Display strings and parameter values in text window (C)
Syntax: echo<(<'-n',>string1,string2,) >
Description: Displays strings and parameter values in the text window similar to the UNIX echo command.
Arguments: \quad ' -n ' is a keyword that suppresses advancing to the next line. The default is to advance to the next line.
string1, string2, . . are one or more strings (surrounded with single quote marks) or parameters. The format used for numbers is identical to the $\% \mathrm{~g}$ format described for the write command.
Examples: echo
echo('This is a string')
echo('Pulse Width is: ',pwr)
echo('-n','No new line')
See also: User Programming
Related: write Write formatted text to a device (C)
echo Current echo index for transformed image (P)
Applicability: Systems with imaging capabilities.
Description: Stores the current echo index for the transformed image.
See also: VnmrJ Imaging NMR
Related: element Current array index for transformed image (P)
eddyout Data analysis of eddy current compensation (M)
Applicability: Systems with the imaging module.
Syntax: eddyout (start, stop)
Description: Analyzes the data obtained with the pulse sequence set up by ecc for a series of acquisitions obtained after varying delays following shut off of a gradient. eddyout calculates the time constants and amplitudes of the eddy currents and recommends new time constants and amplitudes to be set into the compensation networks.

Arguments: start specifies the number of starting array of spectra acquired by ecc.
stop specifies the number of the ending array of spectra acquired by ecc.
Examples: eddyout (1,16)
See also: VnmrJ Imaging NMR
Related: ecc Set up parameters to obtain compensation data (M)
eddysend Update acquisition eddy current settings (M)
Applicability: Systems with the imaging module.
Syntax: eddysend<(file)>
Description: Assigns the compensation data from eccTool to the current eddy current compensation file specified by curecc, then sets the compensation data into
the acquisition system. eccTool uses eddysend to automatically track the file(s) in use by eccTool.
Arguments: file is the file name of data from eccTool. If that file exists, that data is assigned to the current compensation file and becomes curecc. The default is the data in the current compensation file is loaded from curecc.
Examples: eddysend
eddysend('data04')
See also: VnmrJ Imaging NMR
Related: curecc Name of eddy current compensation file (P)
eccTool Pop up eccTool window (M)
edit
Edit a file with user-selectable editor (M)
Syntax: edit(file)
Description: Opens a file for editing using a text editor. The default editor is vi. To select another editor, set the UNIX environmental variable vnmreditor to the name of the editor (change the line setenv vnmreditor old_editor in . login to become setenv vnmreditor new_editor, e.g., setenv vnmreditor emacs) and make sure a script with the prefix vnmr_followed by the name of the editor (e.g., vnmr_emacs) is placed in the bin subdirectory of the system directory. The script file makes adjustments for the type of graphic interface in use.
Scripts provided with VnmrJ include vnmr_vi and vnmr_textedit. To create other scripts, see the vnmr_vi script for non-window editor interfaces and the vnmr_textedit script for window-based editor interfaces.
Arguments: file is the name of the file you wish to edit.
Examples: edit('myfile')
See also: User Programming
Related: paramedit Edit a parameter and its attributes with user-selected editor (C)
paramvi Edit a parameter and its attributes with vi editor (M)
macroedit Edit a user macro with user-selectable editor (C)
macrovi Edit a user macro with vi editor (C)
menuvi Edit a menu with the vi editor (M)
textvi Edit text file of current experiment with vi editor (M)
eff_echo Effective echo position in EPI experiments (P)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Refers to the echo showing the highest signal in an EPI echo-train. The readout gradient dephaser is adjusted so that the maximum signal occurs at eff_echo.
Values: Usually set to nv/2.
See also: VnmrJ Imaging NMR
Related: nv Number of phase encode steps for 1st indirectly detected dim. (P)
eject \quad Eject sample (M)

Syntax: eject

Description: Ejects the sample from the probe by turning on the eject air and the slow drop air. The e macro functions the same as the e macro.

```
    See also: VnmrJ Liquids NMR
    Related: e Eject sample (M)
    i Insert sample (M)
    insert Insert sample (M)
elist Display directory on remote VXR-style system (M,U)
    Syntax: elist(remote_node,remote_directory)
    (From UNIX) elíst remote_node remote_directory
    Description: Lists directory contents on a remote VXR-style (Gemini, VXR-4000, or XL)
    system.
Arguments: remote_node is the name of the remote VXR-style system.
    remote_directory is the name of the directory on the remote system.
Examples: elist('gemini','fidlib')
    (From UNIX) elist gemini fidlib
    See also: VnmrJ Liquids NMR
    Related: dnode Display list of valid limNET nodes (M,U)
element Current array index for transformed image (P)
    Applicability: Systems with imaging capabilities.
    Description: Stores the current array index for the transformed image.
    See also: VnmrJ Imaging NMR
            Related: echo
        Current echo index for transformed image (P)
enter Enter sample information for automation run (M,U)
Applicability: Systems with an automatic sample changer.
            Syntax: enter<(file<,configuration_file>) >
                            (From UNIX) enter <file> <configuration_file>
Description: Enables entry of sample information for automation runs, including the sample location, user information, solvent used, experiment or experiments to run, and arbitrary text information. enter ('abc') creates a directory named abc. In this directory is a file named abc , which contains experiment information.
Arguments: file is the name of the file to be edited. The default is that enter prompts for this information. If the file already exists, new entries are appended to it.
configuration_file is the name of a user-supplied file that customizes enter for local use. Several configuration files are provided:
- enter. conf is used when defining an experiment when an automation run is not currently active.
- auto. conf is used when defining an experiment for a current automation run. The walkup macro is provided for this style of entering samples.
- gilson. conf is used with the VAST accessory.
Examples: (From VnmrJ or UNIX) enter
(From VnmrJ) enter('mysamples')
(From UNIX) enter MySamples
(From VnmrJ) enter('mysamples','auto.conf')
```

See also: VnmrJ Liquids NMR; User Programming, VnmrJ Walkup NMR

Related: auto Set up an automation directory (C)
autogo Start an automation run (C)
autoname Prefix for automation data file (P)
autora Resume a suspended automation run (C)
autosa \quad Suspend current automation run (C)
printer Printer device (P)
status Display status of all experiments (C)
walkup Walkup automation (M)
enterdialog Start a dialog window using enterexp file (M)
Applicability: Systems with automation.
Syntax: enterdialog
Description: Internal macro used by enter to start a dialog window using the enterexp file in the dialoglib directory.

Related: enter Enter sample information for automation run (M,U)

epift Process and display image in EPI experiments (M)

Applicability: Systems with echo planar imaging (EPI) capabilities.
Syntax: epift(index)
Description: Processes and displays an image in array number index. The first data array must contain the reference scan. The phase correction information saved in the file phasemap is used to correct phase errors in EPI data. phasemap must be present in the current experiment directory. Use dconi to view the data.
Arguments: index is the array number of the image.
See also: VnmrJ Imaging NMR
Related: dconi Interactive 2D data display (C)
epiph Generate phase correction map in EPI experiments (M)
pcmapapply Apply phase correction map to data in EPI experiments (C)
epiph Generate phasemap file in EPI experiments (M)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Generates the phasemap file from the EPI reference scan. The file is generated in the current experiment directory for EPI processing. The first data array must correspond to the reference scan, which is collected with the phase-encode gradient turned off (image $=0$).
See also: VnmrJ Imaging NMR

| Related: | episet | Set up parameters for EPI experiments (M) |
| :--- | :--- | :--- |
| image | Control phase encoding gradient in EPI experiments (P) | |
| pcmapgen | Generate phase correction map in EPI experiments (M) | |

epirs \quad Reverse spectral data in EPI experiments (C)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Reverses spectral data. It is used by epift.

See also: VnmrJ Imaging NMR

$$
\text { Related: epift } \quad \text { Process and display images in EPI experiments }(\mathrm{M})
$$

epirun Collect, process, and display EPI data (M)

Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Collects, process, and displays EPI data. It is used to obtain a single EPI image. The phasemap file must be present in the current experiment directory.
See also: VnmrJ Imaging NMR
Related: epiph Generate phasemap file in EPI experiments (M)
episet Set up parameters for EPI experiments (M)
episet Set up parameters for EPI experiments (M)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Collects an EPI dataset with the phase-encode gradient turned off (image=0). It optimizes parameters for EPI, collects a reference scan, and allows you to adjust the gradient parameters groa and grora and the timing parameter tep. The phasemap file is generated in the current experiment directory.
See also: VnmrJ Imaging NMR

| Related: | epiph | Generate phasemap file in EPI experiments (M) |
| :--- | :--- | :--- |
| groa | Readout gradient adjuster in EPI experiments (P) | |
| grora | Readout dephasing gradient adjuster in EPI experiments (P) | |
| image | Control phase encoding gradient in EPI experiments (P) | |
| | tep | Post-acquisition delay in EPI experiment (P) |

episvib Save EPI images in FDF for ImageBrowser (M)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Saves images in Flexible Data Format (FDF) for viewing with ImageBrowser. The first image in an arrayed dataset must contain the reference scan. This scan must be acquired with the phase encode gradient turned off.
See also: VnmrJ Imaging NMR
Related: browser Start ImageBrowser application (U)

eread \quad Transfer file from remote source (M,U)

Applicability: Systems with limNET protocol software installed.

> Syntax: (From VnmrJ) eread(local_file, remote_node, remote_file) (From UNIX) eread local_file remote_node remote_file

Description: Copies a remote file to the local host. It will not overwrite a preexisting file.
Arguments: local_file is the file name of the local host. If local_file is not a dot file (i.e., starts with "."), eread uses the "I1" and "I2" values of the remote file to create an extension and then append it to the local file name.
remote_node is a symbolic node name for a specified node file. Use the command dnode to list nodes defined on your system. The names of the remote computers or "nodes" available to the limNET protocol are contained in the file /vnmr/nodes. Note that this is not the same file as the name of the remote computers available to the Internet protocol (IP), which are contained in the file /etc/hosts. Each user only needs to know the "names" of relevant nodes.
remote_file is the name of file to be transferred from the remote host.

```
Examples: (From VnmrJ) eread('Osv700','VXR4000','dsk1.OSv700')
```

 (From UNIX) eread osv700 VXR4000 dsk1.Osv700
 See also: VnmrJ Liquids NMR
Related: dnode Display list of valid limNET nodes (M,U)
ewrite \quad Transfer file to remote destination (M,U)
ernst \quad Calculate the Ernst angle pulse (C)
Syntax: ernst(t1_estimate<,90_pulse_width>)
Description: Calculates the optimum ("Ernst") pulse width according to the formula $\mathrm{pw}=\cos ^{-1}\left(\exp ^{-(a t+d 1) / t 1 _e s t i m a t e}\right) \bullet(\mathrm{pw} 90 / 360)$
The new pw value is entered in the parameter table.
Arguments: t1_estimate is an estimate of the T_{1} for a peak of interest.
90 _pulse_width is a 90° pulse width determined by the parameter pw90. The default is the current value of parameter pw90 if pw90 exists.
Examples: ernst(5)
ernst (3,12.6)
See also: VnmrJ Liquids NMR

| Related: | pw | Pulse width (P) |
| :--- | :--- | :--- |
| | pw90 | 90° pulse width (P) |

errlog Display recent error messages (C)

Description: Displays in the text window the most recent error messages. The global parameter errloglen controls the number of lines displayed. If errloglen is not defined, errlog displays 10 lines by default.
See also: VnmrJ Liquids NMR
Related: acqstatus Acquisition status (P)
errloglen Number of lines in error message display (P)
errloglen \quad Number of lines in error message display (P)
Description: Sets the number of lines in the display of error messages by the errlog command.
Values: Integer, default is 10 .
See also: VnmrJ Liquids NMR
Related: errlog Display recent error messages (P)
ewrite \quad Transfer file to remote destination (M,U)
Applicability: Systems with limNET protocol software installed.
Syntax: (From VnmrJ) ewrite (local_file,remote_node,remote_file) (From UNIX) ewrite local_file remote_node remote_file
Description: Takes a preexisting local file and copies it to a remote host. The file cannot preexist on the remote host.
Arguments: local_file is the file name of the local host.
remote_node is a symbolic node name for a specified node file. Use the command dnode to list nodes defined on your system. The names of the
remote computers or "nodes" available to the limNET protocol are contained in the file /vnmr/nodes. Note that this is not the same file as the name of the remote computers available to the Internet Protocol (IP), which are contained in the file / etc/hosts. Each user only needs to know the "names" of relevant nodes.
remote_file is the name of file to be transferred from the remote host.
Examples: (From VnmrJ) ewrite ('0sv700', 'VXR4000', 'dsk1.0sv700') (From UNIX) ewrite osv700 VXR4000 dsk1.0sv700
See also: VnmrJ Liquids NMR
Related: dnode Display list of valid limNET nodes (M,U)
eread Transfer file from remote source (M,U)

```
exec Execute a command (C)
    Syntax: exec(command_string)
```

Description: Executes the command given by the string argument.
Arguments: command_string is a character string constructed from a macro.
Examples: exec (\$cmdstr)
exec (parstyle)
See also: User Programming

execpars \quad Set up the exec parameters (M)

Description: Set up the exec parameters as listed in/vnmr/execpars.
See also: User Programming

execplot Execute plotting macro (P)

Description: Defines which plotting macro to use to plot this experiment.
See also: User Programming
execprep Execute prepare macro (P)
Description: Defines which prepare macro to use to prescan this experiment.
See also: User Programming
execprescan Execute prescan macro (P)
Description: Defines which prescan macro to use to prescan this experiment.
See also: User Programming
execprocess Execute processing macro (P)
Description: Defines which processing macro to use to process this experiment.
See also: User Programming

execsetup Execute setup macro (P)

Description: Defines which setup macro to use to prescan this experiment.
See also: User Programming

Syntax: (1) exists (name, 'parameter'<,tree>) : \$exists
(2) exists (name, 'file'<, permission>) : \$exists
(3) exists (name, 'maclib') : \$exists
(4) exists (name, 'command') : \$exists
(5) exists (name, 'ascii') : \$exists
(6) exists (name, 'directory') : \$exists

Description: Checks for the existence of a parameter, file, command, or a macro from within a macro. It also checks if a file is an ASCII text file or a directory.
Arguments: name is the name of a parameter, file, command, or macro.
' parameter' checks if the parameter specified by name exists.
tree is 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for a more information on the types of parameter trees.
'file' checks if the file specified by name exists.
permission is a string to be used with an access permission test on the file specified by name. The default is to check only the simple existence of the file. Access permission can be identified by passing the character r for read permission, w for write permission, and x for execute permission. One, two, or three characters can be passed in a single argument. For example, the command exists('/vnmr/conpar','file','rw') checks not only that the file /vnmr/conpar exists, but also whether the current user has read and write access to that file.
'maclib' checks if the macro specified by name exists.
' command ' checks if the command or macro specified by name exists.
'ascii' checks if the file specified by name is an ASCII text file.
' directory' checks if the file specified by name is a directory.
\$exists is the return variable that changes according to the second argument:

- For 'parameter', exists returns 1 if the parameter specified by name exists in the tree specified by tree; otherwise, it returns 0 .
- For 'file', exists returns 1 if the file specified by name exists with the file permission specified by permission; otherwise, it returns 0 .
- For 'maclib', exists searches the macro libraries in the following order for the macro specified in name and returns 1 if the macro is in the user's maclib directory, returns 2 if in a directory defined by maclibpath, returns 3 if in a directory defined by sysmaclibpath, returns 4 if in the system maclib directory, or returns 0 if not found in any of these libraries. Only the value of the first location found is returned.
- For ' command ', exists searches the command list and macro libraries in the following order and returns 1 if name is a command, returns 2 if it is in the user's maclib directory, returns 3 if in a directory defined by maclibpath, returns 4 if in a directory defined by sysmaclibpath, returns 5 if in the system maclib directory, or returns 0 if not found in any of these libraries. Only the value of the first location found is returned.
- For 'ascii', exists returns 1 if the file specified in name is an ASCII text file; otherwise it returns 0 .
- For 'directory', exists returns 1 if the file specified in name is a directory; otherwise it returns 0 .
The parlib option will also return the absolute path of the parameter set. The search path for parlib is defined by the VnmrJ administrator interface.

```
Examples: exists('ni','parameter'):$twod
exists('/vnmr/conpar','file','rw')
exists('wft','command'):$num
```

See also: User Programming
Related: create Create new parameter in a parameter tree (C)
hidecommand Execute macro instead of command with same name (C)
maclibpath Path to user's macro directory (P)
which Display which macro or command is used (M)
exit Call the vnmrexit command (M)
Description: Calls the vnmrexit command to exit from VnmrJ. As a macro, exit provides a user some flexibility in defining other things to do when exiting.

$$
\begin{array}{ll}
\text { CAUTION: } & \text { When you exit from the VnmrJ user interface on your } X \text { display system, } \\
\text { whether you are using an } X \text { terminal or a Sun computer, and whether } \\
\text { you are using OpenWindows, CDE, or Motif, you must first exit from } \\
\text { any copy of VnmrJ running on your system. Failure to do this can } \\
\text { cause current parameter values and even current data to be lost. }
\end{array}
$$

$\exp \quad$ Find exponential value of a number (C)

Syntax: exp(value)<:n>
Description: Finds the exponential value (base e) of a number.
Arguments: value is a number.
n is the return value giving the exponential value of value. The default is to display the exponential value in the status window.
Examples: exp(.5)
exp (val) : exp_val
See also: User Programming
Related: arccos \quad Calculate arc cosine of real number (M)
arcsin Calculate arc sine of real number (M)
arctan \quad Calculate arc tangent of real number (M)
atan \quad Find arc tangent of a number (C)
$\cos \quad$ Find cosine value of an angle (C)
ln \quad Find natural logarithm of a number (C)
sin \quad Find sine value of an angle (C)
tan Find tangent value of an angle (C)
expactive Determine if experiment has active acquisition (C)
Syntax: (1) expactive<(exp_number) ><: \$answer>
(2) expactive ('auto') <: \$mode>
(3) expactive ('current') <: \$exp><, \$user>

Description: Determines whether an acquisition is active or pending in an experiment.
Arguments: exp_number is the number, from 1 to 9999 , of the experiment to be checked. The default is the current experiment.
\$answer is a return value: - 1 if an acquisition is not possible (e.g., the system is a data station), 0 if no acquisition active in the requested experiment, 1 if an acquisition active in that experiment, and 2 or larger if an acquisition is queued in the requested experiment (subtract 1 from the value to determine its position in the acquisition queue). With no return argument, the result displays on line 3 .
' auto' is a keyword to check if the system is in automation mode.
\$mode is a return value: 1 if the system is in automation mode, or 0 if otherwise. With no return argument, the result is displayed on line 3 .
' current' is a keyword that determines whether an active experiment has an active acquisition command running. An experiment is still considered active if it holds up additional acquisitions during its wexp processing by the 'wait' flag. If expactive ('current') does not have a return argument, results are displayed on line 3.
$\$ \exp$ is a return value indicating the current active experiment number: -1 if no acquisition is possible, or 0 if no acquisition is active.
\$user is a return value indicating the user who started the acquisition. If the system is running in automation mode, \$user is set to "auto." If no acquisition is running, \$user is set to "nobody."
Examples: expactive
expactive(3)
expactive (2): \$active
expactive('auto'): \$automode

expfit Make least-squares fit to polynomial or exponential curve (U)

Syntax: (From UNIX) expfit options <analyze.inp >analyze.list
Description: Makes a least-squares curve fitting to the data supplied in the file analyze.inp. For the specialized uses of analyze, VnmrJ macros (e.g., t1, t2, kind) are available that provide the correct file format and avoid the need for the user to select options.
In the regression mode, the type of curve fitting, ('poly1', . . .) must be selected. For regression (generalized curve fitting), the regression section in the manual VnmrJ Liquids NMR shows the input file format and describes the menus that permit option choices indirectly through menu buttons.
The following text file is an example of the file analyze.inp (for options T1, T2, kinetics, contact_time, and regression). (1), (2), etc. do not actually appear in the file but are used to identify lines in the description presented below the file.
(1) time
(2) <amp>
(3) 24 linear linear
(4) NEXT 4
(5) 1
(6) 1

24
39
$4 \quad 16$
NEXT
2
25
310
417

This file contains the following information:
(1) Optional x-axis title.
(2) Optional y-axis title, for regression only.
(3) Line containing an integer for the number of peaks, followed by another integer for the number of pairs per peak. If regression, the x-scale type and y scale type are also listed.
(4) In the regression mode, a line beginning with the keyword NEXT is inserted at the start of each data set when the number of pairs per peak is variable, followed by an integer for the number of pairs for the peak.
(5) An integer that indexes the peaks.
(6) Data pairs, one to a line, listed by peak.

For options T1, T2, kinetics, and contact_time, information from the file fp . out and from the array xarray are used to construct this file; therefore, it is necessary to run $f p$ prior to analyze. For regression, this file is made by running expl('regression').
For diffusion, contact_time, and, if not in regression mode, poly1 and poly2, the analyze.inp file is slightly different:
(1) List of $n x-y$ data pairs
(2) <text line>
(3) <x-values> <y-values>
(4) $x \quad y$
. . .
(1) Title line.
(2) Descriptive text line.
(3) Number of x values and y values.
(4) Data pairs, one to a line, are listed by peak in the following order:
x y (first peak, first pair)
x y (first peak, second pair)
...
x y (second peak, first pair)
expfit also makes a file analyze. out that is used by expl to display the results of the analysis in addition to output to the standard output, which is usually directed to analyze.list.
Arguments: options can be any of the following:
T1 sets T_{1} analysis. This value is the default.
T 2 sets T_{2} analysis.
kinetics sets kinetics analysis with decreasing peak height.
increment sets kinetics analysis with increasing peak height.
list sets an extended listing for each peak.
diffusion sets a special analysis for diffusion experiments.
contact_time sets a special analysis for solids cross-polarization spin-lock experiments.
regression sets regression mode, providing generalized curve fitting with choices poly1, poly2, poly3, and exp:

- polyo calculates the mean.
- poly1 sets a linear fitting.
- poly2 sets a quadratic fitting.
- poly3 sets a cubic curve fitting.
- exp sets an exponential curve fitting.

Examples: (From UNIX) expfit d2 T1 list <analyze.inp >analyze.out (From UNIX) expfit regression exp list <analyze.inp >analyze.out

See also: VnmrJ Liquids NMR

| Related: | analyze
 expl | Generalized curve fitting (C)
 Display exponential or polynomial curves (C)

 fp |
| :--- | :--- | :--- |
| kind | Find peak heights (C) | |
| t1 | Kinetics analysis, decreasing intensity (M) | |
| t2 | T_{1} exponential analysis (M) | |
| | T_{2} exponential analysis (M) | |

Display exponential or polynomial curves (C)

Syntax: expl<(<options,>line1,line2,...) >
Description:
Displays exponential curves resulting from T_{1}, T_{2}, or kinetic analyses. Also displays polynomial curves from diffusion or other types of analysis. The parameters SC, wC, SC2, and wc 2 control the size of the display.
In general, the first time expl is displayed, it calculates appropriate limits for the two axes. A subsequent call to expl, while a previous expl is displayed on the graphics screen, uses the axis scaling that displayed expl. To have the new expl recalculate its own axis limits and not use those currently displayed, call the autoscale macro before executing expl. Alternately, the axis limit for the expl display can be specified using the scalelimits macro.
Arguments: options can be any of the following:

- 'regression' is a keyword signifying the beginning of generalized curve fitting. expl displays the data in the file regression.inp as unconnected points and also uses regression. inp to create the file analyze.inp, which serves as input to analyze for curve fitting.
- 'linear', 'square ', and 'log' are keywords for display of the data points against a square or logarithmic axis scale, with the exception of the results from regression. The first keyword controls the x-axis scale, the second the y-axis. The default is 'linear'.
- 'link' is a keyword to link the data points rather than a display of the theoretical curve.
- 'nocurve' is a keyword to produce a plot of data points only.
- 'tinysymbol' is a keyword to display small-scale data point symbols.
- ' nosymbol' is a keyword to produce a plot of the curve only.
- 'noclear' is a keyword to not erase the graphics screen before drawing the plot. This prevents the graphics screen from being cleared of data.
- 'oldbox' is a keyword to plot an additional curve on an existing plot. Only the first data set in the file analyze. out is plotted. The box and scale description is derived from the file expl. out in the current experiment. When the 'oldbox' option is used, a second argument is necessary to identify the curve number and data point symbol to represent the data. This second argument is a number from 1 to 6 .
- 'file' is a keyword that, when followed by a file name, makes that file replace the file analyze. out as the input to expl.
line1, line2, .. specify the curves to be displayed. The default is to display the first eight curves (if that many exist) along with data points.
Examples:
expl
$\operatorname{expl}(1,3,6)$
expl('oldbox',5)
expl('regression')
expl('regression',4,5)

See also: VnmrJ Liquids NMR

| Related: | analyze
 autoscale | Generalized curve fitting (C)
 Resume autoscaling after limits set by scalelimits (M)
 expfit |
| :--- | :--- | :--- |
| pexpl | Make least squares fit to polynomial or exponential curve (C) | |
| | Sc | Plot exponential or polynomial curves (C) |
| sc2 | Start of chart (P) | |
| | Scalelimits | Set limits for scales in regression (M) |
| | WC | Width of chart (P) |
| | wc2 | Width of chart in second direction (P) |

expladd Add another diffusion analysis to current display (M)
Applicability: Systems with the diffusion option.
Syntax: expladd(integral_region)
Description: Adds results of another diffusion analysis to the currently displayed results.
Arguments:
integral_region specifies the number of the region whose results are to be added to the existing graph.

Examples: expladd(1)
See also: VnmrJ Liquids NMR
Related: expl Display exponential or polynomial curves (C)
pexpl Plot exponential or polynomial curves (C)
pexpladd Add another diffusion analysis to current plot (M)

explib Display experiment library (M)

Description: Displays the currently available experiment files. For each experiment, explib displays the name of the experiment and its subexperiments, whether an acquisition is active or its position in the acquisition queue, the current size of the experiments, the pulse sequence currently active in the experiments, and the first 50 characters of the text file in the experiment. explib also displays a message if the system is in automation mode.

See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
explist Display current experiment chain and approx. time for each (M)
See also: Displays approximate time for each experiment in a chained experiment.
Related: autotime Display approximate time for automation (M)

explog Display log file for experiment (M)

Description: Displays the log file for an experiment. This file includes when the experiment started, any acquisition errors that may have occurred, and when the experiment finished. Each acquisition generates this information, which is stored in the experiment's acqfil directory in a text file named log.

See also: VnmrJ Liquids NMR

Syntax: exptime<(sequence) $><$: \$seconds>

Description: Estimates the acquisition time for an experiment, based on the parameters used in the current experiment, and displays the time in the format $\mathrm{hh}: \mathrm{mm}: \mathrm{ss}$. The time macro uses exptime to determine the time of an experiment.

Arguments: sequence is a pulse sequence that exists in the seqlib directory. If this argument is used, exptime estimates the acquisition time for the specified sequence. The default is the current value of seqlib.
\$seconds is a return argument with the number of seconds estimated for the experiment. If this argument is used, the time display is suppressed.
Examples: exptime exptime('apt') exptime: \$etime exptime('noesy'): \$est_time
See also: VnmrJ Liquids NMR
Related: time Display experiment time or recalculate number of transients (M)

| f | Set display parameters to full spectrum (C) |
| :---: | :---: |
| f19 | Automated fluorine acquisition (M) |
| f19p | Process 1D fluorine spectra (M) |
| flcoef | Coefficient to construct F1 interferogram (P) |
| f2coef | Coefficient to construct F2 interferogram (P) |
| fattn | Fine attenuator (P) |
| fb | Filter bandwidth (P) |
| fbc | Apply baseline correction for each spectrum in an array (M) |
| fdfgluer | Make FDF file from header and data parts (U) |
| fdfsplit | Divide FDF file into header and data parts (U) |
| fdm1 | Set, write 1D FDM parameters, run FDM (M) |
| fiddc3d | 3D time-domain dc correction (P) |
| fiddle | Perform reference deconvolution (M) |
| fiddled | Perform reference deconvolution subtracting alternate FIDs (C) |
| fiddleu | Perform reference deconvolution subtracting successive FIDs (C) |
| fiddle2d | Perform 2D reference deconvolution (C) |
| fiddle2D | Perform 2D reference deconvolution (C) |
| fiddle2dd | 2D reference deconvolution subtracting alternate FIDs (C) |
| fiddle2Dd | 2D reference deconvolution subtracting alternate FIDs (C) |
| fidpar | Add parameters for FID display in current experiment (M) |
| fidsave | Save data (M) |
| fifolpsize | FIFO loop size (P) |
| fixgrd | Convert gauss/cm value to DAC (M) |
| file | File name of parameter set (P) |
| files | Interactively handle files (C) |
| filesinfo | Return file information for files display (C) |
| filter | Gaussian low-pass filter for image processing (M) |
| filtfile | File of FIR digital filter coefficients (P) |
| fitplot | Adjust plot parameters (M) |
| fitspec | Perform spectrum deconvolution (C, U) |
| fixpar | Correct parameter characteristics in experiment (M) |
| fixpar3rf | Create parameters for third rf channel (M) |
| fixpar4rf | Create parameters for fourth rf channel (M) |
| fixpar5rf | Create parameters for fifth rf channel (M) |
| fixup | Adjust parameter values selected by setup macros (M) |
| fixpsg | Update psg libraries (M) |
| flashc | Convert compressed 2D data to standard 2D format (C) |
| flipflop | Set up parameters for FLIPFLOP pulse sequence (M) |
| fliplist | Standard flip angle list (P) |
| Fluorine | Set up parameters for 19F experiment (M) |
| flush | Write out data in memory (C) |
| fn | Fourier number in directly detected dimension (P) |
| fn1 | Fourier number in 1st indirectly detected dimension (P) |

| fn2 | Fourier number in 2nd indirectly detected dimension (P) |
| :--- | :--- |
| fn2D | Fourier number to build up 2D DOSY display in freq. domain (P) |
| focus | Send keyboard focus to input window (C) |
| foldcc | Fold INADEQUATE data about two-quantum axis (C) |
| foldj | Fold J-resolved 2D spectrum about $f_{1}=0$ axis (C) |
| foldt | Fold COSY-like spectrum along diagonal axis (C) |
| fontselect | Open FontSelect window (C) |
| format | Format a real number or convert a string for output (C) |
| fp | Find peak heights or phases (C) |
| fpmult | First point multiplier for np FID data (P) |
| fpmult1 | First point multiplier for ni interferogram data (P) |
| fpmult2 | First point multiplier for ni2 interferogram data (P) |
| fr | Full recall of a display parameter set (M) |
| fread | Read parameters from file and load them into a tree (C) |
| fsave | Save parameters from a tree to a file (C) |
| fsq | Frequency-shifted quadrature detection (P) |
| ft | Fourier transform 1D data (C) |
| ft1d | Fourier transform along f 2 dimension (C) |
| ftlda | Fourier transform phase-sensitive data (M) |
| ft1dac | Combine arrayed 2D FID matrices (M) |
| ft2d | Fourier transform 2D data (C) |
| ft2da | Fourier transform phase-sensitive data (M) |
| ft2dac | Combine arrayed 2D FID matrices (M) |
| ft3d | Perform a 3D Fourier transform on a 3D FID data set (M,U) |
| full | Set display limits for a full screen (C) |
| fullsq | Display largest square 2D display (M) |
| fullt | Set display limits for a full screen with room for traces (C) |

f
 Set display parameters to full spectrum (C)

Description: Sets up the sp and wp display parameters for a full display of a 1D spectrum. If an FID is displayed, the parameters $s f$ and wf are set for a full display. In multidimensional data sets, the parameters for both displayed dimensions are set up. For 2D data sets, the parameters $\mathrm{sp}, \mathrm{wp}, \mathrm{sp} 1$, and wp 1 would be set. For planes of higher dimensional data sets, the appropriate two groups of spwp, sp1-wp1, and sp2-wp2, parameter pairs are set.
See also: VnmrJ Liquids NMR

| Related: | sf | Start of FID (P) |
| :--- | :--- | :--- |
| | sp | Start of plot in directly detected dimension (P) |
| sp1 | Start of plot in 1st indirectly detected dimension (P) | |
| | sp2 | Start of plot in 2nd indirectly detected dimension (P) |
| wf | Width of FID (P) | |
| wp | Width of plot in directly detected dimension (P) | |
| wp1 | Width of plot in 1st indirectly detected dimension (P) | |
| wp2 | Width of plot in 2nd indirectly detected dimension (P) | |

f19 Automated fluorine acquisition (M)
Syntax: f19<(solvent) >

Description: Prepares parameters for automatically acquiring a standard ${ }^{19} \mathrm{~F}$ spectrum. The parameter wexp is set to 'procplot' for standard processing. If $f 19$ is used as the command for automation via the enter program, then the macro au is supplied automatically and should not be entered on the MACRO line of the enter program. However, it is possible to customize the standard $f 19$ macro on the MACRO line by following it with additional commands and parameters. For example, f19 nt=1 uses the standard f19 setup but with only one transient.
Arguments: solvent is the name of the solvent. In automation mode, the solvent is supplied by the enter program. The default is ' CDCl 3 '
Examples: f19
f19 ('DMSO')
See also: VnmrJ Liquids NMR

| Related: | au | Submit experiment to acquisition and process data (M) |
| :--- | :--- | :--- |
| enter | Enter sample information for automation run (C) | |
| f19p | Process 1D fluorine spectra (M) | |
| | proc1d | Processing macro for simple (non-arrayed) 1D spectra (M) |
| | procplot | Automatically process FIDs (M) |
| | wexp | When experiment completes (P) |

f19p Process 1D fluorine spectra (M)

Description: Processes non-arrayed 1D fluorine spectra using a set of standard macros. f19p is called by proc1d, but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using preset weighting functions), automatic phasing (aphx macro), select integral regions (hregions macro), adjust integral size (integrate macro), vertical scale adjustment (vsadjc macro), avoiding excessive noise (noislm macro), threshold adjustment (if required, thadj macro), and referencing to the TMS signal, if present (tmsref macro).
See also: VnmrJ Liquids NMR

| Related: | aphx | Perform optimized automatic phasing (M) |
| :--- | :--- | :--- |
| f19 | Automated fluorine acquisition (M) | |
| hregions | Select integral regions for proton spectra (M) | |
| integrate | Automatically integrate 1D spectrum (M) | |
| noislm | Avoids excessive noise (M) | |
| procld | Processing macro for simple (non-arrayed) 1D spectra (M) | |
| thadj | Adjust threshold (M) | |
| tmsref | Reference spectrum to TMS line (M) | |
| vsadjh | Adjust vertical scale for proton spectra (M) | |

flcoef Coefficient to construct F1 interferogram (P)

Description: Holds the coefficient to construct an F1 interferogram for 2D and 3D transformation. Coefficients are used by the $f t 2$ da and $f t 3 d$ macros. If £1coef has a null value, $£ t 2$ da uses the "standard" coefficients. $£ 1$ coef is created by the par2d macro.
Values: Series of coefficients, separated by spaces (not a comma), and stored as a string variable. For example, the coefficient for standard States-Hypercomplex data set is f1coef='1 $00000-10$ '.

| Related: | £2coef | Coefficient to construct F2 interferogram (P) |
| :--- | :--- | :--- |
| | ft2da | Fourier transform phase-sensitive data (M) |
| | ft3d | Perform a 3D Fourier transform on a 3D FID data set (M,U) |
| | make3dcoef | Make 3D coefficients file from 2D coefficients (M) |
| par2d | Create 2D acquisition, processing, display parameters (M) | |

f2coef Coefficient to construct F2 interferogram (P)

Description: Holds the coefficient to construct an F2 interferogram for 2D and 3D transformation. Coefficients are used by the ft2da ('ni2') and ft3d macros. If f2coef has a null value, ft2da ('ni2') uses the "standard" coefficients. f 2 coef is created by the par 3 d macro.
Values: Series of coefficients, separated by spaces (not a comma), and stored as a string variable. For example, the coefficient for standard States-Hypercomplex data set is f2coef='1 $000000-101$ 。
fattr Fine attenuator (P)
Description: Configuration parameter for whether the current rf channel has a fine attenuator. The value is set using the label Fine Attenuator in the CONFIG window (opened from config).
On MERCURYplus/Vx systems, fattn indicates if a fine attenuator is present. It is implicitly set by config.
Values: 0 specifies the fine attenuator is not present on the channel (Not Present choice in CONFIG window).
4095 specifies the fine attenuator is present on the channel (Present choice in CONFIG window).
On MERCURYplus/-Vx systems, fattn should be set to an array value of 0,0 .
See also: VnmrJ Installation and Administration; User Guide: Solids; MERCURYplus/Vx CP/MAS Installation, Testing, and Operation

| Related: | config | Display current configuration and possibly change it (M) |
| :--- | :--- | :--- |
| | dpwrf | First decoupler fine power (P) |
| | tpwrf | Observe transmitter fine power (P) |

fb
 Filter bandwidth (P)

Description: Sets the bandwidth of the audio filters, which prevents noise of higher frequency than the spectral limits from "folding in" to the spectrum. Because the transmitter is in the center of the spectrum, the range of audio frequencies that must be filtered out is half the spectral width sw (e.g., for a spectral width of 4000 Hz , frequencies higher than $\pm 2000 \mathrm{~Hz}$ should be filtered out). The audio filters have some attenuation at frequencies lower than their nominal cutoff frequency, which is the frequency at which signals have been attenuated by 3 $\mathrm{dB}(50 \%)$. This impacts on quantitative accuracy near the edges of the spectrum so that the standard value of fb is 10% more than half of sw.
fb is automatically changed whenever the spectral width sw is changed and thus is normally not a user-entered parameter. For example, typing $\mathrm{Sw}=4000$ automatically sets $\mathrm{fb}=2200$, which is 10% more than 2000 Hz . After changing the value of sw, fb can be changed.
Values: On UNITY INOVA, if sw is 500,000 or less: 1000 to $256000 \mathrm{~Hz}, 1000-\mathrm{Hz}$ steps.
On UNITY INOVA, if sw is greater than $500,000: 256 \mathrm{kHz}, 1 \mathrm{MHz}$.

On MERCURYplus/Vx: 1 to 25 kHz and 55 kHz . Actual values are a non-linear set, entered in steps of 200, and rounded to the larger available value.
See also: VnmrJ Liquids NMR
Related: Sw Spectral width in directly detected dimension (P)
$m r f b \quad$ Set the filter bandwidths for multiple receivers (P)

fbc Apply baseline correction for each spectrum in an array (M)

Description: Applies bc -type baseline correction to all the spectra in an array. The partial integral mode should be used to set integral regions to include all significant signals, while leaving blank as large an area of baseline as is possible.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)

fdfgluer \quad Make FDF file from header and data parts (U)

Applicability: Systems with imaging capabilities.
Syntax: (1) fdfgluer <-align> header_file <data_file <output_file>>
(2) fdfgluer -infiles template <-offset $n>$
<-align> header_file
(3) fdfgluer -vnmrfile fname -outfiles template <-traces n> <-align> header_file
Description: Takes an FDF (flexible data format) header file defining a set of data and data from a file, files, or standard input, and combines them to form an FDF data file.

Using syntax 1 attaches a header to a raw data file. If the data_file argument is given (rather than being taken from standard input), a checksum is calculated and appended to the header.
Using syntax 2 takes the data from a group of raw data files whose names are template1, template2, etc. These data files can have fixed length headers, which will be ignored.
Using syntax 3 takes data from a data file, such as a FID file.
Arguments: header_file is the name of the header file created or edited by the user.
data_file is the name of file containing data for a FDF file If this argument is not present, $f d f g l u e r$ takes the data from the standard input.
output_file is the name of the FDF file created. If this argument is not present, fdfgluer puts the FDF file to the standard output.
-align is a numerical argument giving the size of words that the data should be aligned on. For example, - 8 ensures that the length of the header is a multiple of 8 bytes.
-infiles template gives the base name of the group of files from which to take data. template can be a path. fdfgluer will read data from files named template1, template2, template3, etc. in numerical order until the next sequential file name is not found.
-offset n gives the number of bytes of header in the data files. The first n bytes of each data file are ignored.
-vnmrfile fname specifies the name of a data file to use for the input data.
-outfiles template specifies the base name of output files to be written using syntax 3 . The template should have a "\#" somewhere in it. The output files will substitute a serial number (0001, 0002,...) for the \#. For example, outfiles myrat\#.fdf writes data to output files myrat0001.fdf, etc.
-traces n gives the number of traces to put in each output file in syntax 3 .
See also: VnmrJ Imaging NMR, User Programming
Related: $£ \mathrm{ff} \mathrm{split} \quad$ Divide FDF file into header and data parts (U)

fdfsplit Divide FDF file into header and data parts (U)

Applicability: Systems with imaging capabilities.
Syntax: fdfsplit output_file data_file header_file
Description: Takes an FDF (Flexible Data Format) file and splits it into its data and header parts. Note that the header may still have a checksum value-that value should be removed after the split has completed.
Arguments: output_file is the name of the FDF file to be split.
data_file is the file name to be given to the data part.
header_file is the file name to be given to the header part.
See also: User Programming, VnmrJ Liquids NMR
Related: fdfgluer Make FDF file from header and data parts (C)

fdm1 Set, write 1D FDM parameters, run FDM (M)

Syntax: fdm1<(filename<,n1, v1<, n2, v2<...>>>)>
or
fdm1 (i) for the i-th trace
Description: Sets 1D Filter Diagonalization Method (FDM) parameters to the default values, writes the parameters to the curexp/datdir/fdm1.inparm file, and runs a stand-alone C++ program (/vnmr/bin/fdm1d).
Arguments: filename is the FID file; the default is curexp+'acqfil/fid'.
$\mathrm{n} 1, \mathrm{n} 2 \ldots$ is one or more following variable names (the order is arbitrary):
axis $\quad-1$ (default) to reverse the spec.
cheat \quad No cheat if cheat $=1$, lines are narrower if cheat <1.
cheatmore No cheatmore if cheatmore $=0$.
error Error threshold for throwing away poles.
fidfmt FID format: VnmrJ or ASCII.
fdm $\quad 1$ for FDM; -1 for Digital or Discrete Fourier Transform.
fn_Sp1D Spectrum file; default is curexp/datadir/ fdm1. parm.
Gamm Smoothing width (line broadening).
Gcut Maximum width for a pole.
idat Data type of ASCII FID file-4 for complex data, ignored if data is in VnmrJ format.
i_fid The i-th trace of the FID.
kcoef If kcoef >0, use 'complicated' $d k(k) .-1$ is always preferred.
$\mathrm{Nb} \quad$ Number of basis functions in a single window.
Nbc Number of coarse basis vectors.
Npower Number of spectrum data points.
Nsig Number of points to use.
Nskip Number of points to skip.

```
    par Line list file; default is curexp/datadir/
        fdm1.parm
    rho rho=1 is optimal.
    specfmt Spec format: VnmrJ or ASCII.
    spectyp Spectrum type: complex (default), real imag, or abs.
    ssw A test parameter.
    to Delay of the first point.
    theta Overall phase of FID (rp in radians).
    wmax Maximum spectrum frequency in hertz.
    wmin Minimum spectrum frequency in hertz.
    v1, v2 . . . is the value for the variable(s).
Examples: fdm1('cheat',0.8)
fdm1('Nsig',3000,'Nb',20,1'Gamm',0.5)
```

See also: VnmrJ Liquids NMR

fiddc3d 3D time-domain dc correction (P)

Applicability: All systems; however, although fiddc3d is available on MERCURYplus/Vx systems, such systems can only process 3D data and cannot acquire 3D data.

Description: Sets whether a 3D time-domain dc correction occurs. If fiddc3d does not exist, it is created by the macro par 3 d. The time-domain dc correction occurs immediately after any linear prediction operations and before all other operations on time-domain data.

Values: A three-character string. The default value is 'nnn '.

- The first character refers to the f_{3} dimension ($s w, n p$, fn), the second character refers to the f_{1} dimension (sw1, ni, fn1), and the third character refers to the f_{2} dimension (sw2, ni2, fn2).
- Each character may take one of two values: ' n ' for no time-domain dc correction along the relevant dimension, and ' y ' for time-domain dc correction along the relevant dimension.
See also: VnmrJ Liquids NMR

| Related: | fn | Fourier number in directly detected dimension (P) |
| :--- | :--- | :--- |
| $\mathrm{fn1}$ | Fourier number in 1st indirectly detected dimension (P) | |
| fn2 | Fourier number in 2nd indirectly detected dimension (P) | |
| ft3d | Perform a 3D Fourier transform (M) | |
| ni | Number of increments in 1st indirectly detected dimension (P) | |
| ni2 | Number of increments in 2nd indirectly detected dimension (P) | |
| np | Number of data points (P) | |
| par3d | Create 3D acquisition, processing, display parameters (C) | |
| ptspec3d | Region-selective 3D processing (P) | |
| specdc3d | 3D spectral dc correction (P) | |
| sw | Spectral width in directly detected dimension (P) | |
| sw1 | Spectral width in 1st indirectly detected dimension (P) | |
| sw2 | Spectral width in 2nd indirectly detected dimension (P) | |

fiddle Perform reference deconvolution (M)
Syntax: fiddle(option<,file><,option<,file>><, start> <,finish><,increment>)

Description: Performs reference deconvolution using a reference signal with known characteristics to correct instrumental errors in experimental 1D or 2D spectra.

Arguments: option can be any of the following:

- 'alternate' is a keyword specifying the alternate reference phase +(for phase sensitive gradient 2D data).
- 'autophase' is a keyword specifying to automatically adjust the phase of the reference signal.
- 'displaycf' is a keyword specifying to stop at the display of the correction function.
- 'fittedbaseline' is a keyword specifying to use cubic spline baseline correction defined by the choice of integral regions.
- 'invert' is a keyword specifying to invert the corrected difference spectrum/spectra.
- 'noaph ' is a keyword specifying not to automatically adjust zero order phase of the reference region.
- 'nodc' is a keyword specifying not to use dc correction of reference region.
- 'noextrap ' is a keyword specifying not to use extrapolated dispersion mode.
- 'nohilbert' is a keyword specifying not to use Hilbert transform algorithm and to use extrapolated dispersion mode reference signal unless 'noextrap' is also used as an option.
- 'normalise' is a keyword specifying to keep corrected spectrum integrals equal to that of the first spectrum.
- 'satellites' is a keyword specifying to use satellites defined in file in ideal reference region; file should be in/vnmr/satellites, and should immediately follow 'satellites' in the argument list.
- 'stop1' is a keyword specifying to stop at display of experimental reference FID.
- 'stop2' is a keyword specifying to stop at display of correction function.
- 'stop3' is a keyword specifying to stop at display of corrected FID.
- ' stop4' is a keyword specifying to stop at display of first corrected FID.
- 'verbose' is a specifying keyword to display information about processing in the main window.
- 'writecf ' is a keyword specifying to write the correction function to file; the argument file must immediately follow 'writecf'.
- 'writefid' is a keyword specifying to write out corrected FID to file; if file does not begin with /, it is assumed to be in the current working directory. In the argument list, file should immediately follow 'writefid'.
file is the name of the file used with the 'satellites' and 'writefid' options.
start and finish are the indices of the first and last array elements to be processed. increment specifies the steps in which the index is to be incremented. The default is to process all the transformed spectra in an array.
See also: VnmrJ Liquids NMR
Related: fiddled Perform reference deconvolution subtracting alternate FIDs fiddleu Perform reference deconvolution subtracting successive FIDs

fidpar \quad Add parameters for FID display in current experiment (M)
Description: Creates the FID display parameters axisf, crf, deltaf, dotflag, vpf, and vpfi in the current experiment. Use fidpar to define these parameters in old parameter sets (they are already defined in new parameter sets).
See also: VnmrJ Liquids NMR

| Related: | addpar | Add selected parameters to current experiment (M) |
| :--- | :--- | :--- |
| | axisf | Axis label for FID displays and plots (P) |
| | crf | Current time domain cursor position (P) |
| deltaf | Difference of two time cursors (P) | |
| | dotflag | Display FID as connected dots (P) |
| | vpf | Current vertical position of FID (P) |
| | vpfi | Current vertical position of imaginary FID (P) |

fidsave \quad Save data (M)
Description: Macro to save data. It uses svfdir and svfname to construct the data filename.

fifolpsize FIFO loop size (P)

Applicability: All systems except MERCURYplus/-VX.
Description: Configuration parameter for the size of the FIFO loop. The size depends on which controller board is present on the system-the Output board, the Acquisition Controller board, or the Pulse Sequence Controller board (refer to the description of the acquire statement in the manual User Programming for information on identifying the boards). The value is set using the label Fifo Loop Size in the CONFIG window (opened by config).
Values: 2048
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)
fixgrd \quad Convert gauss/cm value to DAC (M)
Syntax: fixgrd(gradient_value) : parameter
Description: Uses the gcal value in the probe table to return the DAC value for a specified gradient strength.
Arguments: gradient_value is the required gradient strength in gauss $/ \mathrm{cm}$. parameter is any local variable or VnmrJ variable.
Examples: fixgrd(20):gzlvl
Related: gcal Gradient calibration constant (P)

file \quad File name of parameter set (P)

Description: Contains the file name of the parameter set returned by art or rtp command. This parameter is reset when the go command is issued. If the system is not in automation mode (auto='n'), file is reset to the 'exp' value. If the system is in automation mode (auto= ' y^{\prime}), file is set to the path of the directory where the data is stored.
See also: VnmrJ Liquids NMR

| Related: | auto | Automation mode active (P) |
| :--- | :--- | :--- |
| | go | Submit experiment to acquisition (C) |

```
rt Retrieve FID (C)
rtp Retrieve parameters (C)
```

files Interactively handle files (C)
Syntax: files<(files_menu) >

Description: Brings up the interactive file handling program. With this program, the mouse and keyboard are used to copy, delete, rename, change directories, and load and save experiment data. The files command uses the graphics window to display file names. A mouse clicked on a file name selects it and the file name is displayed in reverse video. Various operations can be conducted on one or more selected files. The menus used for the files program are placed in the standard menulib directories. Refer to the manual VnmrJ Liquids NMR for more information on using menus, and refer to the manual User Programming for information on programming menus.
Arguments: files_menu is the files menu to control the menu buttons; the default menu is 'files_main' or the last active files menu.

Examples: files
files('files_dir')
See also: User Programming
Related: filesinfo Return files display information (C)
tape \quad Control tape options of files program (P)

filesinfo Return file information for files display (C)

Syntax: (1) filesinfo('number'): \$number_files
(2) filesinfo('name'<,file_numbēr>): \$file
(3) filesinfo('redisplay')

Description: Allows access to the list of files selected from the files interactive display. filesinfo is normally used only by the macros that implement the menu functions of the file system and not entered from the keyboard. The command will not execute unless the files program is active.
Arguments: ' number' is a keyword to return the number of files selected in the files display, or 0 if no files have been selected.
\$number_files is the return variable when ' number' is used.
' name' is a keyword to return a list of file names selected in the files display.
file_number is a number following the ' name ' keyword to return only the file name in the list given by file_number.
$\$ \mathrm{file}$ is a string variable that returns the file name when ' name' is used.
'redisplay' is a keyword that causes the current contents of the directory to be displayed. This display is useful after making changes in the directory, such as deleting or creating a file.

See also: User Programming
Related: files Interactively handle files (C)
filter \quad Gaussian low-pass filter for image processing (M)
Applicability: Systems with imaging capabilities.
Syntax: filter(strength)

filtfile File of FIR digital filter coefficients (P)

Description: Specifies name of a file of FIR (finite impulse response) digital filter coefficients. This file is a text file with one real filter coefficient per line (complex filters are not supported). If the parameter filtfile does not exist in the current experiment, enter addpar ('downsamp') or addpar ('oversamp') to add it. Entering addpar ('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile. Similarly, entering addpar ('oversamp') creates digital filtering and oversampling parameters def_osfilt, filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp.
Values: File name. The file must be in the user's vnmrsys/filtlib directory.

| Related: | addpar
 def_osfilt

 downsamp | Add selected parameters to current experiment (M)
 Default value of osfilt (P)
 downsampling factor applied after digital filtering (P)

 dscoef |
| :--- | :--- | :--- |
| dsfb | Digital filter coefficients for downsampling (P) | |
| dslsfrq | Digital filter bandwidth for downsampling (P) | |
| oscoef | Bandpass filter offset for downsampling (P) | |
| osfb | Digital filter coefficients for oversampling (P) | |
| osfilt | Digital filter bandwidth for oversampling (P) | |
| oslsfrq | Oversampling filter for real-time DSP (P) | |
| oversamp | Bandpass filter offset for oversampling (P) | |
| pards | Create additional parameters used for downsampling (M) | |
| paros | Create additional parameters used for oversampling (M) | |

fitplot \quad Adjust plot parameters (M)

Applicability: Systems with imaging capabilities.
Syntax: fitplot
Description: If the parameter axis is set to 'cc', fitplot uses an algorithm that adjusts the display and subsequent plot to present the image in the largest possible format for the current conditions specified by the wcmax, wc2max, and trace parameters. For example, fitplot could be entered as fitplot imageprint page for plotting. This algorithm leaves a column of 50 mm for plotting parameters down the left-hand edge of the paper. fitplot also has other algorithms for different settings of the axis and ni parameters.
See also: VnmrJ Imaging NMR
Related: axis Axis labels for displays and plots (P)
imageprint Plot noninteractive gray scale image (M)
ni \quad Number of increments in 1st indirectly detected dimension (P)
page \quad Submit plot and change plotter page (C)
trace \quad Mode for n-dimensional data display (P)
wcmax Maximum width of chart (P)
wC2max \quad Maximum width of chart in second direction (P)
fitspec Perform spectrum deconvolution (C, U)
Syntax: (From VnmrJ) fitspec<(<'usell'><,><'setsfreq'>) > (From UNIX) fitspec
Description: Fits experimental data to Lorentzian and/or Gaussian lineshapes. fitspec uses as a starting point data in a file $f i t s p e c$. inpar, which must be prepared prior to performing the calculation. This file contains the frequency, intensity, linewidth, and (optionally) the Gaussian fraction of the lineshape. Any number followed by an asterisk (*) is held fixed during the calculation; all other parameters are varied to obtain the best fit. fitspec creates a file fitspec.data, which is a text representation of the spectral data (that part of the spectrum between $s p$ and $s p+w p)$. After the calculation is finished, the results of the fit are contained in a file fitspec.outpar, with a format identical to fitspec.inpar.
It is often useful to use the output from a deconvolution as the input to a spin simulation to ensure the most accurate possible frequencies for the spin simulation calculation. For this reason, the frequencies and amplitudes of the calculated lines in a deconvolution are automatically stored in the parameters slfreq, respectively, from where they can serve as input to an iterative spin simulation. If the spin system is defined after a deconvolution is performed, this information is lost (slfreq is reset). In this case, fitspec ('setslfreq') can be used to copy the information from fitspec. outpar back into slfreq. This is not necessary if you define the spin system before performing the deconvolution (you need not perform the entire spin simulation, only define the spin system).
Arguments: 'usell' is a keyword to prepare the file fitspec.inpar from the last line listing (stored in llfrq and llamp). All lines are set to have a linewidth of slw and a fixed Gaussian fraction of 0. If another starting point is desired, this file can be edited with a text editor. Alternatively, the macro usemark may be used.
'setslfreq' is a keyword to copy the information from the file fitspec.outpar back into the parameters slfreq.

```
    Examples: fitspec
fitspec('usell')
fitspec('setslfreq')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & llamp & List of line amplitudes (P) \\
& llfrq & List of line frequencies (P) \\
setgauss & Set a Gaussian fraction for lineshape (M) \\
slfreq & Measured line frequencies (P) \\
sp & Start of plot (P) \\
usemark & Use "mark" output as deconvolution starting point (M) \\
wp & Width of plot (P)
\end{tabular}
fixpar \(\quad\) Correct parameter characteristics in experiment (M)
Description:
After bringing parameters into the current experiment with convert, rt, rtp, or rtv, fixpar is automatically executed. fixpar updates old parameter characteristics and reconciles parameter differences due to the hardware on the spectrometer. If a macro userfixpar exists, fixpar runs it also. This allows an easy mechanism to customize parameter sets.
\begin{tabular}{lll} 
Related: & convert & Convert data set from a VXR-style system (C) \\
& fixpar3rf & Create parameters for third rf channel (M) \\
& fixpar4rf & Create parameters for fourth rf channel (M) \\
& parfix & Update parameter set (M) \\
parversion & Version of parameter set (P) \\
rt & Retrieve FIDs (C) \\
rtp & Retrieve parameters (C) \\
rtv & Retrieve individual parameters (C) \\
& updatepars & Update all parameter sets saved in a directory (M) \\
& userfixpar & Macro called by fixpar (M)
\end{tabular}
```


fixpar3rf \quad Create parameters for third rf channel (M)

```
Applicability: Systems with a second decoupler.
Description: Checks for the existence of all acquisition parameters related to the second decoupler. Any parameters found to be absent are created, characterized, and initialized by the macro. fixpar3rf is run as a part of the standard fixpar macro if the system configuration parameter numrfch is greater than 2 (i.e., the number of rf channels on the system is set at 3 or more).
Related: fixpar Correct parameter characteristics in experiment (M)
fixpar4rf Create parameters for fourth rf channel (M)
numrfch \(\quad\) Number of rf channels ( P )
```


fixpar4rf \quad Create parameters for fourth rf channel (M)

```
Applicability: Systems with a third decoupler.
Description: Checks for the existence of all acquisition parameters related to the third decoupler. Any parameters found to be absent are created, characterized, and initialized. fixpar4rf is run as a part of the standard fixpar macro if the system configuration parameter numrfch is greater than 3 (i.e., the number of rf channels on the system is set at 4).
\begin{tabular}{lll} 
Related: & fixpar & Correct parameter characteristics in experiment (M) \\
& fixpar3rf & Create parameters for third rf channel (M) \\
numrfch & Number of rf channels (P)
\end{tabular}
```


fixpar5rf \quad Create parameters for fifth rf channel (M)

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Checks for the existence of all acquisition parameters related to the fourth decoupler. Any parameters found to be absent are created, characterized, and initialized. fixpar 5 ff is run as a part of the standard fixpar macro if the system configuration parameter numrfch is greater than 4 (i.e., the number of rf channels on the system is set at 5).

| Related: | fixpar | Correct parameter characteristics in experiment (M) |
| :--- | :--- | :--- |
| | fixpar4rf | Create parameters for fourth rf channel (M) |
| | numrfch | Number of rf channels (P) |

fixup \quad Adjust parameter values selected by setup macros (M)

Description: Called by the experiment setup macros h1, c13, hc, hcapt, capt, and hcosy. As provided, the text of fixup is all in quotes so that it does nothing. It is intended to provide each user with a mechanism to make adjustments to values selected by the setup macros.

fixpsg Update psg libraries (M)

Description: Used by patchinstall to recompile the psg files and create new psg libraries libpsglib.so in /vnmr/lib.
flashc Convert compressed 2D data to standard 2D format (C)
Syntax: flashc(<'nf'>,'ms'|'mi'|'rare',ns,traces,echoes)
Description: Converts 2D FID data files from compressed formats (seqcon= 'nncsn ', seqcon='nccnn', seqcon='nnccn') to standard format (seqcon='ncsnn') or from standard format to compressed format. Compressed data is taken by using the $n f$ parameter; that is, compressed data is acquired as one large uninterrupted "multiFID" acquisition.
flashc reads the file fid in the acqfil subdirectory of the current experiment.
flashc can convert a compressed-compressed multislice, multiecho, or multiimage sequence. It can also convert a "rare" type sequence with a compressed phase-encode echo train.
flashc changes the values of the following parameters:
Compressed-compressed or standard format to compressed format

- ni is set to 1 if no argument is provided.
- nf is set to the value of nf divided by the multislice, ms , or multi-image, mi, value.
- arraydim is set to the product of its original value and the value of the traces argument.
- arrayelemts is set to 1 if no parameters were arrayed during data acquisition or to 2 if any parameter was arrayed during data acquisition.

Compressed format to standard format

- nf is set to the value of the traces argument, or to 1 if no argument is provided.
- ni is set to the value of nf divided by the multislice, ms , or multi-image, mi, value.

flipflop \quad Set up parameters for FLIPFLOP pulse sequence (M)

Applicability: Systems with solids module. Sequence is not supplied on MERCURYplus/Vx.
Description: Sets up a multipulse parameter set for tuning out "phase glitch" in the probe and pulse amplifier.
See also: User Guide: Solid-State NMR

fliplist \quad Standard flip angle list (P)

Applicability: Systems with imaging capabilities.
Description: Contains an array of real values defining values of the standard flip angles used for the pulses in the plist array (e.g., fliplist $=180,90,180$). The nD, seqcon, plist, patlist, pwrlist, fliplist, and sslist parameters configure a particular parameter set for an application sequence
defined by the value of the seqfil parameter. The plist, patlist, pwrlist, fliplist, and sslist parameters provide information concerning the rf pulse and conjugate gradients used by the sequence.

See also: VnmrJ Imaging NMR

| Related: | nD | Application dimension (P |
| ---: | :--- | :--- |
| | patlist | Active pulse template parameter list (P) |
| | plist | Active pulse length parameter list (P) |
| | pwrlist | Active pulse power level parameter list (P) |
| | seqcon | Acquisition loop control (P) |
| | seqfil | Application object code name (P) |
| | sslist | Conjugate gradient list (P) |

Fluorine \quad Set up parameters for 19F experiment (M)

Description: Set Up parameters for ${ }^{19} \mathrm{~F}$ experiment.

flush Write out data in memory (C)

Description: Writes out the current data and parameters in memory buffers. Normally, this information is not written to disk until exiting VnmrJ or joining another experiment. One reason to use $f l u s h$ is to be able to access experimental data from a program separate from the VnmrJ program.
See also: User Programming

fn \quad Fourier number in directly detected dimension (P)

Description: Selects the Fourier number for the Fourier transformation along the directly detected dimension. This dimension is often referred to as the f_{2} dimension in 2 D data sets, the f_{3} dimension in 3D data sets, etc.
Values: ' n ' or a number equal to a power of 2 (minimum is 32). If f n is not entered exactly as a power of 2 , it is automatically rounded to the nearest higher power of 2 (e.g., setting $\mathrm{f} n=32000$ gives $\mathrm{fn}=32768$). fn can be less than, equal to, or greater than np, the number of directly detected data points:

- If $f n$ is less than $n p$, only $f n$ points are transformed.
- If fn is greater than np , fn minus np zeros are added to the data table ("zero-filling").
- If $\mathrm{fn}=\mathrm{n} \mathrm{n}$ ', fn is automatically set to the power of 2 greater than or equal to np .
fn1 Fourier number in 1st indirectly detected dimension (P)
Description: Selects the Fourier number for the Fourier transformation along the first indirectly detected dimension. This dimension is often referred to as the f_{1} dimension of a multi-dimensional data set. The number of increments along this dimension is controlled by the parameter ni.
Values: fn 1 is set in a manner analogous to the parameter fn , with np being substituted by $2 *$ ni.
See also: VnmrJ Liquids NMR

| Related: | fn | Fourier number in directly detected dimension (P) |
| :--- | :--- | :--- |
| | fn 2 | Fourier number in 2nd indirectly detected dimension (P) |
| | ni | Number of increments in 1st indirectly detected dimension (P) |
| | np | Number of data points (P) |

| fn2 | Fourier number in 2nd indirectly detected dimension (P) |
| :--- | :--- |
| Description: | Selects the Fourier number for the Fourier transformation along the second
 indirectly detected dimension. This dimension is often referred to as the f_{2} |
| | dimension of a multidimensional data set. The number of increments along this
 dimension is controlled by the parameter ni2. $\mathrm{fn2}$ is set in a manner analogous
 to the parameter fn, with np being substituted by 2 *ni 2. |
| See also: | VnmrJ Liquids NMR |

from the bottom left-hand side to the top right-hand side of the contour display.) foldt functions for both hypercomplex and complex 2D data but requires that $\mathrm{fn}=\mathrm{fn} 1$ and $\mathrm{sw}=\mathrm{sw} 1$.
Arguments: 'symm' is a keyword for the folding process to perform a symmetrization of the data by replacing every two symmetry-related points with the one point therein that has the least magnitude. This value is the default.
'triang ' is a keyword for the folding process to perform a triangularization of the data by replacing every two symmetry-related points with their geometric mean.
Related:

| fn | Fourier number in directly detected dimension (P) |
| :--- | :--- |
| fn1 | Fourier number in 1st indirectly detected dimension (P) |
| foldcc | Fold INADEQUATE data about 2-quantum axis (C) |
| foldj | Fold J-resolved 2D spectrum about $f_{l}=0$ axis (C) |
| rotate | Rotate 2D data (C) |
| sw | Spectral width in directly detected dimension (P) |
| sw1 | Spectral width in 1st indirectly detected dimension (P) |

fontselect Open FontSelect window (C)

Description: Opens the FontSelect window for defining fonts in window panes created by setgrid. A different font can be selected for every window pane combination of rows and columns. Separate fonts can also be selected for a large or small overall graphic window.
See also: VnmrJ Liquids NMR

| Related: | curwin | Current window (P) |
| :--- | :--- | :--- |
| | jwin | Activate current window (M) |
| | mapwin | List of experiment numbers (P) |
| | setgrid | Activate selected window (M) |
| | setwin | Activate selected window (C) |

format Format a real number or convert a string for output (C)

Syntax: (1) format (real_number,length, precision) :return
(2) format (string, 'upper'|'lower'|'isreal'): return

Description: Using syntax 1, format takes a real number or real type variable and formats it into a string with given length and precision and rounds it off if necessary (see examples 1 to 4 below). format can also be used to format a real type variable as a real number (see example 5).
Using syntax 2 , format converts a string variable into a new string of characters either all upper case or all lowercase (see examples 6 and 7) or tests the string to determine if it represents a real number (see example 8).
Arguments: real_number is the real type variable containing the value to be formatted. length is the length of for formatted real number. If length is set to 0 , just enough places are used to hold the number.
precision is the precision (i.e., the number of places to the right of the decimal point) of the formatted real number. If precision is set to 0 , output is an integer.
string is the string variable to be converted into upper or lower case.
' upper ' is a keyword to convert the string variable given by string into all upper case characters.
' lower' is a keyword to convert string into all lower case characters.

> 'isreal' is a keyword that tests the first argument to verify that the argument satisfies the rules for a real number. When given, format returns a 1 in the first argument and can represent a real number and a zero otherwise.
> return is the return string variable, real number, or integer.

See also: User Programming
Related: n1, n2, n3 Name storage for macros (P)
r1-r7 Real-value storage for macros (P)

Find peak heights or phases (C)
Syntax: fp<(<'phase',><index1,index2,...>) >
Description: Following a line listing (either dll or nll), fp measures the peak height of each peak in an array of spectra. The results of the analysis are written to a text file $f p$. out in the current experiment directory. If the npoint parameter is defined in the current parameter set and this parameter is "on," it determines the range of data points over which a maximum is searched when determining peak heights. The possible values of npoint are 1 to $\mathrm{fn} / 4$. The default is 2 .
Arguments: 'phase ' is a keyword to measure the phase of each peak instead of height.
index1, index $2, \ldots$ restricts measuring peak heights or phases to the lines listed.
Examples: fp
fp $(1,3)$
fp('phase')
See also: VnmrJ Liquids NMR

| Related: | dll | Display listed line frequencies and intensities (C) |
| :--- | :--- | :--- |
| | fn | Fourier number in directly detected dimension (P) |
| getll | Get line frequency and intensity from line list (C) | |
| | nl | Position cursor at the nearest line (C) |
| | nll | Find line frequencies and intensities (C) |
| | npoint | Number of points for $f p$ peak search (P) |

fpmult \quad First point multiplier for np FID data (P)

Description: Allows error correction if the first point of an FID is misadjusted. In a 1D experiment, this adjustment influences the overall integral of the spectrum. For n-dimensional experiments, if the correction is not made, "ridges" can appear. In 2 D experiments, the ridges appear as " f_{2} ridges." In 3 D experiments, the ridges appear as " f_{3} ridges." These ridges can clearly be seen in the noise region on the top and bottom of a 2 D spectrum (when trace='f1') as a lowintensity profile of the diagonal. The sign and intensity of the ridges is controlled by the magnitude of fpmult.

It has been recognized that the first point of a FID that is sampled at exactly time equal to zero must be multiplied by 0.5 for the Fourier transform to function properly. The fpmult parameter gives you a method to fine-tune the actual correction factor.

Values: Default is 1.0 , except that if the processing involves backward extension of the time-domain data with linear prediction, the default changes to 0.5 . If $f p m u l t$ is set to ' n ', fpmult takes on its default value.
See also: VnmrJ Liquids NMR

| Related: | fpmult1 | First point multiplier for ni interferogram data (P) |
| :--- | :--- | :--- |
| | fpmult2 | First point multiplier for ni2 interferogram data (P) |
| | np | Number of data points (P) |
| | trace | Mode for n-dimensional data display (P) |
| | wft2da | Weight and Fourier transform phase-sensitive data (M) |

fpmult1 First point multiplier for ni interferogram data (P)
Description: Operates on ni hypercomplex or complex interferogram data in a manner analogous to fpmult. In many 2D experiments, the t_{1} values are adjusted so there is no first-order phasing in the f_{1} and f_{2} dimensions. In this case, fpmult 1 should be 0.5 . If the t_{1} value is adjusted so that there is a 180° firstorder phase correction, fpmult1 should be 1.0.
Values: Default value is 0.5 . If f pmult 1 is set to ' n ', it takes on its default value.

See also: VnmrJ Liquids NMR

| Related: | fpmult | First point multiplier for np FID data (P) |
| :--- | :--- | :--- |
| | fpmult2 | First point multiplier for ni2 interferogram data (P) |
| | ni | Number of increments in 1st indirectly detected dimension (P) |

fpmult2 First point multiplier for ni2 interferogram data (P)

Description: Operates on ni2 hypercomplex or complex interferogram data in a manner analogous to fpmult. In many 3D experiments, the t_{2} value is adjusted so that there is no first-order phasing in the f_{1} and f_{2} dimensions. In this case, fpmult 2 should be 0.5 . If the t_{2} value is adjusted so that there is a 180° firstorder phase correction, fpmult 2 should be 1.0 .
Values: Default value is 0.5 . If f pmult 2 is set to ' n ', it takes on its default value.
See also: VnmrJ Liquids NMR
Related: fpmult First point multiplier for np FID data (P)
fpmult1 First point multiplier for ni interferogram data (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
fr \quad Full recall of a display parameter set (M)
Syntax: (1) frset_number
(2) fr (set_number)

Description: Performs a full recall of a display parameter set, setting all parameters to exactly as they were when the corresponding s command was entered.
Arguments: set_number is the number of the display parameter set.
Examples: fr2
fr(3)
Related: r Recall display parameter set (M)
s \quad Save display parameters as a set (M)

```
fread Read parameters from file and load them into a tree (C)
    Syntax: fread(file<,tree<,'reset|'value'>>)
```

Description: Reads parameters from a file and loads the parameters into a tree. The tree can be global, current, processed, or systemglobal. fread can read from any file that has parameters stored in the correct VnmrJ format.

Note that if parameters are read into the global tree, certain important system parameters are not loaded because these parameters should not be changed. The parameters that are not loaded are userdir, systemdir, curexp, autodir, auto, vnmraddr, and acqaddr.
Arguments: file is the name of the file containing parameters stored in VnmrJ format.
tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. This argument specifies the type of tree into which the parameters are loaded. Refer to the create command for more information on types of trees.
'reset ' is a keyword that causes the parameter tree to be cleared before the new parameter file is read. Without this option, parameters read from a file are added to the existing preloaded parameters. To use this option, tree must also be specified.
'value' is a keyword that causes only the values of the parameters in the file to be loaded. If a preloaded variable does not already exist, a new one is not created. Parameter attributes are not changed, and enumerated values are not changed. To use this option, tree must also be specified.
Examples: fread('/vnmr/stdpar/H1.par/procpar')
fread('sampvar','global')
fread('setvar','current','reset')
fread('varl','processed','value')
See also: User Programming
Related:
auto Automation mode active (P)
autodir Automation directory absolute path (P)
create Create new parameter in a parameter tree (C)
curexp Current experiment directory (P)
destroy Destroy a parameter (C)
display Display parameters and their attributes (C)
fsave \quad Save parameters from a tree to a file (C)
rtp Retrieve parameters (C)
systemdir System directory (P)
userdir User directory (P)
fsave \quad Save parameters from a tree to a file (C)
Syntax: fsave (file<,tree>)
Description: Writes parameters from a parameter tree to a file.
Arguments: file is the name of the file, which can be any valid file for which the user has write permission. If the file already exists, it will be overwritten.
tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on types of trees.
Examples: fsave('varl')
fsave('sampvar','global')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
destroy Destroy a parameter (C)

```
display Display parameters and their attributes (C)
fread Read parameters from file and load them into a tree (C)
svp Save parameters from current experiment (C)
```

Description: Selects whether to use frequency-shifted quadrature detection. When $\mathrm{f} s q$ is turned on, if dsp is on, the observe frequency is offset by oslsfrq, and the digital filter is also offset by oslsfrq. The default value of oslsfrq is $1.25 *$ sw.

On MERCURYplus/Vx frequency-shifted quadrature detection can be done using inline DSP. The effect of f sq is to offset only the digital filter by oslsfrq. The observe frequency must be offset by oslsfrq by modifying the pulse sequence as described in the manual VnmrJ Liquids NMR.
Values: ' n ' turns frequency-shifted quadrature detection off. ' y ' turns it on.
See also: VnmrJ Liquids NMR

| Related: | dsp | Type of DSP for data acquisition (P) |
| :--- | :--- | :--- |
| | oslsfrq | Bandpass filter offset for oversampling (P) |
| | oversamp | Oversampling factor for acquisition (P) |
| | sw | Spectral width in directly detected dimension (P) |

ft Fourier transform 1D data (C)
Syntax: (1) ft<(<options,><'nf'><,start><,finish><, step>) >
(2) ft('inverse', exp_number, expansion_factor)

Description: In syntax 1, performs a Fourier transform on one or more 1D FIDs without weighting applied to the FID. ft executes a left-shift, zero-order phase rotation, and a frequency shift (first-order phase rotation) according to the parameters lsfid, phfid, and lsfrq, respectively, on the time-domain data, prior to Fourier transformation. The type of Fourier transform to be performed is determined by the parameter proc. Solvent suppression is turned on or off with the parameters ssfilter and ssorder. For arrayed data sets, ft Fourier transforms all of the array elements. To Fourier transform selected array elements, ft can be passed numeric arguments.

In syntax 2, ft performs an inverse Fourier transform of the entire spectrum. (VnmrJ does not currently support inverse Fourier transformation of arrayed 1D or 2D data sets.)
Arguments: options can be any of the following (all string arguments must precede the numeric arguments):

- 'acq' is a keyword to check if any elements of a multi-FID experiment have already been transformed. If so, these previously transformed elements will not be retransformed.
- 'nodc' is a keyword to not perform the usual FID drift correction.
- 'nods' is a keyword to prevent an automatic spectral display (ds) from occurring. This outcome is useful for various plotting macros.
- 'noft' is a keyword to skip the Fourier transform, thereby allowing use of all spectral manipulation and plotting commands on FIDs.
- 'zero' is a keyword to zero the imaginary channel of the FID prior to the Fourier transform. This zeroing occurs after any FID phasing. Its use is generally limited to wideline solids applications.
' nf ' is a keyword that makes a single FID element containing nf traces to be transformed as if it were nf separate FID elements. If ' nf ' precedes the list of
numeric arguments, the rules for interpreting the numeric arguments change slightly. Passing no numeric arguments results in the transformation of all nf traces in the first FID element. Passing a single numeric argument results in the transformation of all nf traces in the requested FID element (e.g., ft ('nf', 3) transforms all nf traces for element 3). Regardless of the requested FID element, the resulting spectra are labeled as 1 to nf because multiple elements cannot be transformed using ft ('nf'). Subsequent numeric arguments are interpreted as previously described.
start is the index of a particular element to be transformed. For an array, start is the index of the first element to be transformed.
finish is the index of the last element to be transformed for an array.
step specifies the increment between successive elements that are to be transformed for an array. The default is 1 .
'inverse' is a keyword specifying an inverse Fourier transform.
exp_number is the number of the experiment, from 1 to 9 , for storing the resulting FID from the inverse Fourier transform.
expansion_factor defines the expansion of the spectrum before the inverse Fourier transform is performed. This argument is equivalent to a multiplier for the fn parameter. The multiplier is restricted to between 1 and 32 and is rounded up internally to the nearest power of 2 .
Examples: ft
ft (1)
ft (3, 7)
ft (2, 10, 2)
ft('nf', 3)
See also: VnmrJ Liquids NMR

| Related: | dcrmv | Remove dc offsets from FIDs in special cases (P) |
| :--- | :--- | :--- |
| fn | Fourier number in directly detected dimension (P) | |
| lsfid | Number of points to left-shift the np FID (P) | |
| | l sfrq | Frequency shift of the fn spectrum in Hz (P) |
| nf | Number of FIDs (P) | |
| phfid | Zero-order phasing constant for np FID (P) | |
| proc | Type of processing on the np FID (P) | |
| ssfilter | Full bandwidth of digital filter to yield a filtered FID (P) | |
| ssorder | Order of polynomial to fit digitally filtered FID (P) | |
| wft | Weight and Fourier transform 1D data (C) | |

ft1d
Fourier transform along f_{2} dimension (C)
Syntax: (1) ftld(element_number)
(2) ftid< ('nf', element_number)
(3) ftld< (<options, ><coefficients>) >

Description: Performs the first Fourier transformation along the f_{2} dimension, without weighting, and matrix transposition. ft 1 d allows the display of t_{1} interferograms with the dcon and dconi commands. For arrayed 2D FID data, a single array element can be weighted and transformed using syntax 1 or 2 . The keyword ' nf ' is used in syntax 2 to specify that the 2D data is collected in the compressed form using 'nf '. Complex and hypercomplex interferograms can be constructed explicitly by supplying a series of options and coefficients using syntax 3 .
For information on real as opposed to complex Fourier transforms, see the descriptions of the proc, proc1, and proc 2 parameters. For information on left-shifting, zero-order phase rotation, and frequency shifting of the FID and
interferogram time-domain data during the 2D Fourier transformation, see the descriptions of the parameters lsfid, lsfid1, lsfid2, phfid, phfid1, phfid2, lsfrq, lsfrq1, and lsfrq2, as appropriate. For information on the lfs (low-frequency suppression) and zfs (zero-frequency suppression) solvent suppression options, see the description of the parameters ssfilter and ssorder, and the macro parfidss.
Arguments: element_number is a single array element to be weighted and transformed. options can be the keywords 'ptype' or 'ntype' but neither serve a useful function because the differential effect of these arguments is applied only during the course of the second Fourier transformation. The default is 'ntype'.
coefficients are a series of coefficients according to the following scheme: RR1 is the coefficient used to multiply the real part (first R) of spectra set 1 before it is added to the real part (second R) of the interferogram. IR2 would thus represent the contribution from the imaginary part of spectra set 2 to the real part of the interferogram, and so on. The scheme is depicted below.
ft1d(RR1,IR1,RR2,IR2, .., RI1,II1,RI2,II2, ..)
where:

```
RR1*REAL(w2,element=1) -> REAL(t1)
IR1*IMAG(w2,element=1) -> + REAL(t1)
RR2*REAL(w2,element=2) -> + REAL(t1)
IR2*IMAG(w2,element=2) -> + REAL(t1)
RI1*REAL(w2,element=1) -> IMAG(t1)
II1*IMAG(w2,element=1) -> + IMAG(t1)
RI2*REAL(w2,element=2) -> + IMAG(t1)
II2*IMAG(w2,element=2) -> + IMAG(t1)
...
```

See also: VnmrJ Liquids NMR

| Related: | dconi | Interactive 2D data display (C) |
| :---: | :---: | :---: |
| | ft2d | Fourier transform 2D data (C) |
| | lsfid | Number of complex points to left-shift np FID (P) |
| | lsfid1 | Number of complex points to left-shift ni interferogram (P) |
| | lsfid2 | Number of complex points to left-shift ni2 interferogram (P) |
| | 1sfrq | Frequency shift of the fn spectrum (P) |
| | lsfrq1 | Frequency shift of the fn 1 spectrum (P) |
| | lsfrq2 | Frequency shift of the fn2 spectrum (P) |
| | parfidss | Create parameters for time-domain solvent subtraction (M) |
| | phfid | Zero-order phasing constant for np FID (P) |
| | phfid1 | Zero-order phasing constant for ni interferogram (P) |
| | phfid2 | Zero-order phasing constant for ni interferogram (P) |
| | proc | Type of processing on np FID (P) |
| | procl | Type of processing on ni interferogram (P) |
| | proc2 | Type of processing on ni2 interferogram (P) |
| | pmode | Processing mode for 2D data (P) |
| | ssorder | Order of polynomial to fit digitally filtered FID (P) |
| | ssfilter | Full bandwidth of digital filter to yield a filtered FID (P) |
| | wft2d | Weight and Fourier transform 2D data (C) |

ft1da Fourier transform phase-sensitive data (M)

Syntax: ft1da<(options) >

Description: Performs the first $\left(f_{2}\right)$ transform of a 2D transform or the first part of a 3D transform. Otherwise, ft1da has the same functionality as the ft 2 da command. See the description of $f t 2$ da for further information.

Arguments: options are the same as used with $f t 2$ da. See $f t 2$ da for details.
See also: VnmrJ Liquids NMR

| Related: | $\mathrm{ft2d}$ | Fourier transform 2D data (C) |
| :--- | :--- | :--- |
| | $\mathrm{ft2da}$ | Fourier transform phase-sensitive data (M) |
| | wft1da | Weight and Fourier transform phase-sensitive data (M) |
| | wft2da | Weight and Fourier transform phase-sensitive data (M) |

ftldac Combine arrayed 2D FID matrices (M)
Syntax: ft1dac<(<mult1><,mult2>,...<,multn>) >
Description: Allows ready combination of 2D FID matrices within the framework of the 2D Fourier transformation program. No weighting is performed. ft1dac requires that the data be acquired either without f_{1} quadrature or with f_{1} quadrature using the TPPI method. This macro is used for TOCSY (with multiple mixing times).
Arguments: mult1,mult2,..., multn are multiplicative coefficients. The nth argument is a real number and specifies the multiplicative coefficient for the nth 2D FID matrix.

Related: ft2dac Combine arrayed 2D FID matrices (M)
tocsy Set up parameters for TOCSY pulse sequence (M)
wft1da Weight and Fourier transform phase-sensitive data (M)
wft1dac Combine arrayed 2D FID matrices (M)
ft2d Fourier transform 2D data (C)
Syntax: (1) ft2d(array_element)
(2) ft2d('nf'<array_element>)
(3) ft2d<(<options, ><plane_number,><coefficients>) >
(4) ft2d('ni'|'ni2',element_number, increment)
(5) ft2d('ni'|'ni2', increment, <coefficients>)

Description: Performs the complete 2D Fourier transformation, without weighting, in both dimensions. If the first Fourier transformation has already been done using ft1d, wft1d, ft1da, or wft1da, the ft2d command performs only the second $\left(\mathrm{t}_{1}\right)$ transform.
For arrayed 2D FID data, a single array element can be weighted and transformed using syntax 1 . If the data is collected in "compressed" form using ' nf ', syntax 2 must be used. Complex and hypercomplex interferograms can be constructed explicitly by supplying a series of coefficients using syntax 3. If an arrayed 3D data set is to be selectively processed, the format of the arguments to ft 2 d changes to syntax 4 . For example, ft2d('ni', 1, 2) performs a 2D transform along np and ni of the second ni2 increment and the first element within the explicit array. This command yields a 2D np-ni frequency plane.
Arrayed 3D data sets can also be subjected to 2D processing to yield 2D absorptive spectra. If the States-Haberkorn method is used along both f_{1} (ni dimension) and f_{2} (ni2 dimension), there are generally 4 spectra per (ni,ni2) 3D element. In this case, using syntax 5 , entering ft2d('ni2', $2,<16$ coefficients>) performs a 2D transform along np and ni 2 of the second ni increment using the 16 coefficients to construct the $2 \mathrm{D} \mathrm{t}_{1}$-interferogram from appropriate combinations of the 4 spectra per (ni,ni2) 3D element.
If there are n data sets to be transformed, as in typical phase-sensitive experiments, $4 * \mathrm{n}$ coefficients must be supplied. The first $2 * \mathrm{n}$ coefficients are
the contributions to the real part of the interferogram, alternating between absorptive and dispersive parts of the successive data sets. The next $2 *_{n}$ coefficients are the contributions to the imaginary part of the interferogram, in the same order. Thus, using the definition that the first letter refers to the source data set, the second letter refers to the interferogram, and the number identifies the source data set, we have the following cases:

| Data sets | Coefficient order |
| :--- | :--- |
| 1 | RR1, IR1, RI1, II1 |
| 2 | RR1, IR1, RR2, IR2, RI1, II1, RI2, II2 |
| 3 | RR1, IR1, RR2, IR2, RR3, IR3, RI1, II1, |
| | RI2, II2, RI3, II3 |
| | .\quad. |

The coefficients are often 1,0 , or -1 , but this is not always the case. Any nonintegral coefficient can be used, and as many coefficients can be nonzero as is desired. Up to 32 coefficients can be supplied, which at 4 per data set allows the addition, subtraction, etc., of eight 2D data sets (e.g., 8 different phase cycles).
For information on real as opposed to complex Fourier transforms, see the descriptions of the proc, proc1, and proc 2 parameters. For information on left-shifting, zero-order phase rotation, and frequency shifting of the FID and interferogram time-domain data during the 2D Fourier transformation, see the descriptions of the parameters lsfid, lsfid1, lsfid2, phfid, phfid1, phfid2, lsfrq, lsfrq1, and lsfrq2, as appropriate. For information on the lfs (low-frequency suppression) and zfs (zero-frequency suppression) solvent suppression options, see the description of parameters ssfilter and ssorder, and macro parfidss.
Arguments: array_element is a single array element to be transformed.
options can be any of the following (all string arguments must precede the numeric arguments):

- 'ptype ' is a keyword to transform P-type data to yield a P-type contour display.
- 'ntype ' is a keyword to transform N-type data to yield a P-type contour display. This is the default.
- 't2dc' is a keyword to apply a dc correction to each t_{2} FID prior to the first Fourier transform. The last $1 / 16$-th of the time domain data is used to calculate the dc level.
- 't1dc' is a keyword to apply a dc correction to each t_{1} interferogram prior to the second Fourier transform. The last $1 / 16$-th of the time domain data is used to calculate the dc level.
- 'f2sel' is a keyword to allow only preselected f_{2} regions to be transformed along t_{1}. The t_{1} interferograms in the non-selected f_{2} regions are zeroed but not transformed. The same mechanism used to select baseline regions for baseline correction (bc) is used to select the f_{2} regions to be transformed along t_{1}. Set intmod='partial' and partition the integral of the spectrum into several regions. The even numbered f_{2} regions (e.g., $2,4,6$) are transformed along t_{1}; the odd numbered regions are not transformed along t_{1}.
- 'nf' is a keyword to transform arrayed or multi-slice 2D data that has been collected in the compressed form as single 2D FIDs with multiple (nf) traces.
- 'ni2' is a keyword to transform non-arrayed 2D data that have been collected with ni2 and sw2 (instead of ni and sw1). addpar ('3d') creates the necessary processing parameters for the 'ni2' operation.
- 'noop' is a keyword to not perform any operation on the FID data. This option is used mainly to allow macros, such as wft 2 da, to have the same flexibility as commands.
coefficients are a series of coefficients according to the following scheme: RR1 is the coefficient used to multiply the real part (first R) of spectra set 1 before it is added to the real part (second R) of the interferogram. IR2 would thus represent the contribution from the imaginary part of spectra set 2 to the real part of the interferogram, and so forth. The scheme is depicted below.

```
ft2d(RR1,IR1,RR2,IR2,...,RI1,II1,RI2,II2,...)
```

where:

```
RR1*REAL(w2,element=1) -> REAL(t1)
IR1*IMAG(w2,element=1) -> + REAL(t1)
RR2*REAL(w2,element=2) -> + REAL(t1)
IR2*IMAG(w2,element=2) -> + REAL(t1)
RI1*REAL(w2,element=1) -> IMAG(t1)
II1*IMAG(w2,element=1) -> + IMAG(t1)
RI2*REAL(w2,element=2) -> + IMAG(t1)
II2*IMAG(w2,element=2) -> + IMAG(t1)
```

' ni' is a keyword to selectively transform a particular np-ni 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni' is followed by the plane_number argument, an integer from 1 through ni2.
'ni2' is a keyword to selectively transform a particular np-ni2 2D plane within a non-arrayed 3D data set. To identify the plane, ' ni2' is followed by the plane_number argument, an integer from 1 through ni.
element_number is the number of an element within the explicit array when selectively processing an arrayed 3D data set; it ranges from 1 to ni2
increment is the increment within the explicit array when selectively processing an arrayed 3D data set; it ranges 1 to arraydim/(ni*ni2).
Examples: ft2d(1, 0, 0, 0, 0, 0, 1, 0)
ft2d(1)
ft2d('nf', 3)
ft2d('ptype',...)
See also: VnmrJ Liquids NMR

| Related: | dconi
 dcrmv
 fpmult | Interactive 2D data display (C)
 Remove dc offsets from FIDs in special cases (P)
 fpmult1 |
| :--- | :--- | :--- |
| | First point multiplier for np FID data (P) | |
| ftid | First point multiplier for ni interferogram data (P) | |
| | Fsfid | Number of complex points to left-shift np FID (P) |
| lsfid1 | Number of complex points to left-shift ni interferogram (P) | |
| lsfid2 | Number of complex points to left-shift ni2 interferogram (P) | |
| lsfrq | Frequency shift of the fn spectrum (P) | |
| lsfrq1 | Frequency shift of the fn1 spectrum (P) | |
| lsfrq2 | Frequency shift of the fn2 spectrum (P) | |
| parfidss | Create parameters for time-domain solvent subtraction (M) | |
| phfid | Zero-order phasing constant for np FID (P) | |
| phfid1 | Zero-order phasing constant for ni interferogram (P) | |
| phfid2 | Zero-order phasing constant for ni2 interferogram (P) | |
| proc | Type of processing on np FID (P) | |

| procl | Type of processing on ni interferogram (P) |
| :--- | :--- |
| proc2 | Type of processing on ni2 interferogram (P) |
| pmode | Processing mode for 2D data (P) |
| ssorder | Order of polynomial to fit digitally filtered FID (P) |
| ssfilter | Full bandwidth of digital filter to yield a filtered FID (P) |
| wft1d | Weight and Fourier transform for for 2D data (C) |
| wft2d | Weight and Fourier transform 2D data (C) |

ft2da Fourier transform phase-sensitive data (M)
Syntax: ft2da<(options) >
Description: Processes 2D FID data and 2D planes at particular t_{1} or t_{2} times from a 3D data set for a pure absorptive display. ft 2 da differs from wft 2 da only in that, in the case of wft1da, weighting of the time-domain data is performed prior to the FT. ft2da functions analogously to ft 1 da and wft1da, except that ft 2 da and wft2da perform only the f_{2} Fourier transform.
Macros $f t 1 d a, w f t 1 d a, f t 2 d a$, and wft 2 da function for hypercomplex 2D FID data (phase=1,2) and for TPPI 2D FID data (phase=3 or phase $=1,4$) acquired either with ni or ni2. If the data were acquired with ni, no additional arguments need be used with the macros. If the data were acquired with ni2, the keyword 'ni2' must be used.

For phase=1,2:
wft2da=wft2d('ptype', 1, 0, 0, 0, 0, 0, 1, 0)
For phase=3: wft2da=wft2d(1,0,0,0)
For phase=1,4:
wft2da=wft2d('ptype', 1, 0, 0, 0, 0, 0, 1, 0)
Macros ft1da, wft1da, ft2da, and wft2da support selective 2D processing within a 3D FID data set. All permutations of hyercomplex and TPPI modes of data acquisition in t_{1} and t_{2} can be handled. For selective $f_{2} f_{3}$ processing, the numeric argument immediately following the 'ni2' keyword is interpreted to be the t_{1} increment number, which specifies the particular $f_{2} f_{3}$ plane (p lane_number, see below) to be processed. For selective $f_{1} f_{3}$ processing, the t_{2} increment number either follows the keyword 'ni', which is optional, or is associated with the first numeric argument that does not immediately follow a ' bc' keyword.
For information on real as compared to complex Fourier transformation, see the description of proc or proc1. For information on the lfs (low-frequency suppression) and zfs (zero-frequency suppression) solvent suppression options, see the description of parameters ssfilter and ssorder, and the macro parfidss.
Arguments: options can be any of the following (the order is not important):

- 'ntype', 't2dc', 't1dc', and 'f2sel' are keywords that function the same as when supplied to the $f t 2 d$ and wft $2 d$ commands. Refer to the $f t 2 d$ command for a description of these options.
- ' bc ' is a keyword for a baseline correction of the phase-corrected f_{2} spectra prior to the f_{1} Fourier transform. The baseline regions must have been previously determined. The default polynomial order is 1 , which leads to a spline fit. A different polynomial order can be specified by inserting a numerical argument following ' bc '.
- ' dc ' is a keyword for a drift correction (dc) of the f_{2} spectra prior to the f_{1} Fourier transformation.
- 'ni' is a keyword to selectively transform a particular np-ni 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni' is followed by plane_number, an integer from 1 through ni2.
- 'ni2' is a keyword to selectively transform a particular np-ni2 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni2' is followed by plane_number, an integer from 1 through ni.
- 'old' is a keyword to allow data acquired before the February 25, 1988, software release to be processed correctly. 'old' does not function for selective 2D processing within 3D data sets. If no ni2 or ni plane_number is given, it is assumed that the data set is only 2D in either ni2 or ni, respectively.
See also: VnmrJ Liquids NMR

| Related: | flcoef | Coefficient to construct F1 interferogram (P) |
| :--- | :--- | :--- |
| | f2coef | Coefficient to construct F2 interferogram (P) |
| | ft1da | Fourier transform phase-sensitive data (M) |
| parfidss | Create parameters for time-domain solvent subtraction (M) | |
| phase | Phase selection (P) | |
| proc | Type of processing on the np FID (P) | |
| procl | Type of processing on the ni interferogram (P) | |
| ssorder | Order of polynomial to fit digitally filtered FID (P) | |
| ssfilter | Full bandwidth of digital filter to yield a filtered FID (P) | |
| wftida | Weight and Fourier transform phase-sensitive data (M) | |
| wft2da | Weight and Fourier transform phase-sensitive data (M) | |

ft2dac Combine arrayed 2D FID matrices (M)

Syntax: ft2dac<(<mult1><,mult2>,...<,multn>) >
Description: Allows ready combination of 2D FID matrices within the framework of the 2D FT program. No weighting is performed. Data must be acquired either without f_{1} quadrature or with f_{1} quadrature using the TPPI method. $f t 2$ dac is used with TOCSY (with multiple mixing times).
Arguments: mult1, mult $2, \ldots$, multn are multiplicative coefficients. The nth argument is a real number and specifies the coefficient for the nth 2D FID matrix.

Related: ftidac Combine arrayed 2D FID matrices (M)
tocsy Set up parameters for a TOCSY pulse sequence (M)
wft1dac Combine arrayed 2D FID matrices (M)
wft2dac Combine arrayed 2D FID matrices (M)

Perform a 3D Fourier transform on a 3D FID data set (M,U)
Syntax: (From VnmrJ) ft3d< (<data_directory><, number_files> <,'nocoef'><,'t1t2'|'t2t1'><,'fdf'><,'nofdf'> <, plane_type>) >
Description: Transforms 3D FID data into 3D spectral data. ft 3 d can be entered from a macro or directly from UNIX. Each type of entry is described below. A final section explains the ft 3 d coefficient file.
Additional parameter control for the operation of $f t 3 d$ is available. This allows drift corrections and partial Fourier transformation. See the descriptions of specdc3d, fiddc3d, and ptspec3d for information.
The 3D FID data must be loaded into the experiment in which the $f t 3 d$ macro is to be run. ft 3 d is started up in background mode by this macro so that VnmrJ remains free for interactive processing. You can start a 3D transform from
within exp4 and, at the same time, continue with any 1D or 2D processing of the 3D FID data within the same experiment using VnmrJ.
Distributed $\mathrm{f}_{1} \mathrm{f}_{2}$ processing has the following system and network requirements:

- The system on which the macro $f t 3 d$ is executed from within VnmrJ must define the names of the networked computers that are to participate in the distributed processing. The file /etc/hosts. 3D must contain these names in the following format:

```
unityl
unity2
datastation1
datastation2
```

- Each participating computer must recognize the name of the user that started up the master ft 3 d program as a valid user name on its system. For example, if user steve issues the ft 3 d command within VnmrJ running on computer unity0, steve must be a valid user on all other computer systems that are to be used in the distributed $\mathrm{f}_{1} \mathrm{f}_{2}$ processing.
- Each computer system must have NFS access to the 3D data directory.

Arguments: The order of the arguments is not important.
data_directory (without the / data subdirectory appended) specifies the output directory for the 3D spectral data file(s). The default directory for the 3D spectral data is curexp/datadir3d.
number_files sets the number of 3D data files (data1, data2, . . datan, where n is number_files) used to store the transformed 3D data. number_files must be an integer and be 32 or less. When number_files is entered, distributed $f_{1} f_{2}$ processing is performed by $f t 3 d$ if possible.
'nocoef' is a keyword for the set 3 dproc command within the $f t 3 d$ macro to not create a 3D coefficient file prior to invoking the ft3d program. This option is useful if you have modified an existing 3D coefficient file and do not want it to be overwritten prior to the 3D transform. See below for information on coefficient files. By default, ft3d calls the make3dcoef macro to create a coefficient file using the $£ 1$ coef and $f 2$ coef string parameter values.
't1t2' and 't2t1' are keywords to explicitly define the order of the $t 1$ and $t 2$ arrays (other than ni and ni2). By default, ft3d looks at the array parameter and if any parameter other than phase and phase 2 are arrayed, the macro aborts.
' $f d f$ ' indicates that the output of $f t 3 d$ is to be an FDF (Flexible Data Format) file named data. $f d f$. This is the default if the parameter appmode is set to 'imaging'. Distributed processing can still be performed if number_files is set appropriately. 3D FDF files can be viewed with the disp3d program, or selected slices can be extracted with ImageBrowser (started by the browser command from UNIX).
' nofdf ' indicates that the final output is the group of data1, data2, ... files, and that no FDF format file should be produced. This is the default if the parameter appmode is not set to 'imaging'.
plane_type sets plane extraction following the complete 3D FT with the following keywords:

- 'xall' indicates that all three 2D plane types, $\mathrm{f}_{1} \mathrm{f}_{3}, \mathrm{f}_{2} \mathrm{f}_{3}$, and $\mathrm{f}_{1} \mathrm{f}_{2}$, are to be automatically extracted at the end of the 3D Fourier transform.
- 'f1f3', 'f2f3', and 'f1f2' can be used to select any combination of plane types to be extracted.

Any of these options can be submitted more than once to the ft3d program, but the getplane program will display an error and abort if any one plane type is defined for extraction more than once.
Examples: ft3d
ft3d('nocoef','f1f3','f2f3')
ft3d Entered from UNIX
(From UNIX) ft3d -e exp_number -f -r <options>
The ft 3 d program can also be run directly from the UNIX environment on the host computer. An information file must be present before ft 3 d can execute successfully but it need contain only valid processing information for the t_{3} dimension and valid Fourier numbers for the t_{1} and t_{2} transforms. Valid weighting and phasing parameters for the f_{1} and f_{2} dimension do not need to be set while wftt 3 executes. After several FIDs have been collected, you can determine acceptable f_{3} weighting and phasing parameters. After setting fn1 and fn 2 to the desired values, the 3D processing information file can be created by typing set 3 dproc in the VnmrJ command line. At that point, the next invocation of $f t 3 d$ by the macro wftt 3 causes all $\left(t_{1}, t_{2}\right)$ increment sets up to and including the current increment in t_{3} to be processed.
To start $f t 3 d$ on a remote computer running as a data station for the system, \log in as root and enter one of the following commands so that the master ft 3 d program can properly communicate with the computer:

- On Unity INOVA systems, enter/vnmr/acqbin/Infoprc \&

With the Infoprc or acqinfo_svc program running, enter ft $3 d$ with the -h option and the necessary arguments. The ft 3 d program invoked with the h option is considered to be the master program and is responsible for spawning additional remote ft 3 d processes.
Each remote computer must be able to access the 3D data directory as if it were stored on a local disk, must recognize the user name under which the master $f t 3 d$ program is being run, and must also have permission to read from and write to that directory. If the 3D data directory contains four f_{3} transformed data files (data1-data4), the master ft3d program uses the first three remote computer systems listed in file hosts. 3D that respond.
If the multihost processing option is selected, the number of computers involved will be no more than the number of sets the f_{3} spectral data is partitioned into. This number is selected with the -m option (see below).
If you are unsure of whether to use Infoprc or acqinfo_svc on the remote computer, change directories to /vnmr/acqbin, enter lf, and check which program is present.
Note that if the host computer is rebooted, the background command (Infoprc or acqinfo_svc) has to be entered again.
Arguments: Note that entering ft 3 d with an ampersand ($\&$) after the arguments makes the command execute in the background. As a result, the UNIX prompt reappears after the command is entered and further commands can be entered and executed while the ft 3 d command is processing.

- -e exp_number is the experiment number where 3 D processing is to occur. This argument is required. It must be written as a minus sign, the letter e, a space, and a valid experiment number from 1 to 9 (e.g., -e 3 sets experiment 3). The experiment must already exist.
The following two options should always be set for reliable operation:
- -f specifies that any existing 3D data sets in the experiment should be deleted. This option requires no additional value.
- -r calls for explicit data reduction after the 3D Fourier transform. Data reduction consists of retaining only the "real-real-real" part of the
completely transformed 3D data set. The -r option is mandatory and is enforced within $f t 3 \mathrm{~d}$ regardless of the user command line input.
options can be any of the following:
- -F header_file indicates that an FDF (Flexible Data Format) output file should be produced, using the FDF header found in header_file. The output file will be named data.fdf, and the data1, data2, ... files will not be produced.
- -h selects the multihost processing option. The /etc/hosts.3D file must exist and contain the names of the remote hosts, one host name per line. Each remote host must also have either the program Infoprc or the program acqinfo_svc running in the background (one of these programs is already running on any computer being used as a spectrometer host).
- -l specifies that a log file be generated in the data subdirectory of the datadir3d directory.
- -m partitions the f_{3} transformed spectral data over more than one data file. This partitioning is necessary if the distributed processing capability of $f t 3 d$ is to be used in performing the remaining f_{1} and f_{2} transforms. The syntax -mnfiles is used to specify nfiles, the number of data files into which the 3D spectral data is to be divided (e.g., $-m 4$ specifies 4 data files). Each such data file contains an f_{3} subset of the $f_{1} f_{2}$ spectral planes. If nfiles is not specified, $f t 3 d$ reports an error and aborts. If nfiles is less than an internally calculated value (based on memsize and the maximum size for a single 2D transform), the number of data files is set to the internally calculated value; otherwise, nfiles determines the number of data files to be used. The maximum number of such files is currently defined to be 32. These 3D data files are labeled data1, deta2, ..., datan.
- -o specifies an alternative output directory for the processed 3D data. The default directory is datadir3d within the current experiment. A full UNIX path must follow the -o option.
- -p specifies the time-domain dimensions to be processed. If -p is used, the processed dimensions can be specified as $£ 3 f 2 f 1$, $£ 3 £ 2$, $f 2 £ 3$, $£ 2 £ 1$, $\mathfrak{f} 1 \mathrm{f} 2, \mathrm{f} 3, \mathrm{f} 2$, and f 1 . The values f 3 f 1 and f 1 f 3 are not allowed because processing must be done sequentially in the order f_{3}, then f_{2}, and then f_{1}. If the $-p$ option is not invoked, $f t 3 d$ defaults to $f 3 f 2 f 1$, resulting in a completely transformed 3D data set.
- -s specifies processing of the f_{3} dimension of the 3D FID data concurrently with data acquisition. In practice, concurrent f_{3} processing is realized by setting wnt = 'wftt 3 ' in the VnmrJ parameter set and starting the 3 D acquisition by entering au . The macro wftt 3 handles the call to ft3d at the appropriate times during data collection.
- -x specifies that plane extractions be performed at the end of 3D processing. The available planes are defined as $f 1 f 2$, $f 1 f 3$, and $f 2 f 3$. If more than one plane extraction is desired, the planes are separated by a colon. For example, -x f1f2:f1f3:f2f3 would extract all three planes. The planes are placed in the extr subdirectory of datadir3d.
Examples: (From UNIX) ft3d -r -f -l -e 2 \&
(From UNIX) ft3d -r -f -l -e 2 -x f1f2:f1f3:f2f3 \&

| See also: | VnmrJ Liquids | NMR |
| :--- | :--- | :--- |
| Related: | appmode | Application mode (P) |
| | browser | Start ImageBrowser application (U) |
| | dconi | Interactive 2D data display (C) |
| | disp3d | Display 3D data (U) |
| | fiddc3d | 3D time-domain dc correction (P) |
| | f1coef | Coefficient to construct F1 interferogram (P) |
| | f2coef | Coefficient to construct F2 interferogram (P) |
| getplane | Extract planes from a 3D spectral data set (M) | |
| killft3d | Terminate any ft3d process started in an experiment (M,U) | |
| make3dcoef | Make 3D coefficients file from 2D coefficients (M) | |
| ptspec3d | Region-selective 3D processing (P) | |
| set3dproc | Set 3D processing (C) | |
| | specdc3d | 3D spectral dc correction (P) |
| wftt3 | Process f_{3} dimension during 3D acquisition (M) | |

full Set display limits for a full screen (C)

Description: Sets the horizontal control parameters (SC and wc) and the vertical control parameters (sc2 and wc2) to produce a display (and subsequent plot) on the entire screen (and page). For 2D data, space is left for the scales.

Related: center Set display limits for center of screen (C)
fullt \quad Set display limits for full screen with room for traces (C)
left Set display limits for left half of screen (C)
right \quad Set display limits for right half of screen (C)
sc Start of chart (P)
sc2 Start of chart in second direction (P)
wc Width of chart (P)
wc2 Width of chart in second direction (P)

fullsq Display largest square 2D display (M)

Description: Adjusts sc, sc2, wc, and wc2 parameters to show the largest possible square 2D display.

Related: full Set display limits for a full screen (C)
fullt Set display limits for a full screen with room for traces (C)
sc Start of chart (P)
SC2 Start of chart in second direction (P)
wc Width of chart (P)
wC2 Width of chart in second direction (P)

fullt Set display limits for a full screen with room for traces (C)

Description: Sets the horizontal control parameters (SC and wc) and the vertical control parameters (sc2 and wc 2) to produce a display (and subsequent plot) in the entire screen (and page) with room for traces (dconi). For 2D data, space is left for the scales.

| Related: | center | Set display limits for center of screen (C) |
| :--- | :--- | :--- |
| full | Set display limits for a full screen (C) | |
| | left | Set display limits for left half of screen (C) |
| | right | Set display limits for right half of screen (C) |

G

ga
gain
gap
gap
gaussian
gcal
gcoil
gcosy
gCOSY
Gcosy
gcrush
gdiff
Gdqcosy
get1d
get2d
getActiveStacks
getCoronal
getDefaultSize
getDefaultSlices
getDefaultStacks
getDefaultThk
getdim
getfile
getGapMode
getgcal
getll
getMilestoneStacks
getparam
getplane
getPrevStacks
getreg
getSagittal
getsn
getTransverse
gettxt
gettype
getvalue
gf
gf
gf1
gf2
gflow

```
```

```
g2pul
```

```
```

g2pul

```

Set up pulse sequence for gradient evaluation (M)
Submit experiment to acquisition and FT the result (M)
Receiver gain ( P )
Find gap in the current spectrum (M)
Slice gap (P)
Set up unshifted Gaussian window function (M)
Gradient calibration constant (P)
Current gradient coil (P)
Set up pulse sequence for gradient \(\operatorname{COSY}\) (M)
Change parameters for gCOSY experiment (M)
Convert the paramaeter to a gradient COSY experiement (M)
Crusher gradient level ( P )
Diffusion gradient level (P)
Convert the paramaeter to a gradient DQCOSY experiement (M)
Select a 1 D experiment for processing (M)
Select a 2D experiment for processing (M)
Get active overlay (C)
Get coronal overlay (C)
Get default FOV
Get slices (C)
Get overlay based on scout image (C)
Get slice thickness (C)
Return dimensionality of experiment (M)
Get information about directories and files (C)
Get gap mode (C)
Get gcal value from table (M)
Get intensity and line frequency of line (C)
Get overlay from saved parameters (C)
Retrieve parameter from probe file (M)
Extract planes from a 3D spectral data set (M)
Start planning with previous stacks
Get frequency limits of a specified region (C)
Get sagittal overlay (C)
Get signal-to-noise estimate of a spectrum (M)
Get transverse overlay (C)
Get text file from VnmrJ data file (C)
Get the type of a variable (C)
Get value of parameter in a tree (C)
Prepare parameters for FID/spectrum display in acqi (M)
Gaussian function in directly detected dimension (P)
Gaussian function in 1st indirectly detected dimension (P)
Gaussian function in 2nd indirectly detected dimension (P)
Flow encoding gradient level (P)
\begin{tabular}{|c|c|}
\hline gfs & Gaussian shift const. in directly detected dimension (P) \\
\hline gfs1 & Gaussian shift const. in 1st indirectly detected dimension (P) \\
\hline gfs2 & Gaussian shift const. in 2nd indirectly detected dimension (P) \\
\hline gHMBC & Change parameters for gHMBC experiment (M) \\
\hline Ghmbc & Convert the paramaeter to a gradient HMBC experiement (M) \\
\hline ghmqc & Set up a PFG HMQC pulse sequence (M) \\
\hline gHMQC & Set up parameters for gHMQC experiment (M) \\
\hline Ghmqc & Convert the paramaeter to a gradient HMQC experiement (M) \\
\hline gHMQC15 & Set up parameters for \({ }^{15} \mathrm{~N}\) gHMQC experiment (M) \\
\hline gHMQC_d2 & Set up parameters for \({ }^{15} \mathrm{~N}\) gHMQC experiment using dec. 2 (M) \\
\hline gHMQC_d213 & Set up parameters for \({ }^{13} \mathrm{C}\) gHMQC experiment using dec. 2 (M) \\
\hline ghmqcps & Set up a PFG HMQC phase-sensitive pulse sequence (M) \\
\hline gHMQCTOXY & Change parameters for gHMQCTOXY experiment (M) \\
\hline ghsqc & Set up a PFG HSQC pulse sequence (M) \\
\hline gHSQC & Set up parameters for gHSQC experiment (M) \\
\hline Ghsqc & Convert the paramaeter to a gradient HSQC experiement (M) \\
\hline gHSQC15 & Set up parameters for \({ }^{15} \mathrm{~N}\) gHSQC experiment (M) \\
\hline gHSQC_d2 & Set up parameters for \({ }^{15} \mathrm{~N}\) gHSQC experiment using dec. 2 (M) \\
\hline gHSQC_d213 & Set up parameters for \({ }^{13} \mathrm{C}\) gHSQC experiment using dec. 2 (M) \\
\hline gHSQCTOXY & Set up parameters for gHSQCTOXY experiment (M) \\
\hline Ghsqctoxy & Convert paramaters for gradient HSQCTOXY experiement (M) \\
\hline gilson & Open the Gilson Liquid Handler window (C) \\
\hline gin & Return current mouse position and button values (C) \\
\hline globalauto & Automation directory name (P) \\
\hline glue & Create a pseudo-2D dataset (M) \\
\hline gmapshim & Start gradient autoshimming (M) \\
\hline gmapshim_au & Start acquisition with gradient shimming (M) \\
\hline gmapsys & Run gradient autoshimming, set parameters, map shims (M) \\
\hline gmapz & Get parameters and files for gmapz pulse sequence (M) \\
\hline gmap_findtof & Gradient shimming flag to first find tof (P) \\
\hline gmap_z1z4 & Gradient shimming flag to first shim z1-z4 (P) \\
\hline gmax & Maximum gradient strength ( P ) \\
\hline gmqcosy & Set up PFG absolute-value MQF COSY parameter set (M) \\
\hline gnoesy & Set up a PFG NOESY parameter set (M) \\
\hline go & Submit experiment to acquisition (M) \\
\hline go & Pulse sequence setup macro called by go, ga, and au (M) \\
\hline gpat-gpat3 & Gradient shape (P) \\
\hline gpe & Phase encoding gradient increment (P) \\
\hline gpe2 & 2nd phase encode gradient increment \\
\hline gpe3 & 3rd phase encode gradient increment \\
\hline gped & Phase encode dephasing gradient in the EPI sequence (P) \\
\hline gpemult & Phase encode gradient increment multiplier (P) \\
\hline gplan & Start interactive image planning (C) \\
\hline gradaxis & Gradient axis (P) \\
\hline gradientdisable & Disable PFG gradients (P) \\
\hline gradstepsz & Gradient step size (P) \\
\hline gradtype & Gradients for \(\mathrm{X}, \mathrm{Y}\), and Z axes ( P ) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline graphis & Return the current graphics display status (C) \\
\hline grayctr & Gray level window adjustment (P) \\
\hline graysl & Gray level slope (contrast) adjustment (P) \\
\hline grecovery & Eddy current testing (M) \\
\hline grid & Draw a grid on a 2D display (M) \\
\hline griserate & Gradient rise rate (P) \\
\hline gro & Readout gradient strength (P) \\
\hline groa & Readout gradient adjuster in EPI experiment (P) \\
\hline grof & Fine tune readout gradient compensation (P) \\
\hline gropat & Readout gradient shape (P) \\
\hline gror & Read out compensation gradient (P) \\
\hline grora & Readout dephasing gradient adjuster in EPI experiment (P) \\
\hline groupcopy & Copy parameters of group from one tree to another (C) \\
\hline gsh2pul & Set up parameters for shaped gradients tests (M) \\
\hline gspoil & Spoiler gradient level (P) \\
\hline gss & Slice selection gradient strength (P) \\
\hline gssf & Slice selection fractional refocusing (P) \\
\hline gsspat & Slice-select gradient shape (P) \\
\hline gssr & Slice selection refocusing gradient (P) \\
\hline gss2,gss3 & Slice selection gradient level (P) \\
\hline gtnnoesy & Set up a PFG TNNOESY parameter set (M) \\
\hline gtnroesy & Set up a PFG absolute-value ROESY parameter set (M) \\
\hline gtotlimit & Gradient total limit (P) \\
\hline gtrim & Trim gradient level (P) \\
\hline gvox1-gvox3 & Gradient strength for voxel selection (P) \\
\hline gx, gy, gz & Gradient strength for \(\mathrm{X}, \mathrm{Y}\), and Z gradients ( P ) \\
\hline gxcal,gycal,gzcal & Gradient calibration constants (P) \\
\hline gxmax, gymax,gzmax & Maximum gradient strength for each axis (P) \\
\hline gzlvl & Pulsed field gradient strength ( P ) \\
\hline gzsize & Number of z-axis shims used by gradient shimming (P) \\
\hline gzwin & Spectral width percentage used for gradient shimming (P) \\
\hline
\end{tabular}

\section*{g2pul Set up pulse sequence for gradient evaluation (M)}

Applicability: Systems with the pulsed field gradient or imaging module.
Description: Performs gradient recovery measurements. With gzlvl1 on during gt1, the system recovery to homogeneity can be measured after delay d2. Typical values are \(g t 1=0.040(40 \mathrm{~ms})\) and gradient strength on full ( \(\mathrm{gzlvl}=32767\) ). g2pul sets an experiment environment suitable for these tests. The gradaxis parameter is used by g 2 pul to select the \(\mathrm{x}, \mathrm{y}\), or z gradient axis.
See also: User Programming
Related: gradaxis Select gradient axis (P)

Description: Performs experiment described by the current acquisition parameters, checking parameters loc, spin, gain, wshim, load, and method to determine the necessity to perform various actions in addition to simple data acquisition. This may involve a single FID or multiple FIDs, as in the case of arrays or 2D experiments. ga causes the data to be automatically weighted and Fourier transformed (wft) at the end of each FID data acquisition.
Before starting the experiment, ga executes two user-created macros if they exist. The first is usergo, a macro that allows the user to set up general conditions for the experiment. The second is a macro whose name is formed by go_ followed by the name of the pulse sequence (from seqfil) to be used (e.g., go_s2pul, go_dept). The second macro allows a user to set up experiment conditions suited to a particular sequence.
Arguments: ' nocheck ' is a keyword to override checking if there is insufficient free disk space for the complete 1D or 2D FID data set to be acquired.
' next ' is a keyword to put the experiment started with ga ('next') at the head of the queue of experiments to be submitted to acquisition.
'wait' is a keyword to stop submission of experiments to acquisition until wexp processing of the experiment, started with ga ('wait'), is finished.
See also: VnmrJ Liquids NMR
Related:
au
change
gain
go
go_
load
loc
lock
method
sample
seqfil
shim
spin
spin
su
usergo
wft
wshim

Submit experiment to acquisition and process data (M)
Submit a change sample experiment to acquisition (M)
Receiver gain ( P )
Submit experiment to acquisition (M)
Pulse sequence setup macro called by go, ga, and au (M)
Load status of displayed shims (P)
Location of sample in tray (P)
Submit an Autolock experiment to acquisition (C)
Autoshim method (P)
Submit change sample, Autoshim experiment to acquisition (M)
Pulse sequence name (P)
Submit an Autoshim experiment to acquisition (C)
Submit a spin setup experiment to acquisition (C)
Sample spin rate (P)
Submit a setup experiment to acquisition (M)
Experiment setup macro called by go, ga, and au (M)
Weight and Fourier transform 1D data (C)
Conditions when shimming is performed ( P )

\section*{gain \(\quad\) Receiver gain ( P )}

Description: Sets receiver gain or, by setting gain='n', enables Autogain for automatic adjustment of gain. Low gain in multiline, high-dynamic-range samples can cause a number of problems, including intermodulation distortions and extra lines in the spectrum. Too high a gain, on the other hand, can cause receiver overload and consequent baseline distortions. Autogain capability allows the observe channel to be set optimally for detecting and digitizing NMR signals from a wide variety of samples.
Autogain adjusts the observe channel gain such that the NMR signal takes about 50 percent of the maximum range of the ADC . This setting allows a comfortable leeway for variations in signal. The program begins acquisition in the normal manner but the first transient (after any requested steady state transients) is examined for signal level. If the intensity is too low or too high, the gain is changed and the process is repeated until the intensity is within the proper range,
and then normal acquisition commences. The final gain value used for the experiment is stored and when the experiment is finished, setting gain= ' \(y^{\prime}\) results in the value being displayed in the dgs parameter group.
If the gain is reduced by the Autogain procedure such that the noise does not trigger the least significant 1 or 2 bits in the ADC and the signal still overloads either the receiver or ADC, the system stops and displays a message indicating Autogain failure.
Values: 0 to 60 , in steps of 2 dB ( 60 represents highest possible receiver gain and 0 lowest). On \(500-750-\mathrm{MHz}{ }^{\text {UNITY }}\) INOVA, low-band gain is limited from 18 to 60 .
' \(n\) ' enables Autogain, in which the gain is automatically adjusted at the start of acquisition for an optimum value. After the acquisition is finished, setting gain=' \(y\) ' then allows the value of gain to be read. gain=' \(n\) ' may not be used for arrayed experiments.
On MERCURYplus/Vx, 0 to 38, in steps of 2 dB ( 38 represents the highest possible receiver gain and 0 the lowest).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dgs & Display group of special/automation parameters (M) \\
& \(g f\) & Prepare parameters for FID/spectrum display in acqi (M)
\end{tabular}

Find gap in the current spectrum (M)
Syntax: gap (gap,height) :found, position,width
Description: Looks for a gap between the lines of the currently displayed spectrum. It can be used to automatically place inserts, parameter printouts, trace labels, etc. The search starts on the left side (low-field end) of the spectrum.
Arguments: gap is the width of the desired gap.
height is the starting height (same as the lower limit for the insert).
found is a return value that is set to 1 if the search is successful, or set to 0 if unsuccessful.
position is a return value that is set to the distance from the left edge of the chart (not the plot) to the left end of the gap ( 3 mm from the nearest peak to the left, positioning with "left gravity") if the search is successful, or set to the position (no spacing to the nearest line) of the largest gap found if unsuccessful.
width is a return value set to the total width of the first gap if the search is successful, or set to the width of largest gap found if unsuccessful.
Examples: gap \((120,80) ; \$ 1, \$ 2, \$ 3\)
See also: User Programming
gap \(\quad\) Slice gap (P)
Applicability: Systems with imaging capabilities.
Description: Gap between slices.

\section*{gaussian Set up unshifted Gaussian window function (M)}

Syntax:
gaussian<(<t1_inc><,t2_inc>) >
Description: Sets up an unshifted Gaussian window function in 1, 2 , or 3 dimensions. The macro checks whether the data is \(1 \mathrm{D}, 2 \mathrm{D}\), and 3D.

Arguments: t 1 _inc is the number of t 1 increments. The default is ni. t2_inc is the number of t 2 increments. The default is ni2.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & ni & Number of increments in 1st indirectly detected dimension (P) \\
& ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
& pi3ssbsq & Set up pi/3 shifted sinebell-squared window function (M) \\
& pi4ssbsq & Set up pi/4 shifted sinebell-squared window function (M) \\
& sqcosine & Set up unshifted cosine-squared window function (M) \\
& sqsinebell & Set up unshifted sinebell-squared window function (M)
\end{tabular}

\section*{gcal Gradient calibration constant (P)}

Applicability: Systems with the pulsed field gradient or the imaging module.
Description: Stores the proportionality constant between the parameter values (DAC units) controlling the desired gradient and the intensity of the gradient expressed in gauss \(/ \mathrm{cm}\). The gradients generated in the magnet require calibration of the gain on the gradient compensation board so that coordinate data, slice positions, and the field of view can be set up accurately. gcal should be located in each user's vnmrsys/global file.
Values: Number that is probe dependent, in gauss/cm-DAC unit. On the Performa I PFG module, 0.00028 to 0.00055 gauss/cm-DAC unit is nominal; On the Performa II, 0.0014 to 0.0025 gauss/cm-DAC unit is nominal.
See also: VnmrJ Imaging NMR
Related: ecctabl Put gcal value and ecc file into table (M)
getgcal Get gcal value from table (M)
setgcal Set gradient calibration constant (M)
gcoil Current gradient coil (P)
Description: Reserved parameter that specifies which physical gradient set is currently installed. This allows convenient updating of important gradient characteristics when one gradient set is interchanged for another. When set, gcoil reads the gradient table file of the same name in/vnmr/imaging/gradtables and sets the gradient calibration parameters.
gcoil is local to each individual experiment. It is normally set the same as sysgcoil for acquiring new data, but can be set to other gradient names when working with saved data or data from another instrument. Each possible gradient name should have an associated file of that name located in the directory /vnmr/imaging/gradtables. Look at any file in this directory for an example of the proper gradtable format, or use the macro creategtable to make new gradtables entries.
If the parameter gcoil does not exist in a parameter set and a user wants to create it, you must set the protection bit that causes the macro _gcoil to be executed when the value for gcoil is changed. There are two ways to create gcoil:
- Use the macro updtgcoil, which will create the gcoil parameter if it does not exist and set the correct protection bits.
- Enter the following commands:
```

create('gcoil','string')
setprotect('gcoil','set',9)

```
gcoil and the associated gradient calibration parameters boresize, gmax, and trise are updated with the values listed in the table on the right each time a parameter set is retrieved, or when an experiment is joined. In the rare case that a gradtables file is
\begin{tabular}{ll}
\hline Variable Name & Value \\
\hline boresize & 22.50 cm \\
gmax & \(5.00 \mathrm{gauss} / \mathrm{cm}\) \\
trise & 0.000500 sec \\
\hline
\end{tabular} modified, but the value of gcoil is not changed, manually force an update of the calibration parameters. Updating may be accomplished either by setting gcoil to itself, for example, gcoil=gcoil, or by using the macro _gcoil.
Be aware that if an old dataset is returned and processed, gradient parameters associated with that dataset will replace any new gcoil parameters.
The table is a gradient table (gradient coil name: asg33) for a horizontal imaging system with all three axes set to the same maximum gradient strength.
On the right is a gradient table (gradient coil name: tc203) for a three-axis
\begin{tabular}{ll}
\hline Variable Name & Value \\
\hline boresize & 5.10 cm \\
trise & 0.000200 sec \\
gxmax & 29.00 gauss \(/ \mathrm{cm}\) \\
gymax & 27.00 gauss \(/ \mathrm{cm}\) \\
gzmax & 70.00 gauss \(/ \mathrm{cm}\) \\
\hline
\end{tabular} gradient set with unequal maximum gradient strength.
Related: boresize Magnet bore size (P)
creategtable Generate new gradient calibration file (M)
gmax
setgcoil
Maximum gradient strength ( P )
sysgcoil System gradient coil (P)
trise Gradient rise time (P)
updtgcoil Update gradient coil (M)

\section*{See also: User Programming}

\section*{gcosy \(\quad\) Set up pulse sequence for gradient COSY (M)}

Applicability: Systems with the pulsed field gradient or the imaging module.
Description: Converts a 1D standard two-pulse sequence parameter set into a set ready to run a PFG (pulsed field gradient) absolute-value COSY experiment.

See also: VnmrJ Liquids NMR

\section*{gCOSY \(\quad\) Change parameters for gCOSY experiment (M)}

Description: Converts the current parameter set to a gCOSY experiment.

\section*{Gcosy \(\quad\) Convert the paramaeter to a gradient COSY experiement (M)}

Description: Convert the paramaeter to a gradient COSY experiement

\section*{gcrush \(\quad\) Crusher gradient level (P)}

Description: Predefined parameter available for use in setting a crusher gradient level, often paired with the timing parameter tcrush.
\begin{tabular}{lll} 
Related: & gspoil & Spoiler gradient level (P) \\
& tspoil & Gradient spoiling time (P)
\end{tabular}
gdiff Diffusion gradient level (P)
Description: Predefined parameter available for use in setting a diffusion gradient level, often paired with the timing parameters tdiff or tdelta.

Gdqcosy \(\quad\) Convert the paramaeter to a gradient DQCOSY experiement (M)
Description: Convert the paramaeter to a gradient DQCOSY experiement

\section*{get1d Select a 1D experiment for processing (M)}

Syntax: get1d<(experiment)>
Description: In nonautomation mode, the macros hcosy, hcapt, capt, hcdept, and cdept all acquire two or more data sets in the experiment in which the macro was executed. These data sets are stored, complete with Fourier transformed data. The data sets are also stored directly in the experiment. The get 1d macro is used to select which data set should be active for processing in that experiment. After get1d is executed, data can be stored in the conventional way with the svf command (e.g., when hcosy completes, get1d can be used to process the 1 D data set).
Arguments: experiment is the 1 D data set to be used for processing. The default is the 'H1' experiment.
Examples: get1d
get1d('apt')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & capt & Automated carbon and APT acquisition (M) \\
cdept & Automated carbon and DEPT acquisition (M) \\
get2d & Select a 2D experiment for processing (M) \\
& hcapt & Automated proton, carbon, and APT acquisition (M) \\
& hcdept & Automated proton, carbon, and DEPT acquisition (M) \\
& hcosy & Automated proton and COSY acquisition (M) \\
& svf & Save FIDs in current experiment (C)
\end{tabular}

\section*{get2d Select a 2D experiment for processing (M)}

Syntax: get2d<(experiment)>
Description: In nonautomation mode, the macros hcosy, hcapt, capt, hcdept, and cdept all acquire two or more data sets in the experiment in which the macro was executed. These data sets are stored complete with Fourier transformed data. The data sets are also stored directly in the experiment. The get 2 d macro is used to select which data set should be active for processing in that experiment. After entering get \(2 d\), data may be stored in the conventional way with the svf command. For example, following completion of hcosy, get2d can be used to process the 2D data set.
Arguments: experiment is the 2D data set that should be used for processing. The default is the 'relayh' experiment.

Examples: get2d('hetcor')

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & get1d \\
svf
\end{tabular}\(\quad\)\begin{tabular}{l} 
Select a 1D experiment for processing (M) \\
Save FIDs in current experiment (C)
\end{tabular}

\section*{getActiveStacksGet active overlay (C)}

Applicability: Systems with imaging capabilities.
Description: Starts planning with overlays calculated from current VnmrJ parameters.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

\section*{getCoronal Get coronal overlay (C)}

Applicability: Systems with imaging capabilities.
Description: Starts planning with overlays determined with default parameters and coronal orientation.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

\section*{getDefaultSizeGet default FOV}

Applicability: Systems with imaging capabilities.
Description: Gets default field-of-view.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning
getDefaultSlicesGet slices (C)
Applicability: Systems with imaging capabilities.
Description: Gets default number of slices.
Used to update data entry. Because default parameters are not VnmrJ variable, they can be accessed only through functions.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

\section*{getDefaultStacksGet overlay based on scout image (C)}

Applicability: Systems with imaging capabilities.
Description: Starts planning with overlays determined from default parameters and orientation of scout image.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
getDefaultThk Get slice thickness (C)
Applicability: Systems with imaging capabilities.
Description: Gets default thickness of slices.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

\section*{getdim \(\quad\) Return dimensionality of experiment (M)}

Syntax: getdim:dimensions
Description: Used in other macros to determine the number of dimensions of the current data set. Many macros make decisions based on whether a data set is multidimensional or 1D. getdim makes it easier to access this information.

Arguments: dimensions is a return variable giving the number of dimensions of the data. If ni3 is 2 or greater, dimensions is set to 4 ; if ni2 is 2 or greater, dimensions is set to 3 ; if ni is 2 or greater, dimensions is set to 2 ; and if ni is less than 2 or undefined, dimensions is 1.
Examples: getdim:r1
See also: VnmrJ Liquids NMR
Related: ni Number of increments in 1st indirectly detected dimension (P) ni2 Number of increments in 2nd indirectly detected dimension (P) ni3 Number of increments in 3rd indirectly detected dimension (P)

\section*{getfile Get information about directories and files (C)}

Syntax: (1) getfile(directory) : \$number_files
(2) getfile(directory,file_index):\$file, \$extension

Description: Returns information about the number of files in a directory or about a particular file in a directory.

Arguments: directory is the name of the directory for which information is desired.
number_files is the number of files in the directory, with dot files (e.g., . login) ignored.
file_index is the number of file for which information is desired (the order is UNIX-dependent).
file is the name of the file, excluding any extension, identified by the index (see examples below).
extension is the extension of the file name identified by the file_index. For example, if file_index points to the file named s2pul.fid, getfile returns the string s2pul to \$file and the string fid to \$extension. If the file name pointed to has no extension (e.g., dummy), no value is returned to \$extension. If the file name has more than one extension, only the last extension is returned to \$extension (e.g., the file fid.tmp. par returns fid.tmp to \$file and par to \$extension).

Complete paths (full file names) can be reconstructed like this:
getfile('dir',i): \$filename, \$ext
if (\$ext='') then \$path='dir'+'/'+\$filename
else \$path='dir'+'/'+\$filename+'.'+\$ext
endif
Paths for the rt command can be reconstructed like this:
\$path='dir'+'/'+\$filename.
Examples:
getfile('dir'): \$entries
\$temp = 0
while (\$temp < \$entries)
\$temp = \$temp + 1
getfile('dir', \$temp): \$filename, \$ext
...
endwhile
See also: User Programming

\section*{getGapMode Get gap mode (C)}

Applicability: Systems with imaging capabilities.
Description: Gets gap mode.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
getgcal Get gcal value from table (M)
Applicability: Systems with the imaging module.
Syntax: getgcal<(ecc_file) >
Description: Retrieves value of the gradient calibration constant gcal from the reference table ecctabl in the directory \$vnmrsystem/imaging/eddylib. If the value would overwrite the current value of gcal , the monitor displays a prompt to confirm the overwrite.

Arguments: ecc_file specifies the name of the ecc file in the reference table ecctabl. The default value is 'curecc'.

Examples: getgcal
getgcal('test1')
See also: VnmrJ Imaging NMR
Related: ecc Set up parameters to obtain compensation data (M)
ecctabl Put gcal value and ecc file into table (M)
gcal Gradient calibration constant (P)
getll Get intensity and line frequency of line (C)
Syntax: getll(line_number) <: height,frequency>
Description: Finds the height and frequency of line from a line listing. It assumes a previous line list using dll.

Arguments: line_number is the number of the line in the line list.
height is the intensity of the specified line.
frequency is the line frequency with units defined by the parameter axis.
See also: User Programming
Related: axis Axis label for displays and plots (P)
dll Display listed line frequencies and intensities (C)
fp Find peak heights (C)
nll Find line frequencies and intensities (C)
getMilestoneStacksGet overlay from saved parameters (C)
Applicability: Systems with imaging capabilities.
Description: Starts planning with overlays determined from saved milestone parameters.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
getparam \(\quad\) Retrieve parameter from probe file (M)
Syntax: getparam(param<,nucleus>) : \$value
Description: Retrieves the value of a parameter from the current probe file. The name of the probe file is referenced from the parameter probe.

Arguments: param is the name of the parameter to be retrieved.
nucleus is the nucleus to be retrieved from the probe file. The default is the current value of the parameter tn
value is a return variable with the value of the retrieved parameter.
Examples: getparam('tpwr'):tpwr
getparam('dmf','H1'): \$dmf
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{ll} 
addnucleus \\
addparams & Add new nucleus to existing probe file (M) \\
addprobe & Add parameter to current probe file (M) \\
probe & Create new probe directory and probe file (M) \\
setparams & Probe type (P) \\
tn & Write parameter to current probe file (M) \\
updateprobe & Npdate probe file (M)
\end{tabular} Uperve transmitter (P)
\end{tabular}

\section*{getplane \(\quad\) Extract planes from a 3D spectral data set (M)}

Applicability: All systems; however, although getplane is available on MERCURYplus/Vx, such systems can only process 3D data and cannot acquire 3D data.
Syntax: getplane<(<data_dir><,plane_dir><,plane_type>) >
Description: Executes the program getplane in the VnmrJ system bin directory (\$vnmrsystem/bin). getplane checks whether there is sufficient file space on the disk partition to accommodate the extracted planes. If space is insufficient, getplane writes an error to the VnmrJ text window and aborts. getplane does not delete the output plane directory if it is run multiple times to individually extract different plane types.
Arguments: data_dir specifies the directory (without the / data subdirectory) containing the input 3D spectral data. The first non-keyword argument to getplane is always taken to be data_dir.
plane_dir specifies the directory (without the /extr subdirectory) in which the extracted planes are to be stored. The second non-keyword argument to getplane is always taken to be plane_dir. If plane_dir is not specified, data_dir also specifies the output plane directory. If both
 output plane directory are set to curexp/datadir3d. The parameter plane is always set equal to the output plane directory.
plane_type can be any of the following keywords:
- 'xall' is a keyword to extract all three 2D plane types: f1f3, f2f3, f1f2.
- 'f1f3', 'f2f3', 'f1f2' are keywords to extract their respective 2D planes.
- Any of these keywords can be submitted more than once to the getplane macro, but the getplane program displays an error and aborts if any one plane type is defined for extraction more than once.
Examples: getplane
getplane('data3d.inp,'data3d.planes','f1f3','f2f3')
See also: VnmrJ Liquids NMR
Related: dplane Display a 3D plane (M)
dproj Display a 3D plane projection (M)
dsplanes Display a series of 3D planes (M)
ft3d Perform a 3D Fourier transform (M)
nextpl Display the next 3D plane (M)
\begin{tabular}{ll} 
path3d & Path to currently displayed 2D planes from a 3D data set \((P)\) \\
plane & Currently displayed 3D plane type \((\mathrm{P})\) \\
plplanes & Plot a series of 3D planes \((M)\) \\
prevpl & Display the previous 3D plane (M)
\end{tabular}

\section*{getPrevStacks Start planning with previous stacks}

Applicability: Systems with imaging capabilities.
Description: Starts planning with previous parameter set.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

\section*{getreg Get frequency limits of a specified region (C)}

Syntax: getreg(region_number) <:minimum, maximum>
Description: Returns the frequency limits of a region. The spectrum should have been previously divided into regions with the region command.

Arguments: region_number specifies the number of the region.
minimum, maximum are return values set to the frequency limits, in Hz , of the specified region.
Examples: getreg (1): \$a, \$b
getreg (\$4): cr, \$lo
getreg(R1-1):r2,r3
See also: User Programming
Related: Cz Clear integral reset points (C)
ds \(\quad\) Display a spectrum (C)
numreg Return the number of regions in a spectrum (C)
region Divide spectrum into regions (C)
z Add integral reset point at cursor position (C)

\section*{getSagittal Get sagittal overlay (C)}

Applicability: Systems with imaging capabilities.
Description: Starts planning with overlays determined with default parameters and sagittal orientation.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
getsn Get signal-to-noise estimate of a spectrum (M)
Syntax: getsn:current_sn, predicted_sn
Description: Estimates spectrum signal-to-noise using the following algorithm:
- Measures four adjacent 5-percent portions at the left edge of the spectrum, finding the root-mean-square noise, and taking the smallest of the four values. By measuring four different values and finding root-mean- square noise instead of peak noise, the result should be reliable even if several signals are present in the selected regions.
- Next, estimates the signal level using the vertical scale adjustment macros: vsadjh for proton, vsadjc for carbon, and vsadj for other nuclei. For carbon spectra, this algorithm ignores solvent lines and TMS. For proton spectra, in addition to ignoring the largest line in the spectrum, if the tallest
line is greater than three times the height of the second tallest line, the second highest line is be used instead. For other nuclei, getsn uses the tallest line in the spectrum.
- Finally, estimates the signal-to-noise at the end of the experiment by a simple extrapolation (multiplying by the square root of \(n t / c t\) ).
Arguments: current_sn is a return value set to the current signal-to-noise level.
predicted_sn is a return value set to the predicted signal-to-noise level at the end of the experiment.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & ct & Completed transients (P) \\
& nt & Number of transients (P) \\
& testsn & Test signal-to-noise ratio (M) \\
& vsadj & Adjust vertical scale (M) \\
& vsadjc & Adjust vertical scale for carbon spectra (M) \\
& vsadjh & Adjust vertical scale for proton spectra (M)
\end{tabular}

\section*{getTransverse Get transverse overlay (C)}

Applicability: Systems with imaging capabilities.
Description: Starts planning with overlays determined with default parameters and transverse orientation.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

\section*{gettxt Get text file from VnmrJ data file (C)}

Syntax: gettxt (file)
Description: Copies text from a data file to the current experiment.
Arguments: file is the name of a VnmrJ data file saved from an experiment (i.e., a directory with a .fid or . par suffix). Do not include the file name suffix.
Examples: gettxt('/vnmr/fidlib/fidld')
See also: VnmrJ Liquids NMR
Related: puttxt Put text file into another file (C)

\section*{gettype \(\quad\) Get the type of a variable (C)}

Syntax: gettype(name [, tree]) <:index, name>
Description: Displays or returns the type of an existing variable.
Arguments: A "string" variable can return type 'string' or 'flag'. A "real" variable can return type 'real', 'delay', 'frequency', 'pulse', or 'integer'. gettype returns one or two values to a macro. The first value is an integer corresponding to the parameter type. The second value is the name of the parameter type. name can be used in commands such as settype and create.
An optional tree argument can be given. Variables are 'current ', 'global', 'processed', and 'systemglobal'.
The default is to search for the parameter in the 'current ', 'global', and 'systemglobal' trees, in that order.
Examples: gettype ('dmm'): \$int, \$name sets \$int to 4 and \$name to 'flag'.

See also: gettype ('pw'): \$int, \$name sets \$int to 6 and \$name to 'pulse'.
```

getvalue Get value of parameter in a tree (C)
Syntax: getvalue(parameter<,index><,tree>)

```

Description: Gets the value of any parameter in a tree. The value of most parameters can be accessed simply by using their name in an expression. For example, sw? or \(r 1=n p\) accesses the value of sw and np, respectively. However, parameters in the processed tree cannot be accessed that way; getvalue can be used to get the value of a parameter in the processed tree.

Arguments: parameter is the name of an existing parameter.
index is the number of a single element in an arrayed parameter. Default is 1 .
tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'processed'. Refer to the create command for more information on the types of parameter trees.
Examples: getvalue('arraydim')
See also: User Programming
\begin{tabular}{lll} 
Related: & create & Create new parameter in a parameter tree (C) \\
display & Display parameters and their attributes (C) \\
setgroup & Set group of a parameter in a tree (C) \\
setlimit & Set limits of a parameter in a tree (C) \\
setprotect & Set protection mode of a parameter (C) \\
settype & Change type of a parameter (C) \\
setvalue & Set value of any parameter in a tree (C)
\end{tabular}

Prepare parameters for FID/spectrum display in acqi (M)
Description: Provided as a model for preparing parameters for the FID and spectrum display in acqi. The unmodified version of this macro turns off phase cycling, autoshimming, autolocking, spin control, temperature control, sample changer control, and autogain. It also selects the current pulse sequence and parameter set by issuing the command go ('acqi') and the command acqi ('par'). The automation parameters cp, wshim, alock, spin, temp, loc, and gain are then reset to their original values. Users can customize \(g f\) by copying it into their private maclib directory and editing that version to suit their needs.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & acqi & Interactive acquisition display process (C) \\
alock & Automatic lock status (P) \\
cp & Cycle phase (P) \\
dmgf & Absolute-value display of FID data and spectrum in acqi (P) \\
gain & Receiver gain (P) \\
go & Submit an experiment to acquisition (C) \\
loc & Location of sample in tray (P) \\
spin & Sample spin rate (P) \\
temp & Sample temperature (P) \\
wshim & Conditions when shimming performed (P)
\end{tabular}
gf Gaussian function in directly detected dimension (P)
Description: Defines a Gaussian time constant of the form \(\exp (-(t / g f) 2)\) along the directly detected dimension. This dimension is referred to as the \(f_{2}\) dimension in 2D data sets, the \(f_{3}\) dimension in 3D data sets, etc.
Values: Number, in seconds. Typical value is \(g f=\) ' n '.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & gf1 & Gaussian function in 1st indirectly detected dimension (P) \\
& \(\mathrm{gf2}\) & Gaussian function in 2nd indirectly detected dimension (P) \\
& gfs & Gaussian shift constant in directly detected dimension (P)
\end{tabular}
gf1 Gaussian function in 1st indirectly detected dimension (P)
Description: Defines a Gaussian time constant of the form \(\exp (-(t / g f 1) 2\) ) along the first indirectly detected dimension. This dimension is referred to as the \(f_{1}\) dimension of a multidimensional data set. \(\mathrm{g} f 1\) works analogously to the parameter \(g f\). The "conventional" parameters, such as 1 b and gf , operate on the detected FIDs, while this "2D" parameter is used during processing of the interferograms.
Values: Number, in seconds.
See also: VnmrJ Liquids NMR
Related: gf Gaussian function in directly detected dimension (P)
gf2 Gaussian function in 2nd indirectly detected dimension (P)
Description: Defines a Gaussian time constant of the form \(\exp (-(t / g f 2) 2)\) along the second indirectly detected dimension. This dimension is referred to as the \(f_{2}\) dimension of a multidimensional data set. \(g f 2\) works analogously to the parameter \(g f\). The wt i program can be used to set \(g f 2\) on the 2 D interferogram data.
Values: Number, in seconds.
See also: VnmrJ Liquids NMR
Related: \(\quad \mathrm{f}\) Gaussian function in directly detected dimension (P)
wti Interactive weighting (C)
gflow Flow encoding gradient level ( P )
Description: Predefined parameter available for use in setting a flow encoding gradient level, often paired with the timing parameter tflow.
See also: VnmrJ Imaging NMR

\section*{gfs Gaussian shift const. in directly detected dimension (P)}
Description: Working in combination with the \(g f\) parameter, \(g f s\) allows shifting the center of the Gaussian function \(\exp (-((t-g f s) / g f) 2)\) along the directly detected dimension. This dimension is referred to as the \(f_{2}\) dimension in 2D data sets, the \(f_{3}\) dimension in 3D data sets, etc. Typical value is \(g f s=' n '\).
See also: VnmrJ Liquids NMR
Related: \(\quad \mathrm{ff}\)
Gaussian function in directly detected dimension (P)
gfs1 Gaussian shift const. in 1st indirectly detected dimension (P)
gfs2 Gaussian shift const. in 2nd indirectly detected dimension (P)

\section*{gfs1 Gaussian shift const. in 1st indirectly detected dimension (P)}
Description: Working in combination with the \(g f 1\) parameter, \(g f s 1\) allows shifting the center of the Gaussian function \(\exp (-((t-g f s 1) / g f 1) 2)\) along the first indirectly detected dimension. This dimension is referred to as the \(f_{1}\) dimension
in multidimensional data sets. gfs 1 works analogously to the parameter gfs . The "conventional" parameters (i.e., \(1 \mathrm{~b}, \mathrm{~g}\), etc.) operate on the detected FIDs, while this " 2 D " parameter is used during processing of the interferograms.
See also: VnmrJ Liquids NMR
\(\begin{array}{lll}\text { Related: } & \mathrm{gf} & \text { Gaussian function in directly detected dimension (P) } \\ & \mathrm{gf1} & \text { Gaussian function in 1st indirectly detected dimension (P) } \\ & \mathrm{gfs} & \text { Gaussian shift const. in directly detected dimension (P) }\end{array}\)
\[
\begin{aligned}
\text { gfs2 } & \text { Gaussian shift const. in 2nd indirectly detected dimension (P) } \\
\text { Description: } & \begin{array}{l}
\text { Working in combination with the } g f 2 \text { parameter, } g f s 2 \text { allows shifting the } \\
\text { center of the Gaussian function } \exp (-((t-g f s 2) / g f 2) 2) \text { along the } \\
\text { second indirectly detected dimension. This dimension is referred to as the } f_{2} \\
\text { dimension in multidimensional data sets. } g f s 2 \text { works analogously to the } \\
\text { parameter } g f s . ~ T h e ~ w t i ~ p r o g r a m ~ c a n ~ b e ~ u s e d ~ t o ~ s e t ~ \\
f f s 2 \text { on the 2D }
\end{array} \\
& \text { interferogram data. }
\end{aligned}
\]
gHMBC \(\quad\) Change parameters for gHMBC experiment (M)
Description: Converts the current parameter set to a gHMBC experiment.

Ghmbc Convert the paramaeter to a gradient HMBC experiement (M)
Description: Convert the paramaeter to a gradient HMBC (gHMBC) experiement

\section*{ghmqc \(\quad\) Set up a PFG HMQC pulse sequence (M)}

Applicability: Systems with a pulsed field gradient module.
Description: Prepares an experiment for a PFG (pulsed field gradient) HMQC using the sequence GHMQC. The sequence sets three gradients, all separately.
Arguments: VnmrJ Liquids NMR
gHMQC \(\quad\) Set up parameters for gHMQC experiment (M)
Description: Converts the current parameter set to a \({ }^{13} \mathrm{C}\) gHMQC experiment.

\section*{Ghmqc Convert the paramaeter to a gradient HMQC experiement (M)}

Description: Convert the paramaeter to a gradient HMQC experiement

\section*{gHMQC15 Set up parameters for \({ }^{15} \mathrm{~N}\) gHMQC experiment (M)}

Description: Converts the current parameter set to a gHMQC experiment for \({ }^{15} \mathrm{~N}\).
gHMQC_d2 Set up parameters for \({ }^{15} \mathrm{~N}\) gHMQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a gHMQC experiment for \({ }^{15} \mathrm{~N}\) with decoupler 2 as \({ }^{15} \mathrm{~N}\).
gHMQC_d213 Set up parameters for \({ }^{13} \mathrm{C}\) gHMQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a gHMQC experiment for \({ }^{13} \mathrm{C}\) with decoupler 2 as \({ }^{13} \mathrm{C}\).
ghmqcps Set up a PFG HMQC phase-sensitive pulse sequence (M)
Applicability: Systems with a pulsed field gradient module. Not available on MERCURYplus/ Vx.

Description: Prepares an experiment for a PFG (pulsed field gradient) HMQC, phasesensitive version.
See also: VnmrJ Liquids NMR
gHMQCTOXY Change parameters for gHMQCTOXY experiment (M)
Description: Converts the current parameter set to a gHMQCTOXY experiment.

\section*{ghsqc Set up a PFG HSQC pulse sequence (M)}

Applicability: Systems with a pulsed field gradient module (except MERCURYplus/Vx ).
```

Syntax: ghsqc<(nucleus)>

```

Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG (pulsed field gradient) HSQC experiment, either absolute value or phase sensitive.

Arguments: nucleus is 13 C or 15 N . The default is 13 C .
See also: VnmrJ Liquids NMR
gHSQC Set up parameters for gHSQC experiment (M)
Description: Converts the current parameter set to a \({ }^{13} \mathrm{C}\) gHSQC experiment.

Ghsqc \(\quad\) Convert the paramaeter to a gradient HSQC experiement (M)
Description: Convert the paramaeter to a gradient HSQC experiement.
gHSQC15 Set up parameters for \({ }^{15} \mathrm{~N}\) gHSQC experiment (M)
Description: Converts the current parameter set to a gHSQC experiment for \({ }^{15} \mathrm{~N}\).
gHSQC_d2 Set up parameters for \({ }^{15} \mathrm{~N}\) gHSQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a gHSQC experiment for \({ }^{15} \mathrm{~N}\) with decoupler 2 as \({ }^{15} \mathrm{~N}\).
gHSQC_d213 Set up parameters for \({ }^{13} \mathrm{C}\) gHSQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a gHSQC experiment for \({ }^{13} \mathrm{C}\) with decoupler 2 as \({ }^{13} \mathrm{C}\).
gHSQCTOXY Set up parameters for gHSQCTOXY experiment (M)
Description: Converts the current parameter set to a gHSQCTOXY experiment.

\section*{Ghsqctoxy Convert paramaters for gradient HSQCTOXY experiement (M)}

Description: Convert the paramaeter to a gradient HSQCTOXY experiement

\section*{gilson Open the Gilson Liquid Handler window (C)}

Syntax: gilson
Description: Opens the Gilson Liquid Handler window, which enables setup, configuration, and operation of the VAST automatic sampler changer accessory.
See also: VnmrJ Liquids NMR
gin \(\quad\) Return current mouse position and button values (C)
Syntax: gin<(<'Bn_press'><,'Bn_release'>) >: \$x, \$y, \$b1, \$b2, \$b3
Description: Returns the mouse pointer position and button values. gin is most often used with the draw, move, and box commands.
Arguments: 'Bn_press' is a keyword for the mouse button pressed: 'B1_press' for the left button, 'B2_press' for the middle button, or 'B3_press' for the right button. gin waits until a button is pressed. For example, given
'B1_press', gin waits until button 1 or any key is pressed. If \(g i n\) is waiting for a button press and a keyboard key is pressed, all buttons are set to released (0). The default is to immediately report the mouse position.
'Bn_release' is a keyword for the mouse button released:
'B1_release' for the left button, 'B2_release' for the middle button, or 'B3_release' for the right button. gin waits until a button is released. For example, given 'B1_release', gin waits until button 1 or any key is released. If gin is waiting for a release, all buttons are set to pressed (1). The default is to immediately report the mouse position.
\(\$ \mathrm{x}\) is the value in the \(x\) direction, in millimeters, of the pointer. The range of x is 0 at the left edge of the chart and wcmax at the right edge. If the pointer position is outside the graphics window in the \(x\) direction, x returns -1 .
\(\$ \mathrm{y}\) is the value in the \(y\) direction, in millimeters, of the pointer. The range of \(y\) is -20 at the bottom of the chart and wc 2 max at the top. If the pointer position is outside the graphics window in the y direction, y returns -10000 .
\(\$ \mathrm{~b} 1, \$ \mathrm{~b} 2, \$ \mathrm{~b} 3\) report the state of the left, middle, and right mouse buttons, respectively. The value is 1 if the corresponding mouse button is down; 0 if the corresponding mouse button is up.
Examples: gin: x , \$y, \$b1,\$b2
gin('B2_press'): \$x, \$y, \$b1, \$b2, \$b3
gin('B1_release'): \$x, \$y, \$b1
See also: User Programming
\begin{tabular}{lll} 
Related: & box & Draw a box on a plotter or graphics display (C) \\
draw & Draw line from current location to another location (C)
\end{tabular}
move \(\quad\) Move to an absolute location to start a line (C)

\section*{globalauto Automation directory name (P)}

Description: A global parameter that specifies the name of a directory in which the daily automation directories or study directories are saved. This parameter is created and used by the walkup macro and the VnmrJ Walkup interface.
See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
Related: walkup Walkup automation (M)
glue \(\quad\) Create a pseudo-2D dataset (M)
Applicability: Systems with the LC-NMR accessory.
Syntax: glue<(num_scans) >
Description: Steps through the series of FIDs, putting them into exp 5 one by one as an array, and then jumps to \(\exp 5\) and changes the parameters arraydim, ni, and fn1, so that the data appear to the user to be a 2D experiment, which can then be processed and displayed with standard 2D commands (wft2d, dconi, etc.). The parameter savefile should exist and should contain the base file name to which a series of FIDs have been saved as savefile.001, savefile. 002, etc.

Arguments: num_scans is the number of FIDs copied into the exp5 array. The default is that glue looks for a parameter nscans and assumes that all experiments are to be used. Typically, num_scans is used if the experiment was aborted prematurely, so that the complete num_scans worth of FIDs were not actually acquired.
See also: VnmrJ Liquids NMR
Related: nscans \(\quad\) Number of scout/real scan repetitions (P)
savefile Base file name for saving FIDs or data sets (P)
gmapshim Start gradient autoshimming (M)
Applicability: Systems with gradient shimming installed.
Syntax: gmapshim<('files'|'mapname'|'quit')>
Description: Starts gradient autoshimming if no arguments are used. It can also retrieve a shimmap file or quit gradient autoshimming. When the gmapshim program is done, it automatically exits, and the previous data set is retrieved.

CAUTION: Do not spin the sample during gradient shimming.
Arguments: 'files' is a keyword to enter the gradient autoshimming files menu.
' mapname ' is a keyword to display the current mapname.
'quit' is a keyword to exit from gradient autoshimming and retrieve the previous data set.
See also: VnmrJ Liquids NMR
Related: gmapsys Run gradient autoshimming, set parameters, map shims (M)
gmapz \(\quad\) Get parameters and files for gmapz pulse sequence (M)

\section*{gmapshim_au Start acquisition with gradient shimming (M)}

Applicability: Systems with gradient shimming installed.
Description: If wshim is not set to 'n', gmapshim_au checks the probe file for a lock gradient map name. If the name exists, gmapshim_au executes gmapshim('glideau') to start gradient shimming followed by acquisition. If the map name does not exist, gmapshim_au starts acquisition by running au('wait').

Applicability: Systems with gradient shimming installed.
```

Syntax: (1) gmapsys<(option) >
(2) gmapsys('shimmap'<,shimmap_option>)

```

Description: Enters the Gradient Shimming System menu for setting parameters, mapping the shims, and performing autoshimming. This is the only entry point to the gradient shimming system menu.

If the gmapz pulse sequence is not loaded, retrieve parameters from the last shimmap used (see current mapname) or from gmapz . par if no shimmap exists.

\section*{CAUTION: Do not spin the sample during gradient shimming.}

Arguments: option is one of the following keywords:
- 'addpar' adds gradient shimming parameters to the current parameter set.
- 'findgzlvl' runs an experiment to calibrate gzlvl, gzwin, and tof to optimize the spectral window.
- 'findgzwin' runs an experiment to calibrate gzwin and tof to optimize the spectral window.
- 'findtof ' runs an experiment to center tof to optimize the spectral window.
- 'rec ' displays the record of shim adjustments from the previous gradient shimming run.
- 'shim' start autoshimming (same as Autoshim on Z button).
- 'vi' edits the file gshim.list, which is used for editing shim offsets, mapname, or selecting coarse and fine shims.
- 'writebo ' displays the bo plot calculated from the first two array elements.
'shimmap' is a keyword to run a shim mapping experiment and save the results (same as Make Shimmap button).
shimmap_option is one of the following values:
- 'auto' is a keyword to calibrate gzwin and then make a shimmap (same as Automake Shimmap button).
- 'manual' is a keyword to use shim offset values set manually from the file gshim. list and not the default values to make a shimmap.
- ' overwrite ' is a keyword to make a shimmap and overwrite the current mapname if it exists.
- mapname is the prefix of the shimmap file name. The default is the user is queried for mapname before running the experiment.
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
gmapshim & Start gradient autoshimming (M) \\
gmapz & Get parameters and files for gmapz pulse sequence (M) \\
gradtype & Gradients for X, Y, Z axes (P) \\
gzwin & Spectral width percentage used for gradient shimming (P) \\
seqfil & Pulse sequence name (P) \\
gmap_findtof & Gradient shimming flag to first find tof (P) \\
gmap_zlz4 & Gradient shimming flag to first shim zl-z4 (P)
\end{tabular}
gmapz \(\quad\) Get parameters and files for gmapz pulse sequence (M)
Applicability: Systems with gradient shimming installed.
Syntax: gmapz<(mapname) >
Description: Retrieves gradient shimming parameters to set up a gradient shimming experiment.

Arguments: mapname is the name of a gradient shimmap file that must exist in the shimmaps directory. gmapz retrieves parameters and loads the shimmap file from mapname. The default is to retrieve standard gradient shimming parameters from the file gmapz. par.
See also: VnmrJ Liquids NMR
Related: gmapshim Start gradient autoshimming (M)
gmapsys Run gradient autoshimming, set parameters, map shims (M)
gmap_findtof Gradient shimming flag to first find tof ( P )

\section*{gmap_findtof Gradient shimming flag to first find tof \((P)\)}

Applicability: Systems with gradient shimming installed.
Description: When the flag is set to ' Y ', gradient shimming first performs a calibration to find tof before the start of shimming. This action is recommended for only homospoil deuterium gradient shimming with different solvents. The default value is ' n '.
Values: ' Y ' turns on the flag.
' n ' turns off the flag.
See also: VnmrJ Liquids NMR
Related: gmapshim Start gradient autoshimming (M)
gmapsys Run gradient autoshimming, set parameters, map shims (M)
gmapz \(\quad\) Get parameters and files for gmapz pulse sequence (M)
tof \(\quad\) Frequency offset for observe transmitter (P)

\section*{gmap_z1z4 Gradient shimming flag to first shim z1-z4 (P)}

Applicability: Systems with gradient shimming installed.
Description: When the flag is set to ' \(y^{\prime}\) ', if gzsize is greater than 4 , gradient shimming first shims on \(\mathrm{zl}-\mathrm{z4}\), and then uses all shims specified by gzsize. When the flag is set to ' \(n\) '(default), all shims specified by gzsize are used.
Values: ' Y ' turns on the flag.
' n ' turns off the flag.
See also: VnmrJ Liquids NMR
Related: gmapshim Start gradient autoshimming (M)
gmapsys Run gradient autoshimming, set parameters, map shims (M)
gmapz \(\quad\) Get parameters and files for gmapz pulse sequence (M)
gzsize \(\quad\) Number of \(z\)-axis shims used by gradient shimming ( P )

\section*{gmax Maximum gradient strength (P)}

Description: The allowed maximum gradient level (absolute value) in gauss \(/ \mathrm{cm}\). gmax is one of the calibration entries in a gradtables file. gxmax, gymax, and gzmax are used when the maximum gradient level is different for each axis in gauss/ cm , which is the case for triple-axis PFG coils.

See also: VnmrJ Installation and Administration; VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & boresize & Magnet bore size (P) \\
creategtable & Generate new gradient calibration file (M) \\
gcoil & Current gradient coil (P) \\
gxmax, gymax, gzmax & Maximum gradient strength for each axis (P) \\
sysgcoil & System gradient coil (P) \\
trise & Gradient rise time (P)
\end{tabular}

\section*{gmqcosy Set up PFG absolute-value MQF COSY parameter set (M)}

Applicability: Systems with the pulsed field gradient module.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG (pulsed field gradient) absolute-value MQF COSY experiment.

See also: VnmrJ Liquids NMR

\section*{gnoesy \(\quad\) Set up a PFG NOESY parameter set (M)}

Applicability: Systems with the pulsed field gradient module.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG (pulsed field gradient) NOESY experiment, either absolute value or phase sensitive.
See also: VnmrJ Liquids NMR

\section*{Submit experiment to acquisition (M)}

Syntax: go< (<'acqi'><,'nocheck'><,'nosafe'><,'next'>
<,'sync'><, 'wait'>)>

Description: Performs the experiment described by the current acquisition parameters, checking parameters loc, spin, gain, wshim, load, and method to determine the necessity to perform various actions in addition to data acquisition. This may involve a single FID or multiple FIDs, as in the case of arrays or 2 D experiments. go acquires the FID and performs no processing. If free disk space is insufficient for the complete 1D or 2D FID data set to be acquired, go prompts the user with an appropriate message and aborts the acquisition initiation process.
Before starting the experiment, go executes two user-created macros if they exist. The first is usergo, a macro that allows the user to set up general conditions for the experiment. The second is a macro whose name is formed by go_ followed by the name of the pulse sequence (from seqfil) to be used (e.g., go_s2pul, go_dept). The second macro allows a user to set up experiment conditions suited to a particular sequence.
Arguments: 'acqi' is a keyword to submit an experiment for display by the acqi program. All operations explained above are performed, except acquisition of data is not initiated. The instructions to control data acquisition are stored so that acqi can acquire the data when the FID button is clicked. The \(g f\) macro is recommended instead of running go ('acqi') directly. Using gf prevents certain acquisition events from occurring, such as spin control and temperature change. See the description of \(g f\) for more information.
' nocheck' is a keyword to override checking if there is not enough free disk space for the complete 1D or 2D FID data set to be acquired.
'nosafe' is a keyword to disable probe protection during the experiment.
' next' is a keyword to put the experiment started with go ('next') at the head of the queue of experiments to be submitted to the acquisition system. If go ('next') is entered, the go macro remains active until the experiment is submitted to the acquisition system, and no other VnmrJ commands are processed until the go macro finishes.
'sync ' is a keyword in nonautomation mode that accomplishes the same effect as go ('next') in synchronizing VnmrJ command execution with the submission of experiments to the acquisition system. The difference is that 'sync ' does not put the experiment at the head of the queue.

Pulse sequence setup macro called by go, ga, and au (M)
Syntax: go_macro
Description: Called by the macros go, ga, or au before starting an experiment. The user typically creates this macro to set up general experiment conditions. The name of the macro is formed by combining go_ with the name of the pulse sequence macro (from seqfil) to be used.
Examples: go_dept
go_noesy
go_s2pul
See also: VnmrJ Liquids NMR
Related: au Submit experiment to acquisition and process data (M)
ga Submit experiment to acquisition and FT the result (M)
go Submit experiment to acquisition (M)
seqfil Pulse sequence name (P)
usergo Experimental setup macro called by go, ga, and au (M)

\section*{gpat-gpat3 Gradient shape (P)}

Description: Predefined string parameters available to specify gradient shapes.
See also: VnmrJ Imaging NMR
gpe Phase encoding gradient increment (P)
Applicability: Systems with imaging capabilities.

Description: Value of the change in phase encode gradient level from one phase encode step to the next. More precisely, the product of the parameters gpe and tpe is used internally within the pulse sequence to determine the phase encode gradient increment based on the computed refocusing time for readout and slice selection. gpe depends on the field of view and the phase encode gradient duration according to the expression \(\gamma \bullet g p e * t p e * l p e=1\) and is set by either the imprep or setgpe macros.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
imprep \\
gmax
\end{tabular} & \begin{tabular}{l} 
Set up rf pulses, imaging and voxel selection gradients \((\mathrm{M})\) \\
gpe2
\end{tabular} \\
gpe3 & Second phase encoding gradient increment (P) \\
lpe & Third phase encoding gradient increment (P) \\
nv & Field of view parameter for phase encode in cm (P) \\
setgpe & Number of 2D phase encode steps to be acquired (P) \\
tpe & Set phase encode gradient levels (M) \\
& Duration of the phase encoding gradient pulse (P)
\end{tabular}
gpe2 2nd phase encode gradient increment
Applicability: Systems with imaging capabilities.
Description: Phase encode gradient increment for 3D or 4D phase encoded applications. gpe2 should be used when a second phase encode gradient is required. For example, 3D volume imaging application would use both gpe and gpe2, as would a 3D chemical shift imaging experiment (that is, two spatial dimensions plus chemical shift dimension).
\begin{tabular}{lll} 
Related: & imprep & Set up rf pulses, imaging and voxel selection gradients (M) \\
gmax & Maximum gradient strength (P) \\
gpe & Phase encoding gradient increment (P) \\
gpe3 & 3rd phase encoding gradient increment (P) \\
lpe2 & Field of view size for 2nd phase-encode axis (P) \\
& setgpe & Set phase encode gradient levels (M) \\
& tpe2,tpe3 & Duration of the 2nd and 3rd phase encoding gradient periods (P)
\end{tabular}
gpe3 3rd phase encode gradient increment
Applicability: Systems with imaging capabilities.
Description: Phase encode gradient increment for 3D or 4D phase encoded applications. gpe 3 should be used when a third phase encode gradient is required. It is available for use in a 4D CSI experiment (three spatial dimensions, one chemical shift).

Related: imprep \(\quad\) Set up rf pulses, imaging and voxel selection gradients (M)
gpe Phase encoding gradient increment (P)
gpe3 2nd phase encoding gradient increment (P)
lpe2 Field of view size for 3rd phase-encode axis (P)
setgpe Set phase encode gradient levels (M)
tpe2,tpe3 Duration of the 2nd and 3rd phase encoding gradient periods ( P )
gped Phase encode dephasing gradient in the EPI sequence (P)
Applicability: Systems with imaging capabilities.
Description: Determines echo position in the phase-encode direction. A blipped gradient phase encodes the signal with respect to the phase-encode direction. gped determines the center of the k -space along the phase-encode direction. gped is
usually set so that eff_echo appears at the center of the phase encode dimension, t .

Related: eff_echo Effective echo position in EPI experiments (P)

\section*{gpemult Phase encode gradient increment multiplier (P)}

Applicability: Systems with imaging capabilities.
Description: Multiplier used to correct phase encode gradient increment when using a nonrectangular phase encode gradient shape. For example, a rectangular shaped phase encode gradient has a gradient-time integral equal to 1.571 that of a halfsine gradient of equal duration and peak amplitude. In this case, set gpemult to 1.571 to yield the expected field of view.
See also: VnmrJ Imaging NMR
```

gplan Start interactive image planning (C)
Syntax: gplan(function_name, arg1, arg2,...)

```

Description: In VnmrJ, starts an image planning session.
Arguments: 'function_name', path is the name of an image planning function surrounded by single quotation marks.
\(\arg 1, \arg 2, \ldots\) are arguments for the function, if relevant.
Examples: gplan 'clearStacks()'
get 'PrevStacks()'
See also: VnmrJ Liquids NMR
gradaxis \(\quad\) Gradient axis ( \(P\) )
Applicability: Systems with imaging capabilities.
Description: Selects the gradient axis in macros such as g2pul and profile.
Values: 'x','y','z'
See also: VnmrJ Imaging NMR
Related: g2pul Set up pulse sequence for gradient evaluation (M)
profile Set up pulse sequence for gradient calibration (M)

\section*{gradientdisableDisable PFG gradients (P)}

Description: gradientdisable is an optional global parameter for disabling the gradient pulses. If gradientdisable parameter is set to ' y ', the psg software sets the gradient dac values to 0 . The gradient parameters in VnmrJ and pulse sequence are not altered. This feature works in both C psg and SpinCAD Jpsg.
To use this feature, create gradientdisable as a global parameter of type ' \(f l a g\) '. If gradientdisable is set to ' \(y\) ', the gradient amplitude values will be set to 0 ; if set to ' \(n\) ' the gradient amplitudes will be the expected values determined by the gradient parameters and pulse sequence calculations. This feature is typically used in experiments involving Cold Probes. This feature is only effective for gradient configurations, gradtypes of 'l', \(p\) ', and ' \(t\) '.
Related: pfgon Pulsed field gradient amplifiers on/off control (P) gradtype \(\quad\) Gradients for \(\mathrm{X}, \mathrm{Y}\), and Z axes (P)

\section*{gradstepsz Gradient step size (P)}

Description: The maximum gradient DAC value. gradstepsz determines the type of gradient DAC board used in the system: 12-bit or 16-bit. It is used internally to convert gauss/cm gradient levels to the proper hardware DAC level.
Values: Systems with 12-bit DACs (older SISCO spectrometers without gradient waveform capabilities): -2047 to +2047 units, in integer steps.

Systems with 16-bit DACs (SISCO spectrometers with gradient waveform capabilities): -32767 to +32767 units, in integer steps.
See also: VnmrJ Installation and Administration; VnmrJ Imaging NMR

\section*{gradtype \(\quad\) Gradients for \(X, Y\), and \(Z\) axes ( \(P\) )}

Applicability: Systems with pulsed field gradient (PFG) or imaging capability.
Description: Configuration parameter for systems with optional gradients for axes. The value is set using the label X Axis, Y Axis, Z Axis in the CONFIG window (opened from config). The values available for each axis are None, WFG + GCU, Performa I, Performa II/III, Performa II/III + WFG, Performa XYZ, Performa XYZ + WFG, SIS (12 bit), Homospoil, and Shim DAC. WFG stands for the waveform generator; GCU stands for the gradient compensation unit; and Performa I, II, III, and XYZ are types of PFG modules.
Values: String of three characters (e.g., 'nnp '). The first character is the gradient for the X axis, second for the Y axis, and third for the Z axis. Each axis has value ' n ' (None choice in CONFIG window), ' w ' (WFG+GCU), ' l ' (Performa I), ' p ' (Performa II/III), ' q ' (Performa II/III + WFG), ' t ' (Performa XYZ), 'u' (Performa XYZ + WFG), 's' (SIS (12 bit), or 'h' (Homospoil). Homospoil is functional only for the Z axis.
See also: VnmrJ Installation and Administration; VnmrJ Liquids NMR
Related: config Display current configuration and possibly change it (M)
pfgon \(\quad\) PFG amplifiers on/off control ( P )

\section*{graphis Return the current graphics display status (C)}

Syntax: (1) graphis: \$display_command
(2) graphis (command): \$yes_no

Description: Determines what command currently controls the graphics window.
Arguments: \$display_command is a return value set to the name of the currently controlling command.
command is the name of a command to be checked.
\$yes_no is a return value set to 1 if the command name given by the command argument is controlling the graphics window, or set to 0 if it is not controlling the window.
Examples:
graphis:\$display
if (\$display='ds') then
endif
graphis('ds'): \$ds_on
if (\$ds_on) then
endif
See also: User Programming
Related: textis Return the current text display status (C)

\section*{grayctr \(\quad\) Gray level window adjustment (P)}

Description: Controls the grayscale display available in dcon. In the dconi program, the center mouse button controls the grayscale bar, which changes the mean gray level and hence the value of grayctr. The grayctr parameter (along with the parameter graysl) records the current settings of the gray bar as the interaction changes; the value can also be set directly. The right mouse button controls the data level of the maximum data intensity. To create grayctr, enter create('grayctr','real')
setgroup('grayctr','display')
setlimit('grayctr', 64, 0, 1).
To create the set of imaging parameters grayctr, dcrmv and graysl, and in the current experiment, enter addpar ('image').
Values: 0 to 64 (typically 32)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
dcon
\end{tabular} & \begin{tabular}{l} 
Add selected parameters to the current experiment (M) \\
dconi \\
graysl
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Interactive 2D contour display (C) \\
\end{tabular}

\section*{graysl Gray level slope (contrast) adjustment (P)}

Description: Controls the grayscale display available in dcon. In the dconi program, the center mouse button controls the grayscale slope as applied to the data changes and hence the value of graysl. Negative values of graysl will invert black and white; however, negative values can be set only from the keyboard. graysl (along with the parameter grayctr) records the current settings of the gray bar as the interaction changes; the value can also be set directly. The right mouse button controls the data level of the maximum data intensity. To create graysl, enter the following command:
create('graysl','real') setgroup('graysl','display') setlimit('graysl',10,-10,0.1)
To create the set of imaging parameters graysl, dcrmv, and grayctr in the current experiment, enter addpar ('image').
Values: -10 to \(+10(-100\) to +100 , typically 1\()\)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
dcon
\end{tabular} & \begin{tabular}{l} 
Add selected parameters to the current experiment (M) \\
dconi \\
grayctr
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Interactive 2D contour display (C) \\
\end{tabular}

\section*{grecovery Eddy current testing (M)}

Applicability: Systems with pulsed field gradient.
Description: Conditions an experiment for eddy current testing so that it is compatible with standard installation procedures.
See also: Pulsed Field Gradient Modules Installation, VnmrJ Liquids NMR
grid \(\quad\) Draw a grid on a 2D display (M)
Syntax: (1) grid<(<spacing><,><color>) >
(2) grid<(start_f2,incr_f2,start_f1,incr_f1<,color>) >

Description: Draws grid lines over a 2D display. Grid lines are drawn on the graphics screen in the XOR mode-entering a second grid command with identical arguments erases (not redraws) the grid displayed by the first command.
Arguments: spacing specifies the approximate spacing of the grid lines, in cm . The default is intervals of approximately 1 cm , rounded so that the intervals fall at a multiple of 1,2 , or 5 (in Hz), or \(1 \mathrm{p}, 2 \mathrm{p}\), or 5 p (in ppm).
color specifies the color of the grid lines and is one of the following keywords:'red', 'green', 'blue', 'cyan','magenta', 'yellow', 'black', or 'white'. The default is 'blue'.
start_f2, incr_f2, start_f1, incr_f1 define a grid by supplying the starting and increment frequencies for \(f 2\) and \(f 1\). Add the \(p\) suffix to a value to enter it in ppm (see third example below).
Examples: grid
grid(1.5,'red')
grid(1p,0.5p,3p,0.5p)
See also: VnmrJ Liquids NMR
Related: plgrid Plot a grid on a 2D plot (M)

\section*{griserate \(\quad\) Gradient rise rate ( \(P\) )}

Applicability: Systems with imaging capabilities.
Description: Sets the gradient rise rate.
See also: VnmrJ Imaging NMR
Related: gcoil Read data from gradient calibration tables ( P )
gxcal, gycal,gzcal Gradient calibration constants (P)

\section*{gro Readout gradient strength (P)}

Applicability: Systems with the or imaging capabilities.
Description: Controls the level of the readout gradient, if present. imprep sets gro based on its internal algorithm; or use setgro (value), which sets gro to a specific value and updates at and sw. gro, sw, and at are related by the expression sw=g*lro*gro, but a change in lro does not automatically update gro and sw.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & at & Acquisition time (P) \\
& gmax & Maximum gradient strength (P) \\
& grof & Read out fractional compensation (P) \\
& gror & Read out compensation gradient (P) \\
imprep & Set up rf pulses, imaging and voxel selection gradients (M) \\
& lro & Field of view size for readout axis (P) \\
& setgro & Set readout gradient (M) \\
& sw & Spectral width in directly directed dimension (P)
\end{tabular}
groa \(\quad\) Readout gradient adjuster in EPI experiment (P)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Corrects readout gradient imperfections in EPI experiment by adding an offset \((\mathrm{G} / \mathrm{cm})\) to the odd readgradient.

See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
episet \\
grora \\
tep
\end{tabular} & \begin{tabular}{l} 
Set up parameters for EPI experiment (M) \\
Readout refocusing gradient adjuster in EPI experiment (P) \\
\end{tabular}
\end{tabular}
grof \(\quad\) Fine tune readout gradient compensation (P)
Applicability: Systems with imaging capabilities.
Description: Factor for fine tuning of the readout gradient compensation.
See also: VnmrJ Imaging NMR
Related: at Acquisition time (P)
gmax \(\quad\) Maximum gradient strength ( P )
gror Read out compensation gradient (P)
imprep Set up rf pulses, imaging and voxel selection gradients (M)
lro Field of view size for readout axis (P)
setgro Set readout gradient (M)
sw \(\quad\) Spectral width in directly directed dimension (P)

\section*{gropat \(\quad\) Readout gradient shape (P)}

Applicability: Systems with imaging capabilities.
Description: Predefined string parameter to specify a readout gradient shape.

\section*{gror \(\quad\) Read out compensation gradient (P)}

Applicability: Systems with imaging capabilities.
Description: Controls the level of the readout refocusing gradient when pilot='n'. When pilot \(=\) ' \(y\) ', gror is ignored by the pulse sequence, and computed internally. In this case the internal value is printed in the window used to start VnmrJ.
gror is opposite in sign to gro for gradient echo experiments (e.g., FLASH), and has the same sign as gro for spin-echo experiments (e.g. SEMS).
Values: Sequence dependent, specified in gauss/cm up to \(\pm\) gmax.

\section*{grora Readout dephasing gradient adjuster in EPI experiment (P)}

Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Correction gradient value added to the readout refocusing gradient ( \(\mathrm{G} / \mathrm{cm}\) ) in EPI experiments to center the echo position in the acquisition window.

Related: episet Set up parameters in EPI experiment (M
groa Readout gradient adjuster in EPI experiment (P)
tep Post-acquisition delay in EPI experiment (P)
groupcopy
Copy parameters of group from one tree to another (C)
Syntax: groupcopy (from_tree, to_tree, group)
Description: Copies a set of parameters of a group from one parameter tree to another.
Arguments: from_tree, to_tree are two different parameter trees, each given by the one of the keywords 'global', 'current', or 'processed'. Refer to the create command for more information on trees.
group is the set of parameters to be copied and is one of the keywords 'all', 'sample', 'acquisition', 'processing', and 'display'.

Examples: groupcopy('processed','current','acquisition')
See also: User Programming
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
create \\
destroy \\
destroygroup
\end{tabular} & \begin{tabular}{l} 
Create new parameter in a parameter tree (C) \\
Destroy a parameter (C)
\end{tabular} \\
& Destroy parameters of a group in a tree (C) \\
display & Display parameters and their attributes (C) \\
setgroup & Set group of a parameter in a tree (C)
\end{tabular}

\section*{gsh2pul Set up parameters for shaped gradients tests (M)}

Applicability: Systems with the imaging module.
Description: During imaging installation, gsh2pul is used to load parameters sets for shaped gsh2Dpul gradients tests. gsh2Dpul steps the amplifier with the value of ni .

Description: VnmrJ Imaging NMR
Related: ni Number of increments in 1st indirectly detected dimension (P)

\section*{gspoil Spoiler gradient level (P)}

Description: Predefined parameter to set a spoiler gradient level. It is often paired with the timing parameter tspoil.
Related: tspoil Spoiling gradient control (P)
gss \(\quad\) Slice selection gradient strength (P)
Applicability: Systems with imaging capabilities.
Description: Controls the level of the slice-select gradient, if present. imprep sets gss based on the slice thickness and rf pulse bandwidths; or use setgss to update only gss.
Values: Number less than \(\pm\) gmax., in gauss \(/ \mathrm{cm}\).
Related: gmax Maximum gradient strength (P)
gssf \(\quad\) Slice selection fractional gradient (P)
gssr Slice selection refocusing gradient (P)
imprep Set up rf pulses, imaging and voxel selection gradients (M)
setgss \(\quad\) Select slice or voxel selection gradient levels (M))
thk 2D imaging plane slice thickness (P)
gssf Slice selection fractional refocusing (P)
Applicability: Systems with imaging capabilities.
Description: Fractional multiplier used as a fine tuning adjustment for the gssr slice refocusing gradient level.

Values: 1.0, when the theoretical gradient calculations are correct.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & grof & Read out fractional compensation (P) \\
& gss & Slice selection gradient strength (P) \\
& gssr & Slice selection refocusing gradient (P)
\end{tabular}
gsspat \(\quad\) Slice-select gradient shape (P)
Description: Predefined string parameter to specify a slice-select gradient shape.

\section*{gssr \(\quad\) Slice selection refocusing gradient (P)}

Applicability: Systems with imaging capabilities.
Description: Controls the level of the slice-select refocusing gradient when pilot='n'. When pilot='Y', gssr is ignored by the pulse sequence, and internally computed. The internal value is printed in the window used to start VnmrJ.
gssr is normally be opposite in sign to gss.
Values: Number in gauss/cm up to \(\pm\) gmax. Nominal value is \(\mathrm{gssr}=-0.5\) *gss.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & gmax & Maximum gradient strength (P) \\
& gss & Slice selection gradient strength (P) \\
& gssf & Slice selection fractional gradient (P) \\
& gror & Read out compensation gradient (P) \\
& pilot & Automatic sequence setup (P)
\end{tabular}

\section*{gss2, gss \(3 \quad\) Slice selection gradient level (P)}

Description: Predefined parameters for specifying gradient levels for different slice selection events in an imaging pulse sequence.
See also: VnmrJ Imaging NMR
Related: gss Slice selection gradient strength (P)
gtnnoesy \(\quad\) Set up a PFG TNNOESY parameter set (M)
Applicability: Systems with the pulsed field gradient (PFG) module. Not available on MERCURYplus/Vx.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG NOESY experiment (either absolute value or phase sensitive) or a gtnnoesy experiment.
gtnroesy Set up a PFG absolute-value ROESY parameter set (M)
Applicability: Systems with the pulsed field gradient (PFG) module. Not available on MERCURYplus/Vx.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG absolute-value ROESY experiment or a gtnroesy experiment.
gtotlimit \(\quad\) Gradient total limit (P)
Applicability: Systems with three-axis gradients
Description: Sets the gradient limit, in gauss/cm, of the \(x, y\), and \(z\) axes, summed together.
This parameter is taken from an entry of the same name in a gradient table and should only exist if a gradient amplifier limits the combined output of all three gradient axis.
Related: creategtable Generate system gradient table (M)
gcoil Read data from gradient calibration tables (P)

\section*{gtrim Trim gradient level (P)}

Description: Predefined parameter to set a trim gradient level.

\section*{gvox1-gvox3 Gradient strength for voxel selection (P)}

Applicability: Systems with imaging capabilities.
Description: Voxel-select gradient levels for the first, second, and third dimensions of a voxel in a localized spectroscopy experiment. For example, imprep sets gvox1 based on the corresponding voxel dimension voxi, and rf pulse bandwidth. For nonoblique voxels, the orientation of gvox1 lies along one of the three main gradient axes, \(\mathrm{X}, \mathrm{Y}\), or Z . Oblique angle voxel orientation is also available, and for this reason the name gvox1 is used instead of, for example, gx.
Values: Number less than \(\pm\) gmax, in gauss \(/ \mathrm{cm}\).
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & gmax & Maximum gradient strength (P) \\
& gss & Slice selection gradient strength (P) \\
& gx & Gradient strength for X, Y, and Z gradients (P) \\
& vox1, vox2, vox3 & Voxel dimension (P)
\end{tabular}
\(g x, g y, g z \quad\) Gradient strength for \(X, Y\), and \(Z\) gradients (P)
Applicability: Systems with imaging capabilities.
Description: Defines the gradient strength of the \(\mathrm{X}, \mathrm{Y}\), and Z gradients, respectively, for localized spectroscopy experiments such as ISIS and VOSY. The gradient strength in conjunction with the length of the selective pulse defines the size of the region of interest.
Values: Number less than to \(\pm\) gmax, in gauss/cm (older pulse sequences, such as isis.c and vosy.c, use DAC units). The sign is often not important.
See also: VnmrJ Imaging NMR
Related: gmax Maximum gradient strength (P)
gxcal, gycal, gzcal Gradient calibration constants (P)

\section*{gxcal,gycal,gzcalGradient calibration constants (P)}

Applicability: Systems with the older SISCO imaging module.
Description: Stores the proportionality constant for each gradient. The gradients generated in the magnet require calibration so that coordinate data, slice positions, and the field of view can be set up correctly.
Values: Number less than to \(\pm\) gmax, in gauss/cm/DAC (on older SISCO systems).
See also: VnmrJ Imaging NMR
Related: gcoil Read data from gradient calibration tables (P)
gmax Maximum gradient strength ( P )
setgcoil Update system gcoil configuration (M)

\section*{gxmax, gymax, gzmaxMaximum gradient strength for each axis (P)}

Applicability: Systems with three-axis gradients.
Description: Defines the maximum gradient strength, in gauss/cm, for each gradient axis. These values are read in from the selected system gradient table whenever the parameter set is retrieved or the gradient coil defined by gcoil has changed. When the values are read in, gmax is set to the lowest value of the three.

The parameters gxmax, gymax, and gzmax are used instead of gmax when the gradients strengths are not equal for each axis. Unequal gradient strengths per axis are generally true for systems with three-axis PFG coils, which have a strong \(z\) gradient, and can be true for microimaging systems. Horizontal-bore
imaging systems usually have gradients set to the same maximum value, and gmax can be used.
See also: VnmrJ Liquids NMR; User Programming, VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & creategtable & Generate system gradient table (M) \\
& gcoil & Read data from gradient calibration tables (P) \\
& gmax & Maximum gradient strength (P)
\end{tabular}

\section*{gzlvl Pulsed field gradient strength (P)}

Applicability: All systems with pulsed field gradient modules.
Description: Specifies the pulsed field gradient DAC value.
Values: Range from +2047 to -2048 for 12-bit gradient module, and from +32767 to -32768 for a 16-bit gradient module.
Related: gzsize Number of z-axis shims used by gradient shimming (P) gzwin Spectral window percentage used for gradient shimming ( P )

\section*{gzsize}

Applicability: Number of \(\mathbf{z}\)-axis shims used by gradient shimming ( \(\mathbf{P}\) )

Description:
Systems with the pulsed field gradient module.
 gzsize set to 4 means that gradient shimming uses shims z1 to z 4 . By default, coarse shims are used if present, as determined by the shimset value
Values: Integer from 1 to 8.
Related: gmapshim Start gradient autoshimming (M)
gmapsys Run gradient autoshimming, set parameters, map shims (M)
gmapz Get parameters and files for gmapz pulse sequence (M)
gzlvl Pulsed field gradient strength ( P )
gzwin \(\quad\) Spectral width percentage used by gradient shimming ( P )
shimset Type of shimset (P)
gmap_z1z4 Gradient shimming flag to first shim z1-z4 (P)
gzwin Spectral width percentage used for gradient shimming (P)
Applicability: Systems with the pulsed field gradient module.
Description: Specifies the percentage of the spectral width sw used by gradient shimming for shimmap calculations. The value is set automatically with the buttons Find gzlvl/gzwin and Find gzwin in the gradient shimming system menu opened by gmapsys.
Values: A real number between 0 and 100. The typical value is 50 .
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
gmapshim \\
gmapsys \\
gmapz \\
gzlvl
\end{tabular} & Start gradient autoshimming (M) \\
Run gradient autoshimming, set parameters, map shims (M) \\
& gzsize & Get parameters and files for gmapz pulse sequence (M) \\
Sw & Pulsed field gradient strength (P) \\
tof & Number of z-axis shims used by gradient shimming (P) \\
& Spectral width in directly detected dimension (P) \\
& Frequency offset for observe transmitter (P)
\end{tabular}
\begin{tabular}{|c|c|}
\hline h1 & Automated proton acquisition (M) \\
\hline h1freq & Proton frequency of spectrometer (P) \\
\hline h1p & Process 1D proton spectra (M) \\
\hline h2cal & Calculate strength of the decoupler field (C) \\
\hline halt & Abort acquisition with no error (C) \\
\hline hc & Automated proton and carbon acquisition (M) \\
\hline hcapt & Automated proton, carbon, and APT acquisition (M) \\
\hline hcchtocsy & Set up parameters for HCCHTOCSY pulse sequence (M) \\
\hline hecorr & Automated proton, carbon, and HETCOR acquisition (M) \\
\hline hcdept & Automated proton, carbon, and DEPT acquisition (M) \\
\hline hcosy & Automated proton and COSY acquisition (M) \\
\hline hcmult & Execute protocol actions of apptype hemult (M) \\
\hline hdwshim & Hardware shimming (P) \\
\hline hdwshimlist & List of shims for hardware shimming (P) \\
\hline het2dj & Set up parameters for HET2DJ pulse sequence (M) \\
\hline HETCOR & Change parameters for HETCOR experiment (M) \\
\hline hetcor & Set up parameters for HETCOR pulse sequence (M) \\
\hline hetcorcp1 & Set up parameters for solids HETCOR pulse sequence (M) \\
\hline hetcorps & Set up parameters for HETCORPS pulse sequence (M) \\
\hline hidecommand & Execute macro instead of command with same name (C) \\
\hline hetero2d & Execute protocol actions of apptype hetero2d (M) \\
\hline Hmbc & Convert the paramaeter to a HMBC experiement (M) \\
\hline HMBC & Change parameters for HMBC experiment (M) \\
\hline hmqc & Set up parameters for HMQC pulse sequence (M) \\
\hline Hmqc & Convert the paramaeter to a HMQC experiement (M) \\
\hline HMQC & Set up parameters for HMQC experiment (M) \\
\hline HMQC15 & Set up parameters for \({ }^{15} \mathrm{~N}\) HMQC experiment (M) \\
\hline HMQC_d2 & Set up parameters for \({ }^{15} \mathrm{~N}\) HMQC experiment using dec. 2 (M) \\
\hline HMQC_d213 & Set up parameters for \({ }^{13} \mathrm{C}\) HMQC experiment using dec. 2 (M) \\
\hline hmqcr & Set up parameters for HMQCR pulse sequence (M) \\
\hline hmqctocsy & Set up parameters for HMQCTOCSY pulse sequence (M) \\
\hline Hmqctoxy & Convert the paramaeter to a HMQCTOXY experiement (M) \\
\hline HMQCTOXY & Set up parameters for HMQCTOXY experiment (M) \\
\hline HMQCTOXY15 & Set up parameters for \({ }^{15} \mathrm{~N}\) HMQCTOXY experiment (M) \\
\hline HMQCTOXY_d2 & Set up parameters for \({ }^{15} \mathrm{~N}\) HMQCTOXY using decoupler 2 (M) \\
\hline HMQCTOXY_d213 & Set up parameters for \({ }^{13} \mathrm{C}\) HMQCTOXY using decoupler 2 (M) \\
\hline hmqctoxy3d & Set up parameters for HMQC-TOCSY 3D pulse sequence (M) \\
\hline ho & Horizontal offset (P) \\
\hline hold & Post-trigger delay (P) \\
\hline hom2dj & Set up parameters for HOM2DJ pulse sequence (M) \\
\hline HOMODEC & Change parameters for HOMODEC experiment (M) \\
\hline homdec & Proton homonuclear decoupler present (P) \\
\hline homo & Homodecoupling control for first decoupler (P) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{l} 
homo2d \\
homo2
\end{tabular} & & Execute protocol actions of apptype homo2d (M) \\
homo3 & & Homodecoupling control for second decoupler (P) \\
homo4 & & Homodecoupling control for third decoupler (P) \\
hoult & & Homodecoupling control for fourth decoupler (P)
\end{tabular}

\section*{h1freq Proton frequency of spectrometer (P)}

Description: Configuration parameter for the resonance frequency of \({ }^{1} \mathrm{H}\) as determined by the field strength of the magnet. The value is set using the label Proton Frequency in the CONFIG window (opened from config.)
Values: \(085,100,200,300,400,500,600,700,750,800,900\) (in MHz); 3T, 4T.
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)

\section*{h1p Process 1D proton spectra (M)}

Description: Processes non-arrayed 1D proton spectra using standard macros. h1p is called by proc1d, but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using preset weighting functions), automatic phasing (aphx macro), select integral regions (hregions macro), adjust integral size (integrate macro), vertical scale adjustment (vsadj c macro), avoiding excessive noise (noislm macro), threshold adjustment (if required, thadj macro), and referencing to the TMS signal if present (setref macro, then tmsref macro).

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & aphx & Perform optimized automatic phasing (M) \\
h1 & Automated proton acquisition (M) \\
hregions & Select integral regions for proton spectra (M) \\
integrate & Automatically integrate 1D spectrum (M) \\
noislm & Avoids excessive noise (M) \\
procld & Processing macro for simple (non-arrayed) spectra (M) \\
setref & Set frequency referencing for proton spectra (M) \\
thadj & Adjust threshold (M) \\
tmsref & Reference spectrum to TMS line (M) \\
vsadjh & Adjust vertical scale for proton spectra (M)
\end{tabular}

\section*{h2cal Calculate strength of the decoupler field (C)}

Syntax: h2cal<(j1r,j2r<,j0>)><:gammah2,pw90,frequency>
Description: Calculates the strength of the decoupler field. It uses the results from two experiments: one with the decoupler off-resonance at a lower frequency and the other with the decoupler off-resonance at a higher frequency than the frequency of the peak being decoupled.
Arguments: \(\quad j 1 r\) is the frequency of the decoupler during these two experiments;. The default is that h 2 cal prompts for a value. If the parameter dof is arrayed and has two values, h2cal assumes these two values represent the decoupler frequencies; if dof is arrayed and has more than two values, h2cal prompts for the two decoupler frequencies.
\(j 2 r\) is the reduced coupling constants from the two experiments. The default is that h2cal prompts for a value
\(j 0\) is the full coupling constant that results when no decoupling is done. The default is a value of 142 Hz , the constant for the standard sample dioxane, or 15 Hz for the methyl iodide sample.
gammah2 is a return value set to the strength of the decoupler field.
pw 90 is a return value set to the pulse width of a \(90^{\circ}\) pulse from the decoupler. It is related to the value of parameter \(d m f\) through the equation \(d m f=1 / \mathrm{pw} 90\).
frequency is a return value set to the coalescence point (i.e., frequency at which single-frequency decoupling would collapse the dioxane to a singlet).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dmf & \begin{tabular}{l} 
Decoupler modulation frequency for first decoupler (P) \\
\\
\(\operatorname{dof}\)
\end{tabular} \\
Frequency offset for first decoupler (P)
\end{tabular}

\section*{halt Abort acquisition with no error (C)}

Syntax: halt
Description: Aborts an experiment that has been submitted to acquisition. If the experiment is active, it is aborted immediately, all data is discarded, and the experiment is interpreted as complete. Any data collected from an earlier block size transfer is retained. If any wexp processing is defined, that processing then occurs, followed by any queued experiments. The login name, and the FID directory path in file are used as keys to find the proper experiment to abort.
Under some circumstances, there is a delay between the time go is entered and the acquisition is started. During this time, instructions based on the selected pulse sequence are being generated. This is signified by the letters "PSG" appearing in the upper left corner of the status window. A halt command issued under these circumstances reports that no acquisition is active but it instead stops the instruction generation process and displays "PSG aborted".
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & aa & Abort acquisition with error (C) \\
& file & File name of parameter set (P) \\
go & Submit experiment to acquisition (C) \\
& wexp & Specify action when experiment completes (C) \\
& wexp & When experiment completes (P)
\end{tabular}
hc Automated proton and carbon acquisition (M)
Syntax: hc< (solvent) >
Description: Combines the operation of the h1 and c13 macros. In non-automation mode, both spectra are acquired in the experiment in which the hc macro was entered. After the completion of the acquisition, rttmp can be used for further processing of the two spectra.
Arguments: solvent is the solvent name In automation mode, the enter program supplies the value. In non-automation mode, the default is 'cdcl3'.
Examples: hc
hc('dmso')
See also: VnmrJ Liquids NMR
Related: C13 Automatic carbon acquisition (M)
enter Enter sample information for automation run (M,U)
h1 Automated proton acquisition (M)
rttmp Retrieve experiment data from experiment subfile (M)

\section*{hcapt Automated proton, carbon, and APT acquisition (M)}

Syntax: hcapt<(solvent) >
Description: Combines the operation of the \(h 1\) and \(c 13\) macros and the APT experiment. In non-automation mode, all spectra are acquired in the experiment in which the hcapt macro was entered. After acquisition completes, rttmp can be used for further processing of the three spectra.

Arguments: solvent is the solvent name. In automation mode, the enter program supplies the value. In non-automation mode, the default is 'cdcl3'.
Examples: hcapt
hcapt('dmso')
See also: VnmrJ Liquids NMR
Related: apt Set up parameters for APT experiment (M)
c13 Automatic carbon acquisition (M)
enter Enter sample information for automation run (M,U)
h1 Automated proton acquisition (M)
rttmp Retrieve experiment data from experiment subfile (M)
hcchtocsy \(\quad\) Set up parameters for HCCHTOCSY pulse sequence (M)
Applicability: Sequence is not supplied with MERCURYplus/Vx.
Description: Used for sidechain assignments in fully \({ }^{13} \mathrm{C}\)-enriched molecules.
See also: VnmrJ Liquids NMR
hecorr \(\quad\) Automated proton, carbon, and HETCOR acquisition (M)
Syntax: hccorr<(solvent) >
Description: Combines the operation of the h1 and c13 macros and the HETCOR experiment. In non-automation mode, all spectra are acquired in the experiment in which hccorr is entered. After acquisition completes, rttmp can be used for further processing of the three spectra.

Arguments: solvent is the solvent name. In automation mode, the enter program supplies the value. In non-automation mode, the default is 'cdcl3'.
Examples: hccorr
hccorr ('dmso')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & c13 & Automated carbon acquisition (M) \\
enter & Enter sample information for automation run (M,U) \\
h1 & Automated proton acquisition (M) \\
& hetcor & Set up parameters for HETCOR experiment (M) \\
& rttmp & Retrieve experiment data from experiment subfile (M)
\end{tabular}
hcdept \(\quad\) Automated proton, carbon, and DEPT acquisition (M)
Syntax: hcdept<(solvent) >
Description: Combines the operation of the h1 and c13 macros and the DEPT experiment. In non-automation mode, all spectra are acquired in the experiment in which hcdept was entered. After the completion of the acquisition, rttmp can be used for further processing of the three spectra.
Arguments: solvent is the solvent name. In automation mode, the enter program supplies the value. In non-automation mode, the default is 'cdcl3'.
Examples: hcdept
hcdept('dmso')
See also: VnmrJ Liquids NMR
Related: c13
Automatic carbon acquisition (M)
dept Set up parameters for DEPT experiment (M)
enter Enter sample information for automation run (M,U)
\begin{tabular}{ll} 
h1 & Automated proton acquisition (M) \\
rttmp & Retrieve experiment data from experiment subfile (M)
\end{tabular}

\section*{hcosy \(\quad\) Automated proton and COSY acquisition (M)}

Syntax: hcosy<(solvent) >
Description: Combines the operation of the h1 macro and the COSY experiment. In nonautomation mode, both spectra are acquired in the experiment in which hcosy is entered. After acquisition completes, rttmp can be used for further processing of the two spectra.

Arguments: solvent is the solvent name. In automation mode, the enter program supplies the value. In non-automation mode, the default is 'cdcl3'.
Examples: hcosy
hcosy('dmso')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & enter & Enter sample information for automation run (C) \\
& h1 & Automated proton acquisition (M) \\
& rttmp & Retrieve experiment data from experiment subfile (M)
\end{tabular}

\section*{hcmult Execute protocol actions of apptype homult (M)}

Applicability: Liquids systems.
Description: This macro is used to execute the protocol actions of the hcmult apptype.
Examples: hcmult('setup')-execute hcmult experimental setup
hcmult ('process') - execute hcmult processing
hcmult('plot') - execute hcmult plotting
hdwshim Hardware shimming (P)
Applicability: UNITY INOVA systemswith additional Z1 shimming hardware.
Description: Allows go, su, au, etc., to turn on and off shimming hardware. Hardware shimming is automatically suspended during software autoshimming. On UNITY INOVA, hardware shimming is only active during acquisition (go, ga, au). hdwshim is a global parameter, so it affects all experiments.
Values: ' \(Y\) ' turns hardware shimming on (only during a delay on UNITYINOVA).
' p ' turns hardware shimming on during presaturation pulse (power level change followed by pulse). Available on UNITYINOVA only.
' n ' turns shimming off.
See also: VnmrJ Liquids NMR
Related: au Submit experiment to acquisition and process data (C)
go Submit experiment to acquisition (C)
su Submit a setup experiment to acquisition (M)
ga \(\quad\) Submit experiment to acquisition and FT the result (M)

\section*{hdwshimlist List of shims for hardware shimming (P)}

Applicability: UNITY INOVA systems
Description: A global parameter that sets the shims to use during hardware shimming. If it does not exist, hardware shimming uses z 1 by default. To create the parameter, use create('hdwshimlist','string','global').

Values: Any string composed of \(\mathrm{z} 1, \mathrm{z} 1 \mathrm{c}, \mathrm{z} 2, \mathrm{z} 2 \mathrm{c}, \mathrm{x} 1, \mathrm{y} 1\). Commas and blank space are ignored. Shimming is done in the order \(\mathrm{z} 1, \mathrm{z} 2, \mathrm{x} 1, \mathrm{y} 1\), regardless of the order in the string.

Examples: hdwshimlist='z1'
hdwshimlist='z1z2x1yl'
See also: VnmrJ Liquids NMR
Related: create \(\quad\) Create new parameter in a parameter tree (C)
hdwshim Hardware shimming (P)
het2dj Set up parameters for HET2DJ pulse sequence (M)
Description: Sets up a HET2DJ (heteronuclear 2D-J) experiment.
See also: VnmrJ Liquids NMR
Related: foldj Fold J-resolved 2D spectrum about \(f 1=0\) axis (C)

\section*{HETCOR Change parameters for HETCOR experiment (M)}

Description: Converts the current parameter set to a HETCOR experiment. This is a phasesensitive, multiplicity-selected experiment.
hetcor \(\quad\) Set up parameters for HETCOR pulse sequence (M)
Syntax: hetcor< (exp_number) >
Description: Sets up a HETCOR (heteronuclear chemical shift correlation) experiment.
Arguments: exp_number is the number of the experiment, from 1 to 9 , in which a proton spectrum of the sample already exists.
See also: VnmrJ Liquids NMR
Related: plhxcor Plot X,H-correlation 2D spectrum (M)
ppcal Proton decoupler pulse calibration (M)
hetcorcp1 Set up parameters for solids HETCOR pulse sequence (M)
Applicability: Systems with the solids module.
Description: Sets up a parameter set, obtained withXPOLAR1, for HETCORCP1, the solidstate heteronuclear correlation experiment.
See also: User Guide: Solid-State NMR
Related: xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)

\section*{hetcorps Set up parameters for HETCORPS pulse sequence (M)}

Applicability: Not supplied with MERCURYplus/Vx systems.
Description: Sets up parameters for a heteronuclear chemical shift correlation experiment (absolute value and phase sensitive).
See also: VnmrJ Liquids NMR
hidecommand Execute macro instead of command with same name (C)
Syntax: (1) hidecommand (command_name) <: \$new_name>
(2) hidecommand ('?')

Description: Renames (or hides) a built-in VnmrJ command so that a macro with the same name as the built-in command is executed instead of the built-in command.

Arguments: command_name is the name of the command to be renamed. To reset the builtin command back to its original name, enter hidecommand with the hidden name as the argument.
\$new_name returns the new name of the built-in command. By using this new name, access is still available to the built-in command.
' ? ' is a keyword to display a list of all of the renamed built-in commands and their original names.
Examples: hidecommand('sys'): \$newname
hidecommand('Sys')
hidecommand('?')
See also: System Administration; User Programming
Related: which Display which macro or command is used (M)

\section*{hetero2d Execute protocol actions of apptype hetero2d (M)}

Description: This macro is used to execute the protocol actions of the hetero2d apptype.
\[
\begin{aligned}
\text { Examples: } & \text { hetero2d('setup') execute hetero2d experimental setup } \\
& \text { hetero2d('process') execute hetero2d processing } \\
& \text { hetero2d('plot') execute hetero2d plotting }
\end{aligned}
\]

Hmbc Convert the paramaeter to a HMBC experiement (M)
Description: Convert the paramaeter to a HMBC experiement.

\section*{HMBC Change parameters for HMBC experiment (M)}

Description: Converts the current parameter set to a HMBC experiment.

\section*{hmqc \(\quad\) Set up parameters for HMQC pulse sequence (M)}

Applicability: All systems, except that presaturation or homospoil are not available on MERCURYplus/Vx.
Syntax: hmqc<(isotope)>
Description: Sets up a HMQC heteronuclear multiple-quantum coherence) experiment.
Arguments: isotope is the isotope number for the heteronucleus of interest (e.g., 13 for \({ }^{13} \mathrm{C}\) ).
See also: VnmrJ Liquids NMR

Hmqc \(\quad\) Convert the paramaeter to a HMQC experiement (M)
Description: Convert the paramaeter to a HMQC experiement.

HMQC Set up parameters for HMQC experiment (M)
Description: Converts the current parameter set to a \({ }^{13} \mathrm{C}\) HMQC experiment.

HMQC15 Set up parameters for \({ }^{15}\) N HMQC experiment (M)
Description: Converts the current parameter set to a HMQC experiment for \({ }^{15} \mathrm{~N}\).

HMQC_d2 Set up parameters for \({ }^{15} \mathrm{~N}\) HMQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a HMQC experiment for \({ }^{15} \mathrm{~N}\) with decoupler 2 as \({ }^{15} \mathrm{~N}\).

HMQC_d213 Set up parameters for \({ }^{13} \mathrm{C}\) HMQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a HMQC experiment for \({ }^{13} \mathrm{C}\) with decoupler 2 as \({ }^{13} \mathrm{C}\).
hmqcr \(\quad\) Set up parameters for HMQCR pulse sequence (M)
Applicability: Not needed in current systems. Normally was used in systems with a \({ }^{1} \mathrm{H}\) only decoupler.
Description: Sets up a HMQC (heteronuclear multiple-quantum coherence) experiment with "reverse" configuration.

See also: VnmrJ Liquids NMR
hmqctocsy Set up parameters for HMQCTOCSY pulse sequence (M)
Applicability: Sequence is not supplied with MERCURYplus/Vx.
Description: Sets up a HMQCTOCSY experiment with an option to null or invert the direct responses.

Hmqctoxy Convert the paramaeter to a HMQCTOXY experiement (M)
Description: Convert the paramaeter to a HMQCTOXY experiement.

HMQCTOXY Set up parameters for HMQCTOXY experiment (M)
Description: Converts the current parameter set to a \({ }^{13}\) C HMQCTOXY experiment.

HMQCTOXY15 Set up parameters for \({ }^{15} \mathrm{~N}\) HMQCTOXY experiment (M)
Description: Converts the current parameter set to a HMQCTOXY experiment for \({ }^{15} \mathrm{~N}\).

HMQCTOXY_d2 Set up parameters for \({ }^{15} \mathrm{~N}\) HMQCTOXY using decoupler 2 (M)
Description: Converts the current parameter set to a HMQCTOXY experiment for \({ }^{15} \mathrm{~N}\) with decoupler 2 as \({ }^{15} \mathrm{~N}\).

HMQCTOXY_d213 Set up parameters for \({ }^{13} \mathrm{C}\) HMQCTOXY using decoupler 2 (M)
Description: Converts the current parameter set to a HMQCTOXY experiment for \({ }^{13} \mathrm{C}\) with decoupler 2 as \({ }^{13} \mathrm{C}\).
hmqctoxy3d Set up parameters for HMQC-TOCSY 3D pulse sequence (M)
Applicability: Not supplied with MERCURYplus/Vx systems.
Description: Sets up parameters for a HMQC-TOCSY 3D experiment with a presaturation option.
ho Horizontal offset (P)
Description: Horizontal offset of the each spectrum in a "stacked display" with respect to the previous spectrum,. For 1D data sets, the parameter vo sets the vertical offset. For 2D data sets, the parameter wc 2 sets the vertical distance (in mm ) between the first and last traces.

Values: Number, in mm, for offset size. For a "left-to-right" presentation, ho is typically negative; for "bottom-to-top" presentation, vo or wC2 is positive.

\section*{hold Post-trigger delay ( \(\mathbf{P}\) )}

Applicability: Systems with imaging capabilities.
Description: Specifies a hold time between an external trigger and the start of the actual pulse sequence events. For example, in cardiac triggered imaging, hold provides a mechanism for offsetting the start of the sequence by a variable amount to obtain images at different times in the cardiac cycle.
See also: VnmrJ Imaging NMR
Related: ticks Number of trigger pulses (P)
hom2dj Set up parameters for HOM2DJ pulse sequence (M)
Description: Sets up a HOM2DJ (homonuclear J-resolved 2D) experiment.
See also: VnmrJ Liquids NMR

HOMODEC Change parameters for HOMODEC experiment (M)
Description: Converts the current parameter set to a HOMODEC experiment. A 1D proton spectrum is displayed to do peak selection.

\section*{homdec Proton homonuclear decoupler present (P)}

Applicability: MERCURYplus/Vx systems.
Description: Sets whether the proton homonuclear decoupler board is present and communicating.
Values: ' Y ' indicates the proton homonuclear decoupler board is present and communicating. This is the default.
' \(n\) ' disables the board. If homdec = ' \(n\) ', no communication with the board is possible: if the board is on, it will stay on, and if it is off, it will stay off.

\section*{homo Homodecoupling control for first decoupler (P)}

Description: Enables time-shared decoupling. Unlike the dm, dmm, and hs parameters, homo is not under "status" control. On systems with type 2 or 3 interface board (apinterface=2 or apinterface=3), homo does not control any signal routing; the position of the relevant relays is controlled by whether homonuclear decoupling (tn equals \(d n\) ) or heteronuclear decoupling ( \(t n\) not equal to \(d n\) ) is in effect.

Values: On UNITY INOVA, the values are ' n ' or ' y ', where:
- ' \(n\) ' specifies no gating.
- ' \(Y\) ' specifies that the receiver is gated, which is done by controlling the observe L.O. (local oscillator) line. If \(d m=' y '\), first decoupler rf, amplifier (blanked/unblanked), and preamplifier are gated. If
\(d m=\) ' \(n\) ', no gating of these signals takes place. When homo is set to ' \(\mathrm{y}^{\prime}\), dmm should be set to ' C ' for continuous wave (CW) modulation.
homo2d Execute protocol actions of apptype homo2d (M)
Description: This macro is used to execute the protocol actions of the hetero2d apptype.
Examples: homo2d('setup') execute homo2d experimental setup
homo2d('process') execute homo2d processing
homo2d('plot') execute homo2d plotting
homo2 Homodecoupling control for second decoupler (P)
Applicability: Systems with a second decoupler.
Description: Equivalent to the parameter homo. It works in conjunction with the parameters dm2 and dmm2.

Values: 'n', 'y'
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dm 2 & Decoupler mode for second decoupler (P) \\
& dmm 2 & Decoupler modulation mode for second decoupler (P) \\
& dn 2 & Nucleus for second decoupler (P) \\
& homo & Homodecoupling control for first decoupler (P)
\end{tabular}
homo3 Homodecoupling control for third decoupler ( \(P\) )
Applicability: Systems with a third decoupler.
Description: Equivalent to the parameter homo. It works in conjunction with the parameters dm3 and dmm3.

Values: ' n ', ' y '
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d \mathrm{~m} 3\) & Decoupler mode for third decoupler (P) \\
& \(d \mathrm{~mm} 3\) & Decoupler modulation mode for third decoupler (P) \\
& dn 3 & Nucleus for third decoupler (P) \\
homo & Homodecoupling control for first decoupler (P)
\end{tabular}
homo4 Homodecoupling control for fourth decoupler (P)
Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Equivalent to the parameter homo. It works in conjunction with the parameters dm4 and dmm4.

Values: 'n', 'y'
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d \mathrm{~m} 4\) & Decoupler mode for fourth decoupler (P) \\
& \(d \mathrm{~mm} 4\) & Decoupler modulation mode for fourth decoupler (P) \\
& \(d \mathrm{n} 4\) & Nucleus for fourth decoupler (P) \\
& homo & Homodecoupling control for first decoupler (P)
\end{tabular}
hoult Set parameters alfa and rof2 according to Hoult (M)
Description: Sets the values of alfa and rof 2 according to a prescription advanced by \(D\). I. Hoult (J. Magn. Reson. 51, 110 (1983)). These parameters set the times that
follow the final pulse, which can be important where the flatness of the baseline is of concern.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & alfa & Set alfa delay before acquisition (P) \\
& calfa & Recalculate alfa so that first-order phase is zero (M) \\
rof2 & Receiver gating time following pulse (P)
\end{tabular}
hpa Plot parameters on special preprinted chart paper (C)
Description: Plots a predetermined list of parameters by "filling in the blanks" at the bottom of the preprinted chart paper available for Hewlett-Packard 7475- and 7550series plotters.
See also: VnmrJ Liquids NMR
Related: apa Plot parameters automatically (M)
\(x 0 \quad\) X-zero position of HP plotter or Postscript device (P)
y0 Y-zero position of HP plotter or Postscript device (P)
hregions Select integral regions in proton spectrum (M)
Description: Selects integral regions, a critical step in automatic processing of proton spectra. It is critical not only because of aesthetic reasons (some people like many small integrals, others prefer a few large regions), but also because other commands, such as bc , depend on the correct integration: bc can either fail or it can make broad, unintegrated lines disappear from the spectrum. hregions was specifically designed for proton spectra and should not be used for other types of spectra. The result of hregions also depends on the lineshape and the signal-to-noise ratio of a spectrum
See also: VnmrJ Liquids NMR
Related: bc 1D and 2D baseline correction (C)
integrate Automatically integrate 1 D spectrum (M)
hs Homospoil pulses (P)
Description: Turns on homospoil pulses at various times in different pulse sequences. Homospoil is a process by which the homogeneity is temporarily made very bad ("spoiled") to cause any transverse magnetizations present at that time to decay rapidly to zero. hst controls the length of any homospoil pulse.
Values: In a standard two-pulse sequence, homospoil pulses can be inserted during periods A and B (delays d 1 and d 2 ): \(\mathrm{hs}=\) ' yn ' gives a homospoil pulse at the beginning of \(\mathrm{d} 1, \mathrm{hs}=\) ' ny ' gives a pulse during d 2 , and \(\mathrm{hs}=\) ' Yy ' gives homospoil pulses during both \(d 1\) and \(d 2\). The desired value is generally hs='nn'.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
d1 \\
\(d 2\)
\end{tabular} & \begin{tabular}{l} 
First delay (P) \\
Incremented delay in 1st indirectly detected dimension (P) \\
hst
\end{tabular} \\
& Semospoil time (P) up parameters for HSQC pulse sequence (M)
\end{tabular}

\section*{Hsqc Convert the paramaeter to a HSQC experiement (M)}

Description: Convert the paramaeter to a HSQC experiement.

HSQC \(\quad\) Set up parameters for HSQC experiment (M)
Description: Converts the current parameter set to a \({ }^{13} \mathrm{C}\) HSQC experiment.

HSQC15 Set up parameters for \({ }^{15} \mathrm{~N}\) HSQC experiment (M)
Description: Converts the current parameter set to a HSQC experiment for \({ }^{15} \mathrm{~N}\).

HSQC_d2 Set up parameters for \({ }^{15} \mathrm{~N}\) HSQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a HSQC experiment for \({ }^{15} \mathrm{~N}\) with decoupler 2 as \({ }^{15} \mathrm{~N}\).

HSQC_d213 Set up parameters for \({ }^{13} \mathrm{C}\) HSQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a HSQC experiment for \({ }^{13} \mathrm{C}\) with decoupler 2 as \({ }^{13} \mathrm{C}\).

Hsqctoxy Convert parameters to a HSQCTOXY experiement (M)
Description: Convert the paramaeter to a HSQCTOXY experiement.

HSQCTOXY Set up parameters for HSQCTOXY experiment (M)
Description: Converts the current parameter set to a \({ }^{13} \mathrm{C}\) HSQCTOXY experiment.

HSQCTOXY15 Set up parameters for \({ }^{15} \mathrm{~N}\) HSQCTOXY experiment (M)
Description: Converts the current parameter set to a HSQCTOXY experiment for \({ }^{15} \mathrm{~N}\).

HSQCTOXY_d2 Set up parameters for \({ }^{15} \mathrm{~N}\) HSQCTOXY using decoupler 2 (M)
Description: Converts the current parameter set to a HSQCTOXY experiment for \({ }^{15} \mathrm{~N}\) with decoupler 2 as \({ }^{15} \mathrm{~N}\).

HSQCTOXY_d213 Set up parameters for \({ }^{13} \mathrm{C}\) HSQCTOXY using decoupler 2 (M)
Description: Converts the current parameter set to a HSQCTOXY experiment for \({ }^{13} \mathrm{C}\) with decoupler 2 as \({ }^{13} \mathrm{C}\).
hsqctoxySE Set up parameters for HSQC-TOCSY 3D pulse sequence (M)
Applicability: Not supplied with MERCURYplus/Vx systems.
Description: Sets up parameters for a HSQC -TOCSY 3D experiment.
hsrotor Display rotor speed for solids operation (P)
Applicability: Systems equipped with the rotor synchronization module.
```

 Description: Controls display of rotor speed. Depending on whether the rotor
 synchronization module is present (set by the Rotor Synchronization label in the
 CONFIG window opened from config), parameter rotorsync is set to 1 or
 0. The xpolar1 macro in turn uses this to create hsrotor, which is set to
 ' y' if rotor synchronization is present. If the parameter srate exists, it is
 updated to the spin speed of the rotor at the end of the experiment. The interlock
 function specified by parameter in also changes. If hsrotor=' ' ' and
 in= 'y', the experiment is terminated if rotor speed deviates more than 100
 Hz.
 Values: 'n' makes srate unmodified by acquisition and turns off the rotor speed
 display in Acqstat.
 ' Y' makes the hardware information from the rotor synchronization board
 update srate and displays the rotor speed in the Acqstat status display.
 See also: User Guide: Solid-State NMR

| Related: | Acqstat | Bring up the acquisition status display (U) |
| :--- | :--- | :--- |
| config | Display current configuration and possibly change it (M) | |
| in | Interlock (P) | |
| rotorsync | Rotor synchronization (P) | |
| srate | Spinning speed (P) | |
| xpolar1 | Set up parameters for XPOLAR1 pulse sequence (M) | |

```

\section*{hst Homospoil time (P)}
```

Description: Controls pulse length if homospoil is activated by the hs parameter.
Values: On Unity INOVA, 0 to 20 ms (limited by hardware).
On MERCURYplus/Vx, 0 to 20 ms (limited by software, 8 ms is standard).

```

\section*{hzmm Scaling factor for plots (P)}
```

Description: Contains the quotient of wp divided by wc, a scaling factor useful for plotting. hzmm applies to 1D only.
See also: VnmrJ Liquids NMR
Related: wc Width of chart (P)
wp Width of plot (P)

```

\section*{hztomm Convert locations from Hz or ppm to plotter units (C)}
```

Syntax: (1) hztomm(x_position) <:xmm>
(2) hztomm(x_position,y_position) <:xmm,ymm>
(3) hztomm (<'box', ><'plotter'|'graphics', >x_left, x_right, y_bottom,y_top) <:x1mm,x2mm,y1mm,y2mm>

```

Description: Converts locations from Hz , or ppm , to plotter units.
Arguments: x_position in syntax 1 is a location along the 1 D axis, in Hz or ppm, to be converted to plotter units using the current values of parameters sp and wp. Plotter units are mm on most plots and are scaled for graphics display. For ppm entries, use the p suffix following numerical values (see first example below).
x _position, \(\mathrm{Y} \_\)position in syntax 2 is a coordinate, in Hz or ppm, on a \(2 \overline{\mathrm{D}}\) plot to be converted to plotter units, using the parameters sp and wp to convert the horizontal position and the parameters sp 1 and wp1 to convert the vertical position.
x_left, x_right, y_bottom, y_top in syntax 3 are box edges, in Hz or ppm , on a \(2 \overline{\mathrm{D}}\) plot to be converted to plotter units, using the parameters sp and
wp to convert the left and right edges, and parameters spi and wpi to convert the top and bottom edges.
' box' is a keyword to draw a box and to make the first two return arguments, if supplied, give the location of the upper left corner of the box, in plotter units.
'plotter' is a keyword to select the plotter. The default is 'graphics'.
'graphics' is a keyword to select the graphics screen. This is the default.
\(\mathrm{x} 1 \mathrm{~mm}, \mathrm{x} 2 \mathrm{~mm}, \mathrm{y} 1 \mathrm{~mm}, \mathrm{y} 2 \mathrm{~mm}\) are return arguments giving values in plotter units. If return arguments are not supplied, the results are displayed instead.

Examples: hztomm(20p)
hztomm (xpos, ypos) : xmm, ymm
hztomm('box','plotter', 20,50,10,30)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & box & Draw a box on a plotter or graphics display (C) \\
& sp & Start of plot in directly detected dimension (P) \\
& \(\mathrm{sp1}\) & Start of plot in 1st indirectly detected dimension (P) \\
& wp & Width of plot in directly detected dimension (P) \\
& wp 1 & Width of plot in 1st indirectly detected dimension (P)
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline i & Insert sample (M) \\
\hline ihwinfo & Hardware status of \({ }^{\text {UNITY }}\) INOVA console ( U ) \\
\hline il & Interleave arrayed and 2D experiments ( P ) \\
\hline ilfid & Interleave FIDs during data processing (C) \\
\hline image & Display noninteractive gray scale image (M) \\
\hline image & Control phase encoding gradient in EPI experiments (P) \\
\hline imageprint & Plot noninteractive gray scale image (M) \\
\hline imark & Annotate an image display (M) \\
\hline imcalc & Calculate 2D phasefiles (M, U) \\
\hline imcalci & Format arguments for imcalc macro (M) \\
\hline imconi & Display 2D data in interactive grayscale mode (M) \\
\hline imfit & Fit arrayed imaging data to \(T_{1}\) or \(T_{2}\) exponential data (M, U ) \\
\hline imprep & Set up rf pulses, imaging and voxel selection gradients (M) \\
\hline in & Lock and spin interlock (P) \\
\hline inadqt & Set up parameters for INADEQUATE pulse sequence (M) \\
\hline index2 & Projection or 3D plane index selected (P) \\
\hline inept & Set up parameters for INEPT pulse sequence (M) \\
\hline initialize_iterate & Set iterate string to contain relevant parameters (M) \\
\hline input & Receive input from keyboard (C) \\
\hline ins & Integral normalization scale (P) \\
\hline ins2 & 2 D volume value ( P ) \\
\hline insref & Fourier number scaled value of an integral (P) \\
\hline ins2ref & Fourier number scaled volume of a peak (P) \\
\hline insert & Insert sample (M) \\
\hline inset & Display an inset spectrum (C) \\
\hline integ & Find largest integral in a specified region (C) \\
\hline integrate & Automatically integrate 1D spectrum (M) \\
\hline intmod & Integral display mode (P) \\
\hline intvast & Produces a text file of integral regions (M) \\
\hline iplan & Open interactive image planning tools (M) \\
\hline io & Integral offset (P) \\
\hline ir & Inversion recovery mode ( P ) \\
\hline is & Integral scale (P) \\
\hline isadj & Automatic integral scale adjustment (M) \\
\hline isadj2 & Automatic integral scale adjustment by powers of two (M) \\
\hline iterate & Parameters to be iterated (P) \\
\hline
\end{tabular}

\section*{i}

\section*{Insert sample (M)}

Description: Turns off the eject air, waits for sample to slowly drop, and then turns off the slow drop air. The macro insert functions the same as i.

Related: e Eject sample (M)
eject Eject sample (M)
insert Insert sample (M)
ihwinfo Hardware status of UNITYINOVA console (U)
Applicability: UNITYINOVA consoles (not available for any other type of console).
Syntax: (From UNIX) ihwinfo('startup'|'abort')
Description: Displays status of digital hardware in the \({ }^{\text {UNITY INOVA console. The output is }}\) intended for service personnel and probably not meaningful to users.
Arguments: 'startup ' is a keyword to display the status at the conclusion of the last console startup (powerup, reboot, etc.).
'abort' is a keyword to display the status the last time an acquisition was aborted or the console rebooted from the host computer (abortallacqs). In this context, exiting from either the FID display or lock display of acqi counts as an abort. Only the status from the last abort can be displayed.
Examples: ihwinfo('startup')
ihwinfo('abort')
See also: VnmrJ Liquids NMR
Related: abortallacqs Reset acquisition computer in a drastic situation (C)
showconsole Show UNITY INOVA console configuration parameters (U)
il Interleave arrayed and 2D experiments (P)
Description: Controls experimental interleaving in arrayed experiments. When interleaving is active, bs transients are performed for each member of the array, followed by bs more transients for each member of the array, and so on, until nt transients have been collected for each member of the array. Thus, il is only relevant if bs is less than nt.
Values: ' y ' turns on interleaving and ' n ' turns off interleaving.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & bs & Block size (P) \\
& nt & Number of transients (P)
\end{tabular}

\section*{ilfid Interleave FIDs during data processing (C)}

Description: Converts a multiple FID element into a single FID. It is possible to effectively extend the Nyquist frequency (i.e., increase the effective spectral width sw) by acquiring a number of FIDs with different tau 2 values and then reprocessing the data. ilfid does the necessary processing of time-domain data to achieve this extension, assuming that a pulse sequence (not supplied) has been written to generate the required data.
When invoked in an experiment of \(n f\) FIDs, each of np points, ilfid sorts the data into a single FID of np*nf points that can then be transformed. The interleaving takes the first complex point of each of the nf FIDs and places them in sequential order in the new FID. It then takes the second complex point from each of the nf FIDs and appends them sequentially to the new FID. This operation is repeated for all complex points. Although ilfid adjusts np and nf , it does not alter other parameters such as sw.
CAUTION: Because ilfid alters the data irrevocably, it is strongly recommended that you save the FID before using ilfid.
Examples: Illustrated below is the interleaving of an FID with \(n f=3\) and \(n p=4\). Each point is represented by two digits. The first digit is the nf number and the second digit is the sequential point for that nf value. Data before the ilfid command:
11, 12, 13, 14; 21, 22, 23, 24; 31, 32, 33, 34
Data after the ilfid command:
11, 21, 31, 12, 22, 32, 13, 23, 33, 14, 24, 34
See also: VnmrJ Liquids NMR
Related: nf Number of FIDs (P)
np \(\quad\) Number of data points (P)
sw \(\quad\) Spectral width in directly detected dimension ( P )

\section*{image Display noninteractive gray scale image (M)}
Applicability: Systems with imaging capabilities.
Description: Brings up a dcon 2D display of an image (using grayscale and linear scaling of the intensity) that can be used for adjusting the display while using dconi.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & dcon & Display noninteractive color intensity map (C) \\
& dconi & Interactive 2D data display (C) \\
& dconn & Display color intensity map without erasing screen (C)
\end{tabular}
image \(\quad\) Control phase encoding gradient in EPI experiments (P)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Turns on and off the phase encoding gradient in EPI experiments. image also specifies the number of EPI images to collect in an arrayed experiment.
Values: 0 specifies that the phase encoding gradient is turned off.
1 specifies that the phase encoding gradient is turned on.
Examples: image \(=0,1,1,1\) collects a set of four EPI images. The first dataset refers to the reference scan.
See also: VnmrJ Imaging NMR

\section*{imageprint Plot noninteractive gray scale image (M)}
Description: Sends to the plotter a dcon color intensity map with linear instead of logarithmic increments and with grayscale instead of colors.
See also: VnmrJ Liquids NMR
Related: dcon \(\quad\) Display noninteractive color intensity map (C)

\section*{imark Annotate an image display (M)}
Applicability: Systems with imaging capabilities.
Syntax: imark(string<,color>)
Description: Used to label an image display with characters or strings in any color provided by the write command. The labeling is only available inside the axis box of the image and is directed by the 2D cursors.
Arguments: string is a text string.
color is color of the text on a color display: 'red', 'yellow', 'green', 'cyan', 'blue', 'magenta', and 'white'. The default is 'yellow'.

Examples: imark('Muscle','red')
See also: VnmrJ Imaging NMR
Related: write Write formatted text to a device (C)

\section*{imcalc Calculate 2D phasefiles (M,U)}

Applicability: Systems with imaging capabilities.
Syntax: (From VnmrJ) imcalc (optype, phf1, <phf2, outphf,args>) (From UNIX) imcalc optype phf1 <phf2 outphf args>
Description: Provides a means, along with the supporting macros, of performing arithmetic operations at a pixel-by-pixel basis on images. As operands, phasefiles are required that have been previously saved with the VnmrJ command svphf. A new phasefile is generated that represents the result of the selected action.
The UNIX program imcalc may be called from a UNIX shell using syntax 1, or called from VnmrJ with the macro imcalc using syntax 2. The macro imcalci serves as an interactive interface to the imcalc macro by prompting for any required inputs, which vary with the operation type. For unary operations, such as log, imcalci uses the phasefile resident in the current experiment by default
Arguments: optype can be any of the following keywords (place single quotes around the keyword when entering imcalc from VnmrJ):
- abs takes the absolute value of an image.
- add adds two images.
- addc adds a constant value to each pixel in an image.
- clipmax sets pixel values above a user-supplied maximum to zero.
- clipmin sets pixel values below a user-supplied minimum to zero.
- div divides the first image by the second.
- exp sets the antilog of an image: ( \(\left.10^{\text {image }}\right)\).
- flroll wraps an image in the \(f_{1}\) direction a selected number of pixels.
- f2roll wraps an image in the \(\mathrm{f}_{2}\) direction a selected number of pixels.
- flip_diag flips an image about \(x=y\) diagonal (square images only).
- flip_horiz flips an image about the central horizontal axis.
- flip_vert flips an image about the central vertical axis.
- gmean sets the geometric mean of two images: \(\sqrt{\text { image } 1 \times \text { image } 2}\).
- hline replaces a selected horizontal trace by the average of the two adjacent traces.
- log sets a logarithm of an image: log|image|.
- mean sets the arithmetic mean of two images: \(\frac{\text { image } 1+\text { image } 2}{2}\).
- mult multiplies two images.
- multc multiplies each pixel in an image by a constant value.
- phase computes a resultant image from the phase angle determined by the arctangent of two orthogonal component images.
- pow sets exponentiation of an image (image constant). To invert an image (1/pixel), use pow with an exponent of -1 . To get a square root image, use pow with an exponent of \(1 / 2\).
- reverse sets linear inversion of pixel intensities in an image.
- rotate_90 rotates an image clockwise \(90^{\circ}\) (square images only).
- rotate_180 rotates an image \(180^{\circ}\).
- sub subtracts the second image from the first (use add with a negative multiplier in direct call to UNIX imcalc program)
- thresh compresses all pixel values above a selected threshold to 1 , and below to 0 .
- thresh2 compresses all pixel values above a user-supplied minimum and below a user-supplied maximum to 1 , all others to 0 .
- vadd adds two orthogonal "component" images to form the vector sum:
\(\sqrt{\text { image } 1^{2}+\text { image } 2^{2}}\).
- vline replaces a selected vertical trace by the average of the two adjacent traces.

Examples: (From UNIX) imcalc add phf1 phf2 outphf 0.5 (From VnmrJ) imcalc('add','phf1','phf2','destphf' 0.5)
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & add & Add current FID to add/subtract experiment (C) \\
& makephf & Transform and save images as phasefiles (M) \\
& spadd & Add current spectrum to add/subtract experiment (C) \\
& svphf & Save phasefiles (C)
\end{tabular}

\section*{imcalci \(\quad\) Format arguments for imcalc macro (M)}

Applicability: Systems with imaging capabilities.
Syntax: imcalci(optype)
Description: Interactively formats arguments for the imcalc macro from prompted user inputs.
Arguments: optype has the same values as optype for the imcalc macro.
Examples: imcalci('add')
See also: VnmrJ Imaging NMR
Related: imcalc Calculate 2D phasefiles (M,U)

\section*{imconi \(\quad\) Display 2D data in interactive grayscale mode (M)}

Description: Calls the dconi program with the arguments required for grayscale image display: dconi('dcon','gray','linear').
imfit \(\quad\) Fit arrayed imaging data to \(T_{1}\) or \(\boldsymbol{T}_{\mathbf{2}}\) exponential data (M,U)
Applicability: Systems with imaging capabilities.
```

Syntax: (From VnmrJ) imfit('t1'|'t2',basename,min_threshold)
(From UNIX) imfit t1|t2 basename min_threshold
time1 time2 ... timeN

```

Description: Performs fitting at each pixel to exponential \(T_{1}\) or \(T_{2}\) data. The imfit macro from VnmrJ provides a convenient link to the UNIX imfit fitting procedure by setting up and passing the correct arguments to the external program. If data cannot be handled by the VnmrJ macro, the UNIX imfit command can be called directly.
Three synthetic images are created by the imfit program, and placed in the planes directory of the current experiment. The \(T_{1}\) or \(T_{2}\) image are named
basename1 or basenamet2. An error image basenamesigma represents the standard deviation of the fit at each pixel, and a \(t=0\) image, basenamem0, represent the intercept of the original data at zero time.
The imfit macro automatically extracts the timing values for each array element in the data set from whichever parameter has been arrayed, providing these times to the fitting routine. For this reason, the imfit macro does not function properly if more than one parameter is arrayed.
Two macros, t1image and t2image, are provided to do all of the preprocessing required for fitting. They query for the base phasefile names and lower-limit noise threshold, transform and save all of the images, and call the imfit macro to complete the fitting process.
\(T_{1}\) fitting type requires phase-sensitive images progressing from negative to positive in the normal inversion-recovery model.
Arguments: 't1' and 't2' are keywords for the fitting type, either 't1' for inversionrecovery or 't2' for decaying exponential ('t2' can also be used for saturation-recovery data).
basename is the name of a phasefile that represents the arrayed set of images. The phasefile should reside in the planes directory and must end in consecutive integer extensions, starting with 1.
min_threshold is a value for the lower limit for the fitting program. Pixels whose values in the first image are less than this threshold will not be fit and will be assigned values of zero in the synthesized resultant images.

\section*{See also: VnmrJ Imaging NMR}
\begin{tabular}{lll} 
Related: & makephf & Transform and save images as phasefiles (M) \\
& t1image & Fit arrayed imaging data to \(T_{1}\) exponential data (M) \\
t2image & Fit arrayed imaging data to \(T_{2}\) exponential data (M) \\
& vs & Vertical scale (P)
\end{tabular}

\section*{imprep Set up rf pulses, imaging and voxel selection gradients (M)}

Applicability: Systems with imaging capabilities.
Description: Sets up rf pulses, imaging gradients, and voxel selection gradients as required by the application, thus providing a universal "one pass" set up of rf power and gradient levels after sequence timing, field of view, and voxel selection parameters have been chosen. imprep scans the configuration parameter lists plist and sslist to determine which rf pulse parameters and gradients are active and then proceeds to set up parameter values.
See also: VnmrJ Imaging NMR
Related: plist Active pulse length parameter list (P)
sslist \(\quad\) Conjugate gradient list ( P )
in Lock and spin interlock (P)
Description: Controls error handling based on lock level and spin speed, and specifies action based on lock level failure or spinner failure. The action can be to generate an error and halt acquisition, or to generate a warning and continue acquisition.
Values: Can be set to one or two characters:
- If set to two characters, the first character specifies the action for lock failure and the second character specifies the action for spinner failure.
- If set to only one character, that character specifies the same action for either lock or spinner failure.
```

 'n' stops any system checking so that acquisition continues regardless of the lock level or spin speed.
 ' w' makes the system check the lock level and the spin speed. A warning message is added to the log file if the lock level falls below a preset hardware level (about 20 on the lock meter) or if spin is set to a particular value and the spin speed goes out of regulation; however, acquisition is not stopped.
' Y^{\prime} makes the system check the lock level and spin speed. Acquisition is halted if the lock level falls below a preset hardware level (about 20 on the lock meter) or if spin is set to a particular value and the spin speed goes out of regulation.
See also: VnmrJ Liquids NMR
Related: spin Sample spin rate (P)
inadqt Set up parameters for INADEQUATE pulse sequence (M)
Description: Sets up parameters for 2D INADEQUATE (Incredible Natural Abundance Double-Quantum Transfer Experiment).
See also: VnmrJ Liquids NMR
Related: foldcc Fold INADEQUATE data about 2-quantum axis (C)

```

\section*{index2 Projection or 3D plane index selected (P)}
```

Applicability: All systems; however, although index2 is available on MERCURYplus/Vx such systems can only process 3D data and cannot acquire 3D data.
Description: Stores whether a projection or 3D plane index is selected. It shows the current status only and cannot be used to select a plane or projection. This parameter is also displayed in the Status window below "Index."
Values: 0 indicates a projection is selected.
1 to the half the Fourier number of the normal axis indicates a 3 D plane is selected; the number is the index of the 3D plane.
See also: VnmrJ Liquids NMR
Related: dplane Display a 3D plane (M)
dproj Display a 3D plane projection (M)
nextpl Display the next 3D plane (M)
prevpl Display the previous 3D plane (M)
select \quad Select a spectrum or 2D plane without displaying it (C)
inept \quad Set up parameters for INEPT pulse sequence (M)
Description: Sets up parameters for the INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment.
See also: VnmrJ Liquids NMR
Related: ppcal Proton decoupler pulse calibration (M)

```

\section*{initialize_iterateSet iterate string to contain relevant parameters (M)}
```

Description: Takes the current spin system (contained in spinsys) and derives from it relevant parameters. This can be used to control which parameters are iterated during a spin simulation iteration (e.g., for an ABC spin system, iterate is set to 'A, JAB, JAC, B, JBC, C').
See also: VnmrJ Liquids NMR
Related: iterate Parameters to be iterated (P)

```
\begin{tabular}{rl} 
input & Receive input from keyboard (C) \\
Syntax: & input< (<prompt><, delimiter>) > : var1, var2, . . \\
Description: & Receives fields of characters from the keyboard and stores them into one or \\
& more variables.
\end{tabular}\(\quad\)\begin{tabular}{ll} 
Arguments: & prompt is a string displayed on the command line. \\
& delimiter is a character separating input fields. The default is a comma. \\
& varl, var2, . . are return values. input stores the values into as many of \\
& these arguments as given and ignores the rest of the input line.
\end{tabular}
\begin{tabular}{ll} 
liamp & Amplitudes of integral reset points (P) \\
setint & Set value of an integral (M)
\end{tabular}

\section*{ins2ref \(\quad\) Fourier number scaled volume of a peak \((P)\)}

Description: Set to the Fourier number scaled volume of the selected peak. The reported volume is volume*ins2/ins2ref/fn/fn1. If ins2ref is "not used", sum of all volumes is ins2. The "not used" mode is equivalent to a normalized volume mode. If ins 2 ref is zero or not defined, the reported volume is volume*ins2/fn/fn1.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & fn & Fourier number in directly detected dimension (P) \\
& fn1 & Fourier number in first indirectly detected dimension (P) \\
& ins2 & 2D volume value (P) \\
& ll2d & Automation and interactive 2D peak picking (C)
\end{tabular}

\section*{insert Insert sample (M)}

Description: Turns off the eject air, waits for the sample to slowly drop, and then turns off the slow drop air. The macro \(i\) is identical in function to insert.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & e & Eject sample (M) \\
& eject & Eject sample (M) \\
& i & Insert sample (M)
\end{tabular}

\section*{inset Display an inset spectrum (C)}

Description: Displays the part of the spectrum between the two cursors as an inset. Before entering inset, run the ds command and display two cursors. The vertical position is shifted up about one-quarter of the height of the whole display canvas. The old spectrum remains on the screen, but the parameters shown at the bottom are relevant to the new display. If present, the integral trace is duplicated. The scale is also duplicated if it is present. After running inset, you can shift the displayed spectrum, expand it, or even contract it with the left and right mouse buttons.
See also: VnmrJ Liquids NMR
Related: ds Display a spectrum FID (C)
```

integ Find largest integral in a specified region (C)
Syntax: integ<(highfield,lowfield)><:size,value>

```

Description: Finds the largest absolute-value integral in the specified region, or the total integral if no reset points are present between the specified limits.

Arguments: highfield and lowfield are the limits of the region. The default values are the parameters \(s p\) and \(s p+w p\), respectively.
size is a return value with the size of the largest integral. The size depends on the value of the parameter is and can be positive or negative.
value is a return argument with the value of the largest integral. This value depends on ins, insref, and \(f n\), and is independent of is.
Examples: integ:r1,r2
integ (500,1000): \$height
integ (100+sp, 300+sp): \$ht, \$val
            See also: User Programming
            Related: fn Fourier number in directly detected dimension (P)
            ins Integral normalization scale (P)
    insref \(\quad\) Fourier number scaled value of an integral (P)
    is Integral scale (P)
    \(r p \quad\) Zero-order phase in directly detected dimension (P)
    \(\mathrm{sp} \quad\) Start of plot in directly detected dimension ( P )
    wp \(\quad\) Width of plot in directly detected dimension (P)

\section*{integrate Automatically integrate 1D spectrum (M)}
Description: A universal macro for selecting integral regions and adjusting the integrals in size and offset. Only if regions are not already selected, and if intmod is set to 'partial', will integrate call region to select integral regions. For proton spectra, the selection is done through the hregions macro; for \({ }^{19} \mathrm{~F}\) and \({ }^{31} \mathrm{P}\) spectra (for wide spectral windows, multiplet spectra), region is called with optimized arguments, and for other nuclei (mostly decoupled, single-line spectra) other optimized parameters are used with region, such that lines consisting of a few data points only are recognized.

\section*{See also: VnmrJ Liquids NMR}
Related: hregions Select integral regions in proton spectrum (M)
intmod Integral display mode (P)
isadj Adjust integral scale (M)
region Automatically select integral regions (C)

\section*{intmod Integral display mode (P)}
Description: Controls display and plotting of the spectral integral.
Values: ' \(\circ f \mathrm{f}\) ' indicates that no integrals are displayed or plotted.
'full' indicates that all integral regions are displayed or plotted.
' partial' indicates that every other integral region is plotted (typically used to display integrals of only peaks and not of the baseline region).
See also: VnmrJ Liquids NMR
Related: plc Plot carbon spectrum (M)
\(\mathrm{plh} \quad\) Plot proton spectrum (M)
plp Plot phosphorus spectrum (M)
intvast \(\quad\) Produces a text file of integral regions (M)
Applicability: Systems with VAST accessory.
Syntax: intvast (last)
Description: intvast produces a text file, integ.out in the current experiment, containing the integrals of the partial regions of each spectra from wells 0 to last.
Arguments: last is the number last sample well. The default is 96 .
See also: VnmrJ Liquids NMR
Related: pintvast Plot the integrals (M)

\section*{iplan Open interactive image planning tools (M)}
Applicability: Systems with imaging capabilities.

Description: iplan is an interactive image planning server loop with drawn-on screen control buttons. It captures mouse control in VnmrJ so that you click the screen Exit button to leave. The server opens the t.box transverse slice specification tool. By choosing a button in the graphics area, tbox can be stretched, tilted, and moved. The number of slices and the area that they cover can also be adjusted. The Exit button calls the rsliceplan macro to load these setting for the next images.
See also: VnmrJ Imaging NMR
Related: sliceplan Set slice parameters for target slice (M)
tbox Draw a tilted box (C)

\section*{io Integral offset (P)}

Description: Offset of the integral with respect to the spectrum.
Values: 0 to 200, in mm.
See also: VnmrJ Liquids NMR

Applicability: Systems with imaging capabilities.
Description: Specifies whether to run in inversion recovery mode or in normal mode. In inversion recovery mode, the parameters pipat, tpwri, pi, and ti become active, providing a prepulse and delay for inversion recovery experiments.
Values: ' n ' specifies normal mode and ' Y ' specifies inversion recovery mode.
See also: VnmrJ Imaging NMR
Related: pi Width of an inversion pulse (P)
pipat \(\quad\) Shape of an inversion pulse (P)
ti Second delay in an inversion recovery sequence ( P )
tpwri Intensity of an inversion pulse in \(\mathrm{dB}(\mathrm{P})\)

Description: Multiplier that adjusts height of the displayed integral trace. Note that the ins parameter controls integral value, and that is has no effect on integral value.
Values: 1 to 1 e 9
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & ins & Integral normalization scale (P) \\
& ins2 & 2D volume value (P) \\
& insref & Fourier number scaled value of an integral (P) \\
& integ & Find largest integral in a specified region (C)
\end{tabular}
isadj \(\quad\) Automatic integral scale adjustment (M)
Syntax: isadj<(height<,neg_height>) >
Description: Adjusts the height of the integrals in a display to make the tallest integral fit the paper. Optionally, the height of the maximum integral can be specified by an argument. Negative integrals, if present, are given a limit of 10 mm if parameter io is less than 10 ; otherwise, they are set so they end 5 mm above the spectrum. Negative integrals can also be given a height. Whichever part of the integrals (positive or negative) runs into the given limit will be used to scale is.

Arguments: height is the size, in mm , of the maximum integral on display. The default is the height that makes the tallest integral fit the paper
neg_height is the desired height, in mm, of the largest negative integral. If io is less than 10 , the default is 10 ; otherwise, the default height is 5 mm above the spectrum.

Examples: isadj
isadj(100)
isadj (100,100)
See also: VnmrJ Liquids NMR
Related: io Integral offset (P)
is Integral scale (P)
isadj 2 Automatic integral scale adjustment by powers of two (M)
isadj2 Automatic integral scale adjustment by powers of two (M)
Syntax: isadj2<(height<,neg_height>) >:scaling_factor
Description: Functionally the same as isadj except that isadj 2 adjusts the integral height by powers of two and returns the scaling factor to the calling macro.
Arguments: height is the size, in mm, of the maximum integral on display.
neg_height is the desired height, in mm, of the maximum negative integral on display.
scaling_factor is a return value giving the ratio of the new integral size to the old value (new_is/old_is).
Examples: isadj2
isadj2(100)
isadj2(100,100)
isadj2(50):r1
See also: VnmrJ Liquids NMR
Related: is Integral scale (P)
isadj Automatic integral scale adjustment (M)

\section*{iterate \(\quad\) Parameters to be iterated (P)}

Description: Contains parameters to be iterated during iterative spin simulations. If the Set Params button is used in setting up spin simulation parameters, iterate is initialized to a string containing all parameters appropriate to the current spin system.
Values: List of parameters, separated by commas (e.g., iterate='A, B, JAB').
See also: VnmrJ Liquids NMR
Related: initialize_iterate Set iterate string to contain relevant parameters (M)
```

jdesign
jexp
jexp1-jexp9999
jplot
jplotscale
jplotunscale
jprint
jumpret
jwin

```
jdesign
jexp
jexp1-jexp9999
jplot
jplotscale
jplotunscale
jprint
jumpret
jwin

Start Plot Designer Program (M)

Join existing experiment (C)
Join existing experiment and display new parameters (M)
Plot from Plot Designer program (C)
Scale plot parameters (M)
Restore current experiment parameters (M)
Prints the selected images to a printer or file (M)
Set up parameters for JUMPRET pulse sequence (M)
Activate and record activity in current window (M)
jdesign Start Plot Designer Program (M)
Syntax: jdesign
Description: Opens the Plot Designer program, which provides mechanisms for positioning spectra, parameters, axes, and other plot output on a page. Text annotation and drawing features are available.
See also: VnmrJ Liquids NMR
Related: jplot Plot from Plot Designer program (C)
jexp Join existing experiment (C)
Syntax: (1) jexp (exp_number)
(2) jexp: \$current_exp_number, \$current_exp_name

Description: Joins an existing experiment (syntax 1) or returns the current experiment number and experiment name (syntax 2). After entering this command, until another "join experiment" command or macro is entered, all actions (including changes of parameters, acquisition of data, and display of data) apply to the parameters and data of the experiment joined.
The jexp command does not refresh the display or display new experiment parameters. Use one of the macros \(j \exp 1, j \exp 2\), etc. to join an experiment and have the screen refreshed and new parameters displayed.
Arguments: exp_number is a number from 1 to 9999 for existing experiment to be joined.
\$current_exp_number is a return value with the current experiment number.
\$current_exp_name is a return value with the current experiment name.
Examples: jexp (3)
jexp: \$expp
jexp:r1,n1
See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
Related: cexp Create an experiment (M)
delexp Delete an experiment (M)
jexp1-jexp9 Join existing experiment and display new parameters (M)
unlock Remove inactive lock and join experiment (C)

\section*{jexp1-jexp9999Join existing experiment and display new parameters (M)}

Syntax: jexp1, jexp2, jexp3, ..., ј exp9999
Description: Joins an existing experiment, refreshes the screen, and displays the main menu and the new experiment parameters. After entering this macro, until another "join experiment" command or macro is entered, all actions (including changes of parameters, acquisition of data, and display of data) apply to the parameters and data of the experiment joined.

To join an experiment without refreshing the screen and displaying new parameters, use the jexp command.
Examples: jexp8
jexp354
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cexp & Create an experiment (M) \\
& delexp & Delete an experiment (M) \\
& jexp & Join existing experiment (C) \\
& unlock & Remove inactive lock and join experiment (C)
\end{tabular}
jplot Plot from Plot Designer program (C)
Syntax: jplot< (<'-setup'><,template) >
Description: Starts plotting from the Plot Designer program to the current plotter.
Arguments: '-setup ' is a keyword to start jdesign, the Plot Designer program, to allow interactive design and plotting.
template is the name of a file that will be used to make a plot of the current experiment. The default is a saved file chosen by the user.
Examples: jplot
jplot('t1')
See also: VnmrJ Liquids NMR
Related: jdesign Start Plot Designer program (M)
jplotscale Scale plot parameters (M)
jplotunscale Restore current experiment parameters (M)

\section*{jplotscale Scale plot parameters (M)}

Applicability: Plot Designer program
Description: Scales parameters of plotting area and an imported plot. When a region is drawn in Plot Designer, jplotscale automatically changes the plotting area parameters wcmax and wc2max. The parameters io, is, vs, wc, and wc 2 of a plot imported into a region are adjusted according to wcmax and wc 2 max.
See also: VnmrJ Liquids NMR
Related: jplot Plot from Plot Designer program (C)
jplotunscale Restore current experiment parameters (M)

\section*{jplotunscale Restore current experiment parameters (M)}

Applicability: Plot Designer program
Description: Restores the current experiment parameters (io, is, vs, wc, and wch) to a plot within a region that was created in Plot Designer. For example, entering jplotunscale jexp2 jplotscale restores the parameters of
experiment 2 to a plot and then jplotscale applies the adjusted parameters to the plot.
See also: VnmrJ Liquids NMR
Related: jplot Plot from Plot Designer program (C)
jplotscale Scale plot parameters (M)
jprint \(\quad\) Prints the selected images to a printer or file (M)
Description: The jprint macro takes the value of the parameters printregion, printsend, printfile, printlayout, printformat, printsize.
jumpret \(\quad\) Set up parameters for JUMPRET pulse sequence (M)
Applicability: Sequence is not supplied with MERCURYplus/Vx.
Description: Sets up parameters for a jump-and-return water suppression sequence.
See also: VnmrJ Liquids NMR
jwin Activate and record activity in current window (M)
Syntax: jwin(pane_number)
Description: Activates and records the activity in a specific window pane, created by setgrid, in the VnmrJ graphics window. jwin is executed when you doubleclick the left mouse button in a multiple-paned graphics window.
Arguments: pane_number is the number of the pane to join.
Examples: jwin(2)
See also: VnmrJ Liquids NMR
Related: curwin Current window (P)
fontselect Open FontSelect window (C)
mapwin List of experiment numbers ( P )
setgrid Activate selected window (M)
setwin Activate selected window (C)
killft3d
killplot
killprint
kind
kinds
kini
kinis

Terminate any ft 3 d process started in an experiment \((\mathrm{M}, \mathrm{U})\)
Stop plot jobs and remove from plot queue (M)
Stop print jobs and remove from print queue (M)
Kinetics analysis, decreasing intensity (M)
Kinetics analysis, decreasing intensity, short form (M)
Kinetics analysis, increasing intensity (M)
Kinetics analysis, increasing intensity, short form (M)

\section*{killft3d Terminate any ft3d process started in an experiment (M,U)}

Syntax: killft3d(exp_number)
Description: Terminates any \(f t 3 d\) program that has been started in the specified VnmrJ experiment. killft 3 d can be executed from any experiment. For each \(f t 3 \mathrm{~d}\) process terminated, the relevant 3D data subdirectory is also deleted. Remote ft3d processes, denoted by the call name ftr3d in the process table (displayed by the UNIX command ps -azx), are not directly terminated by killft3d but die of their own accord due to the deletion of the 3D data subdirectory.

The killft3d command can also be run as a shellscript from UNIX. Its function is analogous to the associated VnmrJ macro.
Arguments: exp_number is a number from 1 to 9 that identifies the experiment that started the \(f t 3\) d program.
Examples: killft3d(4)
See also: VnmrJ Liquids NMR
Related: ft3d Perform a 3D Fourier transform (M,U)

\section*{killplot \(\quad\) Stop plot jobs and remove from plot queue (M)}

Description: Kills all current plot jobs in the plot queue for the active plotter in VnmrJ, then removes the jobs from the plot queue. Unless the user executing killplot is root, only that user's plot jobs are deleted from the plot queue. To kill a plot that is in progress (i.e., a plot in which you have not entered page), use the page('clear') command.
The plotter may have to be reinitialized after killplot is executed. To reinitialize the plotter, turn it off and then back on after a few seconds. HewlettPackard (HP) pen plotters appear to be more susceptible to this problem than the other HP output devices supported by VnmrJ.
If one port is configured to be both a printer and a plotter, killplot can cause both plot and print jobs to that port to be deleted. For example, if printer='LaserJet_300', plotter='LaserJet_300R', and a plot command pl pscale page is followed by a print command ptext (vnmruser+'/psglib/noesy.c'), enteringkillplot deletes both jobs.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & killprint & Stop print jobs and remove from print queue (M) \\
page & Move plotter forward one or more pages (C) \\
pl & Plot spectra (C) \\
& pscale & Plot scale below spectrum or FID (C) \\
& ptext & Print out a text file (M) \\
& showplotq & Display plot jobs in plot queue (M)
\end{tabular}

\section*{killprint \(\quad\) Stop print jobs and remove from print queue (M)}

Description: Kills all current print jobs in the print queue for the active printer in VnmrJ, then removes the jobs from the print queue. Unless the user executing killprint is root, only that user's print job is deleted from the print queue. It is slightly possible that the printer may have to be reinitialized after the execution of this macro. To reinitalize the printer, turn it off, wait a few seconds, and then turn it back on.

If one port is configured to be both a printer and a plotter, killprint can cause both print and plot jobs to that port to be deleted. For example, if printer='LaserJet_300', plotter='LaserJet_300R', and a plot command pl pscale page is followed by a print command ptext (vnmruser+'/psglib/noesy.c'), entering killprint deletes both jobs.
See also: VnmrJ Liquids NMR
Related: killplot Stop plot jobs and remove from plot queue (M)
ptext Print out a text file (M)
showprintq Display print jobs in print queue (M)

\section*{kind Kinetics analysis, decreasing intensity (M)}

Description: If the signal decreases exponentially toward a limit, the output is matched by \(I\) \(=A 1 * E X P(-T / T A U)+A 3\). This macro supplies the necessary keywords to the analyze command, which uses the output of fp (i.e., the file fp . out) as input. The results can be displayed with expl.

See also: VnmrJ Liquids NMR
Related: analyze Generalized curve fitting (C)
expl Display exponential/polynomial curves (C)
\(\mathrm{fp} \quad\) Find peak heights (C)
kinds Kinetic analysis, decreasing intensity, short form (M)
kini Kinetics analysis, increasing intensity (M)
kinis Kinetic analysis, increasing intensity, short form (M)

\section*{kinds Kinetics analysis, decreasing intensity, short form (M)}

Description: Produces a summary of the results from kind.
See also: VnmrJ Liquids NMR
Related: kind Kinetics analysis, decreasing intensity (M)

\section*{kini Kinetics analysis, increasing intensity (M)}

Description: If the signal increases exponentially toward a limit, the output is matched by \(I=-A 1 * E X P(-T / T A U)+A 3-A 1\). This macro supplies the necessary keywords to the analyze command, which uses the output of \(f p\) (i.e., the file fp.out) as input. The results can be displayed with expl.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & kind & Kinetics analysis, decreasing intensity (M) \\
& kinis & Kinetic analysis, increasing intensity, short form (M)
\end{tabular}
kinis Kinetics analysis, increasing intensity, short form (M)
Description: Produces a summary of the results from kini.
See also: VnmrJ Liquids NMR
Related: kind Kinetics analysis, decreasing intensity (M)
kini Kinetics analysis, increasing intensity (M)

\section*{K}
\begin{tabular}{|c|c|}
\hline & \\
\hline lastlk & Last lock solvent used (P) \\
\hline lastmenu & Menu to display when Return button is selected (P) \\
\hline latch & Frequency synthesizer latching (P) \\
\hline 1b & Line broadening in directly detected dimension (P) \\
\hline lb1 & Line broadening in 1st indirectly detected dimension (P) \\
\hline lb2 & Line broadening in 2nd indirectly detected dimension (P) \\
\hline lc1d & Pulse sequence for LC-NMR (M) \\
\hline lcpar2d & Create 2D LC-NMR acquisition parameters (M) \\
\hline lcpeak & Peak number (P) \\
\hline lcplot & Plot LC-NMR data (M) \\
\hline lcpsgset & Set up parameters for various LC-NMR pulse sequences (M) \\
\hline lcset2d & General setup for 2D LC-NMR experiments (M) \\
\hline left & Set display limits to left half of screen (C) \\
\hline legrelay & Independent control of magnet leg relay (P) \\
\hline length & Determine length of a string (C) \\
\hline \(1 f\) & List files in directory (C) \\
\hline liamp & Amplitudes of integral reset points (P) \\
\hline lifrq & Frequencies of integral reset points (P) \\
\hline listenoff & Disable receipt of messages from send \(2 \mathrm{Vnmr}(\mathrm{M})\) \\
\hline listenon & Enable receipt of messages from send2Vnmr (M) \\
\hline lkof & Track changes in lock frequency (P) \\
\hline 112d & Automatic and interactive 2D peak picking (C) \\
\hline 112 dbackup & Copy current 112d peak file to another file (M) \\
\hline 112 dmode & Control display of peaks picked by 112d (P) \\
\hline 11 amp & List of line amplitudes (P) \\
\hline llfrq & List of line frequencies (P) \\
\hline 1 n & Find natural logarithm of a number (C) \\
\hline load & Load status of displayed shims (P) \\
\hline loadcolors & Load colors for graphics window and plotters (M) \\
\hline loadPrescription & Load prescription (C) \\
\hline loc & Location of sample in tray (P) \\
\hline location & Get coordinate information from an image display (M) \\
\hline lock & Submit an Autolock experiment to acquisition (C) \\
\hline lockacqtc & Lock loop time constant during acquisition (P) \\
\hline lockfreq & Lock frequency (P) \\
\hline lockgain & Lock gain (P) \\
\hline lockphase & Lock phase (P) \\
\hline lockpower & Lock power (P) \\
\hline locktc & Lock time constant (P) \\
\hline logate & Transmitter local oscillator gate (P) \\
\hline lookup & Look up words and lines from a text file (C) \\
\hline \(1 p\) & First-order phase in directly detected dimension (P) \\
\hline 1 p 1 & First-order phase in 1st indirectly detected dimension (P) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1p2 & First-order phase in 2nd indirectly detected dimension (P) \\
\hline lpalg & LP algorithm in np dimension ( P ) \\
\hline lpalg1 & LP algorithm in ni dimension (P) \\
\hline lpalg2 & LP algorithm in ni2 dimension (P) \\
\hline lpe & Field of view size for phase-encode axis (P) \\
\hline lpe2 & Field of view size for 2nd phase-encode axis (P) \\
\hline lpext & LP data extension in np dimension (P) \\
\hline 1 lpext1 & LP data extension in ni dimension (P) \\
\hline 1 pext2 & LP data extension in ni2 dimension (P) \\
\hline lpfilt & LP coefficients to calculate in np dimension (P) \\
\hline lpfilt1 & LP coefficients to calculate in ni dimension (P) \\
\hline lpfilt2 & LP coefficients to calculate in ni2 dimension ( P ) \\
\hline lpnupts & LP number of data points in np dimension ( P ) \\
\hline lpnupts1 & LP number of data points in ni dimension (P) \\
\hline lpnupts2 & LP number of data points in ni2 dimension (P) \\
\hline lpopt & LP algorithm data extension in np dimension ( P ) \\
\hline lpopt1 & LP algorithm data extension in ni dimension (P) \\
\hline lpopt2 & LP algorithm data extension in ni2 dimension (P) \\
\hline lpprint & LP print output for np dimension (P) \\
\hline lpprint1 & LP print output for ni dimension (P) \\
\hline lpprint2 & LP print output for ni2 dimension (P) \\
\hline lptrace & LP output spectrum in np dimension (P) \\
\hline lptrace1 & LP output spectrum in ni dimension (P) \\
\hline lptrace2 & LP output spectrum in ni2 dimension (P) \\
\hline lro & Field of view size for readout axis (P) \\
\hline 1 s & List files in directory (C) \\
\hline lsfid & Number of complex points to left-shift the np FID (P) \\
\hline lsfid1 & Number of complex points to left-shift ni interferogram (P) \\
\hline \(1 s f i d 2\) & Number of complex points to left-shift ni2 interferogram (P) \\
\hline lsfrq & Frequency shift of the fn spectrum (P) \\
\hline lsfrq1 & Frequency shift of the fn1 spectrum (P) \\
\hline \(1 s f r q 2\) & Frequency shift of the fn2 spectrum (P) \\
\hline lvl & Zero-order baseline correction (P) \\
\hline lvltlt & Control sensitivity of lvl and tlt adjustments (P) \\
\hline
\end{tabular}

\section*{lastlk Last lock solvent used (P)}

Description: Contains the name of the last lock solvent. Intended for use with the optional sample changer, this parameter is a user global variable (stored in the user's global file) and is not accessible to multiple users simultaneously. On a multiuser automation run, you should preferably access the last lock solvent from the file /vnmr/acqqueue/lastlk.
Values: String containing the name of the solvent.
See also: VnmrJ Liquids NMR
Related: solvent Lock solvent (P)

\section*{lastmenu Menu to display when Return button is selected (P)} certain menus. For example, if the Phase F2 button in the 2D Processing menu (controlled by the file process_2D) is clicked, lastmenu is set to 'process_2D', the \(f t\) and aph commands are executed, the ds window is opened, and the Interactive 1D Spectrum Display menu (ds_1 file) is displayed. Appearing in this menu is a Return button. Because lastmenu is still set to 'process_2D', clicking on the Return button redisplays the 2D Processing menu. lastmenu is stored in the \$vnmrsys/global file.

Values: String containing the name of a menu (e.g., 'process_2D').
See also: User Programming
Related: menu Change status of menu system (C)
newmenu \(\quad\) Select a menu without immediate activation (C)

\section*{latch Frequency synthesizer latching (P)}

Applicability: All systems except MERCURYplus/Vx.
Description: Configuration parameter for whether the PTS frequency synthesizer has latching capabilities (all digits of the frequency value are sent to the synthesizer at once). The value for each channel is by the Latching label in the CONFIG window (opened from config).
Values: ' n ' indicates the synthesizers do not have latching capabilities (Not Present choice from the CONFIG window).
' Y ' indicates the synthesizers have latching capabilities (Present choice from the CONFIG window). This value is used with all UNITY INOVA.

See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)
lb Line broadening in directly detected dimension (P)
Description: Sets line broadening and exponential weighting along the directly detected dimension. This dimension is often referred to as the \(f_{2}\) dimension in 2D data sets, the \(f_{3}\) dimension in 3D data sets, etc.
Values: A positive value gives the desired line broadening, in Hz , which is then used to calculate a decaying exponential function of the form \(\exp (-t * \pi * l b)\).

A negative value gives a resolution enhancement function (increasing exponential) of the form \(\exp \left(-t * \pi^{*} l \mathrm{~b}\right)\).
' n ' turns off line broadening and exponential weighting.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & exp & Find exponential value of a number (C) \\
& lb1 & Line broadening in 1st indirectly detected dimension (P) \\
& lb2 & Line broadening in 2nd indirectly detected dimension (P)
\end{tabular}
lb1 Line broadening in 1st indirectly detected dimension (P)
Description: Sets line broadening and exponential weighting along the first indirectly detected dimension. This dimension is often referred to as the \(f_{1}\) dimension in multidimensional data sets. 1.b1 works analogously to the parameter l.b. The "conventional" parameters (lb, gf, etc.) operate on the detected FIDs, while this " 2 D " parameter is used during processing of the interferograms.

Values: A positive value gives the desired line broadening, in Hz , which is then used to calculate a decaying exponential function of the form \(\exp (-t * \pi * l b 1)\). A typical value is between 0.0001 to 1000 Hz .

A negative value gives a resolution enhancement function (increasing exponential) of the form \(\exp (-t * p * l b 1)\).
' n ' turns off line broadening and exponential weighting.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & exp & Find exponential value of a number (C) \\
& lb & Line broadening in directly detected dimension (P) \\
& lb2 & Line broadening in 2nd indirectly detected dimension (P)
\end{tabular}
lb2 Line broadening in 2nd indirectly detected dimension (P)
Description: Sets line broadening and exponential weighting along the second indirectly detected dimension. This dimension is often referred to as the \(f_{2}\) dimension in multidimensional data sets. lb2 works analogously to the parameter lb. lb2 can be set with wti on the 2D interferogram data.
Values: A positive value gives the desired line broadening, in Hz , which is then used to calculate a decaying exponential function of the form \(\exp (-t * \pi * l b 2)\).
A negative value gives a resolution enhancement function (increasing exponential) of the form \(\exp \left(-t * \pi^{*} \operatorname{lb} 2\right)\).
' n ' turns off line broadening and exponential weighting.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & exp & Find exponential value of a number (C) \\
& lb \(b\) & Line broadening in directly detected dimension (P) \\
& wti & Interactive weighting (C)
\end{tabular}

\section*{lc1d Pulse sequence for LC-NMR (M)}

Applicability: Systems with LC-NMR accessory.
Description: Creates parameters to set up a pulse sequence that can be used to start an LCNMR run, including triggering the injection of a sample, and can be used also to obtain multiple solvent-suppressed spectra using multifrequency Shifted Laminar Pulses (SLP) and gradients. The sequence is coded without a d2 variable, thus allowing ni to be used to obtain a series of spectra without resulting in any delay in the sequence being incremented.
The sequence requires a phase table, 1 c 1 d , to be found in the tablib directory. Phases of the selective pulses, the observe pulse, and the receiver and separately controlled by phase variables.
Note that the lcld sequence uses power scaling of shaped pulses, which is supported starting in VnmrJ 5.2. Because of this feature, this sequence will not run in earlier versions of VnmrJ.
lcpar2d Create 2D LC-NMR acquisition parameters (M)
Applicability: Systems with LC-NMR accessory.
Description: Creates the acquisition parameters ni, sw1, and phase, which can be used to acquire a 2D LC-NMR data set. lcpar2d is functionally the same as addpar('2d').
Related: addpar Add selected parameters to current experiment (M)
lcset2d General setup for 2D LC-NMR experiments (M)

\section*{lcpeak Peak number ( P )}

Applicability: Systems with LC-NMR accessory.
Description: Contains the number of the peak being sensed or the loop being flushed.
lcplot Plot LC-NMR data (M)
Applicability: Systems with LC-NMR accessory.
Syntax: lcplot
Description: Plots LC-NMR data. This macro is executed with the Plot LC-NMR button on the Spare pane when LC-NMR is active.
lopsgset \(\quad\) Set up parameters for various LC-NMR pulse sequences (M)
Applicability: Systems with LC-NMR accessory.
Syntax: lcpsgset(file, parameter1,parameter2,..., parameterN)
Description: Sets up parameters for various LC-NMR pulse sequences using information in a parlib file. Rather than returning the entire parameter file, lcpsgset returns the parameters listed. lcpsgset, in general, is never entered from the keyboard but is used as part of experiment setup macros.
Arguments: file is the file from the user or system parlib that provides information on setting up parameters listed. The parameters seqfil and pslabel are set to the supplied file name.
parameter1, parameter1,..., parameterN are 1 to 11 parameters to be returned from the parlib file.

Examples: lcpsgset('lccosy','ds','ap','ss','d1','axis','phase')
lcset2d General setup for 2D LC-NMR experiments (M)
Applicability: Systems with LC-NMR accessory.
Syntax: lcset2d(experiment<,F2_dig_res<,F1_dig_res>>)
Description: Runs the macro lcpar2d to create new parameters needed for 2D LC-NMR experiments, then selects starting values for a number of parameters. The lcset 2 d macro is "internal" and not normally entered directly by the user.

Arguments: experiment is the name of a 2D LC-NMR experiment. F2_dig_res is the \(\mathrm{f}_{2}\) digital resolution desired, in \(\mathrm{Hz} / \mathrm{pt}\).
F1_dig_res is the \(f_{1}\) digital resolution desired, in \(\mathrm{Hz} / \mathrm{pt}\).
Examples: lcset2d('lcnoesy')

\section*{left Set display limits to left half of screen (C)}

Description: Sets the horizontal control parameters SC and wc to produce a display (and subsequent plot) in the left half of a screen (and page). For 2D data, space is left for the scales.

Related: center Set display limits for center of screen (C)
full Set display limits for a full screen (C)
fullt Set display limits for full screen with room for traces (C)
right Set display limits for right half of screen (C)

\section*{legrelay Independent control of magnet leg relay ( \(P\) )}

Applicability: All systems except MERCURYplus/-Vx.
Description: Gives override capability over the magnetic leg high and low (broad) band rf signal routing. This parameter does not normally exist but can be created by the user with the command create('legrelay', 'string').

The legrelay override is operational only on standard systems shipped starting in November 1990 and on certain special systems shipped before that date. A system includes the override capability if it uses N -type connectors instead by BNC connectors on the magnet leg.
Values: ' n ' indicates normal logic is used to set the leg relay.
' \(h\) ' indicates the leg relay is set to the high band
' 1 ' indicates the leg relay is set to the low (broad) band.
Any other value results in an error message and an abort of pulse sequence generation.
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
length Determine length of a string (C)
Syntax: length(string) : \$string_length
Description: Returns the length in characters of a specified string.
Arguments: string is zero or more characters enclosed in single quotes.
string_length is the number of characters (a real number) in string.
Examples: length('abc'):r1
length (solvent) : \$len
See also: User Programming
Related: substr \(\quad\) Select a substring from a string (C)
\(1 f\)
List files in directory (C)
Syntax: lf<(directory)>
Description: Lists the files in a directory, with output on the text output window. Directories are suffixed by "/", executable files by "*", and links by "@".

Arguments: directory is the name of a directory. The default is the current working directory. 1 f is equivalent to the UNIX command \(1 \mathrm{~s}-\mathrm{F}\) and uses the same options (e.g., -1 for a long listing such as lf('-l *.fid')).
Examples: lf
lf('data'))
lf('-l *.fid')
See also: VnmrJ Liquids NMR
Related: dir List files in directory (C)
ls \(\quad\) List files in directory (C)
liamp Amplitudes of integral reset points (P)
Description: Stores the integral amplitudes at the integral reset points for a list of integrals.
To display the values of liamp, enter display ('liamp'). Values of liamp can also be accessed in MAGICAL macros using, for example, liamp [\$i]. Values are stored as absolute numbers (summations of data point
values) and, as such, are a function of the parameter fn. The values displayed by the dli, pir, and dpir programs are related to liamp values by the relationship:
Displayed or plotted integral = liamp [i]*is/(fn/128)*ins)

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & display & Display parameters and their attributes (C) \\
dli & Display list of integrals (C) \\
dpir & Display integral amplitudes below spectrum (C) \\
fn & Fourier number in directly detected dimension (P) \\
lifrq & Frequencies of integral reset points (P) \\
pir & Plot integral amplitudes below spectrum (C)
\end{tabular}

\section*{lifrq \(\quad\) Frequencies of integral reset points \((P)\)}

Description: Stores the frequencies of integral reset points for a list of integrals. The frequencies are stored in Hz and are not adjusted by the reference parameters rfl and rfp.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & liamp & Amplitudes of integral reset points (P) \\
& \(r f 1\) & Ref. peak position in directly detected dimension (P) \\
& \(r f p\) & Ref. peak frequency in directly detected dimension (P)
\end{tabular}
listenoff Disable receipt of messages from send2Vnmr (M)
Description: Deletes the file \$vnmruser/.talk, thereby disallowing send2Vnmr to send commands to VnmrJ

See also: User Programming
Related: listenon Enable receipt of messages from send2Vnmr (M) send2vnmr Send a command to VnmrJ (U)
listenon Enable receipt of messages from send2Vnmr (M)
Description: Writes files with the VnmrJ port number that/vnmr/bin/send2Vnmr needs to talk to VnmrJ. The command then to send commands to VnmrJ is /vnmr/bin/send2Vnmr \$vnmruser/.talk command.
See also: User Programming
Related: listenoff Disable receipt of messages from send2Vnmr (M)
send2vnmr Send a command to VnmrJ (U)

\section*{lkof \(\quad\) Track changes in lock frequency ( P )}

Description: Tracks changes in the lock frequency resulting from changes in the solvent, and minor changes caused by the magnet drifting. The frequency units for 1 kof are in Hz , analogous to sfrq and tof, or dfrq and dof. lkof affects two components of the system: autolock on the console and acqi on the host computer. On UNITY INOVA systems, if 1 kof exists, it offsets the current value of the lockfreq parameter.
See also: VnmrJ Liquids NMR
Related: lockfreq Lock frequency (P)

\section*{Automatic and interactive 2D peak picking (C)}

Syntax: (1) ll2d< (options) ><: \$num>
(2) ll2d ('info'<,\#>): \$peak_number, \$f1, \$f2, \$amplitude, \$volume, \$label, \$comment, \$FWHH1, \$FWHH2, \$f1_min, \$f1_max, \$f2_min, \$f2_max
Description: Automatically finds and integrates peaks that are above the threshold th in a 2D spectrum or a 2D plane of a 3D spectrum, and writes the peak location, volume, full-width at half-height (FWHH), volume, and the boundaries of the integrated region to a file in the 112 d subdirectory of the current experiment directory. For 2D spectra, the file name is peaks.bin, and for 2D planes of 3D spectra, the file name is peaks_f\#f\#_\#.bin, where \(f \# \mathrm{f} \#\) gives the plane direction (e.g., f1f3) and the final \# gives the number of the plane. For easy import and export of peak data, 112 d also allows insertion and deletion of peaks interactively as well as reading and writing of text peak files.
Two-dimensional volumes are scaled in a manner analogous to 1D integrals, using the parameters ins2 and ins2ref. The ins2ref parameter is the Fourier number scaled value of a selected volume. The reported value of a peak volume is (unscaled volume) \(\times\) ins \(2 / \mathrm{ins} 2 r e f / \mathrm{fn} / \mathrm{fn} 1\). The unscaled volume of a peak can be obtained from the command ll2d('info', peak\#). ins \(2 r e f\) can be set to the unscaled value divided by fn and fn 1 . The report volume for that peak is then the value of ins 2 .
Arguments: options (syntax 1) are any of the following (dconi is not necessarily active):
- 'adjust' is a keyword to adjust the bounds of all peaks in the displayed area so that no boundaries overlap, and then to recalculate peak volumes.
- 'draw' is a keyword to draw the peaks, boxes, numbers, and labels on the spectrum based on the value of the parameter 112 dmode.
- 'info', 'total' displays the total number of peaks in the current peak table. If a single return value is requested, printing is suppressed and the total number of peaks is returned.
- 'peaks' is a keyword to find all peaks in the displayed area above a threshold th. If dconi is active and in the box mode, 112 d finds peaks only in the area defined by the cursors. The 'peaks ' option is the default if no arguments are entered.
- 'pos' or 'neg' keywords can be used in addition to 'peak', 'volume', or 'clear' to operate only on positive or negative peaks.
- 'read'<,file > reads in a binary peak file, where file is the name of the peak file. If a full path is not specified, the file is searched for first in the current working directory and then in the l12d subdirectory of the current experiment directory.
- 'readtext '<, file> reads in a text peak file, where file is the name of the peak file. If a full path is not specified, the file is searched for first in the current working directory and then in the ll2d subdirectory of the current experiment directory.
- 'reset ' is a keyword to delete all peaks in the peak table.
- 'volume' is a keyword to find the bounds of each peak in the displayed area and integrate this area.
- 'writetext'<,file> writes a peak file to a text file, where file is the name of the text file written. If a full path is not specified, the file is written in the current working directory.
options (syntax 1) can also be any of the following (dconi must be active):
- 'clear' is a keyword to delete all peaks in the displayed region if in the dconi cursor mode, or to delete all peaks within the cursors if in the dconi box mode.
- ' combine ' is a keyword to combine all peaks within the area defined by the cursors into a single peak (in dconi box mode only). The center of the new peak is at the average of all combined peaks' centers, and the bounds of this peak contains the maximum extents of the combined peaks' bounds. If all combined peaks have the same label, this label is assigned to the new peak. CAUTION: All individual peaks to be combined are deleted prior to the creation of the new combination peak, and there is no automatic way to restore the original peaks. Therefore, it is recommended that you make a backup copy of the peak file prior to using this option.
- ' comment ' is a keyword to prompt for an 80 -character comment. The comment is assigned to the nearest peak in the dconi cursor mode or to all peaks within the cursors in the dconi box mode.
- 'comment', text executes the 'comment ' option using the string entered for text instead of prompting for a comment.
- ' label' is a keyword to prompt for a 15 -character label. The label is assigned to the nearest peak in dconi cursor mode or assigned to all peaks within the cursors in dconi box mode. To erase an existing label, enter a label consisting of one or more spaces.
- 'label',text executes the 'label' option using the string entered for text instead of prompting for a label.
- 'mark' is a keyword to insert a peak at the current cursor position if in the dconi cursor mode. If in the dconi box mode, 'mark' is a keyword to integrate the area within the cursors and assign that area to all peaks within the cursors that do not have their bounds already defined. If there are no peaks within the area defined by the cursors, using 'mark' finds the highest point within this area, marks that as a peak, integrates the area within the cursors, and assigns that area to the peak. The displayed values of the volume integrals are scaled by ins2 and ins2ref and the Fourier number of the 2D experiment.
- 'unmark' is a keyword to delete the nearest peak if in dconi cursor mode. If in the dconi box mode, ' unmark' deletes all peak bounds that are completely within the area defined by the cursors. Peaks are not deleted in the box mode.
options (syntax 1) also can be any of the following (dconi does not have to be active because \(112 d\) is executed on a peak number):
- 'combine', \#1,\#2, .. executes the 'combine' option on the list of peak numbers that follow the ' combine' keyword. If a single return value is requested, the peak number of the new combination peak is returned.
- ' comment', text, \# executes the 'comment ' option on peak \# using the string entered for text instead of prompting for a comment.
- 'label', text, \# executes the 'label' option on peak \# using the string entered for text instead of prompting for a label.
- ' unmark', \# deletes peak number \#.
\$num (syntax 1) is a return value set to the total number of peaks that have been picked unless the arguments 'combine', \#1, \#2, . . are used, in which case \(\$ n u m\) is the number of the newly created combination peak.

Syntax 2 arguments are the following:
- 'info' < , \#> displays information in the text window about peak number \#. If no peak number is included, dconi must be active and the default is the peak nearest to the cursor. If return values are requested, the display is suppressed.
- \$peak_number is a return value set to the number of the peak, either the second argument \# or, if no value is given for \#, the peak nearest to the cursor in dconi.
- \(\$ f 1\) and \(\$ £ 2\) are return values set to the peak frequencies in \(f_{1}\) and \(f_{2}\) of peak \$peak_number.
- \$amp is a return value set to the amplitude of peak \$peak_number.
- \$vol is a return value set to the unscaled volume of \$peak_number. peak. This value can be used to set the ins2ref parameter.
- \$label is a return value set to the label of peak \$peak_number.
- \$comment is a return value set to the comment about \$peak_number.
- \$FWHH1 and \$FWHH2 are return values set to full-width at half-height of \$peak_number.
- \$f1_min, \(\$ \mathrm{f} 1 \_\)max, \(\$ \mathrm{f} 2 \_\)min, \(\$ \mathrm{f} 2 \_\)max are return values set to the bounds of \$peak_number.
Examples: ll2d
ll2d: \$npeaks
ll2d('volume')
ll2d('read','peaklist.inp')
ll2d('mark')
ll2d('label','Peak 1')
ll2d('info','total'): \$npeaks
ll2d('combine', 3, 4, 5, 6) : \$cpn
ll2d('info', 3): \$num, \$f1,\$f2, \$amp, \$vol, \$label
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dconi & Interactive 2D contour display (C) \\
ins2 & 2D volume value (P) \\
ins2ref & Fourier number scaled volume of a peak (P) \\
ll2dbackup & Copy current ll2d peak file to another file (M) \\
ll2dmode & Control display of peaks picked by ll2d (P) \\
parll2d & Create parameters for 2D peak picking (M) \\
pll2d & Plot results of 2D peak picking (C) \\
th & Threshold (P) \\
th2d & Threshold for integrating peaks in 2D spectra (P) \\
xdiag & Threshold for excluding diagonal peaks when peak picking (P)
\end{tabular}

\section*{\(112 \mathrm{dbackup} \quad\) Copy current II2d peak file to another file (M)}

Syntax: ll2dbackup<(file) >
Description: Backs up the current 112 d peak file by copying it to a file with a different file name. The default ll2d peak file is peaks.bin for 2D data.
Arguments: file is the name to be given to the backup file. If a full path is not specified, the file is written to the current working directory. If no argument is provided, the system prompts for a file name. If no file name is specified at the prompt, the default 112 d peak file name with. bck appended is used.

See also: VnmrJ Liquids NMR
Related: 112d Automatic and interactive 2D peak picking (C)

\section*{112 dmode \(\quad\) Control display of peaks picked by II2d (P)}

Description: Sets the display attributes of peaks picked by the 112 d command
Values: A string variable composed of 4 characters, with each character taking the value ' Y ' (display the peak attribute) or ' n ' (do not display the attribute). The first character determines if a " + " is drawn on the screen in dconi displays to mark peaks, the second character controls the drawing of the peak number, the third character controls drawing of the peak bounds box, and the last character controls drawing of the peak label.
See also: VnmrJ Liquids NMR
Related: 112d Automatic and interactive 2D peak picking (C)

\section*{llamp List of line amplitudes ( P )}

Description: Stores a list of line amplitudes above the threshold set by th.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dll & Display listed line frequencies and intensities (C \\
& llfrq & List of line frequencies (P) \\
& th & Threshold (P)
\end{tabular}
llfrq List of line frequencies (P)
Description: Stores a list of line frequencies above the threshold set by th. Frequencies are stored in Hz and are not adjusted by reference parameters rfl and rfp.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & llamp & List of line amplitudes (P) \\
& rfl & Ref. peak position in directly detected dimension (P) \\
& \(r f p\) & Ref. peak frequency in directly detected dimension (P) \\
& th & Threshold (P)
\end{tabular}
ln \(\quad\) Find natural logarithm of a number (C)
Syntax: \(\ln (\) value) < : \(n>\)
Description: Finds the natural logarithm (base e) of a number. To convert the value to base 10 , use \(\log _{10} x=0.43429^{*} \ln (x)\).
Arguments: value is a number.
n is the return value giving the logarithm of value. The default is to display the logarithmic value in the status window.
Examples: \(\ln (.5)\)
ln(val): ln_val
See also: User Programming
Related: atan Find arc tangent of a number (C)
\(\cos \quad\) Find cosine value of an angle (C)
\(\exp \quad\) Find exponential value of a number (C)
\(\sin \quad\) Find sine value of an angle (C)
tan Find tangent value of an angle (C)

\section*{load Load status of displayed shims (P)}

Description: Sets whether shim values are used. load is automatically set to ' y ' by the rts and is automatically set to ' n ' by su, go, au, and shim. On UNITY INOVA systems, shim DAC values are automatically loaded after the console is rebooted (the last values returned before the console was rebooted).

Values: ' Y ' begins any noninteractive shimming process or data acquisition after loading the shim DACs with the shim values from the current experiment. It also prevents acqi from delivering shim values to that experiment.
' \(n\) ' begins any noninteractive shimming process or data acquisition with the current values stored in the shim DACs. Shim values in the current experiment are ignored.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & acqi & Interactive acquisition display process (C) \\
& au & Submit experiment to acquisition and process data (C) \\
& go & Submit experiment to acquisition (C) \\
& rts & Retrieve shim coil settings (C) \\
& shim & Submit an autoshim experiment to acquisition (C) \\
& su & Submit a setup experiment to acquisition (M)
\end{tabular}
loadcolors Load colors for graphics window and plotters (M)
Syntax: loadcolors<(color_file) >
Description: Loads the color table for VnmrJ graphics window and plotters. loadcolors is generated by the color program and includes a series of setcolor commands. On bootup, the bootup macro calls loadcolors to set the graphics and plotter colors.
The loadcolors macro checks the value of maxpen to decide if the plotter supports colors. If maxpen is greater than 1, a color printer is configured.
Arguments: color_file is the name of the file to load. loadcolors first searches for this file in the directory \$vnmruser/templates/directory. If not found there, loadcolors then searches the user_templates/vnmr directory. The default is a color table with the same name as the value of the plotter parameter that loadcolors searches for in the same two directories.
Examples: loadcolors
loadcolors('mycolortable')
See also: VnmrJ Imaging NMR
Related: bootup Macro executed automatically when VnmrJ activated (M)
color Select plotting colors from a graphic interface (M)
maxpen Maximum number of pens to use (P)
setcolor \(\quad\) Set colors for graphics window and for plotters (C)

\section*{loadPrescriptionLoad prescription (C)}

Applicability: Systems with imaging capabilities.
Syntax: loadPrescription(char* path)
Description: Loads a prescription from a given file.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)

\section*{loc Location of sample in tray (P)}

Description: Indicates whether a sample changer is present and enabled, present but disabled, or not present. If the changer is present and enabled, the value of loc sets the location in the tray of the sample in use or to be used. The loc parameter is stored in the global tree. When an acquisition is started, certain global parameters, including loc, are saved with the experiment parameters. The saveglobal parameter specifies which global parameters are saved.
The auto_au macro controls most of the automation features, including setting the value of loc.
Values: A number between 1 and traymax indicates the sample location.
0 indicates the changer is not present or disabled.
See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
Related: auto_au Controlling macro for automation (M)
saveglobal Save selected parameters from global tree (P)
traymax Sample changer tray size (P)

\section*{location \(\quad\) Get coordinate information from an image display (M)}

Applicability: Systems with imaging capabilities.
Description:
Provides coordinate information from an image display using the 2D cursor package. This program can be used, along with the interactive image viewing program dconi, to provide coordinate data. You should position the 2D cursor at the desired point and enter location in the input window. Coordinates are printed on line 3 in the VnmrJ status window. Coordinate values are supplied in both the magnet frame ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) ) and logical frame ( \(\mathrm{R}, \mathrm{P}, \mathrm{S}\) ), where the letters R, \(P\), and \(S\) denote read, phase encode, and slice select axes, respectively. A typical use for location is to set the value of the parameter pro for FOV position of the image center. Position the cursor at the point desired to become the new image center, enter location, and set the value of pro to the R coordinate for the logical frame.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & dconi & Interactive 2D contour display (C) \\
& pro & Position of image center on the readout axis (P)
\end{tabular}

\section*{lock Submit an Autolock experiment to acquisition (C)}

Description: Performs an automatic locking operation using the acquisition computer, optimizing lock power, phase, and gain. If necessary, lock obtains lock through a software-controlled search (required on UNITY INOVA, MERCURYplus/ \(V x)\). lock is the only method to automatically adjust lock phase (usually needed only after probe change or lock channel tuning). lock also sets the rf frequencies, decoupler status, and temperature.

See also: VnmrJ Liquids NMR
Related:
au
change
ga
go
sample
shim
spin
su

Submit experiment to acquisition and process data (C)
Submit a change sample experiment to acquisition (M)
ga Submit experiment to acquisition and FT the result (C)
go Submit experiment to acquisition (C)
sample Submit change sample, autoshim experiment to acquisition (M)
shim Submit an Autoshim experiment to acquisition (C)
spin Submit a spin setup experiment to acquisition (C)
su \(\quad\) Submit a setup experiment to acquisition (M)

\section*{lockacqtc Lock loop time constant during acquisition (P)}

Applicability: All systems except MERCURYplus/-Vx.
Description: Controls time constant of lock loop during acquisition (i.e., time constant by which the lock feedback corrects disturbances of the magnetic field).

Values: On UNity INOVA: 1, 2, 3, or 4 (where 1 sets 1.2 seconds, 2 sets 4.7 seconds, 3 sets 12 seconds, and 4 sets 48 seconds).
If lockacqtc does not exist, it is set to 48 seconds on a \({ }^{\text {UNITY }}\) INOVA. All systems are designed to work well with the default settings, and there should rarely be a reason to alter the lock time constant. However, to experiment with other values, create lockacqtc and set a new value:
create('lockacqtc','integer','global')
setlimit('lockacqtc',4,1,1,'global') lockacqtc=n
where \(n\) is the new value.
See also: VnmrJ Liquids NMR
Related: create Create new parameter in a parameter tree (C)
locktc Lock time constant ( P )
setlimit Set limits of a parameter in a tree (C)

\section*{lockfreq Lock frequency (P)}

Description: Sets system lock frequency. The value is entered using the Lock Frequency label in CONFIG window (opened from config). The value of lockfreq must be set correctly in order to observe NMR signals.
On \({ }^{\text {UNITY }}\) INOVA systems, lockfreq can find the lock signal or resonance. Traditionally, Varian spectrometers have used the parameter zo for this purpose; however, using lockfreq can require less shimming when switching solvents and less adjustment to the lock phase. To use lockfreq, set \(\mathrm{z} 0=\) ' n '.
Values: 1 to 160 (in MHz), ' n '
UNITY INOVA, MERCURYplus/Vx use the true \({ }^{2} \mathrm{H}\) frequency. Typical values of lockfreq are shown in the chart below. On UNITY INOVA, step size is approximately 2.384 Hz ; on MERCURYplus/Vx, step size is 0.05 Hz .
\begin{tabular}{lll}
\hline \begin{tabular}{l}
\({ }^{1} H\) \\
Frequency
\end{tabular} & Unity INOVA & \begin{tabular}{l} 
MERCURY \\
plus/-Vx
\end{tabular} \\
\hline 200 & 30.710 & 30.6976 \\
300 & 46.044 & 46.0625 \\
400 & 61.395 & 61.471 \\
500 & 76.729 & \(\ldots\) \\
600 & 92.095 & \(\ldots\) \\
750 & 115.250 & \(\cdots\) \\
\hline
\end{tabular}

For all systems, refer to the manual VnmrJ Installation and Administration for details on finding the correct lock frequency.
Commands such as go, lock, shim, and su reset the lock frequency in the console to the current value of lockfreq. On UNiTY INOVA, MERCURYplus/Vx, lock frequency in the console can be set with the sethw command.
Note that on the \({ }^{\text {UNITY }}\) INOVA only, lockfreq is offset by the value of 1 kof , if that parameter exists, but sethw directly uses its numeric argument, without any offset by lkof.

See also: VnmrJ Installation and Administration; VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & config & Display current configuration and possibly change it (M) \\
go & Submit experiment to acquisition (M) \\
lkof & Track changes in lock frequency (P) \\
lock & Submit an Autolock experiment to acquisition (C) \\
sethw & Set values for hardware in acquisition system (C) \\
setlockfreq & Set lock frequency on a UNITY INOVA system (C) \\
shim & Submit an Autoshim experiment to acquisition (C) \\
su & Submit a setup experiment to acquisition (M) \\
zo & Z0 field position (P)
\end{tabular}

\section*{lockgain Lock gain (P)}

Description: Contains the current lock gain value as set by computer control. The value is stored in vnmrsys/global and can be examined by typing lockgain?.
Values: On UNITY INOVA, 0 to 48 dB , in \(1-\mathrm{dB}\) steps.
On MERCURYplus/Vx, 0 to 38 dB , in 1-dB steps.
See also: VnmrJ Liquids NMR

\section*{lockphase Lock phase (P)}

Description: Contains the current lock phase. The value is stored in vnmrsys/global and can be examined by typing lockphase?.
Values: 0 to 360 , in degrees, in 1.4-degree steps.
See also: VnmrJ Liquids NMR

\section*{lockpower Lock power (P)}

Description: Contains the current lock power value as set by computer control. The value is stored in vnmrsys/global and can be examined by typing lockpower?.

Values: On \({ }^{\text {UNITY }}\) INOVA, 0 to 68 dB , in 1-dB steps, 68 is full power.
On MERCURYplus/Vx, 0 to 48 dB , in 1-dB steps, 48 is full power.
See also: VnmrJ Liquids NMR

\section*{locktc Lock time constant (P)}

Applicability: All systems except MERCURYplus/Vx.
Description: Controls lock loop time constant when system is not performing acquisition (idle, lock display, shim display, FID display, autoshim, autolock, etc.).
Values: On UNITYINOVAs: 1, 2, 3, or 4 (where 1 corresponds to 1.2 seconds, 2 to 4.7 seconds, 3 to 12 seconds, and 4 to 48 seconds). If locktc does not exist, the system uses a value of 1 , the fastest value. To experiment with other value, create locktc and set a value (e.g.,
create('locktc','integer','global')
setlimit('locktc',4,1,'global') locktc=2).

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & create & Create new parameter in a parameter tree (C) \\
& lockacqtc & Lock acquisition time constant (P) \\
& setlimit & Set limits of a parameter in a tree (C)
\end{tabular}

\section*{logate}

Applicability:
Description:
UNITY INOVA systems.
Specifies whether the transmitter local oscillator (L.O.) is gated with the transmitter rf output or with the transmitter I.F. (intermediate frequency).

The logate parameter does not exist in most parameter sets; the system internally sets it to ' 1 '. To use the value ' \(s\) ', create logate and change the value by entering: create ('logate','string')
setenumeral('logate',2,'l','s') logate='s'.
Values: ' l' makes the transmitter L.O. gate with the rf output, producing better signal-to-noise, usually most important in liquids NMR.
' s ' makes the transmitter L.O. gate with the I.F. signal, producing sharper pulses, especially important in solid-state NMR.
See also: User Guide: Solid-State NMR
Related: create Create new parameter in a parameter tree (C)
setenumeral Set values of a string variable in a tree (C)
lookup Look up words and lines from a text file (C)
Syntax: lookup (options) :return1, return2, ..., number_returned
Description: Searches a text file from top to bottom for a word and returns to the user subsequent words or lines. In this context, word is defined as any string of characters delimited by "whitespace." By default, whitespace includes the space character, a tab, a newline, a carriage return, and a comma. The whitespace characters can also be specified. Therefore, a word can be a string a digits, a string of letters, or a combination of letters and digits. Punctuation marks, unless defined as whitespace (as the comma is by default), can also form words or be part of a word. A line is any string of characters from the current word to the next carriage return. A line includes all whitespace characters except the carriage return. Note that word searches are case-insensitive.

Arguments: options is one or more of the seven keywords('file', 'seek', 'skip', 'read', 'readline', 'count', and 'delimiter') and other arguments used as follows:
- 'file' is a keyword to specify that the next argument is the name of the text file to be searched. If the 'file' keyword is used, it must be the first argument and the name of the file must be the second argument. 'file' resets the start of a search to the top of the text file, and subsequent searches through the file continue from where the previous search stopped, provided the 'file' keyword is not used again. Using 'file' as an argument also resets the whitespace characters back to default values.
- 'seek' is a keyword to search the text file for words that match those supplied as arguments following the 'seek' argument. When lookup is executed the first time, an implicit ' seek' is assumed as an argument. lookup maintains a pointer to the word following the last successful 'seek'. The first argument following an explicit 'seek' argument is interpreted as a word to search for, not a potential keyword. The second or later argument following an explicit ' seek ' is interpreted as a keyword if it matches one of the seven lookup keywords. For example, you can search for the word file without having it interpreted as a keyword by having 'file' immediately follow the 'seek' keyword in the argument list.
- 'seekcs ' is a keyword that is the case sensitive equivalent to the seek keyword. In all other respects, it is the same as 'seek '. One can alternate between case sensitive and case insensitive searches.
- 'skip' is a keyword to move the word pointer to the next word in the text file. 'skip' can optionally be followed by a number specifying how many words to skip.
- 'read ' is a keyword to return to the user the word currently being pointed to and then move the pointer to the next word. 'read ' can optionally be followed by a number specifying how many words to return.
- 'readline ' is a keyword to return to the user the word currently being pointed to and all the following words until the end of the current line. The pointer is then moved to the first word of the next line. 'readline ' can optionally be followed by a number specifying how many lines to return.
- ' count ' is a keyword to return to the user the number of times words in the text file match the subsequent argument. The count starts at the current word pointer and proceeds to the end of the file.
- ' countcs' is a keyword that is the case sensitive equivalent to the count keyword. In all other respects, it is the same as ' count ' . If you use ' countcs ' keyword to count the instances of the word "The", it will return the number of words that exactly match "The".
- 'delimiter' is a keyword to specify that the next supplied argument is a list of characters identifying the whitespace used to delimit words. Characters are specified by \(\backslash \mathrm{n}\) (newline), \(\backslash \mathrm{t}\) (tab), \(\backslash \mathrm{r}\) (carriage return), \(\backslash \backslash\) (backslash), and \' (single quote). The arguments 'delimiter', ' \(\backslash t \backslash n \backslash r, '\) reselect the default whitespace. The 'file' keyword also reselects the default whitespace. The distinction is that using 'file' restarts the search from the beginning of the file while using
'delimiter' continues from the current search position. Following the 'delimiter' keyword and its argument, an implicit 'seek ' is assumed.
return1, return2, . . . are words or lines returned from the search.
number_returned is the number of arguments returned from the file.
Examples:
lookup('file',systemdir + '/manual/lookup')
lookup('user','skip',2,'read',2,'readline')
: \$n1, \$n2, \$n3, \$ret
lookup('skip',8,'read','skip',3,'read',2,'seek',
'comma'): \$n3, \$n4, \$n5
lookup('delimiter',', ''. \(\mathrm{n} \backslash \mathrm{t} \mathrm{C}^{\prime}, '\) seek','file',
'must','skip', 6,'read'): \$n
For a more detailed example of using lookup, see the text file
/manual/lookup in the VnmrJ system directory (systemdir).
See also: User Programming
Related: dialog Display a dialog box from a macro (C)
systemdir VnmrJ system directory (P)

First-order phase in directly detected dimension (P)
Description: Specifies the first-order phase-correction angles along the directly detected dimension according to the formula
```

absorption spectrum}(\omega)
real channel((\omega) * sin 0 + imaginary channel((\omega) * cos 0

```
where the phase angle \(\theta\) is a function of frequency, i.e.
\(\theta=r p+\left(\omega-\omega_{o}\right) * l p\)
\(\omega_{0}\) is defined to be the right end of the spectrum (i.e., \(1 p\) has zero effect at the right edge of the spectrum and a linearly increasing effect going to the left). In multidimensional data sets, 1 p controls the phase of the directly detected dimension: \(f_{2}\) dimension in 2D data sets, \(f_{3}\) dimension in 3D data sets, etc.
Values: -3600 to +3600 , in degrees. Typical values are between 0 and -180 .
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & aph & Automatic phase adjustment of spectra (C) \\
lp1 & First-order phase in 1st indirectly detected dimension (P) \\
lp2 & First-order phase in 2nd indirectly detected dimension (P) \\
rp & Zero-order phase in directly detected dimension (P)
\end{tabular}
lp1 First-order phase in 1st indirectly detected dimension (P)
Description: Controls the first-order phase constant along the first indirectly detected dimension during the process of phase-sensitive 2D transformation. The first indirectly detected dimension is often referred to as the \(f_{1}\) dimension of a multidimensional data set.

See also: VnmrJ Liquids NMR
Related: \(1 p \quad\) First-order phase in directly detected dimension (P)
1p2 First-order phase in 2nd indirectly detected dimension (P)
rp1 Zero-order phase in 1st indirectly detected dimension (P)
lp2 First-order phase in 2nd indirectly detected dimension (P)
Description: Controls the first-order phase constant along the second indirectly detected dimension during a ds, dconi, or equivalent display operation on the 2D data or a 1 D trace therein. The second indirectly detected dimension is often referred to as the \(\mathrm{f}_{2}\) dimension of a 3D (or higher dimensionality) data set.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dconi & Interactive 2D contour display (C) \\
ds & Display a spectrum (C) \\
lp & First-order phase in directly detected dimension (P) \\
rp2 & Zero-order phase in 2nd indirectly detected dimension (P)
\end{tabular}

\section*{lpalg LP algorithm in np dimension (P)}

Description: Specifies the linear prediction (LP) algorithm to use in the np dimension. The resulting LP coefficients are used to appropriately extend the complex timedomain data prior to a normal Fourier transform. The LP algorithms work both on complex \(t_{2}\) FIDs and on hypercomplex or complex \(t_{1}\) interferograms. Enter addpar ('lp') to create lpalg and other np dimension LP parameters in the current experiment

Values: 'lpfft' does a least-squares calculation of lpfilt complex LP coefficients using lpnupts complex time-domain data points. Eigenvalue decomposition of the least-squares matrix is done using Householder tridiagonalization followed by the QL method with implicit shifts.
'lparfft' does a non-least-squares calculation of lpfilt complex LP coefficients using (lpfilt+1) complex, autoregressive (AR) matrix elements. These AR matrix elements are calculated from the raw, complex timedomain data using lpnupts points.

Note that the 'lpfft' algorithm is preferred by far. While 'lparfft' can model broad lines and can extend data sets when mostly noise exists, it cannot model narrow lines.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
lpalg1
\end{tabular} & Add selected parameters to the current experiment (M) \\
lpalg2 & LP algorithm in ni dimension (P) \\
lpext & LP algorithm in ni2 dimension (P) \\
lpfilt & LP coefficients to calculate in np dimension (P) \\
lpnupts & LP number of data points in np dimension (P) \\
lpopt & LP algorithm data extension in np dimension (P) \\
lpprint & LP print output in np dimension (P) \\
lptrace & LP output spectrum in np dimension (P) \\
np & Number of data points (P) \\
proc & Type of processing on np FID (P) \\
strtlp & Starting point for LP calculation in np dimension (P) \\
strtext & Starting point for LP data extension in np dimension (P)
\end{tabular}

\section*{lpalg1 LP algorithm in ni dimension (P)}

Description: Specifies the LP (linear prediction) algorithm to use in the ni dimension. lpalg1 functions analogously to lpalg. Enter addpar ('lp', 1) to create lpalg1 and other ni dimension LP parameters in the current experiment.
Values: 'lpfft' or 'lparfft'
See also: VnmrJ Liquids NMR
\(\begin{array}{lll}\text { Related: } & \text { addpar } & \text { Add selected parameters to the current experiment (M) } \\ \text { lpalg } & \text { LP algorithm in np dimension (P) } \\ \text { ni } & \text { Number of increments in 1st indirectly detected dimension (P) }\end{array}\)

\section*{lpalg2 LP algorithm in ni2 dimension (P)}

Description: Specifies the LP (linear prediction) algorithm to use in the ni 2 dimension. lpalg2 functions analogously to lpalg. Enter addpar ('lp', 2 ) to create lpalg2 and other ni2 dimension LP parameters in the current experiment.
Values: 'lpfft'or 'lparfft'
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment ( M
lpalg LP algorithm in np dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
lpe \(\quad\) Field of view size for phase-encode axis ( \(P\) )
Applicability: Systems with imaging capabilities.
Description: Specifies the actual size of the image field of view (FOV) for phase encode axis, in cm . The size and shape of the FOV is set through the selection of the parameters sw, gro, lro, sw1, gpe, and lpe. The size of the FOV in frequency units is \(s w^{*} s w 1\), in terms of distance measure (in cm) is lro*lpe. The values of these parameters are related by the following equalities, where gcal is the appropriate calibration constant.
sw \(=\) (gcal*sfrq*1000000*gro*lro)
sw1 \(=\) (gcal*sfrq*1000000*gpe*lpe)
\begin{tabular}{lll} 
Related: & gcal & Gradient calibration constant (P) \\
gpe & Phase encoding gradient increment (P) \\
gro & Readout gradient strength (P) \\
lpe2 & Field of view size for 2nd phase-encode axis (P) \\
lro & Field of view parameter for read out in cm (P) \\
Sw & Spectral width in directly detected dimension (P) \\
Sw1 & Spectral width in 1st indirectly detected dimension (P)
\end{tabular}

\section*{lpe2 Field of view size for 2nd phase-encode axis (P)}

Applicability: Systems with imaging capabilities.
Description: Specifies the size of the field of view (FOV) along a second phase-encode dimension, in cm . Higher order phase-encode dimensions are found in 3D volume imaging, and Chemical Shift Imaging (CSI) experiments with two spatial dimensions.

See also: VnmrJ Imaging NMR
Related: lpe Field of view size for phase-encode axis (P)

\section*{lpext LP data extension in np dimension (P)}

Description: Specifies number of complex time-domain data points for LP (linear prediction) in the \(n \mathrm{p}\) dimension by which the original data is to be extended (or altered) in either the forward or backward direction. lpext is constrained by
(strtext-lpext) \(>=\geq 0\) for lpopt \(=\) 'b' and by (strtext+lpext1) \(<=f n / 2\) for lpopt='f'. In the np direction, if (strtext-lpext) \(=0\) and lpopt = 'b ' (backwards linear prediction with calculation of the first point), fpmult defaults to the theoretical value of 0.5 instead of 1.0. Enter addpar ('lp') to create lpext and other np dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
lpext \(1 \quad\) LP data extension in ni dimension (P)
1pext2 LP data extension in ni2 dimension (P)
lpopt LP algorithm data extension in np dimension (P)
\(\mathrm{np} \quad\) Number of data points ( P )
strtext Starting point for LP data extension in np dimension (P)

\section*{lpext1 LP data extension in ni dimension (P)}

Description: Specifies number of complex time-domain data points for LP (linear prediction) in the ni dimension by which the original data is to be extended (or altered) in either the forward or backward direction. lpext1 functions analogously to lpext. Enter addpar ('lp',1) to create lpext1 and other ni dimension LP parameters in the current experiment.
Related: addpar Add selected parameters to the current experiment (M)
lpext \(\quad\) LP data extension in \(n p\) dimension ( P )
ni \(\quad\) Number of increments in 1st indirectly detected dimension (P)

\section*{lpext2 LP data extension in ni2 dimension (P)}

Description: Specifies number of complex time-domain data points for LP (linear prediction) in the ni 2 dimension by which the original data is to be extended (or altered)
in either the forward or backward direction. 1pext 2 functions analogously to lpext. Enter addpar ('lp', 2) to create lpext2 and other ni2 dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpext \(\quad\) LP data extension in \(n p\) dimension ( P )
ni2 Number of increments in 2nd indirectly detected dimension (P)

\section*{lpfilt LP coefficients to calculate in np dimension (P)}

Description: Specifies number of complex LP (linear prediction) coefficients in the np dimension to be calculated from a specified region of the time-domain data. lpfilt should be greater than nsignals, where nsignals is the number of sinusoidal signals contained in that FID (or interferogram). Enter addpar ('lp') to create lpfilt and other np dimension LP parameters in the current experiment.
Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension ( P )
lpfilt \(\quad\) LP coefficients to calculate in ni dimension (P)
lpfilt2 LP coefficients to calculate in ni2 dimension (P)
\(\mathrm{np} \quad\) Number of data points ( P )

\section*{lpfilt1 LP coefficients to calculate in ni dimension (P)}

Description: Specifies number of complex LP (linear prediction) coefficients in the ni dimension to be calculated from a specified region of the time-domain data. lpfilt1 functions analogously to lpfilt. Enter addpar('lp', 1) to create lpfilt1 and other ni dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpfilt LP coefficients to calculate in np dimension (P)
ni \(\quad\) Number of increments in 1st indirectly detected dimension ( P )
lpfilt2 LP coefficients to calculate in ni2 dimension (P)
Description: Specifies number of complex LP (linear prediction) coefficients in the ni2 dimension to be calculated from a specified region of the time-domain data. lpfilt2 functions analogously to lpfilt. Enter addpar ('lp', 2) to create lpfilt1 and other ni2 dimension LP parameters in the current experiment.
Related: addpar Add selected parameters to the current experiment (M)
lpfilt LP coefficients to calculate in np dimension (P)
ni \(\quad\) Number of increments in 1st indirectly detected dimension (P)

\section*{lpnupts LP number of data points in np dimension (P)}

Description: Specifies number of complex time-domain data points in the np dimension to be used in constructing the autoregressive (lpalg='lparfft') or leastsquares (lpalg='lpnefft') matrix from which the complex LP (linear prediction) coefficients are calculated. Note that lpnupts greater than or equal to \(2 * l p f i l t\) is required for both algorithms. Enter addpar ('lp') to create lpnupts and other np dimension LP parameters in the current experiment.
Related:
\[
\begin{array}{ll}
\text { addpar } & \text { Add selected parameters to the current experiment }(\mathrm{M}) \\
\text { lpalg } & \text { LP algorithm in np dimension }(\mathrm{P})
\end{array}
\]
\begin{tabular}{ll} 
lpfilt & LP coefficients to calculate in np dimension (P) \\
lpnupts1 & LP number of data points in ni dimension (P) \\
lpnupts2 & LP number of data points in ni2 dimension (P) \\
np & Number of data points (P)
\end{tabular}

\section*{lpnupts1 LP number of data points in ni dimension (P)}

Description: Specifies number of complex time-domain data points in the ni dimension to be used in constructing the autoregressive ( \(1 \mathrm{palg} 1=\) 'lparfft') or leastsquares (lpalgl='lpnefft') matrix from which the complex LP (linear prediction) coefficients are calculated. Ipnupts 1 functions analogously to lpnupts. Enter addpar('lp',1) to create lpnupts1 and other ni dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpalg1 LP algorithm in ni dimension (P)
lpnupts \(\quad\) LP number of data points in np dimension ( P )
ni \(\quad\) Number of increments in 1st indirectly detected dimension (P)
lpnupts2 LP number of data points in ni2 dimension (P)
Description: Specifies number of complex time-domain data points in the n 22 dimension to be used in constructing the autoregressive (lpalg2='lparfft') or leastsquares (lpalg2 = 'lpnefft') matrix from which the complex LP (linear prediction) coefficients are calculated. lpnupts 2 functions analogously to lpnupts. Enter addpar ('lp', 2) to create lpnupts2 and other ni2 dimension LP parameters in the current experiment.
Related: addpar Add selected parameters to the current experiment (M)
lpalg2 LP algorithm in ni2 dimension (P)
lpnupts \(\quad\) LP number of data points in np dimension ( P )
ni2 Number of increments in 2nd indirectly detected dimension (P)
lpopt
Description:

\section*{LP algorithm data extension in np dimension (P)}

Specifies how the specific LP (linear prediction) algorithm is to extend (or alter) forward or backward the time-domain data in the np dimension. Enter addpar ('lp') to create lpopt and other np dimension LP parameters in the current experiment.
Multiple LP operations, extended forward or backward, can be performed on each FID or interferogram. This is accomplished by arraying the LP processing parameters (e.g., lpopt='b', 'f', 'b'). The number of LP operations is determined by the LP processing parameter with the largest array size. LP parameters having a smaller array size are padded out with their last value. The most common use for this capability is to back-calculate the first 1 to 2 points in an FID or interferogram and subsequently to extend the length of the timedomain data by LP.
A printout can be obtained for each LP operation on an individually definable FID or interferogram. For example, if lpprint \(=30,30\) and lptrace=1,2, the text file lpanalyz. out. 1 contains the LP printout for the first LP operation on FID 1 and lpanalyz. out. 2 contains the LP printout for the second LP operation on FID 2.
Values: ' b ' indicates the LP coefficients are to be used in the back-calculation of a specified number of time-domain data points.
' f ' indicates the LP coefficients are to be used in the forward extension of the time-domain data by a specified number of points. The characteristic polynomial in \(z\) space, derived from the complex LP coefficients, is set up and
rooted. Any root found to lie outside the unit circle is reflected back into the unit circle. New complex LP coefficients are then calculated from these adjusted complex roots.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{Related:} & addpar & Add selected parameters to the current experiment (M) \\
\hline & lpalg & LP algorithm in np dimension (P) \\
\hline & lpopt1 & LP algorithm data extension for ni dimension (P) \\
\hline & lpopt2 & LP algorithm data extension for ni2 dimension (P) \\
\hline & lpprint & LP print output for np dimension (P) \\
\hline & lptrace & LP output spectrum for np dimension (P) \\
\hline & np & Number of data points (P) \\
\hline lpopt1 & \multicolumn{2}{|l|}{LP algorithm data extension in ni dimension (P)} \\
\hline \multirow[t]{4}{*}{Description:} & \multicolumn{2}{|l|}{Specifies how the specific LP (linear prediction) algorithm is to extend (or alter) forward or backward the time-domain data in the ni dimension. lpopt1 functions analogously to lpopt. Enter addpar ('lp',1) to create lpopt1 and other ni dimension LP parameters in the current experiment.} \\
\hline & addpar & Add selected parameters to the current experiment (M) \\
\hline & lpopt & LP algorithm data extension for np dimension (P) \\
\hline & & Number of increments in 1st indirectly detected dimension (P) \\
\hline 1 lpopt2 & \multicolumn{2}{|l|}{LP algorithm data extension in ni2 dimension (P)} \\
\hline Description: & \multicolumn{2}{|l|}{Specifies how the specific LP (linear prediction) algorithm is to extend (or alter) forward or backward the time-domain data in the ni2 dimension. lpopt2 functions analogously to lpopt. Enter addpar ('lp', 2) to create lpopt2 and other ni2 dimension LP parameters in the current experiment.} \\
\hline \multirow[t]{3}{*}{Related:} & addpar & Add selected parameters to the current experiment (M) \\
\hline & lpopt & LP algorithm data extension for np dimension (P) \\
\hline & & Number of increments in 2nd indirectly detected dimension (P) \\
\hline lpprint & \multicolumn{2}{|l|}{LP print output for np dimension (P)} \\
\hline Description: & \multicolumn{2}{|l|}{Controls LP (linear prediction) print output for the np dimension and creates an output file in the current experiment directory (curexp) with the name lpanalyz.out.1. Enter addpar('lp') to create lpprint and other np dimension LP parameters in the current experiment.} \\
\hline
\end{tabular}

Values: Comprised of sum of decimal values of the following bit fields, in which each bit field controls an independent output option:
- Bit 0 (decimal value 1) writes out the LP matrix and Y vector from which the LP coefficients are calculated.
- Bit 1 (decimal value 2) writes out the LP coefficients that have been obtained using either of the two supported algorithms.
- Bit 2 (decimal value 4) writes out the LP roots obtained from the characteristic polynomial derived from the LP coefficients; this only applies for \(\operatorname{lpalg}=\) 'lpfft' and lpopt='f'.
- Bit 3 (decimal value 8 ) writes out the original and recalculated values for each LP extended (or altered) complex time-domain data point.
- Bit 4 (decimal value 16) writes out the internal LP parameter structure.

For example, lpprint=12 and lptrace=1 yields the following information in the file curexp/lpanalyz. out. 1 for spectrum 1 along \(f_{2}\) : the values for all lpfilt complex LP coefficients and the original and
recalculated values for each of the lpext LP extended (or altered) complex time-domain data points.
```

 See also: VnmrJ Liquids NMR
 Related: addpar Add selected parameters to the current experiment (M)
 curexp Current experiment directory (P)
 lpalg LP algorithm in np dimension (P)
 lpext LP data extension in np dimension (P)
 lpfilt LP coefficients to calculate in np dimension (P)
 lpopt LP algorithm data extension for np dimension (P)
 lpprint1 LP print output for ni dimension (P)
 lpprint2 LP print output for ni2 dimension(P)
 lptrace LP output spectrum in np dimension (P)
 np Number of data points (P)
    ```

\section*{lpprint1 LP print output for ni dimension (P)}
```

Description: Controls LP (linear prediction) print output for the ni dimension and creates an output file in the current experiment directory (curexp) with the name lpanalyz1.out.1. lpprint1 functions analogously to lpprint. Enter addpar('lp',1) to create lpprint1 and other ni dimension LP parameters in the current experiment.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpprint \quad LP print output for np dimension (P)
ni \quad Number of increments in 1st indirectly detected dimension (P)

```

\section*{lpprint2 LP print output for ni2 dimension (P)}
```

Description: Controls LP (linear prediction) print output for the ni2 dimension and creates an output file in the current experiment directory (curexp) with the name lpanalyz2.out.1. lpprint2 functions analogously to lpprint. Enter addpar ('lp', 2) to create lpprint2 and other ni2 dimension LP parameters in the current experiment.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpprint \quad LP print output for np dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)

```

\section*{lptrace \(\quad\) LP output spectrum in np dimension ( \(P\) )}
```

Description: Specifies for which spectrum LP (linear prediction) output in the np dimension is produced in accordance with the parameter lpprint. Enter addpar ('lp') to create lptrace and other np dimension LP parameters in the current experiment.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
lpprint \quad LP print output in n p dimension (P)
lptrace1 LP output spectrum in ni dimension (P)
lptrace2 LP output spectrum in ni2 dimension (P)
np \quad Number of data points (P)

```

\section*{lptrace1 LP output spectrum in ni dimension (P)}

Description: Specifies for which spectrum or trace LP (linear prediction) output in the ni dimension is produced in accordance with the parameter lpprintl.
lptrace1 functions analogously to lptrace. Enter addpar ('lp',1) to create \(t\) lpprint 2 and other ni dimension LP parameters in the current experiment.

See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpprint1 LP print output in ni dimension (P)
lptrace \(\quad\) LP output spectrum in np dimension ( P )
ni \(\quad\) Number of increments in 1st indirectly detected dimension \((\mathrm{P})\)

\section*{lptrace2 LP output spectrum in ni2 dimension (P)}

Description: Specifies for which spectrum or trace LP (linear prediction) output in the ni2 dimension is produced in accordance with the parameter lpprint 2 .
lptrace2 functions analogously to lptrace. Enter addpar ('lp', 2) to create lptrace 2 and other ni 2 dimension LP parameters in the current experiment.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpprint2 LP print output in ni2 dimension ( P )
lptrace \(\quad\) LP output spectrum in np dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)

\section*{\(1 r o \quad\) Field of view size for readout axis (P)}

Applicability: Systems with imaging capabilities.
Description: Specifies the actual size of the image field of view (FOV) for readout axis, in cm . The size and shape of the image FOV is set through the selection of the parameters sw, gro, lro, sw1, gpe, and lpe. The size of the FOV in frequency units is \(s w^{*} s w 1\), or in terms of distance measure (cm) is lro*lpe. The values of these parameters are related by the following equalities, where gcal is the appropriate calibration constant:
```

sw = (gcal*sfrq*1000000*gro*lro)
sw1 = (gcal*sfrq*1000000*gpe*lpe)

```

See also: VnmrJ Imaging NMR
Related:
\begin{tabular}{ll} 
gcal & Gradient calibration constant (P) \\
gpe & Phase encoding gradient increment (P) \\
gro & Readout gradient strength (P) \\
lpe & Field of view size for phase encode axis (P) \\
Sw & Spectral width in directly detected dimension (P) \\
sw1 & Spectral width in 1st indirectly detected dimension (P)
\end{tabular}

1s
List files in directory (C)
Syntax: ls<(directory) >
Description: Lists the names of files in a directory on the text output window. 1s is identical to dir and lf.

Arguments: directory is the name of a directory. The default is the current working directory. 1 s is equivalent to the UNIX command \(1 s\) and uses the same options (e.g., -l for a long listing such as ls ('-l *.fid')).
```

Examples: ls
ls('data')
ls('-l *.fid')
Related: dir List files in directory (C)
lf List files in directory (C)

```
lsfid Number of complex points to left-shift the np FID (P)

Description: Specifies number of complex points (not real points) that the np FID is to be either left-shifted (lsfid>0) or right-shifted (lsfid<0). A right shift adds zeros to the front of the FID. 1sfid (and related parameters phfid and lsfrq) operate on complex np FID data, referred to as the \(t_{2}\) dimension in a 2 D experiment or as the \(\mathrm{t}_{3}\) dimension in a 3D experiment. lsfid is in the processing group and is properly handled by a wti operation (display).
Values: \(-\mathrm{fn} / 2\) to \(\mathrm{np} / 2\) (or \(-\mathrm{fn} / 2\) to \(\mathrm{fn} / 2\) if \(\mathrm{fn<np}\) ), ' n '
\begin{tabular}{|c|c|c|}
\hline Related: & dfid & Display a single FID (C) \\
\hline & ds & Display a spectrum FID (C) \\
\hline & fn & Fourier number in directly detected dimension (P) \\
\hline & ft & Fourier transform 1D data (C) \\
\hline & ft1d & Fourier transform along \(\mathrm{f}_{2}\) dimension (C) \\
\hline & ft2d & Fourier transform 2D data (C) \\
\hline & lsfid1 & Number of complex points to left-shift ni interferogram( P ) \\
\hline & lsfid2 & Number of complex points to left-shift ni2 interferogram (P) \\
\hline & lsfrq & Frequency shift of the fn spectrum in Hz (P) \\
\hline & np & Number of data points (P) \\
\hline & phfid & Zero-order phasing constant for the np FID (P) \\
\hline & wft & Weight and Fourier transform 1D data (C) \\
\hline & wft1d & Weight and Fourier transform \(\mathrm{f}_{2}\) of 2D data (C) \\
\hline & wft2d & Weight and Fourier transform 2D data (C) \\
\hline & wti & Interactive weighting (C) \\
\hline
\end{tabular}
lsfid1 Number of complex points to left-shift ni interferogram (P)
Description: Specifies number of hypercomplex (for hypercomplex interferogram data) or complex (for complex interferogram data) points that the ni interferogram is to be either left-shifted ( 1 sfid1>0) or right-shifted ( 1 sfidl<0). A right shift adds zeros to the front of the FID. Isfidl (and related parameters phfidl and lsfrq1) operate on ni interferogram data, both hypercomplex and complex. ni interferogram data are referred to as the \(t_{1}\) dimension in both a 2D and a 3D experiment. lsfid1 is in the processing group and is properly handled by a wti operation (display); that is, a wti operation on an ni interferogram applies the parameters phfid1, lsfid1, and lsfrq1, if selected, to the time-domain data prior to the Fourier transformation.
Values: - \(f n 1 / 2\) to \(n i\) (or \(-\mathrm{fnl} / 2\) to \(f n 1 / 2\) if \(f n 1<2 *_{n i}\) ), 'n'
Related: fn1 Fourier number in 1st indirectly detected dimension (P)
lsfid Number of complex points to left-shift np FID (P)
1sfid2 Number of complex points to left-shift ni2 interferogram (P)
lsfrq1 Frequency shift of the fn1 spectrum in \(\mathrm{Hz}(\mathrm{P})\)
ni \(\quad\) Number of increments in 1st indirectly detected dimension (P)
phfid1 Zero-order phasing constant for ni interferogram (P)
wti Interactive weighting (C)

\section*{lsfid2 Number of complex points to left-shift ni2 interferogram (P)}

Description: Specifies the number of hypercomplex (for hypercomplex interferogram data) or complex (for complex interferogram data) points that the ni 2 interferogram is to be either left-shifted ( 1 sfid2 \(>0\) ) or right-shifted ( 1 sfid2 \(<0\) ). A right shift adds zeros to the front of the FID. lsfid2 (and related parameters phfid2 and lsfrq2) operate on ni2 interferogram data, both hypercomplex and complex. ni2 interferogram data are referred to as the \(t_{2}\) dimension in a 3D experiment. lsfid2 is in the processing group and is properly handled by a wti operation (display).
Values: - \(\mathrm{fn} 2 / 2\) to ni2 (or \(-\mathrm{fn} 2 / 2\) to \(\mathrm{fn} 2 / 2\) if \(\mathrm{fn} 2<2\) *ni2), ' \(\mathrm{n}^{\prime}\)
Related: fn2 Fourier number in 2nd indirectly detected dimension (P)
lsfid Number of complex points to left-shift np FID (P)
lsfidl Number of complex points to left-shift ni interferogram(P)
1sfrq2 Frequency shift of the fn 2 spectrum in \(\mathrm{Hz}(\mathrm{P})\)
ni2 Number of increments in 2nd indirectly detected dimension (P)
phfid2 Zero-order phasing constant for ni2 interferogram (P)
wti Interactive weighting (C)

\section*{lsfrq \(\quad\) Frequency shift of the fn spectrum (P)}

Description: Sets a frequency shift of spectral data, in Hz. lsfrq is the time-domain equivalent of 1 p within VnmrJ. lsfrq (and related parameters phfid and lsfid) operate on complex np FID data, referred to as the \(t_{2}\) dimension in a 2 D experiment or as the \(\mathrm{t}_{3}\) dimension in a 3 D experiment. lsfrq is in the processing group and is properly handled by a wti operation (display).
Values: A positive value results in peaks being shifted downfield (to the left). A negative value results in peaks being shifted upfield (to the right).
Related:
\begin{tabular}{ll} 
dfid & Display a single FID (C) \\
ds & Display a spectrum FID (C) \\
fn & Fourier number in directly detected dimension (P) \\
ft & Fourier transform 1D data (C) \\
\(\mathrm{ft1d}\) & Fourier transform along \(\mathrm{f}_{2}\) dimension (C) \\
\(\mathrm{ft2d}\) & Fourier transform 2D data (C) \\
lp & First-order phase in directly detected dimension (P) \\
lsfid & Number of complex points to left-shift np FID (P) \\
lsfrq1 & Frequency shift of the fn1 spectrum in Hz (P) \\
lsfrq2 & Frequency shift of the fn2 spectrum in Hz (P) \\
phfid & Zero-order phasing constant for np FID (P) \\
wft & Weight and Fourier transform 1D data (C) \\
\(\mathrm{wft1d}\) & Weight and Fourier transform \(\mathrm{f}_{2}\) of 2D data (C) \\
\(\mathrm{wft2d}\) & Weight and Fourier transform 2D data (C) \\
wti & Interactive weighting (C)
\end{tabular}

\section*{lsfrq1 Frequency shift of the fn1 spectrum (P)}

Description: Sets a frequency shift of spectral data, in Hz. lsfrq1 is the time-domain equivalent of 1 p1 within VnmrJ. lsfrq1 (and related parameters phfid1 and lsfid1) operate on ni interferogram data, both hypercomplex and complex. ni interferogram data are referred to as the \(\mathrm{t}_{1}\) dimension in both a 2 D and a 3D experiment. Isfrq1 is in the processing group and is properly handled by a wti operation (display); that is, a wti operation on an ni interferogram applies the parameters phfid1, lsfidl, and lsfrq1, if selected, to the time-domain data prior to the Fourier transformation.

Values: A positive value results in peaks being shifted downfield (to the left). A negative value results in peaks being shifted upfield (to the right).
\begin{tabular}{lll} 
Related: & fn1 & Fourier number in 1st indirectly detected dimension (P) \\
& lp1 & First-order phase in 1st indirectly detected dimension (P) \\
& lsfid1 & Number of complex points to left-shift ni interferogram(P) \\
& lsfrq & Frequency shift of the fn spectrum in Hz (P) \\
lsfrq2 & Frequency shift of the fn2 spectrum in Hz (P) \\
ni & Number of increments in 1st indirectly detected dimension (P) \\
phfid1 & Zero-order phasing constant for ni interferogram (P) \\
wti & Interactive weighting (C)
\end{tabular}

\section*{lsfrq2 \(\quad\) Frequency shift of the fn2 spectrum ( \(P\) )}

Description: Sets a frequency shift of spectral data in Hz. lsfrq2 is the time-domain equivalent of 1 p2 within VnmrJ. lsfrq2 (and related parameters phfid2 and lsfid2) operate on ni2 interferogram data, both hypercomplex and complex. ni 2 interferogram data is referred to as the \(t_{2}\) dimension in a 3D experiment. lsfrq2 is in the processing group and is properly handled by a wti operation (display).
Values: A positive value results in peaks being shifted downfield (to the left).
A negative value results in peaks being shifted upfield (to the right).
\begin{tabular}{lll} 
Related: & \(\mathrm{fn2}\) & Fourier number in 2nd indirectly detected dimension (P) \\
& lp2 & First-order phase in 2nd indirectly detected dimension (P) \\
lsfid1 & Number of complex points to left-shift ni interferogram (P) \\
& lsfid2 & Number of complex points to left-shift ni2 interferogram (P) \\
lsfrq & Frequency shift of the fn spectrum in Hz (P) \\
ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
phfid2 & Zero-order phasing constant for ni2 interferogram (P) \\
wti & Interactive weighting (C)
\end{tabular}

\section*{lvl}

Description: When spectral display is active, the command dc turns on a linear drift correction (baseline correction). The result of this operation includes calculating a zero-order baseline correction parameter 1 vl . This is done by averaging of a small number of points at either end of the display and drawing a straight line baseline between them.

Related: Cdc Cancel drift correction (C)
lvltlt Control sensitivity of lvl and \(t l t\) adjustments ( P )
tlt First-order baseline correction (P)

\section*{lvltlt Control sensitivity of Ivl and tlt adjustments (P)}

Description: Controls the sensitivity of the interactive lvl and \(t \operatorname{lt}\) adjustments. lvltlt is in the "current" parameter set and is basically a multiplier for the sensitivity. If this parameter does not exist, it can be created by commands
create('lvltlt') setgroup('lvltlt','display').
Values: The default value is 1.0. Larger values make the adjustments larger. Smaller values make the adjustments smaller.
\begin{tabular}{lll} 
Related: & create & Create new parameter in a parameter tree (C) \\
& ds & Display a spectrum (C) \\
& lvl & Zero-order baseline correction (P)
\end{tabular}
```

maclibpath
macro
macrocat
macrocp
macrodir
macroedit
macrold
macrorm
macrosyscat
macrosyscp
macrosysdir
macrosysrm
macrovi
make3dcoef
makedosyparams
makefid
makephf
makeslice
man
managedb
manualpath
manvi
mapwin
mark
masvt
maxattench1-4
maxpen
maxsw_loband
md
menu
menulibpath
menuvi
method
mf
mfblk
mfclose
mfdata
mfopen
mftrace
minsw
mkdir
mlabel
move

```

Path to user's macro directory (P)
Macro name (P)
Display a user macro file in text window (C)
Copy a user macro file (C)
List user macro files (C)
Edit a macro with user-selectable editor (M)
Load a macro into memory (C)
Remove a user macro (C)
Display a system macro file in text window (C)
Copy a system macro to become a user macro (C)
List system macros (C)
Remove a system macro (C)
Edit a user macro with the vi text editor (M)
Make a 3D coefficients file from 2D coefficients (M)
Create parameters for DOSY processing (M)
Make a FID element using numeric text input (C)
Transform and save images as phasefiles (M)
Synthesize 2D projection of 3D DOSY experiment (C)
Display online description of command or macro (M)
Update user files (U)
Path to user's manual directory (P)
Edit online description of a command or macro (M)
List of experiment numbers ( P )
Determine intensity of spectrum at a point (C)
Type of variable temperature system (P)
Maximum limit for attenuator setting for rf channel 1-4 (P)
Maximum number of pens to use ( P )
Maximum spectral width of Input board (P)
Move display parameters between experiments (C)
Change status of menu system (C)
Path to user's menu directory (P)
Edit a menu with vi text editor (M)
Autoshim method (P)
Move FIDs between experiments (C)
Copy FID block (C)
Close memory map FID (C)
Move FID data (C)
Memory map open FID file (C)
Move FID trace (C)
Reduce spectral width to minimum required (M)
Create new directory (C)
Menu label (P)
Move to an absolute location to start a line (C)
\begin{tabular}{ll} 
movedssw & Set downsampling parameters for selected spectral region (M) \\
moveossw & Set oversampling parameters for selected spectral region (M) \\
movepro & Move the imaging readout position (C) \\
movesw & Move spectral window according to cursors (M) \\
movetof & Move transmitter offset (M) \\
mp & Move parameters between experiments (C) \\
mqcosy & Set up parameters for MQCOSY pulse sequence (M) \\
mrev8 & Set up parameters for MREV8 pulse sequence (M) \\
mrfb & Set the filter bandwidths for multiple receivers (P) \\
mrgain & Set the gain for multiple receivers (P) \\
mstat & Display memory usage statistics (C) \\
mstring & Menu string (P) \\
mv & Move and/or rename a file (C) \\
mxconst & Maximum scaling constant (P)
\end{tabular}

\section*{maclibpath Path to user's macro directory (P)}

Description: Contains an absolute path to a user's macro files directory. If maclibpath exists for a user, it must be defined in the global parameter file for the user. Enter the command create('maclibpath','string','global') to create maclibpath.

See also: User Programming
\begin{tabular}{lll} 
Related: & create \\
exists
\end{tabular}\(\quad\)\begin{tabular}{l} 
Create new parameter in a parameter tree (C) \\
Determine if a parameter, file, or macro exists (C)
\end{tabular}

\section*{macro Macro name ( P )}

Description: A string parameter, available in each experiment, similar to the n1, n2, and n3 parameters. Certain macros, such as h1p, need to know which macro invoked them. This parameter is used to pass that information.
\begin{tabular}{lll} 
See also: & User Programming \\
Related: & h1p & Process simple proton spectra from h1 macro (M) \\
& \(\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3\) & Name storage for macros (P)
\end{tabular}
macrocat Display a user macro file in text window (C)
Syntax: macrocat(file1<,file2><, ...>)
Description: Displays one or more user macro files in the text window.
Arguments: file1, file2, . . . are the names of macros in the user macro library.
Examples: macrocat('build')
macrocat('dan','george')
See also: User Programming
Related: macrodir List user macros (C)
macrosyscat Display a system macro file in text window (C)
macrocp Copy a user macro file (C)
Syntax: macrocp(from_file,to_file)

Description: Makes a copy of the existing user macro file and places the copy in the user's macro library. Using macrocp to make a backup copy is the recommended procedure to modify a macro but still be able to revert to the previous version if you are unsure about the modification. macrocp can also be useful for writing a new macro that is very similar to an existing macro.
Arguments: from_file is the name of an existing user macro file to be copied. The file must be in the user's macro library.
to_file is the file name to be given to the copy. This name must be different from the name of the original macro.
Examples: macrocp('dan','dan.old')
See also: User Programming
Related: macrocat Display a user macro file in text window (C)
macrodir List user macros (C)
macrosyscp Copy a system macro to become a user macro (C)

\section*{macrodir List user macro files (C)}

Description: Lists the names of user macro files in the user's macro library.
See also: User Programming
Related: macrosysdir Lists system macros (C)

Edit a macro with user-selectable editor (M)
Syntax: macroedit(file)
Description: Opens a MAGICAL macro file from a user's personal macro library for editing (if you want to edit a system macro, copy it to a personal library and then use macroedit).

The default editor is vi. To select another editor, first set UNIX environmental variable vnmreditor to the name of the editor; that is, in the .login file, change the line
setenv vnmreditor old_ed
to become
setenv vnmreditor new_ed (e.g., setenv vnmreditor emacs).
Second, make sure a script with the prefix vnmr_followed by the name of the editor is placed in the bin subdirectory of the VnmrJ system directory (e.g., vnmr_emacs).
The script file makes adjustments for the type of graphic interface in use. Scripts provided in the software include \(v n m r\) _vi and vnmr_textedit. To create other scripts, refer to the vnmr_vi script for non-window editor interfaces or refer to vnmr_textedit for window-based editor interfaces.
Arguments: file is the name of the macro file you wish to edit.
Examples: macroedit('pa')
See also: User Programming
Related: paramedit Edit a parameter and its attributes with user-selected editor (C)
paramvi Edit a parameter and its attributes with \(v i\) editor (M)
edit Edit a file with user-selectable editor (C)
macrovi Edit a user macro with vi editor (M)
menuvi Edit a menu with the vi editor (M)
textvi Edit text file of current experiment with vi editor (M)

\section*{macrold Load a macro into memory (C) \\ Syntax: macrold(file)<:dummy>}

Description: Loads a macro, user or system, into memory. If the macro already exists in memory, it is overwritten by the new macro. Loading a macro into memory increases the execution speed of the macro. The trade-off is that the macro uses memory. The mstat command displays macros that have been loaded into memory. One or more individual macros, or all the macros loaded in memory, can be removed from memory with the purge command.
If a macro already loaded into memory is edited using macrovi or macroedit, the changed macro automatically is loaded by those macros. This overwrites the previous macro. However, if a macro is edited or created some other way (with macrocp perhaps), the changed version is not automatically loaded. If the macro already exists in memory, the previous version executes unless the user runs macrold.

Arguments: file is the name of the macro file to be loaded into memory. For loading macros, the same search path is used as when deciding which macro to execute. That is, the user's private maclib directory is searched first, then a directory specified by maclibpath, and finally the system maclib. If an absolute path is supplied as the file argument, that macro is loaded. This allows macros not in a maclib to be loaded and executed from VnmrJ.
dummy is any throwaway variable. Requesting a return value suppresses the message in the status window (line 3 ) that the macro is loaded.
Examples: macrold('pa')
macrold('_sw'): \$noline3
See also: User Programming
Related: maclibpath Path to user's macro directory (P)
macrocp Copy a user macro file (C)
macroedit Edit a macro with user-selectable editor (M)
macrovi Edit a user macro with the vi text editor (M)
mstat Display memory usage statistics (C)
purge Remove macros from memory (C)
macrorm \(\quad\) Remove a user macro (C)
Syntax: macrorm(file)
Description: Removes a user macro from the user's macro directory. If the macro has already been loaded in memory, it remains in memory until a new macro of the same name is loaded or the program exits.
Arguments: file is the name of the user macro to be removed.
\begin{tabular}{cll} 
Examples: & macrorm ('pa') \\
See also: & User Programming \\
Related: & delcom & Delete a user macro (M) \\
& macrodir & List user macros (C) \\
& macrosysrm & Remove a system macro (C) \\
& purge & Remove all macros from memory (C)
\end{tabular}
macrosyscat Display a system macro file in text window (C)
Syntax: macrosyscat(file1<,file2><,...>)
Description: Displays one or more system macro files in the text window.
Arguments: file1, file2, ... are names of macros in the system macro library.
```

Examples: macrosyscat('build')
macrosyscat('dan','george')
See also: User Programming
Related: macrocat Display a user macro file in text window (C)
macrosysdir Lists system macros (C)
macrosyscp Copy a system macro to become a user macro (C)
Syntax: macrosyscp(from_file,to_file)
Description: Makes a copy of the existing system macro file and places the copy in the user's macro library. This is the recommended way to modify a system macro for personal use.
Arguments: from_file is the name of an existing system macro file to be copied. The file must be in the system macro library.
to_file is the file name to be given to the copy. In this case, the name of the copied macro can be the same as the original macro. In many cases, it is the same, allowing the user to have a personal macro of the same name as the system macro but which will override the system macro.
Examples: macrosyscp('pa','pa')
macrosyscp('pa','mypa')
See also: User Programming
Related: macrocp Copy a user macro file (C)
macrosyscat Display a system macro file in text window (C)
macrosysdir Lists system macros (C)

```

\section*{macrosysdir List system macros (C)}
```

Description: Lists the names of system macros in the system macro library.
See also: User Programming
Related: macrodir List user macros (C)
macrosysrm Remove a system macro (C)
Syntax: macrosysrm(file)
Description: Removes a system macro file from the system macro directory. If the macro has already been loaded in memory, it remains in memory until a new macro of the same name is loaded or the program exits.
Arguments: file is the name of the system macro file to be removed.
Examples: macrosysrm('pa')
See also: User Programming
Related: macrorm Remove a user macro (C)
macrosysdir Lists system macros (C)
purge Remove all macros from memory (C)
macrovi \quad Edit a user macro with the vi text editor (M)
Syntax: macrovi(file)
Description: Initiates creating a new user macro or modifying an existing user macro using the UNIX vi text editor. On the Sun workstation, a pop-up window contains the edit. On the GraphOn, the edit is done on the entire terminal. To edit a system

```
macro, first copy the macro to a personal library and then edit it using macroedit or macrovi.

Arguments: file is the name of an existing user's macro to be edited or the name of a new user's macro to be created.

Examples: macrovi('pa')
See also: User Programming
Related: macroedit Edit a macro with a user-selectable editor (C)
vi \(\quad\) Edit text file with vi text editor (C)

\section*{make3dcoef Make a 3D coefficients file from 2D coefficients (M)}

Syntax: make3dcoef<('t1t2'|'t2t1') >
Description: Makes a 3D coefficients file from 2D coefficients and writes the file in the path stored by curexp. 2D coefficients are supplied as strings in the parameters f2coef and \(f 1\) coef. This macro is capable of handling 3D data collected with any number of data sets (e.g., TPPI, Hypercomplex, Rance SE, Kay SE, and phase-sensitive gradient in one or both dimensions). make3dcoef is called by the ft 3 d macro.

The 2D coefficients are supplied as strings in f1coef and \(f 2\) coef. These coefficients are the same as found by processing with wft2d (2dcoefs). Note that wft2da (for States-Hypercomplex method) is equivalent to \(w f t 2 d(1,0,0,0,0,0,-1,0)\), and that wft2d (for absolute-value mode) is equivalent to \(w f t 2 d(1,0,0,-1)\).
Coefficients are separated by spaces and not commas. For example, if a 3D data set collected by the States-Hypercomplex method in both ni and ni2 dimensions, f1coef='100000-10' and f2coef='100000-10'. And if a 3D data set collected in absolute-value mode in both ni and ni2 dimensions, f1coef='100-1' and f2coef='100-1'.
The flcoef and f2coef parameters are created by the par3d macro. Execution of make 3 dcoef when \(f 1\) coef and f 2 coef have no value or inconsistent values causes the macro to abort, which enables the user to enter these values and reexecute the macro. For example, the value of \(f 1\) coef when the F1 dimension can be processed with wft2da is '100000-10'. The value of f 2 coef when the F 2 dimension can be processed with wft2d ( \(1,0,1,0,0,-1,0,1\) ) is '10100-101'.
The parameters \(f 1 c o e f\) and \(£ 2 \mathrm{coef}\) must be 2 D coefficients that give proper ni and ni 2 first planes with the same rp (assuming 1 p is 0 by using calfa) values. For example, processing the phase-sensitive gradient dimension should not be done with 10010110 and applying \(45^{\circ}\) phase shifts to \(r p\), but with \(1010010-1\), or its variant, that gives the same rp value as the other dimension. This also applies to Rance-type or Kay-type sensitivity-enhanced dimensions.
Note that sensitivity-enhanced sequences (gradient or otherwise) can be processed two different ways to give "orthogonal" data sets. The coefficients must be picked so that they have the same rp as the other dimension.
This macro can also handle coefficients that are not 1 s or 0 s . For example, if processing requires that a data set contributes to the interferogram after a \(30^{\circ}\) phase shift, \(\cos (30)\) and \(\sin (30)\) can be selected as the real and imaginary contributions, respectively, during the construction of the interferogram.
Arguments: 't1t2' means array='phase, phase 2 ' in simple hypercomplex data sets. It means array='t1related','t2related' with multiple sets in general.

\footnotetext{
't2t1' means array='phase2, phase' in simple hypercomplex data sets. It means array='t2related','t1related' with multiple sets in general.
If no argument is used and if array= 'phase, phase 2 ' or array= 'phase2, phase, the macro automatically decides on 't1t2' or 't2t1', respectively.
See also: VnmrJ Liquids NMR
array \(\quad\) Parameter order and precedence ( P )
calfa Recalculate alfa so that first-order phase is zero (M)
curexp \(\quad\) Current experiment directory ( P )
f1coef Coefficient to construct F1 interferogram (P)
f2coef Coefficient to construct F2 interferogram (P)
ft3d Perform a 3D Fourier transform on a 3D FID data set (M)
lp First-order phase in directly detected dimension (P)
ni \(\quad\) Number of increments in 1st indirectly detected dimension ( P )
ni2 Number of increments in 2nd indirectly detected dimension (P)
ntype3d Specify whether \(f_{1}\) or \(f_{2}\) display expected to be N-type (P)
rp Zero-order phase in directly detected dimension (P)
wft2d Weight and Fourier transform 2D data (C)
wft2da Weight and Fourier transform phase-sensitive data (M)
}

Related:

\section*{makedosyparamsCreate parameters for DOSY processing (M)}

Syntax: makedosyparams (dosytimecubed,dosyfrq)
Description: This macro is automatically called by the Dbppste, DgcsteSL, Doneshot, Dbppsteinept, Dgcstecosy, and Dgcstehmqc sequences to create the parameters dosyfrq, dosygamma, and dosytimecubed, which are necessary for the dosy analysis. Do not manually run makedosyparams.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dosy & Process DOSY experiments (M) \\
dosyfrq & Larmor frequency of phase encoded nucleus in DOSY (P) \\
dosygamma & Gyromagnetic constant of phase encoded nucleus in DOSY (P) \\
& dosytimecubed & Gyromagnetic constant of phase encoded nucleus in DOSY (P)
\end{tabular}
makefid Make a FID element using numeric text input (C)
Syntax: makefid(file<,element_number<,format>)
Description: Creates FID files that can be used to introduce computed data into an experiment. The number of points comes from the number of numeric values read from the input file. If the current experiment already contains a FID, you will not be able to change either the format or the number of points from that present in the FID file. Use rm (curexp+'/acqfil/fid') to remove the FID.

The makefid command does not look at parameter values when establishing the format of the data or the number of points in an element. Thus, if the FID file is not present, it is possible for makefid to write a FID file with a header that does not match the value of \(d p\) or \(n p\). Because the active value is in the processed tree, you need to use the setvalue command if any changes are required.
Arguments: file is the name of the input file. It contains numeric values, two per line. The first value is assigned to the X (or real) channel; the second value on the line is assigned to the Y (or imaginary) channel.
element_number is the number of the element or FID and is any integer larger than 0 . The default is the first element or FID. If the FID element already exists in the FID file, the program overwrites the old data.
format is a character string with the precision of the resulting FID file and can be specified by one of the following strings:
\[
\begin{array}{ll}
\text { 'dp=n' } & \text { single-precision (16-bit) data } \\
\text { 'dp=y' } & \begin{array}{l}
\text { double-precision (32-bit) data } \\
\text { '16-bit ' }
\end{array} \\
\text { single-precision (16-bit) data }
\end{array}
\]

If an FID file exists, makefid uses the same format string for precision; otherwise, the default is double-precision (32-bit) data.
element_number and format arguments can be entered in any order.
Examples: makfid('fid.in',2,'32-bit')
See also: VnmrJ Liquids NMR; User Programming
Related:
\begin{tabular}{ll}
cp & Copy a file (C) \\
curexp & Current experiment directory \\
dp & Double precision (P) \\
mv & Move and/or rename a file (C) \\
np & Number of data points (P) \\
rm & Delete file (C) \\
setvalue & Set value of any parameter in a tree (C) \\
writefid & Write numeric text file using a FID element (C)
\end{tabular}

\section*{makephf Transform and save images as phasefiles (M)}

Applicability: Systems with imaging capabilities.
Description: Transforms and saves images as phasefiles.
See also: VnmrJ Imaging NMR
Related: imcalc Calculate 2D phasefiles (M,U)
imfit \(\quad\) Fit arrayed imaging data to \(T_{1}\) or \(T_{2}\) exponential data (M,U)

\section*{makeslice \(\quad\) Synthesize 2D projection of 3D DOSY experiment (C)}

Syntax: makeslice(<option>,lowerlimit,upperlimit)
Arguments: option is either 'i' or 's'.
' i' includes the "tails" of diffusion peaks that lie outside the range between lowerlimit and upperlimit. The default is 'i'.
's' only includes the integration peaks whose diffusion coefficient lies between the specified limits.
lowerlimit is the lower diffusion limit (in units of \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\) ) to be displayed.
upperlimit is the upper diffusion limit (in units of \(10^{-10} \mathrm{~m}^{2} / \mathrm{s}\) ) to be displayed.
Description: Synthesizes an integral projection between specified diffusion limits of a 3D DOSY spectrum onto the frequency-frequency plane. makeslice requires the first 2D increment of the 3D DOSY data to have been transformed.

See also: VnmrJ Liquids NMR
\(\begin{aligned} \text { Related: } & \text { dosy } \\ & \text { showoriginal }\end{aligned}\)
Process DOSY experiments (M)
Restore first 2D spectrum in 3D DOSY spectrum (M)
```

man Display online description of command or macro (M)
Syntax: man(file)
Description: Displays in the text window a description of commands and system macros
from files in the directory /vnmr/manual.
Arguments: file is the name of a command or system macro in /vnmr/manual.
Examples: man('mark')
See also: VnmrJ Liquids NMR; User Programming
Related: manvi Edit online description of a command or macro (M)
manualpath Path to user's manual directory (P)
managedb Update user files (U)
Syntax: managedb update
Description: Updates VnmrJ database for the Locator.
See also: VnmrJ Liquids NMR
manualpath Path to user's manual directory (P)
Description: Contains the absolute path to a user's directory of VnmrJ manual entries. If
manualpath exists for a user, it must be defined in the user's global parameter
file. Enter create('manualpath','string','global') to create
the manualpath parameter.
See also: User Programming
Related: man Display online description of a command or macro (M)
manvi Edit online description of a command or macro (M)
Syntax: manvi(file)
Description: Enables editing the online description of commands and system macros stored
in the directory /vnmr/manual. You must have write permission to this
directory in order to edit the files.
Arguments: file is the name of a command or system macro in /vnmr/manual.
Examples: manvi('mark')
See also: User Programming
Related: man Display online description of command or macro (M)
mapwin List of experiment numbers (P)
Description: Arrayed global parameter that maintains a list of experiment numbers for the
window panes in the VnmrJ graphics window.
Related: curwin Current window (P)
fontselect Open FontSelect window (C)
jwin Activate current window (M)
setgrid Activate selected window (M)
setwin Activate selected window (C)
mark Determine intensity of spectrum at a point (C)
Syntax: (1) mark<(f1_position)><:intensity>

```
(2) mark<(left_edge, region_width) ><:intensity,
integral>
(3) mark<(f1_position,f2_position)><:intensity>
(4) mark<(f1_start,f1_end,f2_start,f2_end) > <:intensity,integral,c1,c2>
(5) mark<('trace', <options>) ><:intensity,integral, c1, c2>
(6) mark ('reset')

Description: Find the intensity of a spectrum at a point. Either 1D or 2D operations can be performed in the cursor or box mode for a total of four separate functions: 1D operations in cursor mode (syntax 1), 1D operations in box mode (syntax 2), 2D operations in cursor mode (syntax 3) and 2D operations in box mode (syntax 4).

In the cursor mode, the intensity at a particular point is found. In the box mode, the integral over a region is calculated. The displayed integral is scaled in the same way as output from dli is scaled; that is, by the ins and insref parameters. For 2D operations, this is the volume integral and the volume is scaled by ins 2 and ins2ref. In addition, the mark command in the box mode finds the maximum intensity and the coordinate(s) of the maximum intensity.

The mark command requires that transformed data be present in the current experiment. If required, it recomputes the phase file from the complex data (i.e., it rephases the data if required); however, the mark command requires parameters from the command line if no data is displayed (i.e., if ds or dconi has not been executed).
Note that 2D operations require that 2D data be present. This not only means that ni must be larger than 1 , but also that the data was transformed using \(f t 1 d, f t 2 d\) or an equivalent (and not \(f t\) or its equivalents).
The mark command, as well as the MARK button of ds, writes output to a file in the current experiment. For 1D operations, the file is named mark1d.out; for 2D operations, it is mark2d. out. If this file already exits, VnmrJ appends output from the current mark operation to the end of the file. (Older versions of VnmrJ used ds.out and dconi. out as files for output from the MARK button). Either file can be read by other programs at any time between operations.
The following criteria establish the exact function. The command checks them in the following order until it determines the exact function:
1. Number of numeric parameters.
2. Number of return values called out.
3. Which display command (ds or dconi) was last used.
4. Nature of the data in the experiment.

The first two criteria only serve to distinguish between box mode and cursor mode. The nature of the data in the experiment and the last display command entered determines whether a 1 D or a 2 D operation is selected.
Arguments: f1_position defines the position, in Hz, along the \(f_{1}\) axis in the 1D and 2D cursor modes. The default is Cr (1D) or cri (2D).
left_edge defines the position of the left edge of the region, in Hz , to be integrated in 1D box mode. The default is cr.
region_width defines the width, in Hz , of the region, which extends to the right of left_edge, in 1D box mode. The default is delta.
f2_position defines the position, in Hz , along the \(\mathrm{f}_{2}\) axis in the 2 D cursor mode. The default is deltal.
f1_start and \(f 1\) _end define region along the \(f_{1}\) axis in the 2 D box mode.
f2_start and f2_end define region along the \(f_{2}\) axis in the 2 D box mode.
'trace ' is a keyword to select a 1D operation if 2D data is present. It must be either the first or the last argument (e.g., mark ('trace', 400) determines the intensity at 400 Hz in the current trace).
'reset' is a keyword to erase the output files from the mark command. No other argument can be used with this keyword. Use rename to rename the current mark output files (e.g., rename (curexp+'/mark1d.out', curexp+'/mark.16.01.89')
intensity is a return value set to the intensity of the spectrum at the point for either 1D or 2D operations (the maximum if cursor mode was selected).
integral is a return value set to the integral of the spectrum at the point. integral is not returned in the cursor mode.
\(\mathrm{c} 1, \mathrm{c} 2\) are return values set to the coordinates where the maximum intensity was found in 2D mode. c 1 and c 2 are not returned in the cursor mode.

Examples: 1D data sets:
```

mark(cr) cursor mode for 1D data
mark(cr,delta) box mode for 1D data

```

2 D data sets (2D mode): In this mode, the order of the arguments to mark is independent of the trace parameter.
```

mark(cr1,cr) cursor mode for 2D data
mark(crl,delta1,cr,delta) box mode for 2D data

```

2 D data sets (1D mode): In this mode, the selection of the arguments to mark is dependent on the trace parameter. If trace= 'f2', then \(c r\), delta, sp, or wp are appropriate. If trace= 'f1', then cr1, delta1, sp1, and wp1 are appropriate.
```

mark('trace',cr) cursor mode for selected 2D trace

```
mark('trace', cr1,delta1) box mode for selected 2D trace

Alternate: MARK button in the ds program.
See also: VnmrJ Liquids NMR; User Programming
\begin{tabular}{lll} 
Related: & cr & Cursor position in directly detected dimension (P) \\
& cri & Cursor position in 1st indirectly detected dimension (P) \\
& curexp & Current experiment directory (P) \\
dconi & Interactive 2D contour display (C) \\
& delta & Difference of two frequency cursors (P) \\
dli & Display list of integrals (C) \\
ds & Display a spectrum (C) \\
ft1d & Fourier transform along f dimension (C) \\
ft2d & Fourier transform 2D data (C) \\
ins & Integral normalization scale (P) \\
ins2 & 2D volume value (P) \\
insref & Fourier number scaled value of an integral (P) \\
ins2ref & Fourier number scaled volume of a peak (P) \\
mv & Move and/or rename a file (C) \\
ni & Number of increments in 1st indirectly detected dimension (P)
\end{tabular}
masvt Type of variable temperature system (P)
Applicability: All systems except MERCURYplus/Vx
Description: Identifies the type of VT system in use: the standard Oxford VT controller or the Oxford-Sorenson or solids VT controller system (used with the Varian VT

CP/MAS probe). masvt is a global parameter that is active on all of each user's experiments on a per user account basis. The current value of the parameter can be displayed by typing masvt?.

Note that the VT Controller option displayed by config must be set to Present for either VT controller system to be active. If masvt does not exist, it can be created with the command create ('masvt','string', 'global').

The new Highland VT controller is autosensing, making masvt superfluous for systems with this controller.

Values: ' Y ' indicates the solids VT system is in use.
' \(n\) ', any other value but ' \(n\) ' and ' \(y\) ', or if masvt does not exist, indicate that the Oxford Varian VT controller, if present, is in use.
See also: VnmrJ Installation and Administration
\begin{tabular}{lll} 
Related: & config \\
create \\
vttype & Display current configuration and possibly change values (M) \\
& Vreate a new parameter in a parameter tree (C) \\
&
\end{tabular}

\section*{maxattench1-4 Maximum limit for attenuator setting for rf channel 1-4 (P)}

Description: maxattench1, maxattench2, maxattench3, and maxattench4, are optional global parameters for the limiting the maximum attenuator settings for rf channel 1, channel 2, channel 3, and channel 4 (respectively) from pulse sequence statements and through tpwr / dpwr / . . settings on go command. If maxattench2 is present, the attenuator setting check will be carried out by SpinCAD and C psg. If the attenuator setting exceeds the limit set in maxattench2, psg aborts with error message. This command is only applicable for check during the go command.
See also: SpinCAD
maxpen Maximum number of pens to use ( \(P\) )
Description: Controls the maximum number of pens that will be used.
Values: 1 to the number of pens in the system plotter. If maxpen \(=x\) and the software attempts to use pen \(\mathrm{x}+\mathrm{y}\), it uses pen y instead.
See also: VnmrJ Liquids NMR
Related: pen Select a pen or color for drawing (C)
setpen \(\quad\) Set maximum number of HP plotter pens (M)
maxsw_loband Maximum spectral width of Input board (P)
Applicability: Systems with imaging capabilities.
Description: Stores the maximum spectral width of the Input board. The system value is set using the Max. Narrowband Width label in the CONFIG window (opened from config).
See also: VnmrJ Installation and Administration; VnmrJ Imaging NMR
Related: config Display current configuration and possibly change it (M)

\section*{md \\ Move display parameters between experiments (C)}

Syntax: md(<from_exp,>to_exp)
Description: Moves the saved display parameters from one experiment to another. These parameters must have been saved with the s command (e.g., s2).

Arguments: from_exp specifies the number of the experiment, 1 through 9 , from which the parameters are to be taken. The default is that the parameters are moved from the currently active experiment.
to_exp specifies to which experiment the parameters are to be moved.
Examples: md(4)
md \((2,3)\)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & mf & Move FIDs between experiments (C) \\
& mp & Move parameters between experiments (C) \\
s & Save display parameters as a set (M)
\end{tabular}

\section*{menu \(\quad\) Change status of menu system (C)}

Syntax: (1) menu (menu_name)
(2) menu< ('off') >

Description: The VNMR menu system allows up to eight buttons to be active at a time, enabling the user to perform most actions with the mouse rather than typing in commands. All menus are stored in the library menulib in the system directory or in the user's menulib. See menuvi to change these menus.
If the menu system becomes deactivated for some reason, select the Menu On button in the Permanent Menu to reactivate it. Entering menu ('main') also works.
Arguments: menu_name is the name of the file controlling the menu (e.g., 'main'). Including this argument activates the menu system and displays the menu controlled by menu_name.
'off' is a keyword to turn off the menu system.
Examples: menu
menu('fitspec')
menu('off')
See also: User Programming
Related: menuvi Edit a menu with the vi text editor (M)
mlabel Menu label (P)
newmenu \(\quad\) Select a menu without immediate activation (C)

\section*{menulibpath Path to user's menu directory (P)}

Description: Contains an absolute path to a user's directory of Classic VNMR menu files. If menulibpath exists for a user, it must be defined in the user's global parameter file. To create menulibpath, enter the command create('menulibpath','string','global').

See also: User Programming
menuvi \(\quad\) Edit a menu with vi text editor (M)
Syntax: menuvi(menu)
Description: Edits a Classic VNMR menu file using the UNIX vi text editor. On the Sun workstation, a pop-up window contains the edit. On the GraphOn, the edit is done on the entire terminal.

Arguments: menu is the name of file controlling a menu.
Examples: menuvi('display_1D')

\section*{See also: User Programming}
\begin{tabular}{lll} 
Related: & menu & Change status of menu system (C) \\
& newmenu & Select a menu without immediate activation (C) \\
& vi & Edit text file with vi text editor (C)
\end{tabular}
method Autoshim method (P)
Description: Selects the method for automatic shimming. Refer to the manual VnmrJ Liquids \(N M R\) for information on how to write or alter methods.

Values: Name of file in the /vnmr/shimmethods library for one of the defined shim methods in the system. To display all available methods, enter ls ( \(/\) /vnmr/ shimmethods'). Standard methods include 'z1z2' (selects shimming of the Z 1 and Z 2 gradients) and 'allzs' (selects shimming all spinning gradients, Z1 to Z4 or Z5, depending on the magnet type). Shim methods can also be stored in a user's shimmethods directory (e.g., /home/vnmr1/ vnmrsys/shimmethods).

See also: VnmrJ Liquids NMR
Related: \(\quad\) ls \(\quad\) List files in current directory (C)
newshm Interactively create a shim method with options (M)
stdshm Interactively create a shim method (M)
\(\mathrm{mf} \quad\) Move FIDs between experiments (C)
Syntax: mf(<from_exp,>to_exp)
Description: Moves the last acquired FID, as well as its associated parameters, from one experiment to another. The text, the processed acquisition parameters and the current display and processing parameters are also moved to the specified experiment.

Arguments: from_exp specifies number of the experiment from which the FID is to be taken. The default is the FID is moved from the currently active experiment.
to_exp specifies to which experiment the FID is to be moved.
Examples: mf(4)
mf \((3,2)\)
See also: VnmrJ Liquids NMR
Related: md Move display parameters between experiments (C)
\(\mathrm{mp} \quad\) Move parameters between experiments (C)
mfblk Copy FID block (C)
Syntax: mfblk(<src_expno,>src_blk_no,dest_expno,dest_blk_no)
Description: Copies data from a source FID block specified by src_blk_no to a destination FID block specified by dest_expno and dest_blk_no, using memory-mapped input and output.
mfblk searches for the source and destination FID file in the directory \$vnmruser/expN/acqfil, where \(N\) is the requested experiment number or the current experiment number. If the FID file is not open, mfblk opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and \(\mathrm{mfclose} \mathrm{can} \mathrm{significantly} \mathrm{speed} \mathrm{up} \mathrm{the} \mathrm{data} \mathrm{reformatting} \mathrm{process}\).
mfblk can also be used to append blocks of data to a FID file by specifying that the dest_blk_no is greater than the number of blocks in a file.

Be aware that mfblk can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of VnmrJ commands before running mfblk:
```

cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

```

Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
src_blk_no specifies the source block of data to be copied. Block numbers start at 1 and run from 1 to the number of blocks in a file.
dest_expno specifies the experiment number of the destination FID file. dest_blk_no specifies the destination block to send the copied data.
Examples: mfblk \((1,2,1)\) copies current experiment, block 1 to \(\exp 2\), block 1 . \(\operatorname{mfblk}(3,2,6,2)\) copies \(\exp 2\), block 2 to \(\exp 6\), block 2 .
See also: User Programming
Related: mfclose Memory map close FID file (C)
mfdata Move FID data (C)
mfopen Memory map open FID file (C)
mftrace Move FID trace (C)

\section*{mfclose Close memory map FID (C)}

Description: Closes experiment source and destination FID files that have been explicitly opened with mfopen.
See also: User Programming
\begin{tabular}{lll} 
Related: & mfblk & Move FID block (C) \\
& mfdata & Move FID data (C) \\
& mfopen & Memory map open FID file (C) \\
& mftrace & Move FID trace (C) \\
& rfblk & Reverse FID block (C) \\
& rfdata & Reverse FID data (C) \\
& rftrace & Reverse FID trace (C)
\end{tabular}
mfdata Move FID data (C)
Syntax: mfdata(<src_expno,>src_blk_no,src_start_loc, \} dest_expno, dest_blk_no,dest_stařt_loc, num_points)
Description: Copies data specified by src_start_loc from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_blk_no, and dest_start_lo, using memory-mapped input and output. The data point locations and the num_points to be copied are specified by data points corresponding to the np parameter, not bytes or complex points.
mfdata searches for the source and destination FID file in th directory \(\$ v n m r u s e r / \operatorname{expN} / a c q f i l\), where \(N\) is the requested experiment number or the current experiment number. If the FID file is not open, mfdata opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
Be aware that mfdata can modify data returned to an experiment with the \(r t\) command. To avoid modification, enter the following sequence of VnmrJ commands before running mfdata:
```

cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

```

Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
src_blk_no specifies the source block of data to be copied. Block numbers start at 1 and run from 1 to the number of blocks in a file.
src_start_loc specifies the starting data location within the specified block to copy the data. Data locations start from 0 and are specified as data points corresponding to the np parameter.
dest_expno specifies the experiment number of the destination FID file.
dest_blk_no specifies the destination block to send the copied data.
dest_start_loc specifies the starting data destination location within the specified block to send the copied data.
Examples: mfdata \((1,0,2,1,(n v-1) * n p, n p)\) copies \(n p\) points of data from the starting location 0 of block 1 of the current experiment to the data location (nv-1) *np of block 1 of experiment 2.
See also: User Programming
Related: mfblk Move FID block (C)
mfclose Memory map close FID file (C)
mfdata Move FID data (C)
mfopen Memory map open FID file (C)
mftrace Move FID trace (C)
rfblk Reverse FID block (C)
rftrace Reverse FID trace (C)
mfopen Memory map open FID file (C)
Syntax: mfopen<(<src_expno,>dest_expno) >
Description: Explicitly opens experiment source and destination FID files for using memorymapped input and output. Opening a file explicitly can significantly speed up the data reformatting process.
mfopen searches for the FID file to be opened in the directory \$vnmruser/ \(\operatorname{expN} / a c q f i l\), where \(N\) is the requested experiment number or the current experiment number. Without arguments, mfopen assumes the source and destination files are the same and are in the current experiment.
After a file is open, the data reformatting commands \(m f b l k, m f d a t a\), mftrace, rfiblk, rfdata, and rftrace can be used for moving around data. The mfclose must be used to close the file when data reformatting has been completed.
Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
dest_expno specifies the experiment number of the destination FID file.The default is the FID file of the current experiment.
If only one argument is provided, mfopen uses that as the experiment number of the destination FID file and assumes the source is the FID file of the current experiment.
Examples: mfopen
mfopen (3)
mfopen (1,2)

See also: User Programming
```

Related: mfblk Move FID block (C)
mfclose Memory map close FID file (C)
mfdata Move FID data (C)
mftrace Move FID trace (C)
rfblk Reverse FID block (C)
rfdata Reverse FID data (C)
rftrace Reverse FID trace (C)
mftrace Move FID trace (C)
Syntax: mftrace(<src_expno,>src_blk_no,src_trace_no, \
dest_expno,dest_blk_no,dest_trace_no)

```

Description: Copies FID traces specified by src_trace_no from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_blk_no, and dest_trace_no, using memory-mapped input and output. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
 \(\$ v n m r u s e r / \operatorname{expN} /\) acqfil, where \(N\) is the requested experiment number or the current experiment number. If the FID file is not open, mftrace opens the file, copies the data, and closes the file.
mftrace cannot be used to append data to a FID file. Its purpose is for moving around data.

Be aware that mftrace can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of VnmrJ commands before running mftrace:
```

cp (curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp', curexp+'/acqfil/fid')

```

Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
src_blk_no specifies the source block of data to be copied. Block numbers start at 1 and run to the number of blocks in a file.
src_trace no specifies the source trace of data within the specified block to be copied. Trace numbers run from 1 to number of traces in a file.
dest_expno specifies the experiment number of the destination FID file.
dest_blk_no specifies the destination block to send the copied data.
src_trace_no specifies the destination trace of data within the specified block to be copied. Trace numbers run from 1 to the number of traces in a file.
Examples: mftrace ( \(1,1,2,1, n v\) ) copies trace 1 from block 1 of the current experiment to trace nv of block 1 of experiment 2 .

See also: User Programming
\begin{tabular}{rll} 
Related: & mfblk & Move FID block (C) \\
& \(m f c l o s e\) & Memory map close FID file (C) \\
& mfdata & Move FID data (C) \\
& mfopen & Memory map open FID file (C) \\
& rftrace & Reverse FID trace (C) \\
& rfblk & Reverse FID block (C) \\
& rfdata & Reverse FID data (C)
\end{tabular}

\section*{minsw \(\quad\) Reduce spectral width to minimum required (M)}

Description: Searches the spectrum for peaks, sets new limits accordingly, and then calls movesw to calculate a new transmitter offset tof and spectral width sw.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{ll} 
movesw \\
movetof & Move spectral window according to cursors (M) \\
& Move transmitter offset (M) \\
& tof
\end{tabular} & Spectral width in directly detected dimension (P) \\
& Frequency offset for transmitter offset (P)
\end{tabular}
mkdir \(\quad\) Create new directory (C)
Syntax: mkdir(directory)
Description: Creates a new UNIX directory. The function of the VnmrJ mkdir command is similar to the UNIX mkdir command.

Arguments: directory is the name of the new directory to be created.
Examples: mkdir('tests')
mkdir('/home/george')
See also: VnmrJ Liquids NMR
Related: rmdir Remove directory (C)

\section*{mlabel Menu label (P)}

Description: Stores the label for a menu button. Usually this parameter is arrayed, with one label for each button in the menu. This parameter is stored in a user's global file and is set whenever a menu is called.

See also: User Programming
Related: menu Change status of menu system (C)
mstring Menu string (P)
move \(\quad\) Move to an absolute location to start a line (C)
Syntax: move(<'graphics'|'plotter'>,x,y)
Description: Moves the start of a line to an absolute location with the coordinates given as an argument. move is part of a line drawing capability that includes the pen and draw commands. pen selects the pen number of the plotter (' pen1 ', 'pen2 ', etc.) or the color ('red', 'green', 'blue', etc.). move sets the point from which to start drawing the line. draw draws a line from that point to the point given by the draw arguments. Refer to the description of the draw command for examples of using the line drawing capability.

Arguments: 'graphics' and 'plotter' are keywords selecting output to the graphics window or a plotter device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands, remaining unchanged until different output is specified.
\(x, y\) are the absolute coordinates, in mm, of a point to move to. The range of \(x\) is 0 at the left edge of the chart and wamax at the right edge of the chart. The range of y is -20 at the bottom of the chart and wc 2 max at the top.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & draw & \begin{tabular}{l} 
Draw line from current location to another location (C) \\
gin \\
pen
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
wcmax & Maximum width of chart (P) \\
wc2 max & Maximum width of chart in second direction (P)
\end{tabular}
movedssw
Description:

Set downsampling parameters for selected spectral region (M)
Sets the parameters dslsfrq and downsamp to appropriate values for digital filtering and downsampling in a cursor-selected spectral region. To accomplish this, Fourier transform an oversampled data set, and then run the ds program. In the resulting spectral display, enclose the desired region with the cursors, and then run movedssw.

See also: VnmrJ Liquids NMR
Related: downsamp Downsampling factor applied after digital filtering (P)
ds Display a spectrum (C)
dslsfrq
Bandpass filter offset for downsampling (P)
moveossw
Description:

Set oversampling parameters for selected spectral region (M)
Sets the parameters oslsfrq and sw to appropriate values for oversampling and digital filtering in a cursor-selected spectral region. To accomplish this, acquire a data set without digital filtering, and then run the ds program. In the resulting spectral display, enclose the desired region with the cursors, and then run moveossw. The value of oversamp is manually set.
See also: VnmrJ Liquids NMR
Related: ds Display a spectrum (C)
oslsfrq Bandpass filter offset for oversampling (P)
oversamp Oversampling factor for acquisition (P)
sw

Spectral width in directly detected dimension (P)

\section*{movepro Move the imaging readout position (C)}

Applicability: Systems with imaging capabilities.
Description: Sets the readout position for an image or image projection to a point defined by the position of the cursor (the cr parameter).
movepro works with a 1D display (a projection or trace along F2) or 2D display, in either single cursor or box modes (only the position of the cursor in the F2 readout dimension is used; the position of the cursor in the F1 phaseencode dimension does not matter).
movepro determines the position of the cursor relative to the gradient origin and sets the parameter pro to this value, independent of image orientation. Because pro is measured in dimensional units like mm or cm , and the cursor position is stored internally in hertz, movepro works in Hz , accounting for any spectral referencing that may have been set, and converts to cm or mm to assign the value of pro.
To use movepro, display an image, image projection or trace, move the cursor to the position along the readout axis you desire to be at the center of the next image acquisition, and type movepro. This command has no effect on the value of tof (which is normally not used to define any positional information in imaging). Unlike movetof, the image or projection display will be unchanged, and no redisplay in "full" mode should be necessary.
To accurately center an image or projection, move the box cursors to the edges of the imaged object. Then use the macro split to place the cursor at the exact midpoint of the box, and type movepro.
```

 See also: VnmrJ Imaging NMR
 | Related: | cr | Cursor position in directly detected dimension (P) |
| ---: | :--- | :--- |
| lro | Field of view parameter for read out in $\mathrm{cm}(\mathrm{P})$ | |
| movetof | Move transmitter offset (M) | |
| pro | Position of image center on the readout axis (P) | |
| resto | NMR resonance offset frequency (P) | |
| tof | Frequency offset for observe transmitter (P) | |

```
```

movesw
Move spectral window according to cursors (M)
Syntax: movesw<(width)>
Description: Uses the parameters cr and delta to calculate a new transmitter offset tof
and a new spectral width sw. If referencing was used, it is also adjusted. The
movesw macro also sets sp and wp to display the spectral window.
Arguments: width specifies the spectral width sw. The default is to use a value calculated
from the parameter delta.
Examples: movesw
movesw(5000)
See also: VnmrJ Liquids NMR
Related: cr Cursor position in directly detected dimension (P)
delta Cursor difference in directly detected dimension (P)
minsw Reduce spectral width to minimum required (M)
movetof Move transmitter offset (M)
sp Start of plot (P)
sw Spectral width in directly detected dimension (P)
tof Frequency offset for observe transmitter (P)
wp Width of plot (P)
movetof Move transmitter offset (M)
Syntax: movetof<(frequency) >
Description: Moves the transmitter offset parameter tof so that the current cursor position, defined by cr , becomes the center of the spectrum. If referencing was used, movetof maintains the referencing.
Arguments: frequency specifies the transmitter frequency rather than using the cursor position to define the frequency. This provides a convenient method of moving the transmitter frequency outside the current spectral window.
See also: VnmrJ Liquids NMR
Related: Cr Cursor position in directly detected dimension (P)
minsw \quad Reduce spectral width to minimum required (M)
movesw Move spectral window according to cursors (M)
tof \quad Frequency offset for observe transmitter (P)
mp
Move parameters between experiments (C)
Syntax: mp (<from_exp, >to_exp)
Description: Moves text and the current display, processing, and acquisition parameters from one experiment to another. No FID is transferred.
Arguments: from_exp specifies the number of the experiment from which the parameters are to be taken; default is the parameters are moved from the currently active experiment.

```
    to_exp specifies to which experiment the parameters are to be moved.
    Examples: mp(4)
                mp \((2,3)\)
    See also: VnmrJ Liquids NMR
    Related: md Move display parameters between experiments (C)
    \(\mathrm{mf} \quad\) Move FIDs between experiments (C)
mqcosy \(\quad\) Set up parameters for MQCOSY pulse sequence (M)
    Applicability: All systems, except sequence not supplied with MERCURYplus/Vx.
        Syntax: mqcosy<(level)>
        Description: Sets up a multiple-quantum filtered COSY experiment.
        Arguments: level is the desired quantum level of filtration.
    Examples: mqcosy
                mqcosy (3)
            See also: VnmrJ Liquids NMR
mrev8 Set up parameters for MREV8 pulse sequence (M)
Applicability: Systems with a solids module. This sequence not supplied with MERCURYplus/ -Vx.
Description: Converts FLIPFLOP, BR24, or S2PUL parameter set into the MREV8 multiplepulse line narrowing sequence.
See also: User Guide: Solid-State NMR
\begin{tabular}{lll} 
Related: & br24 & Set up parameters for BR24 pulse sequence (M) \\
& cylmrev & Set up parameters for cycled MREV8 pulse sequence (M) \\
& flipflop & Set up parameters for FLIPFLOP pulse sequence (M) \\
& s2pul & Set up parameters for standard two-pulse sequence \((M)\)
\end{tabular}
\(\mathrm{mrfb} \quad\) Set the filter bandwidths for multiple receivers ( P )
Applicability: Systems with multiple receivers
Description: An array of \(£ \mathrm{f}\) settings to apply to individual receivers in a multiple receiver system. The first element applies to the first receiver, the second to the second receiver, and so on. If \(m r f b\) exists and is active, these settings override the setting specified by the \(£ b\) parameter; otherwise, \(f b\) is used as the filter bandwidth setting for all receivers. If there are fewer elements in mrfb than there are receivers, the remaining receivers are set to the \(f b\) value.
Note that some older multiple receiver systems do not have the hardware to provide individual receiver control. In that case, the filter setting for receiver 1 is used on receivers 1 and 2 and the setting for receiver 3 is used on receivers 3 and 4.
Also note that mrfb is not automatically set when sw is changed. Normally, you can leave \(m r f b\) inactive and let \(f b\) be used for all receivers.
Examples: \(\quad \mathrm{mr} f \mathrm{~b}=\mathrm{fb} / 3, \mathrm{fb} / 2\) sets the filter bandwidth of the first receiver to \(\mathrm{fb} / 3\), the second to \(£ b / 2\), and of the rest to \(£ b\).
Related: \(\mathrm{fb} \quad\) Filter bandwidth (P)
mrgain \(\quad\) Set the gain for multiple receivers ( \(P\) )
Applicability: Systems with multiple receivers
Description: An array of 'gain' settings to apply to individual receivers in a multiple receiver system. If it exists and is active, these settings override the setting specified by the 'gain' parameter; otherwise, 'gain' is used as the gain setting for all receivers.
Note that not all multiple receiver systems have the hardware set up to provide individual receiver control. In that case, the gain setting for receiver 1 is used on receivers 1 and 2 and the setting for receiver 3 is used on receivers 3 and 4 .
Examples: mrgain=30,40,20 sets the gains of receiver 1 to 30 , receiver 2 to 40 and receivers 3 and 4 to 20 .
Related: gain Receiver gain (P)
```

mstat Display memory usage statistics (C)
Syntax: mstat<(program_id)>

```
Description: Displays statistics on memory usage by programs that use the procedures allocateWithId and release.
Arguments: program_id is the program ID, usually the same name as the program. The default is to display all program IDs and associated memory statistics.
Examples: mstat
mstat('proc2d')
See also: User Programming

\section*{mstring Menu string (P)}
Description: Stores command strings to be executed when a VnmrJ menu button is clicked. Usually the mstring parameter is arrayed, with one string for each button in the menu. The string can be any string of commands that can otherwise appear in a macro or on the command line. This parameter is stored in a user's global file and is set whenever a menu is called.
See also: User Programming
Related: menu Change status of menu system (C)
mlabel Menu label (P)
mv
Move and/or rename a file (C)
Syntax: mv(from_file,to_file)
Description: Renames and/or moves a file or directory. mv functions the same as the command rename.
Arguments: from_file is the name of the file to be moved and/or renamed.
to_file is the new name of the file and/or the new location. If the
from_file argument has an extension such as.fid or .par, be sure the to_file argument has the same extension.
Examples: mv('/home/vnmrl/vnmrsys/seqlib/d2pul',
'/vnmr/seqlib/d2pul')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & copy & Copy a file (C) \\
& cp & Copy a file (C) \\
delete & Delete a file, parameter directory, or FID directory (C) \\
& rename & Move and/or rename a file (C) \\
& rm & Delete a file (C)
\end{tabular}

\section*{mxconst Maximum scaling constant (P)}

Description: Before the start of data acquisition, noise is sampled to determine the number of bits of noise present. This number is used to set the maximum number of scaling operations on the data that can occur (essentially relevant only if \(d p=\) ' \(n\) '). mxconst is used to adjust this amount of scaling.
Increasing mxconst to 1 , for example, permits additional scaling operations, allowing acquisition to proceed slightly longer in single-precision mode. Decreasing mxconst to -1 allows fewer scaling operations before reaching the message "maximum transients accumulated".

One special case exists. If mxconst is set to less than -90 and singleprecision acquisition is used \((d p=' n ')\), then scaling of the data is disabled. In this mode, reports of data overflowing the 16 bits is also disabled.
mxconst does not exist in standard parameter sets. If it does not exist, its value defaults to 0 . To modify mxconst, first create it by entering create ('mxconst', 'integer') and then enter the desired value.

\section*{CAUTION: Do not change mxconst unless you are fully aware of the} consequences.
See also: VnmrJ Liquids NMR
Related: create Create new parameter in a parameter tree (C)
dp Double precision (P)
\begin{tabular}{|c|c|}
\hline n1, n2, n3 & Name storage for macros (P) \\
\hline nactivercvrs & Return number of receivers currently active (M) \\
\hline nD & Application dimension (P) \\
\hline ne & Number of echoes to be acquired (P) \\
\hline newmenu & Select a menu without immediate activation (C) \\
\hline newshm & Interactively create a shim method with options (M) \\
\hline nextpl & Display the next 3D plane (M) \\
\hline nf & Number of FIDs (P) \\
\hline ni & Number of increments in 1st indirectly detected dimension (P) \\
\hline ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
\hline ni3 & Number of increments in 3rd indirectly detected dimension (P) \\
\hline niter & Number of iterations (P) \\
\hline nl & Position cursor at the nearest line (C) \\
\hline nli & Find integral values (C) \\
\hline nlivast & Produces a text file of integral regions without a sum region (M) \\
\hline nlivast2 & Produces a text file with normalized integral regions (M) \\
\hline nlivast3 & Produces a text file with normalized integral regions (M) \\
\hline nll & Find line frequencies and intensities (C) \\
\hline nm & Select normalized intensity mode (C) \\
\hline nm2d & Select Automatic 2D normalization (M) \\
\hline noDconi & Disable image planning (C) \\
\hline noedif & Convert parameters for NOE difference experiment (M) \\
\hline NOESY & Change parameters for NOESY experiment (M) \\
\hline Noesy & Convert the paramaeter to a NOESY experiement (M) \\
\hline noesy & Set up parameters for NOESY pulse sequence (M) \\
\hline NOESY1D & Change parameters for NOESY1D experiment (M) \\
\hline Noesyld & Convert the parameter set to a Noesyld experiment (M) \\
\hline noise & Measure noise level of FID (C) \\
\hline noisemult & Control noise multiplier for automatic 2D processing (M) \\
\hline noislm & Limit noise in spectrum (M) \\
\hline notebook & Notebook name (P) \\
\hline np & Number of data points (P) \\
\hline npoint & Number of points for fp peak search (P) \\
\hline nrecords & Determine number of lines in a file (M) \\
\hline ns & Number of slices to be acquired (P) \\
\hline nscans & Number of scout scan or real scan repetitions (P) \\
\hline nt & Number of transients (P) \\
\hline ntrig & Number of trigger signals to wait before acquisition (P) \\
\hline ntype3d & Specify whether \(\mathrm{f}_{1}\) or \(\mathrm{f}_{2}\) display expected to be N-type (P) \\
\hline numrevrs & Number of receivers in the system (P) \\
\hline numreg & Return the number of regions in a spectrum (C) \\
\hline numrfich & Number of rf channels (P) \\
\hline nv & Number of phase encode steps (P) \\
\hline
\end{tabular}

\section*{\(\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3 \quad\) Name storage for macros (P)}

Description: Stores arbitrary character strings for macros. Each experiment has these three string parameters available.
See also: User Programming
\begin{tabular}{lll} 
Related: & \begin{tabular}{ll} 
dgs \\
r1-r7
\end{tabular} & \begin{tabular}{l} 
Display group of special/automation parameters (M) \\
Real value storage for macros (P)
\end{tabular}
\end{tabular}
nactivercvrs Return number of receivers currently active (M)
Applicability: Systems with multiple receivers.
Description: Calculates and returns the number of receivers currently active, based on the values of the 'rcvrs' and 'numrcvrs' parameters.

Examples: nactivercvrs: \$nact sets '\$nact' to the number of currently active receivers.

Related: revrs Which receivers to use (P)
numrcvrs \(\quad\) Number of receivers in the system (P)

\section*{\(\mathrm{nD} \quad\) Application dimension (P)}

Applicability: Systems with the imaging capabilities.
Description: Defines the dimension of the experiment performed by the application code.
The value of \(n D\) is the number of FFT (fast Fourier transform) operations used to reconstruct the data or the number of independent k space coordinates encoded in the data. The nD, seqcon, plist, patlist, pwrlist, fliplist and sslist parameters configure a particular parameter set for an application sequence defined by the value of the seqfil parameter.
Values: \(1,2,3\), or 4 .
See also: VnmrJ Imaging NMR
Related: fliplist Standard flip angle list (P)
patlist Active pulse template parameter list (P)
plist Active pulse length parameter list (P)
pwrlist Active pulse power level parameter list (P)
seqcon Acquisition loop control (P)
seqfil Application object code name (P)
sslist \(\quad\) Conjugate gradient list ( P )
ne \(\quad\) Number of echoes to be acquired ( \(P\) )
Applicability: Systems with the imaging capabilities.
Description: Sets number of echoes to be acquired for multiecho sequences.
Values: 1 to desired number, in integer steps.
See also: VnmrJ Imaging NMR
Related: ns Number of slices to be acquired (P)
newmenu Select a menu without immediate activation (C)
Syntax: (1) newmenu (menu_name)
(2) newmenu: \$current_menu

Description: Selects a menu but does not activate it (syntax 1). This is most useful when picking which menu will be active when an interactive command exits. newmenu can also return the name of the currently active menu (syntax 2 ).
Arguments: menu_name is the name of the file controlling the menu selected. For example, the command string newmenu ('manipulate_1D') ds causes the menu controlled by manipulate_1D to be displayed when the Return button in the ds menu is selected.
\$current_menu returns the file name of the currently active menu.
Examples: newmenu('display_1D')
newmenu: \$name1
See also: User Programming
\begin{tabular}{lll} 
Related: & menu & Change status of menu system (C) \\
& menuvi & Edit a menu with the \(v i\) text editor (M)
\end{tabular}
newshm Interactively create a shim method with options (M)
Syntax: newshm
Description: Interactively creates a method string to be used in autoshimming of the magnetic field homogeneity. The string may consist of a series of shimming operations. The command dshim('method') describes method strings. Any text editor may be used to make and modify the strings.
newshm provides for either lock shimming or FID shimming, permitting the user to choose whichever is best. Lock shimming is much faster, but FID shimming is frequently much more effective in improving the field. With FID shimming, the FID evaluation range limits are requested. The full range is 0 to 100. Sensitivity to higher order gradients is greatly increased by setting the finish limit to about 5 or 10 with the start limit at 0 .
newshm begins by asking for the name of the user's new shim method. If the non-spin (transverse) controls are chosen for adjustment, the spinner is turned off; otherwise, it is turned on. If uncertain about the shim criteria, the "medium to medium" choice is suitable in most circumstances. The new method is found in curexp+'/.../shimmethods.
To shim after running newshm, type method= 'methodname ' and then enter shim or set the wshim parameter to shim before the start of acquisition. ' methodname ' is the name supplied to newshm. For more information on shimming, see the manual VnmrJ Liquids NMR.
Compared to stdshm, the newshm macro is more flexible and provides for a shimming time and FID evaluation limits supplied by the user. The primary difference between the macros is that stdshm provides for determining an estimated shimming time for the selected shim controls. When no time limit is supplied, autoshim continues until the exit criteria is met or the number of cycles reaches a limit.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
curexp \\
dshim
\end{tabular} & \begin{tabular}{l} 
Current experiment directory (P) \\
Display a shim method string (M)
\end{tabular} \\
method & Autoshim method (P) \\
shim & Submit an Autoshim experiment to acquisition (C) \\
& stdshm & Interactively create a shim method (M) \\
& wshim & Conditions when shimming is performed (P) \\
& vi & Edit text file with vi text editor (C)
\end{tabular}
```

nextpl Display the next 3D plane (M)
Applicability: All systems; however, although nextpl is available on MERCURYplus/Vx
systems, such systems can only process 3D data and cannot acquire 3D data.
Syntax: nextpl
Description: Displays the 2D color map of the next 3D plane in the set of planes defined by
the parameters plane and path3d. If nextpl immediately follows the
command dproj, nextpl results in the display of the first 3D plane within
that specified set and is therefore equivalent to the command dplane (1). For
example, if dplane (40) has just been executed, nextpl results in the
display of 3D plane 41 of that set. The nextpl macro is more efficient than
dplane or dproj because the 3D parameter set (procpar3d) is not loaded
into VnmrJ-it is assumed to have already been loaded by dplane or dproj,
for example.
See also: VnmrJ Liquids NMR
Related: dplane Display a 3D plane (M)
dproj Display a 3D plane projection (M)
dsplanes Display a series of 3D planes (M)
getplane Extract planes from a 3D spectral data set (M)
path3d Path to currently displayed 2D planes from a 3D data set (P)
plane Currently displayed 3D plane type (P)
plplanes Plot a series of 3D planes (M)
prevpl Display the previous 3D plane (M)
nf Number of FIDs (P)
Applicability: Systems with imaging capabilities.
Description: Number of FIDs acquired by explicit acquisition.
Values: Positive integer. For example, in the COSY-NOESY experiment, nf is 2.
See also: User Guide Imaging
Related: cf Current FID (P)
ni Number of increments in 1st indirectly detected dimension (P)
Description: Number of increments of the evolution time d2, and thus the number of FIDs that will comprise the first indirectly detected dimension of a multidimensional data set. To create parameters ni, phase, and sw1 to acquire a 2D data set in the current experiment, enter addpar ('2d').
Values: 8 is minimum; typical values range from 32 to 512. In microimaging, ni greater than 0 is the imaging mode and ni equal to 0 is the projection mode.
See also: VnmrJ Liquids NMR; VnmrJ Imaging NMR
Related: addpar Add selected parameters to the current experiment (M)
celem Completed FID elements (P)
d2 Incremented delay in 1st indirectly detected dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
Description: Number of increments of the evolution time d3, and thus the number of FIDs that will comprise the second indirectly detected dimension of a multidimensional data set. To create parameters d3, ni2, phase2, and sw2 to acquire a 3D data set in the current experiment, enter addpar ('3d').

```

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & addpar & Add selected parameters to the current experiment (M) \\
d3 & Incremented delay in 2nd indirectly detected dimension (P) \\
ni & Number of increments in 1st indirectly detected dimension (P) \\
par3d & Create 3D acquisition, processing, and display parameters (M) \\
phase2 & Phase selection for 3D acquisition (P) \\
sw2 & Spectral width in 2nd indirectly detected dimension (P)
\end{tabular}

\section*{ni3 Number of increments in 3rd indirectly detected dimension (P)}

Description: Number of increments of the evolution time d4, and thus the number of FIDs that will comprise the third indirectly detected dimension of a multidimensional data set. To create parameters d4, ni3, phase3. and sw3 to acquire a 4D data set in the current experiment, enter addpar ('4d').
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & addpar & Add selected parameters to the current experiment (M) \\
d4 & Incremented delay in 3rd indirectly detected dimension (P) \\
ni & Number of increments in 1st indirectly detected dimension (P) \\
ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
par4d & Create 4D acquisition parameters (M) \\
phase3 & Phase selection for 4D acquisition (P) \\
sw3 & Spectral width in 3rd indirectly detected dimension (P)
\end{tabular}

\section*{niter \(\quad\) Number of iterations ( P )}

Description: Sets the maximum number of iterations in an iterative simulation.
Values: 1 to 9999 . The value is initialized to 20 if the Set Params button is used in setting up spin simulation parameters.
See also: VnmrJ Liquids NMR
nl Position cursor at the nearest line (C)
Syntax: nl<:height<,frequency>>
Description: Moves the cursor to the nearest calculated line position.
Arguments: height is a return value set to the height of the line.
frequency is a return value set to the frequency of the line.
Examples: nl
nl:r1,r2
See also: VnmrJ Liquids \(N M R\)
nli \(\quad\) Find integral values (C)
Description: Equivalent to the dli command except that no screen display is produced. For a list of integrals, nli stores the reset points in the parameter lifrq and stores the amplitudes in the parameter liamp.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cz & Clear integral reset points (C) \\
& dli & Display list of integrals (C) \\
& dlni & Display list of normalized integrals (M) \\
& liamp & Amplitudes of integral reset points (P)
\end{tabular}
\begin{tabular}{ll} 
lifrq & Frequencies of integral reset points (P) \\
\(z\) & Add integral reset point at cursor position (C)
\end{tabular}
nlivast \(\quad\) Produces a text file of integral regions without a sum region (M)
Applicability: Systems with VAST accessory.
Syntax: nlivast(last)
Description: Using predefined integral regions from the spectra for each well, nlivast writes a text file, integ.out, containing the integrals of the regions. The file is written into the current experiment. Does not add an additional region that is the sum of all the defined regions for each well (see dlivast).
Arguments: last is the number of the last well. The default is 96 .
See also: VnmrJ Liquids NMR
nlivast2 Produces a text file with normalized integral regions (M)
Applicability: Systems with VAST accessory.
```

Syntax: nlivast(well)

```

Description: Using predefined integral regions from the spectra for each well, nlivast 2 writes a text file, integ.out, containing the integrals of the regions. The file is written into the current experiment. Integrals are normalized to the integral specified by the argument well. The macro nlivast 2 does not add an additional region that is the sum of all the defined regions for each well (see dlivast). All of the spectra are integrated.
Arguments: well is the number of the reference sample well. The default reference is well 96.

See also: VnmrJ Liquids NMR
nlivast3 Produces a text file with normalized integral regions (M)
Applicability: Systems with VAST accessory.
Syntax: nlivast(well)
Description: Using predefined integral regions from the spectra for each well, nlivast3 writes a text file, integ.out, containing the integrals of the regions. The file is written into the current experiment. Integrals are referenced to the integral specified by the argument well. The integral of spectrum from the sample specified by well is set to 1000 . The macro nlivast 3 does not add an additional region that is the sum of all the defined regions for each well (see dlivast). All of the spectra are integrated.
Arguments: well is the number of the reference sample well. Reference integral set to 1000. The default reference is well 96.

See also: VnmrJ Liquids NMR
nll Find line frequencies and intensities (C)
Syntax: nll<('pos'<, noise_mult>)><:number_lines,scale>
Description: Equivalent to the command dll except that the line listing is not displayed or printed. The results of this calculation are stored in llfrq and llamp. The frequencies are stored as Hz and are not referenced to rfl and rfp. Amplitudes are stored as the actual data point value; they are not scaled by vs.
Arguments: 'pos ' is a keyword that causes only positive lines to be listed.
noise_mult is a numerical value that determines the number of noise peaks listed for broad, noisy peak. The default is 3 . A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold \(t h\). Negative values of noise_mult are changed to 3 .
number_lines is a return argument with the number of lines in the line list.
scale is a return argument with a scaling factor for line amplitudes. This scaling factor accounts for vs and whether the lines are listed in absolute intensity mode or normalized mode.
Examples: nll:n1
nll('pos'):pn
nll(2.5), sc
See also: User Programming
\begin{tabular}{lll} 
Related: & dll & Display listed line frequencies and intensities (C) \\
& llamp \\
& llfrq & List of line amplitudes (P) \\
& List of line frequencies (P)
\end{tabular}
nm
Description: Selects the normalized intensity mode in which spectra are scaled so that the largest peak in the spectrum is vs mm high. The alternative is the absolute intensity mode (selected by the ai command) in which the scale is kept constant from spectrum to spectrum to allow comparison of peak heights from one spectrum to another. The modes are mutually exclusive (i.e., the system is always in either nm or ai mode). Enter aig? to show which mode is currently active.
See also: VnmrJ Liquids NMR
Related: ai Select absolute intensity mode (C)
aig Absolute intensity group (P)
vs \(\quad\) Vertical scale (P)
nm2d Select Automatic 2D normalization (M)
Syntax: nm2d<(noisemult) >
Description: Sets up parameters th and vs2d automatically for a 2D contour plot and color map display. nm2d measures the highest signal in the spectrum and sets vs 2 d so that the highest signal is in the range of the highest color level. It then calculates the noise threshold so that the number of points above the noise threshold is between \(10 \%\) and \(30 \%\) of all the points. At the same time, the difference between the mean value of all the points above the threshold (peak points) and the mean value of all the points under the threshold (noise points) is maximized. This noise threshold is then multiplied by the noise multiplier.
nm2d works both with absolute-value and phase-sensitive spectra. trace can be set to 'f1' or 'f2'.
Arguments: noisemult specifies the noise multiplier number that multiplies the noise threshold:
- For \({ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\) and \({ }^{31} \mathrm{P}\) (high dynamic range nuclei), and homonuclear spectra in general, the default value is 4 .
- For HMQC/HSQC type spectra, the default value is also 4 but noise multipliers of 3 to 5 are often more adequate.
- For HETCOR and 2D-INADEQUATE spectra, the default value is 2 .
- For "quick \& dirty" COSY spectra with lots of t 1 noise and other artifacts, a value of 8 and higher may be adequate for suppressing the artifacts.
- For 2D-INADEQUATE spectra, a value below 3 is appropriate to catch signals right above the noise level.
- If the multiplied noise threshold is below \(t h=1, \mathrm{vs} 2 \mathrm{~d}\) is scaled up; otherwise, th is increased to the desired level.
- Minimum value is 1.5 (if a lower value is entered, the value is set to 1.5 ).

Examples: nm2d
nm2d (3)
See also: VnmrJ Liquids NMR
Related: dconi Interactive 2D contour display (C)
noisemult Control noise multiplier for automatic 2D processing (M)
proc2d Process 2D spectra (M)
th Threshold (P)
trace \(\quad\) Mode for \(n\)-dimensional data display ( P )
vs2d Vertical scale for 2D displays (P)

\section*{noDconi Disable image planning (C)}

Applicability: Systems with imaging capabilities.
Examples: Disables image planning using the dconi display.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)
noedif \(\quad\) Convert parameters for NOE difference experiment (M)
Applicability: MERCURYplus/Vx systems only.
Description: Converts a \({ }^{1} \mathrm{H}\) parameter set to perform the NOE (Nuclear Overhauser Enhancement) difference experiment.

See also: VnmrJ Liquids NMR
Related: setup Set up parameters for basic experiments (M)
cyclenoe \(\quad\) Set up parameters for CYCLENOE pulse sequence (M)

NOESY Change parameters for NOESY experiment (M)
Description: Converts the current parameter set to a NOESY experiment.

Noesy \(\quad\) Convert the paramaeter to a NOESY experiement (M)
Description: Convert the paramaeter to a NOESY experiement.
noesy \(\quad\) Set up parameters for NOESY pulse sequence (M)
Description: Sets up parameters for the laboratory frame Overhauser experiment or the 2D exchange experiment.
See also: VnmrJ Liquids NMR
Related: foldt Fold COSY-like spectrum along diagonal axis (C)

\section*{NOESY1D Change parameters for NOESY1D experiment (M)}

Description: Converts the current parameter set to a NOESY1D (also known as DPFGSE-noe) experiment. A 1D proton spectrum is displayed to do peak selection.

Noesy1d Convert the parameter set to a Noesy1d experiment (M)
Description: Convert the parameter set to a Noesyld experiment.
See also: Proton(M) sel1d(M)
```

noise Measure noise level of FID (C)
Syntax: noise<(excess_noise<,last_noise<,block_number>>) >
:r1,r2,r3,r4,r5,r6

```

Description: Measures the noise level of a FID. By using pw=0 so that no real signal is accumulated, one or more transients can be acquired. The value of np must be greater than 4096. noise then performs a statistical analysis of the noise, providing noise level, dc level, etc., for each channel. The noise level measurement can be repeated at various settings of gain and various settings of \(£ b\), etc., for a full system diagnosis.
Arguments: excess_noise is excess noise and is used to calculate the noise figure.
last_noise is the last measured mean square noise and is used to calculate the noise figure.
block_number is the block number. The default is 1 .
r1 returns the real dc offset.
r2 returns the imaginary dc offset.
r3 returns the real rms noise.
r4 returns the imaginary rms noise.
r5 returns the average rms noise.
r6 returns the percentage channel imbalance.
r7 returns the noise figure.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d d f\) & Display data file in current experiment (C) \\
& \(d d f f\) & Display FID file in current experiment (C) \\
& \(d d f p\) & Display phase file in current experiment (C) \\
fb & Filter bandwidth (P) \\
gain & Receiver gain (P) \\
np & Number of data points (P) \\
pw & Pulse width (P)
\end{tabular}
noisemult Control noise multiplier for automatic 2D processing (M)
Syntax: noisemult<(noise_multiplier) >
Description: Predetermines the noise multiplier used by the nm 2 d macro when starting automatic 2D experiments. This multiplier determines the threshold level in 2D spectra.
Arguments: noise_multiplier is a noise multiplier, the same as used in the nm2d macro. The default is 8 for homonuclear 2D spectra or 4 for other spectra.
Examples: noisemult
noisemult(10)

Related: nm2d Automatic 2D normalization (M)
proc2d Process 2D spectra (M)
```

noislm Limit noise in spectrum (M)
Syntax: noislm<(max_noise) >

```

Description: Limits the noise present in a spectrum by reducing the vertical scale vs. If the noise is smaller than the noise limit, vs is left untouched. The noise limit is in single root-mean-square noise size; the peak-to-peak noise (width of the noise band) is about twice that value. The noise is determined by taking the smallest value from four \(5 \%\) regions at the left end of the spectrum. Any filter cutoff at the end will decrease the apparent noise in the spectrum, and therefore increase the noise limit in the central part of the spectrum. Because of the particular algorithm used in this macro, signals at the left end of the spectrum should not affect the result of noislm.

Arguments: max_noise is the maximum root-mean-square size, in mm, of the noise. The default is 2 .
Examples: noislm
noislm(5)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & vs & Vertical scale (P) \\
& vsadj & Automatic vertical scale adjustment (M) \\
& vsadjc & Automatic vertical scale adjustment for \({ }^{13} \mathrm{C}\) spectra (M) \\
& vsadjh & Automatic vertical scale adjustment for \({ }^{1} \mathrm{H}\) spectra (M)
\end{tabular}

\section*{notebook Notebook name (P)}

Description: Specifies the notebook name of a sample, which is saved with a liquids study.
See also: page ( P ) samplename ( P )

\section*{np \(\quad\) Number of data points (P)}

Description: Sets number of data points to be acquired. Generally, np is a dependent parameter and is calculated automatically when sw or at is changed. If a particular number of data points is desired, np can be entered, in which case at becomes the dependent parameter and is calculated based on sw and np.
On MERCURYplus/Vx, 64 to 128,000, in steps of 64 (dp does not affect the limit because on MERCURYplus/Vx dp is always ' y ').
Values: np is constrained to be a multiple of 2 (Acquisition Controller or Pulse Sequence Controller board) or a multiple of 64 (Output board). (See the acquire statement in the manual User Programming for a description of these boards.)

See also: VnmrJ Liquids NMR
Related: a
Acquisition time ( P )
dp Double precision (P)
setlimit Set limits of a parameter in a tree (C)
sw \(\quad\) Spectral width in directly detected dimension ( P )
npoint \(\quad\) Number of points for fp peak search ( \(P\) )
    Description: If npoint is defined in the current parameter set and has a value, it determines
                    the range of data points over which the fp command searches for a maximum
    for each peak. To create npoint and give it a value other than the default, enter
    create ('npoint','integer') npoint=x, where x is the new value.
        Values: 1 to \(\mathrm{fn} / 4\). The default is 2 .
        See also: VnmrJ Liquids NMR
        Related: create Create new parameter in a parameter tree (C)
        \(\mathrm{fn} \quad\) Fourier number in directly detected dimension (P)
        \(\mathrm{fp} \quad\) Find peak heights (C)
nrecords \(\quad\) Determine number of lines in a file (M)
            Syntax: nrecords(file): \$number_lines
        Description: Returns the number of lines (or records) in a file.
        Arguments: file is the name of the file.
        \$number_lines returns the number of lines in the named file.
    Examples: nrecords(userdir+'/markld.out'):\$num
        See also: User Programming
ns \(\quad\) Number of slices to be acquired (P)
    Applicability: Systems with imaging capabilities.
    Description: Sets the number of slices to be acquired for multislice sequences.
            Values: 1 to desired number, in integer steps.
            See also: VnmrJ Imaging NMR
            ne \(\quad\) Number of echoes to be acquired (P)
nscans \(\quad\) Number of scout scan or real scan repetitions (P)
    Applicability: Systems with LC-NMR accessory.
        Description: For on-flow applications, nscans is set to the number of repetitions of the
                        scout scan or real scan process to be performed (based on the time duration of
                the LC run). In stopped-flow applications, nscans must be set to a number that
                is greater than or equal to the number of peaks to be analyzed or detected. If
                nscans does not exist, the parlc macro can create it.
            See also: VnmrJ Liquids NMR
            Related: curscan Scan currently in progress (P)
            parlc Create LC-NMR parameters (M)
nt \(\quad\) Number of transients (P)
Description: Sets the number of transients to be acquired (i.e., the number of repetitions or scans performed to make up the experiment or FID).
Values: 1 to 1 e 9 (for MERCURYplus/Vx, the hardware limits nt to 16 e 6 ). For an indefinite acquisition, set nt to a very large number such as 1 e 9 .
See also: VnmrJ Liquids NMR; VnmrJ Imaging NMR

\section*{ntrig \(\quad\) Number of trigger signals to wait before acquisition (P)}

Applicability: Systems with LC-NMR accessory.
Description: Sets the number of trigger signals from the LC to wait for on the external gate line before beginning acquisition. If ntrig is 0 or the parameter does not exist, the external gate signal is ignored. If ntrig noes not exist, the parlc macro can create it. ntrig is not normally entered by the user.

See also: VnmrJ Liquids NMR
Related: parlc Create LC-NMR parameters (M)

\section*{ntype3d \(\quad\) Specify whether \(f_{1}\) or \(f_{2}\) display expected to be N-type (P)}

Applicability: All systems; however, although ntype3d is available on MERCURYplus/Vx systems, such systems can only process 3D data and cannot acquire 3D data.
Description: Indicates whether the \(f_{1}\) or \(f_{2}\) display is expected to be \(N\)-type, that is, opposite to the sense of precession defined by \(f_{3}\), under normal 3D processing conditions.

Values: 'yn' specifies that \(f_{1}\) is expected to have an N-type display under normal 3D processing conditions.
' ny' specifies that \(f_{2}\) is expected to have an \(N\)-type display under normal 3D processing conditions.
'yy' specifies that both \(f_{1}\) and \(f_{2}\) are expected to have \(N\)-type displays under normal 3D processing conditions. Setting ntype3d='yy' changes the sense of precession in \(f_{1}\) and \(f_{2}\) by negating the imaginary portion of the \(t_{1}\) and \(t_{2}\) interferograms prior to Fourier transformation.
See also: VnmrJ Liquids NMR
Related: fiddc3d 3D time-domain dc correction (P)
ft3d Perform a 3D Fourier transform on a 3D FID data set (M,U)
ptspec3d Region-selective 3D processing ( P )
specdc3d 3D spectral dc correction (P)
ssfilter Full bandwidth of digital filter to yield a filtered FID (P)
ssorder Order of polynomial to fit digitally filtered FID (P)
rftype Type of rf generation
numrcvrs \(\quad\) Number of receivers in the system (P)
Applicability: Systems with multiple receivers.
Description: An integer giving the number of receivers installed in the system. numrcvrs is set from the config panel by the vnmr1 user.

Related: rcves Which receivers to use (P)

\section*{numreg \(\quad\) Return the number of regions in a spectrum (C)}

Syntax:
numreg:number_regions
Description: Returns the number of regions in a spectrum previously divided by the region command, by manual means using the \(z\) command, or by the Resets button in ds. A region is the area between two reset points in integral mode, with every other reset point designating the start of a baseline region and not included in the count of regions.
Arguments: number_regions returns the number of peak regions in the spectrum.
Examples: numreg:\$num

See also: User Programming
\begin{tabular}{lll} 
Related: & ds & Display a spectrum (C) \\
& getreg & Get frequency limits of a specified region (C) \\
& region & Divide spectrum into regions (C) \\
& \(z\) & Add integral reset point at cursor position (C)
\end{tabular}
numrfch \(\quad\) Number of rf channels (P)
Description: Holds the number of rf channels available. The value is set with the Number of RF Channels label in the CONFIG window (opened from config). numrfch represents the hardware in the system. For example, if the last experiment used the second decoupler, numrfch is set to 2 . The software then leaves the second decoupler on if it was on and leaves it off if it was off.
CAUTION: Do not reset numrfch to eliminate the use of a channel. See the description of \(d n 2\) and \(\operatorname{dn} 3\) for the method to disable channels.

Values: For \({ }^{\text {UNITY }}\) INOVA, the fifth channel can only be used with the deuterium decoupler channel.
On MERCURYplus/Vx: 2. On other systems: 1, 2, 3, 4, or 5. The value does not include the lock channel.
See also: VnmrJ Installation and Administration
\begin{tabular}{lll} 
Related: & config & Display current configuration and possibly change it (M) \\
dn2 & Nucleus for the second decoupler (P) \\
dn3 & Nucleus for the third decoupler (P) \\
dn4 & Nucleus for the fourth decoupler (P)
\end{tabular}
nv
Number of phase encode steps (P)
Applicability: Systems with imaging capabilities.
Description: The number of phase encode steps for the first indirectly detected dimension in a multidimensional imaging or CSI experiment.
Values: 0 to the desired number, in powers of 2. Typical values are \(0,64,128\), and 256 .
See also: VnmrJ Imaging NMR
```

Off
offset
on
operatorlogin
opx
orient
oscoef
osfb
osfilt
oslsfrq
overrange
oversamp
Make a parameter inactive (C)
Calculate frequency offset of cursor (M)
Make a parameter active or test its state (C)
Sets workspace and parameters for the operator (M)
Open shape definition file for Pbox (M)
Slice plane orientation (P)
Digital filter coefficients for oversampling (P)
Digital filter bandwidth for oversampling (P)
Oversampling filter for real-time DSP (P)
Bandpass filter offset for oversampling (P)
Frequency synthesizer overrange (P)
Oversampling factor for acquisition (P)

```
off
Make a parameter inactive (C)
Syntax: off(parameter<,tree>)

Description: Turns off an active parameter in any tree.
Arguments: parameter is the name of the parameter.
tree is type of parameter tree: ' current ', 'global', 'processed ', or
                            'systemglobal'. The default is 'current'. Refer to the create
command for more information on the types of trees.

Examples: off('gf')
off('n','global')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
on \(\quad\) Make a parameter active or test its state (C)
offset Calculate frequency offset of cursor (M)
Applicability: Systems with imaging capabilities.
Syntax: offset<('silent')><: parameter>
Description: Reads value of the cursor parameter Cr, and then calculates and displays the transmitter offset value, in Hz , that places the cursor position on resonance.
Arguments: 'silent' is a keyword to not display the frequency offset value. The default is to display the value.
parameter is a variable (such as the parameter tof in the example below) that, if present, is loaded with the calculated offset frequency value.
Examples: offset
offset('silent'):tof
See also: VnmrJ Imaging NMR
Related: Cr Current cursor position ( P )

\section*{Make a parameter active or test its state (C)}

Syntax: on(parameter<,tree>) <: \$active>
Description: Turns on an inactive parameter in any tree or tests if a parameter is active. Real variables (not strings) can be turned on and off. This can be done in any tree with the commands on and off, and by entering name \(=\) ' \(Y\) ' or name \(=\) ' \(n\) ' to change the active flag for variables in the current tree only. The variable trees are 'current','global', 'processed' and 'systemglobal'. The default tree is 'current'.

To test the active flag of a variable, use on (. . . ) : \$x. This does not change the active flag of the variable, but sets \(\$ x\) to 1 , if the variable is active, or to 0 , if it is not active. If the variable does not exist, a value of -1 is returned. Care should be taken if using the return value as a test for a conditional statement. For example, in the following fragment,
on('var1'): \$e
if \$e then
write('line3','if statement is true with value of \%d', \$e)
endif
the write command will be executed if 'varl' is active, writing the message if statement is true with value of 1 It will also be executed if 'var1' does not exist, writing the message if statement is true with value of -1 .
To only execute the write command if the variable is active, use something like the following:
on('var1'): \$e
if (\$e > 0.5) then
write('line3','var1 is active')
endif
Arguments: parameter is the name of the parameter to make active or to test.
tree is type of parameter tree: 'current ', 'global ', 'processed ', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on the types of trees.
\(\$\) act ive is 1 if the parameter is active, or is 0 if it is not active. Adding a return argument makes on conduct only a test of whether the specified parameter is active and does not turn on the parameter if it is inactive.
\(\begin{array}{ll}\text { Examples: } & \text { on('lb'):\$ison } \\ & \text { on('gain','global') }\end{array}\)
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
off Make a parameter inactive (C)
operatorlogin Sets workspace and parameters for the operator (M)
Syntax: operatorlogin operator email panellevel
Description: Sets the workspace and parameters for the operator being logged in.

\section*{Open shape definition file for Pbox (M)}

Syntax: opx<(name<.ext>)>
Description: Opens the pulse shape/pattern definition input file shapelib/Pbox.inp for the Pbox software and writes the file header.

Arguments: name is the name of the output shape file.
ext is a file name extension that specifies the file type.
```

Examples: opx
opx('newfile.DEC')
Related: Pbox Pulse shaping software (U)

```

\section*{orient Slice plane orientation (P)}

Applicability: Systems with imaging capabilities.
Description: Controls the orientation of the slice plane in the gradient reference frame.
Values: A three-character string with any permutation of the letters \(x, y, z\), and \(n\) : 'xyz', 'zyx', 'nzx', etc. The permutation chosen determines the orientation of the slice plane. The first character is the identity of the readout gradient, the second character is the identity of the phase encoding gradient, and the third character is the identity of the slice selection gradient. The character \(n\) causes no gradient to be sent, which is used to avoid zeroing values.

For imaging modules, only 'sag' (sagittal), 'trans' (transverse), 'cor', and 'oblique' are used. The choice 'oblique ' is not user-enterable. Only the macro imprep can set up oblique imaging.
See also: VnmrJ Imaging NMR
Related: imprep Set up rf pulses, imaging, and voxel selection gradients (M)

\section*{oscoef \(\quad\) Digital filter coefficients for oversampling ( P )}

Description: Specifies number of coefficients used in the digital filter. If oscoef does not exist in the current experiment, enter addpar ('oversamp') to add it. addpar ('oversamp') creates digital filtering and oversampling parameters def_osfilt, filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp.
Values: For inline DSP (dsp='i'), the default is 7.5 *oversamp. A larger number of coefficients gives a filter with sharper cutoffs; a smaller number gives a filter with more gradual cutoffs. The value of oscoef does not need to be changed when oversamp is changed because oscoef is automatically adjusted by VnmrJ to give filter cutoffs that are the same regardless of the value of oversamp.
For real-time DSP ( \(\mathrm{dsp}=\) 'r'), the number of coefficients is not adjustable but is determined by the hardware.
\begin{tabular}{lll} 
Related: & addpar & Add selected parameters to current experiment (M) \\
dsp & Type of DSP for data acquisition (P) \\
filtfile & File of FIR digital filter coefficients (P) \\
osfb & Digital filter bandwidth for oversampling (P) \\
oslsfrq & Bandpass filter offset for oversampling (P) \\
oversamp & Oversampling factor for acquisition (P) \\
paros & Create additional parameters used by oversampling (M)
\end{tabular}

\section*{osfb Digital filter bandwidth for oversampling (P)}

Description: Specifies bandwidth of the digital filter used for oversampling. If os \(f b\) does not exist in the current experiment, enter addpar ('oversamp') to add it. addpar('oversamp') creates digital filtering and oversampling parameters def_osfilt, filtfile, oscoef, osfilt, oslsfrq, and oversamp.

\section*{osfilt Oversampling filter for real-time DSP (P)}

Applicability: Systems with real-time DSP.
Description: Sets the type of real-time digital filter to be used on systems equipped with the real-time DSP hardware option. osfilt is normally set automatically by the software based on the user's global parameter def_osfilt, so that osfilt only needs to be changed if a particular experiment is to be run with a different digital filter than the default.
Values: ' a ' or ' A ' for the Analog Plus \({ }^{\mathrm{TM}}\) digital filter.
' b ' or ' B ' for the brickwall digital filter.
' ' (null string) causes osfilt to be set to the value contained in the
def_osfilt when an acquisition is initiated (with go, for example).
Related: def_osfilt Default value of osfilt (P)
dsp Type of DSP for data acquisition (P)

\section*{oslsfrq}

\section*{Bandpass filter offset for oversampling (P)}

Description: Selects a bandpass filter that is not centered about the transmitter frequency. In this way oslsfrq works much like lsfrq. If oslsfrq does not exist in the current experiment, add it with addpar ('oversamp'), which creates digital filtering and oversampling parameters, the same as the paros macro.
Values: Number, in Hz. A positive value selects a region upfield from the transmitter frequency. A negative value selects a downfield region..
Related: addpar Add selected parameters to current experiment (M)
def_osfilt Default value of osfilt (P)
filtfile File of FIR digital filter coefficients (P)
fsq Frequency-shifted quadrature detection(P)
lsfrq \(\quad\) Frequency shift of the fn spectrum in \(\mathrm{Hz}(\mathrm{P})\)
oscoef Digital filter coefficients for oversampling (P)
os \(£ b \quad\) Digital filter bandwidth for oversampling (P)
osfilt Oversampling filter for real-time DSP (P)
oversamp Oversampling factor for acquisition (P)
paros \(\quad\) Create additional parameters used for oversampling (M)

\section*{overrange Frequency synthesizer overrange ( P )}

Applicability: UnITYINOVA systems with optional version X46 of the PTS frequency synthesizer.

Description: Configures whether an rf channel has version X46 of the PTS frequency synthesizer. The value for each channel is set using the label Frequency Overrange in the CONFIG window (opened from config).
Values: Not Present, 10000 Hz , or 100000 Hz
In CONFIG, Not Present indicates that this RF channel does not have the frequency overrange option.
10000 or 100000 indicate that this RF channel has the frequency overrange option. In the CONFIG window the \(\mathbf{1 0 0 0 0} \mathbf{~ H z}\) or \(\mathbf{1 0 0 0 0 0} \mathbf{~ H z}\) choices are determined by the letters \(H\), \(J\), or \(K\) found in the PTS Synthesizers model number. In CONFIG, the normal value for overrange is 10000 Hz . If Frequency Overrange is set to 10000 Hz or 100000 Hz , the Latching value for that RF channel must also be set to Present in the CONFIG window. When set to either 10000 Hz or 100000 Hz , overrange guarantees a range of phasecontinuous frequency jumps of at least 10 kHz or 100 kHz in each jump direction.

See also: VnmrJ Installation and Administration
\(\begin{array}{lll}\text { Related: } & \text { config } & \text { Display current configuration and possibly change it (M) } \\ \text { latch } & \text { Frequency synthesizer latching (P) }\end{array}\)

\section*{oversamp Oversampling factor for acquisition (P)}

Description: Specifies the oversampling factor for the acquisition. With inline digital filtering ( \(\mathrm{dsp}=\) 'i'), np*oversamp data points are acquired at a rate of sw*oversamp. The data is then transferred to the host computer, digitally filtered, and downsampled to give np points and a spectral width of sw.
With real-time digital filtering ( \(\mathrm{dsp}=' r\) '), the oversampling, digital filtering, and downsampling all occur as each data point is collected, so that only np data points are ever stored in the acquisition computer memory and subsequently transferred to the host computer.
If oversamp does not exist in the current experiment, enter the command addpar ('oversamp') to add it. addpar ('oversamp') creates digital filtering and oversampling parameters def_osfilt,filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp.

If oversamp is set to a number, then that number represents the amount of oversampling to apply when collecting the data. The oversamp value is automatically calculated whenever sw is changed, provided oversamp is not set to ' \(n\) '. That is the distinction between oversamp=' \(n\) ' and oversamp=1. In both cases, no oversampling will be used. This occurs, for example, if the sw parameter is greater than half the maximum spectral width. However, if sw is reduced so that oversampling is possible, then if oversamp is set to ' n ', oversamp will remain set to ' n ' and oversampling will not occur. On the other hand, if oversamp is set to 1 , then oversamp is recalculated and oversampling will occur. Therefore, the oversamp parameter accurately represents whether oversampling is performed for a data set. When oversamp is automatically determined based on a change to sw, it is set to the maximum possible oversampling factor. The value of oversamp can be manually reset.
Note that setting oversamp greater than 1 means oversampling is selected for the experiment. However, if the oversampling facility is not present in the system (i.e., \(d s p=\) ' \(n\) '), then the oversamp parameter is automatically reset to 1 , indicating that no oversampling will be performed.
Two other experiment local parameters reflect whether DSP is used during the acquisition of a data set:
- \(£ b\) is set to Not Active if DSP is used.
- oscoef reflects whether real-time (dsp='r') or inline (dsp='i') DSP was used. If real-time, oscoef is set to Not Active. If inline, oscoef is set to the value used by the inline algorithm.

Values: Number less than or equal to 68. For inline DSP, sw*oversamp and np*oversamp are limited by the values in the following table:
\begin{tabular}{lll}
\hline System & \begin{tabular}{l} 
Maximum \\
sw*oversamp
\end{tabular} & \begin{tabular}{l} 
Maximum \\
np*oversamp
\end{tabular} \\
\hline UNITY INOVA & 500 kHz & 2 M \\
MERCURYplus/-VX & 100 kHz & 128 K \\
\hline
\end{tabular}

The maximum \(n p *\) oversamp is given for double precision data ( \(d p=' y\) '). For \(d p=\) ' n ', multiply this value by 2 .
' \(n\) ' causes normal acquisition to be done without digital filtering.
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
\(d e f \_o s f i l t\)
\end{tabular} & \begin{tabular}{l} 
Add selected parameters to current experiment (M) \\
Default value of osfilt parameter (P) \\
\(d p\)
\end{tabular} \\
& Dsp & Type of DSP for data acquisition (P) \\
fb & Filter bandwidth (P) \\
filtfile & File of FIR digital filter coefficients (P) \\
fsq & Frequency-shifted quadrature detection (P) \\
np & Number of data points (P) \\
oscoef & Digital filter coefficients for oversampling (P) \\
osfb & Digital filter bandwidth for oversampling (P \\
osfilt & Oversampling filter for real-time DSP (P) \\
oslsfrq & Bandpass filter offset for oversampling (P) \\
paros & Create additional parameters used by oversampling (M) \\
sw & Spectral width in directly detected dimension (P)
\end{tabular}

\section*{P}
\begin{tabular}{|c|c|}
\hline p1 & Enter pulse width for p 1 in degrees (C) \\
\hline p1 & First pulse width (P) \\
\hline p1pat & Shape of excitation pulse (P) \\
\hline p2 & \(180^{\circ}\) refocus pulse width ( P ) \\
\hline p2pat & RF pulse pattern of \(180^{\circ}\) refocus pulse p2 (P) \\
\hline p2pul & Set up sequence for PFG testing (M) \\
\hline p31 & Automated phosphorus acquisition (M) \\
\hline p31p & Process 1D phosphorus spectra (M) \\
\hline pa & Set phase angle mode in directly detected dimension (C) \\
\hline pal & Set phase angle mode in 1st indirectly detected dimension (C) \\
\hline pacosy & Plot automatic COSY analysis (C) \\
\hline pad & Preacquisition delay (P) \\
\hline padept & Perform adept analysis and plot resulting spectra (C) \\
\hline page & Submit plot and change plotter page (C) \\
\hline page & Name of page (P) \\
\hline panellevel & Display level for VnmrJ interface pages (P) \\
\hline pap & Plot out "all" parameters (C) \\
\hline par2d & Create 2D acquisition, processing, and display parameters (M) \\
\hline par3d & Create 3D acquisition, processing, and display parameters (M) \\
\hline par3rf & Get display templates for 3rd rf channel parameters (M) \\
\hline par4d & Create 4D acquisition parameters (M) \\
\hline paramedit & Edit a parameter and its attributes with user-selected editor (C) \\
\hline paramvi & Edit a parameter and its attributes with vi editor (M) \\
\hline pards & Create additional parameters used by downsampling (M) \\
\hline parfidss & Create parameters for time-domain solvent subtraction (M) \\
\hline parfix & Update parameter sets (M) \\
\hline parlc & Create parameters for LC-NMR experiments (M) \\
\hline parll2d & Create parameters for 2D peak picking (M) \\
\hline parlp & Create parameters for linear prediction (M) \\
\hline parmax & Parameter maximum values (P) \\
\hline parmin & Parameter minimum values ( P ) \\
\hline paros & Create additional parameters used by oversampling (M) \\
\hline parstep & Parameter step size values (P) \\
\hline parversion & Version of parameter set (P) \\
\hline path3d & Path to currently displayed 2D planes from a 3D data set (P) \\
\hline patlist & Active pulse template parameter list (P) \\
\hline paxis & Plot horizontal LC axis (M) \\
\hline Pbox & Pulse shaping software (U) \\
\hline pbox_bw & Define excitation band (M) \\
\hline pbox_bws & Define excitation band for solvent suppression (notch) pulses (M) \\
\hline pbox_dmf & Extract dmf value from pbox.cal or Pbox shape file (M) \\
\hline pbox_dres & Extract dres value from pbox.cal or Pbox shape file (M) \\
\hline pbox_name & Extract name of last shape generated by Pbox from pbox.cal (M) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline pbox_pw & Extract pulse length from pbox.cal or Pbox shape file (M) \\
\hline pbox_pwr & Extract power level from Pbox.cal or Pbox shape file (M) \\
\hline pbox_pwrf & Extract fine power level from pbox.cal or Pbox shape file (M) \\
\hline pboxget & Extract Pbox calibration data (M) \\
\hline pboxpar & Add parameter definition to the Pbox.inp file (M) \\
\hline pboxrst & Reset temporary Pbox variables (M) \\
\hline pboxunits & Converts to Pbox default units (M) \\
\hline pcmapapply & Apply phase correction map to data in EPI experiments (C) \\
\hline pcmapclose & Close phase correction map in EPI experiments (C) \\
\hline pcmapgen & Generate phase correction map in EPI experiments (C) \\
\hline pcmapopen & Open phase correction map in EPI experiments (C) \\
\hline pcon & Plot contours on a plotter (C) \\
\hline pcss & Calculate and show proton chemical shifts spectrum (M) \\
\hline peak & Find tallest peak in specified region (C) \\
\hline peak2d & Return information about maximum in 2D data (C) \\
\hline pen & Select a pen or color for drawing (C) \\
\hline pexpl & Plot exponential or polynomial curves (C) \\
\hline pexpladd & Add another diffusion analysis to current plot (M) \\
\hline pfgon & Pulsed field gradient amplifiers on/off control (P) \\
\hline pfww & Plot FIDs in whitewash mode (C) \\
\hline pge & Convert parameter set to PGE pulse sequence (M) \\
\hline pge_calib & Calibrate gradient strengths for PGE pulse sequence (M) \\
\hline pge_data & Extract data from single element of PGE pulse sequence (M) \\
\hline pge_output & Output results from PGE pulse sequence (M) \\
\hline pge_process & Automated processing of data from PGE pulse sequence (M) \\
\hline pge_results & Calculate diffusion constant for integral region (M) \\
\hline pge_setup & Set up gradient control parameters for PGE pulse sequence (M) \\
\hline ph & Set phased mode in directly detected dimension (C) \\
\hline ph1 & Set phased mode in 1st indirectly detected dimension (C) \\
\hline ph2 & Set phased mode in 2nd indirectly detected dimension (C) \\
\hline phase & Change frequency-independent phase rp (M) \\
\hline phase & Phase selection (P) \\
\hline phasel & Phase of first pulse (P) \\
\hline phase2 & Phase selection for 3D acquisition (P) \\
\hline phase3 & Phase selection for 4D acquisition (P) \\
\hline phasing & Control update region during interactive phasing (P) \\
\hline phfid & Zero-order phasing constant for the np FID (P) \\
\hline phfidl & Zero-order phasing constant for ni interferogram (P) \\
\hline phfid2 & Zero-order phasing constant for ni2 interferogram (P) \\
\hline phi & Euler angle phi from magnet frame (P) \\
\hline Phosphorus & Set up parameters for \({ }^{31} \mathrm{P}\) experiment (M) \\
\hline pi & Inversion pulse length (P) \\
\hline pi3ssbsq & Set up pi/3 shifted sinebell-squared window function (M) \\
\hline pi4ssbsq & Set up pi/4 shifted sinebell-squared window function (M) \\
\hline pilot & Automatic sequence setup (P) \\
\hline pintvast & Plots of integral regions (M) \\
\hline pipat & Shape of an inversion pulse (P) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline pir & Plot integral amplitudes below spectrum (C) \\
\hline pirn & Plot normalized integral amplitudes below spectrum (M) \\
\hline pl & Plot spectra (C) \\
\hline pl2d & Plot 2D spectra in whitewash mode (C) \\
\hline plan & Display menu for planning a target scan (M) \\
\hline plane & Currently displayed 3D plane type (P) \\
\hline planlock & Planner lock (P) \\
\hline plapt & Plot APT-type spectra automatically (M) \\
\hline plarray & Plotting macro for arrayed 1D spectra (M) \\
\hline plate_glue & Define a glue order for plotting and display (U) \\
\hline plc & Plot a carbon spectrum (M) \\
\hline plcosy & Plot COSY- and NOESY-type spectra automatically (M) \\
\hline pldept & Plot DEPT data, edited or unedited (M) \\
\hline plfid & Plot FIDs (C) \\
\hline plfit & Plot deconvolution analysis (M) \\
\hline plgrid & Plot a grid on a 2D plot (M) \\
\hline plh & Plot proton spectrum (M) \\
\hline plhet2dj & Plot heteronuclear J-resolved 2D spectra automatically (M) \\
\hline plhom2dj & Plot homonuclear J-resolved 2D spectra automatically (M) \\
\hline plhxcor & Plot X,H-correlation 2D spectrum (M) \\
\hline plist & Active pulse length parameter list (P) \\
\hline pll & Plot a line list (M) \\
\hline pll2d & Plot results of 2D peak picking (C) \\
\hline plot & Automatically plot spectra (M) \\
\hline plot1d & Plotting macro for simple (non-arrayed) 1D spectra (M) \\
\hline plot2D & Plot 2D spectra (M) \\
\hline plotside & Plot spectrum on side (M) \\
\hline plotter & Plotter device (P) \\
\hline plottop & Plot spectrum on top (M) \\
\hline plottopside & Plot spectrum on top and side (M) \\
\hline plp & Plot phosphorus spectrum (M) \\
\hline plplanes & Plot a series of 3D planes (M) \\
\hline pltext & Plot text file (M) \\
\hline pltmod & Plotter display mode (P) \\
\hline plvast & Plot VAST data in a stacked 1D-NMR matrix format (M) \\
\hline plvast2d & Plot VAST data in a stacked pseudo-2D format (M) \\
\hline plww & Plot spectra in whitewash mode (C) \\
\hline pmode & Processing mode for 2D data (P) \\
\hline poly0 & Display mean of the data in regression.inp file (M) \\
\hline pos1 - pos3 & Position of voxel center (P) \\
\hline pp & Decoupler pulse length (P) \\
\hline ppa & Plot a parameter list in plain English (M) \\
\hline ppcal & Proton decoupler pulse calibration (M) \\
\hline ppe & Position of image center on 2D phase encode axis (P) \\
\hline ppf & Plot peak frequencies over spectrum (C) \\
\hline pph & Print pulse header (M) \\
\hline pplvl & Proton pulse power level (P) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ppmm & Resolution on printers and plotters (P) \\
\hline pprofile & Plot pulse excitation profile (M) \\
\hline pps & Plot pulse sequence (C) \\
\hline prep & prepare a scan (M) \\
\hline presat & Set up parameters for PRESAT pulse sequence (M) \\
\hline Presat & Set up parameters for presat \({ }^{1} \mathrm{H}\) experiment (M) \\
\hline presig & Preamplifier signal level selection (P) \\
\hline prevpl & Display the previous 3D plane (M) \\
\hline printer & Printer device (P) \\
\hline printfile & Path to the print-to-file image (P) \\
\hline printformat & Format of saved-to-file image (P) \\
\hline printlayout & Layout of printed image (P) \\
\hline printoff & Stop sending text to printer and start print operation (C) \\
\hline printon & Direct text output to printer (C) \\
\hline printregion & Screen region to be printed (P) \\
\hline printsize & Size of printed image (P) \\
\hline printsend & Defines where image will print (P) \\
\hline pro & Position of image center on the readout axis (P) \\
\hline probe & Probe type (P) \\
\hline Probe_edit & Edit probe for specific nucleus (U) \\
\hline probe_edit & Edit probe for specific nucleus (M) \\
\hline probe_protection & Probe protection control (P) \\
\hline proc & Type of processing on np FID (P) \\
\hline procl & Type of processing on ni interferogram (P) \\
\hline procld & Processing macro for simple (non-arrayed) 1D spectra (M) \\
\hline proc2 & Type of processing on ni2 interferogram (P) \\
\hline proc2d & Process 2D spectra (M) \\
\hline procarray & Process arrayed 1D spectra (M) \\
\hline process & Generic automatic processing (M) \\
\hline procplot & Automatically process FIDs (M) \\
\hline profile & Set up pulse sequence for gradient calibration (M) \\
\hline proj & Project 2D data (C) \\
\hline Proton & Set up parameters for \({ }^{1} \mathrm{H}\) experiment (M) \\
\hline prune & Prune extra parameters from current tree (C) \\
\hline pscale & Plot scale below spectrum or FID (C) \\
\hline pseudo & Set default parameters for pseudo-echo weighting (M) \\
\hline psg & Display pulse sequence generation errors (M) \\
\hline psggen & Compile a user PSG object library (M,U) \\
\hline psgset & Set up parameters for various pulse sequences (M) \\
\hline psgupdateon & Enable update of acquisition parameters (C) \\
\hline psgupdateoff & Prevent update of acquisition parameters (C) \\
\hline pshape & Plot pulse shape or modulation pattern (M) \\
\hline pshapef & Plot the last created pulse shape (M) \\
\hline psi & Euler angle psi from magnet frame (P) \\
\hline pslabel & Pulse sequence label (P) \\
\hline pss & Slice position (P) \\
\hline pss0 & Stack center shift along z axis ( P ) \\
\hline
\end{tabular}
```

ptext Print out a text file (M)
ptspec3d
ptsval
pulsecal
pulseinfo
pulsetool
purge
puttxt
putwave
pw
pw
pw90
pwd
pwpat
pwr
pwr1
pwr2
pwrlist
pwsadj
pwxcal
pxset
pxshap
Pxsim
Pxspy
Print out a text file (M)
Region-selective 3D processing (P)
PTS frequency synthesizer value (P)
Update and display pulse calibration data file (M)
Shaped pulse information for calibration (M)
RF pulse shape analysis (U)
Remove macro from memory (C)
Put text file into a data file (C)
Write a wave into Pbox.inp file (M)
Enter pulse width pw in degrees (C)
Pulse width (P)
90° pulse width (P)
Display current working directory (C)
Shape of refocusing pulse (P)
Set power mode in directly detected dimension (C)
Set power mode in 1st indirectly detected dimension (C)
Set power mode in 2nd indirectly detected dimension (C)
Active pulse power level parameter list (P)
Adjust pulse interval time (M)
Decoupler pulse calibration (M)
Assign Pbox calibration data to experimental parameters (M)
Generates a single-band shape file (M)
Simulate Bloch profile for a shaped pulse (U)
Create shape definition using Fourier coefficients (U)

```

\section*{p1 Enter pulse width for p 1 in degrees (C)}
```

Syntax: pl(flip_angle<,90_pulse_width>)
Description: Calculates the flip time, in $\mu \mathrm{s}$, given a desired flip angle and the 90° pulse. The value is entered into the pulse width parameter p 1.
Arguments: flip_angle is the desired flip angle, in degrees.
90 _pulse_width is the 90° pulse, in $\mu \mathrm{s}$. The default is the value of parameter pw 90 if it exists.
Examples: p1 (30)
p1 (90,12.8)
See also: VnmrJ Liquids NMR
Related: ernst Calculate the Ernst angle pulse (C)
p1 First pulse width (P)
pw90 90° pulse width (P)
p1 First pulse width (P)
Description: Length of first pulse in the standard two-pulse sequence.
Values: On MERCURYplus/Vx systems: $0,0.2 \mu$ s to $150,000 \mu \mathrm{~s}$, in 0.1μ s steps On INOVA : $0.1 \mu \mathrm{~s}$ to 8190 sec , smallest value possible is $0.1 \mu \mathrm{~s}$, finest increment possible is 12.5 ns .

```
See also: VnmrJ Liquids NMR
Related: p1 Enter pulse width pl in degrees (C)
plpat \(\quad\) Shape of excitation pulse (P)
Applicability: Systems with imaging capabilities.
Description: Specifies the shape of pulse p 1 when used in imaging experiments.
Values: 'hard','sinc','gauss','sech','sine', or any shape resident in thesystem pulse shape library or libraries.
See also: VnmrJ Imaging NMR
Related: p1 First pulse width (P)
pwpat \(\quad\) Shape of refocusing pulse (P)
p2 \(180^{\circ}\) refocus pulse width (P)
Applicability: Systems with imaging capabilities.
Description: Sets the length of the \(180^{\circ}\) refocus rf pulse.
Values: Number, in \(\mu \mathrm{s}\).
See also: VnmrJ Imaging NMR
Related: p1 First pulse width (P)
p2pat \(\quad\) RF pulse pattern of pulse \(\mathrm{p} 2(\mathrm{P})\)
p2pat \(\quad\) RF pulse pattern of \(180^{\circ}\) refocus pulse \(\mathbf{p}\) ( P )
Applicability: Systems with imaging capabilities.
Description: Contains a string for the shape of the \(180^{\circ}\) refocus pulse p 2 .
See also: VnmrJ Imaging NMR
Related: p2 \(180^{\circ}\) refocus pulse width ( P )
p2pul Set up sequence for PFG testing (M)
Applicability: Systems with the pulsed field gradient (PFG) module. This sequence is not for NMR applications.
Description: Sets up the PFG two-pulse sequence, a system checkout sequence for PFG installation. Several modes are controlled by the cmd parameter.
- cmd= 'twinkle' sequentially addresses DACs 0 through 4. On the gradient channel interface, lights become a slow binary counter.
- cmd= 'pulse' makes a pulse of value gzlvll for a time gt1.
- cmd='bipulse' makes a pulse of value gzlvl1 for a time gt1 followed by a pulse of value -gzlvll for a time gzlvlı.
For other modes, see the PFG installation manual.
See also: Pulsed Field Gradient Modules Installation

\section*{p31 \\ Automated phosphorus acquisition (M)}
Syntax: p31<(solvent) >
Description: Prepares parameters for automatically acquiring a standard \({ }^{31} \mathrm{P}\) spectrum. The parameter wexp is set to 'procplot ' for standard processing. If p31 is used as the command for automation via the enter command, then the macro au is
supplied automatically and should not be entered on the MACRO line of the enter program. However, it is possible to customize the standard p31 macro on the MACRO line by following it with additional commands and parameters. For example, p31 nt=1 will use the standard p31 setup but with only one transient.
Arguments: solvent is the name of the solvent. The default is CDCl3. In automation mode, the solvent is supplied by the enter program.
Examples: p31
p31('DMSO')
See also: VnmrJ Liquids NMR
\begin{tabular}{rll} 
Related: & au & Submit experiment to acquisition and process data (M) \\
enter & Enter sample information for automation run (C) \\
p31p & Process 1D phosphorus spectra (M) \\
& proc1d & Processing macro for simple, non-arrayed 1D spectra (M) \\
& procplot & Automatically process FIDs (M) \\
& wexp & When experiment completes (P)
\end{tabular}
p31p \(\quad\) Process 1D phosphorus spectra (M)
Syntax: p31p
Description: Processes non-arrayed \(1 \mathrm{D}{ }^{31} \mathrm{P}\) spectra using a set of standard macros. p31p is called by the proc1d macro but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using preset weighting functions), automatic phasing (aphx macro), automatic integration (integrate macro, if required only), vertical scale adjustment (vsadjc macro), avoiding excessive noise (noislm macro), threshold adjustment (thadj macro), and referencing to the TMS signal, if present (tmsref macro).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
aphx \\
integrate \\
noislm
\end{tabular} & \begin{tabular}{l} 
Perform and check automatic phasing (M) \\
Automatically integrate 1D spectrum (M) \\
p31
\end{tabular} \\
proc1d & Avoids excessive noise (M) \\
thadj & Automated phosphorus acquisition (M) \\
& Adjust threshold (M) \\
& tmsref & Reference spectrum to TMS line (M) \\
& vsadjc & Adjust vertical scale for carbon spectra (M)
\end{tabular}

Set phase angle mode in directly detected dimension (C)
Description: Selects the phase angle mode by setting the parameter \(\mathrm{dmg}=\) ' pa ' . In the phase angle display mode, each real point in the displayed spectrum is calculated from the phase angle of the real and imaginary points comprising each respective complex data point. The phase angle also takes into account the phase parameters \(r p\) and \(1 p\).

For 2D data, if pmode= 'partial' or pmode=' ' (two single quotes with no space in between), pa has an effect on the data prior to the second Fourier transform. If pmode='full', pa acts in concert with the commands pal, av1, pwr1, or ph1 to yield the resultant contour display for the 2D data.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & av & Set abs. value mode in directly detected dimension (C) \\
dmg & Data display mode in directly detected dimension (P)
\end{tabular}
\begin{tabular}{ll} 
ft & Fourier transform 1D data (C) \\
ft1d & Fourier transform along f 2 dimension (C) \\
ft2d & Fourier transform 2D data (C) \\
lp & First-order phase in directly detected dimension (P) \\
pal & Set phase angle mode in 1st indirectly detected dimension (C) \\
ph & Set phased mode in directly detected dimension (C) \\
pmode & Processing mode for 2D data (P) \\
pwr & Set power mode in directly detected dimension (C) \\
pwr1 & Set power mode in 1st indirectly detected dimension (C) \\
rp & Zero-order phase in directly detected dimension (P) \\
wft & Weight and Fourier transform 1D data (C) \\
wft1d & Weight and Fourier transform f2 of 2D data (M) \\
wft2d & Weight and Fourier transform 2D data (M)
\end{tabular}

Set phase angle mode in 1st indirectly detected dimension (C)
Description: Selects the phase angle spectra display mode along the first indirectly detected dimension by setting the parameter dmg 1 to the string value 'pa1'. If the parameter dmg 1 does not exist, pal will create it and set it to 'pa1'.
In the phase angle mode, each real point in the displayed trace is calculated from the phase angle of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the phase angle uses the real-real and imaginary-real points from each respective hypercomplex data point. The phase angle also takes into account the phase parameters rp 1 and 1 p 1 .
The pal command is only needed if mixed-mode display is desired. If the parameter dmg1 does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of pa1 is the same as for traces provided that pmode='partial' or pmode=''.
See also: VnmrJ Liquids NMRs
\begin{tabular}{lll} 
Related: & av1 & Set abs. value mode in 1st indirectly detected dimension (C) \\
dmg1 & Data display mode in 1st indirectly detected dimension (P) \\
lp1 & First-order phase in 1st indirectly detected dimension (P) \\
& pa & Set phase angle mode in directly detected dimension (C) \\
ph1 & Set phased mode in 1st indirectly detected dimension (C) \\
pmode & Processing mode for 2D data (P) \\
pwr1 & Set power mode in 1st indirectly detected dimension (C) \\
rp1 & Zero-order phase in 1st indirectly detected dimension (P)
\end{tabular}

\section*{pacosy Plot automatic COSY analysis (C)}

Description: Automatically analyzes and plots a COSY data set with \(\mathrm{fn}=\mathrm{fn} 1\) and \(\mathrm{sw}=\mathrm{sw} 1\). Symmetrization of the data with the command foldt is recommended, but not required. First, select a proper threshold and perform a 2D line listing with the command 112d. Next, plot the 2D data with the contour plot command pcon; leaving enough room at the left side of the plot for the connectivity table. Then, pacosy will analyze the data and plot the connectivities on the plotter. pacosy gets its input from the file 112d. out in the current experiment directory. The command acosy performs the same analysis and displays the connectivities on the screen.
See also: VnmrJ Liquids NMR
Related:
acosy Automatic analysis of COSY data (C)
\(\mathrm{fn} \quad\) Fourier number in directly detected dimension (P)
\begin{tabular}{ll} 
fn1 & Fourier number in 1st indirectly detected dimension (P) \\
foldt & Fold COSY-like spectrum along diagonal axis (C) \\
hcosy & Automated proton and COSY acquisition (M) \\
ll2d & Automatic and interactive 2D peak picking (C) \\
pcon & Plot contours on plotter (C) \\
relayh & Set up parameters for COSY pulse sequence (M) \\
Sw & Spectral width in directly detected dimension (P) \\
sw1 & Spectral width in 1st indirectly detected dimension (P)
\end{tabular}
pad Preacquisition delay ( \(P\) )
Description: Each NMR experiment starts with a single delay time equal to pad over and above the delay di that occurs before each transient. Normally, pad is set to a small, nominal time ( 0.5 seconds) to allow any hardware changes that may be required at the start of the acquisition to "settle in." During experiments in which the temperature is changed, the acquisition starts pad seconds after the temperature regulation system comes to regulation. Since the sample temperature does not actually come to equilibrium for some time after that, it is generally desirable to increase pad to perhaps 300 seconds. This is especially true when running experiments involving arrays of temperatures. The pad parameter is most useful for running kinetics experiments. For example, \(\mathrm{pad}=0,3600,3600,3600,3600\) will run an experiment immediately when \(g o\) is typed ( \(\mathrm{pad}=0\) ), then wait an hour ( 3600 seconds), run the second experiment, etc.

Values: INOVA, \(0,0.1 \mu\) s to 8190 sec in 12.5 ns steps \(0,0.2 \mu \mathrm{~s}\) to \(150,000 \mathrm{sec}\) in \(0.1 \mu \mathrm{~s}\) steps.
See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
Related: d1 First delay (P)
go Submit experiment to acquisition (C)

\section*{padept \(\quad\) Perform adept analysis and plot resulting spectra (C)}

Syntax: padept<(<'noll'><,'coef'><,'theory'>)>
Description: Performs the adept analysis and plots the resulting spectra with a scale and the assigned line listing. Leave enough space at the left end of the display for the line list.

Arguments: The following arguments can be supplied in any order:
' noll' is a keyword that specifies no line listing.
' coef ' is a keyword that causes the combination coefficients to be printed.
'theory' is a keyword that causes the theoretical coefficients rather than optimized coefficients to be used.
Examples: padept('noll','coef')
See also: VnmrJ Liquids NMR
Related: adept Automatic DEPT analysis and spectrum editing (C)
autodept Automated complete analysis of DEPT data (M)
cdept Automated carbon and DEPT acquisition (C)
deptproc Process DEPT data (M)
hcdept Automated proton, carbon, and DEPT acquisition (C)
pldept Plot DEPT data, edited or unedited (M)
```

page Submit plot and change plotter page (C)
Syntax: page<(number_pages<,'clear'|file>)>

```

Description: Submits the current plotter file, which has been created by all previous plotter commands, and changes the paper after the plot has been completed. Actual plotting is controlled by the vnmrplot script in the bin subdirectory of the system directory. The page command can also clear the current plotter file or save the data to a specified file name.
Arguments: number_pages is the number of pages to move the plotter forward. The default is 1 . If number_pages is 0 , page submits the plot but does not change the paper.
' clear' is a keyword to clear the plot made thus far; that is, clear the data in the current plotter file.
file is the name of a file to save the plot for import into a document. If the file already exists, it is overwritten.
Examples: page
page (0)
page('clear')
page('myplotfile')
See also: VnmrJ Liquids NMR
Related: vnmrplot Plot files (U)

\section*{page \(\quad\) Name of page ( \(P\) )}

Description: Specifies the page of a sample. It is saved with a liquids study.
See also: notebook (P) samplename (P)

\section*{panellevel Display level for VnmrJ interface pages (P)}

Description: Determines which VnmrJ interface pages are available under the tabs. The higher the number, the more pages are available. The only time panellevel is changed is during the login process of an operator in the Walkup interface. for the Walkup interface, the value is set by the VnmrJ Administrator (default is 10).

Values: \(0-9\), shows the minumum number of pages. No shims or lock and minimal parameter control. This might be used for automation mode.
10-19, typical for a Walkup user without a sample changer. Shim and lock are available, but pages are not fully populated, minimizing parameter control. 20-29, typical for the Experimental liquids interface. All pages are available. 30-100, typical for the system owner. All pages are available and fully populated.

Syntax: pap<(<template><,><x><,y><,character_size>) >
Description: Plots a parameter list containing "all" parameter names and values.
Arguments: template is the name of a template that controls the display. The default is the string parameter ap, which can be modified using paramvi ('ap'). See the manual User Programming for rules on building a template.
x is the starting position in the \(x\) direction of the plot on the paper, in mm . The default is a preset value.
\(Y\) is the starting position in the \(y\) direction of the plot on the paper, in mm. If \(y\) is specified, the x position must be also. The default is a preset value.
character_size is the character size of the list and is specified as a multiplier. The default is 0.70 (not available on all plotters or printers acting as plotters).
Examples: pap
pap (wcmax-40)
pap(10,wc2max*.9)
pap('newpap',wcmax-50,100,1.4)
See also: VnmrJ Liquids NMR, User Programming
\begin{tabular}{rll} 
Related: & ap & Print out "all" parameters (C) \\
& ap & "All" parameters display control (P) \\
& hpa & Plot parameters on special preprinted chart paper (C) \\
& paramvi & Edit a variable and its attributes using vi text editor (M) \\
& ppa & Plot a parameter list in "English" (M)
\end{tabular}

\section*{par2d Create 2D acquisition, processing, and display parameters (M)}

Description: Creates the acquisition parameters ni, sw1, and phase, which can be used to acquire a 2D data set. par2d also creates any missing processing and display parameters for the ni (or second) dimension, including flcoef, reffrq1, refpos 1 , and refsource1. The par2d macro is functionally the same as addpar('2d').

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
f1coef
\end{tabular} & \begin{tabular}{l} 
Add selected parameters to the current experiment (M) \\
Coefficient to construct F1 interferogram (P)
\end{tabular} \\
ni & Number of increments in 1st indirectly detected dimension (P) \\
phase & Phase selection (P) \\
reffrq1 & Reference frequency of reference line in 1st indirect dimension (P) \\
refpos1 & Position of reference line in 1st indirect dimension (P) \\
refsource1 & Center frequency in 1st indirect dimension (P) \\
set2d & General setup for 2D experiments (M) \\
sw1 & Spectral width in 1st indirectly detected dimension (P)
\end{tabular}

\section*{par3d \\ Create 3D acquisition, processing, and display parameters (M)}

Description: Creates the acquisition parameters ni2, sw2, d3, and phase 2 that can be used to acquire a 3D data set. par3d also creates any missing processing or display parameters for the ni2 (or third) dimension, including f2coef, fiddc3d, specdc3d, and ptspec3d. The par3d macro is functionally the same as addpar('3d').

See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
d3 Incremented delay in 2nd indirectly detected dimension (P)
£2coef Coefficient to construct F2 interferogram (P)
fiddc3d 3D time-domain dc correction (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
phase2 Phase selection for 3D acquisition (P)
ptspec3d Region-selective 3D processing (P)
specde3d 3D spectral dc correction (P)
sw2 Spectral width in 2nd indirectly detected dimension (P)
```

par3rf Get display templates for 3rd rf channel parameters (M)
Applicability: Systems with a second decoupler.
Description: Retrieves the dg2 and modified ap display templates from the parameter set
s2pul3rf in the system parlib directory. These two templates support the
display of second decoupler acquisition parameters and 3D acquisition and
processing parameters.
See also: User Programming
Related: ap "All" parameters display control (P)
dg2 Control dg2 parameter group display (P)
par4d Create 4D acquisition parameters (M)
Applicability: Systems with a third decoupler.
Description: Creates the acquisition parameters ni3, sw3, d4, and phase 3 that can be used to acquire a 4D data set. The par 4 d macro is functionally the same as addpar('4d').
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
d4 Incremented delay for 3rd indirectly detected dimension (P)
ni3 Number of increments in 3rd indirectly detected dimension (P)
phase3 Phase selection for 4D acquisition (P)
sw3 Spectral width in 3rd indirectly detected dimension (P)
paramedit Edit a parameter and its attributes with user-selected editor (C)
Syntax: paramedit (parameter<,tree>)
Description: Opens a parameter file for editing with a user-selected text editor. The default editor is vi. If vi is used as the editor, paramedit is functionally the same as the paramvi command. To select another editor, set the UNIX environmental variable vnmreditor to the editor name (change .login line setenv vnmreditor old_editor to become setenv vnmreditor new_editor (e.g., setenv vnmreditor emacs) and make sure a script with the prefix vnmr_followed by the name of the editor is placed in the bin subdirectory of the system directory (e.g., vnmr_emacs). The script file makes adjustments for the type of graphic interface in use.
Scripts in the software release include vnmr_vi and vnmr_textedit. To create other scripts, refer to the vnmr_vi script for non-window editor interfaces and to vnmr_textedit for window-based editor interfaces. The vnmreditor variable must be set before starting VnmrJ.
Arguments: parameter is the name of the parameter file to be edited.
tree is a keyword for one of the parameter trees 'current ', 'global', or
'processed'. The default is 'current'.
Examples: paramedit('ap')
paramedit('b','global')
See also: VnmrJ Liquids NMR; User Programming
Related: paramvi Edit a parameter and its attributes with vi editor (M)
vi \quad Edit text file with the vi text editor (C)

```

\section*{paramvi Edit a parameter and its attributes with vi editor (M)}
```

Syntax: paramvi (parameter<,tree>)

```

Description: Opens a parameter file for editing using the UNIX vi text editor. The parameter file contains various attributes of the parameter in a format documented in the manual User Programming. Be sure you understand the format before modifying the parameter because if an error in the format is made, the parameter will not load. When the editor is exited, the modified parameter is reloaded into the system.
Arguments: parameter is the name of the parameter file to be edited.
tree is a keyword for one of the parameter trees 'current', 'global', or 'processed'. The default is 'current'.
Examples: paramvi('ap')
paramvi('b','global')
See also: VnmrJ Liquids NMR, User Programming
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
create \\
destroy \\
destroygroup
\end{tabular} & \begin{tabular}{l} 
Create new parameter in a parameter tree (C) \\
Destroy a parameter (C)
\end{tabular} \\
display & Destroy parameters of a group in a tree (C) \\
fread & Display parameters and their attributes (C) \\
fsave parameters from file and load them into a tree (C) \\
groupcopy & Save parameters from a tree to a file (C) \\
paramedit & Copy parameters of group from one tree to another (C) \\
prune & Prune extra parameters from current tree (C) \\
setgroup & Set group of a parameter in a tree (C) \\
setlimit & Set limits of a parameter in a tree (C) \\
setprotect & Set protection mode of a parameter (C) \\
vi & Edit text file with the vi text editor (C)
\end{tabular}
pards
Create additional parameters used by downsampling (M)
Description: Creates the parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile necessary for digital filtering and downsampling. The pards macro is functionally the same as addpar ('downsamp').
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
downsamp
\end{tabular} & \begin{tabular}{l} 
Add selected parameters to current experiment (M) \\
Downsampling factor applied after digital filtering (P)
\end{tabular} \\
& dscoef & Digital filter coefficients for downsampling (P) \\
& dsfb & Digital filter bandwidth for downsampling (P) \\
& dslsfrq & Bandpass filter offset for downsampling (P) \\
& filtfile & File of FIR digital filter coefficients (P) \\
& movedssw & Set downsampling parameters for selected spectral region (M)
\end{tabular}
parfidss \(\quad\) Create parameters for time-domain solvent subtraction (M)
Description: Creates solvent subtraction parameters ssfilter, sslsfrq, ssntaps, and ssorder. Entering addpar ('ss') is functionally equivalent to parfidss.
In a 1D transform, subtraction of the zero-frequency component from the timedomain data, usually in the context of solvent subtraction, is selected by setting ssorder and ssfilter to desired values and entering wft:
- The zfs (zero-frequency suppression) option is selected if both ssfilter and ssorder are set to a value other than "Not Used."
- The lfs (low-frequency suppression) option is selected if ssfilter is set to a value other than "Not Used" and ssorder is set to "Not Used."
- The zfs and lfs options are both turned off if ssfilter is set to "Not Used."

The zfs option leads to the following series of processing events: (1) the raw FID is frequency-shifted by sslsfrq Hz , (2) the raw FID is subjected to a low- pass digital filter, (3) the filtered FID is fit to a polynomial of order ssorder, (4) the polynomial function is subtracted from the raw FID, and (5) the resulting FID is frequency-shifted by -sslsfrq Hz .
The lfs option does not include a polynomial fit (step 3 of the zfs option), which leads to the following series of processing events: (1) the raw FID is frequencyshifted by sslsfrq Hz, (2) the raw FID is subjected to a low-pass digital filter, (3) the filtered FID is directly subtracted from the raw FID, (4) the resulting FID is frequency-shifted by-sslsfrq Hz .

The quality of filtering with zfs diminishes rapidly as the solvent peak moves off the exact center of the digital filter. It may be necessary to adjust 1 s frq or sslsfrq to move the solvent peak to within \(\pm 0.2 \mathrm{~Hz}\) of the center of the filter to obtain optimal solvent suppression. The lfs option is less sensitive to small offsets, but typically removes or distorts peaks near to the solvent peak.
In a 2 D transform, solvent correction to the \(\mathrm{t}_{2}\) FIDs is invoked in the same manner with the \(f t 1 d, f t 2 d, w f t 1 d\), and wft2d commands and with the ft2da, ft1da, wft2da, and wft1da macros.
In a 3D transform, solvent suppression works on \(t_{3}\) FIDs of 3D spectra just like in the 1D and 2D cases.
See also: VnmrJ Liquids NMR
Related:

ft Fourier transform 1D data (C)
ftid Fourier transform along \(f_{2}\) dimension (C)
ft2d Fourier transform 2D data (C)
ft3d Perform a 3D Fourier transform on a 3D FID data set (M,U)
lsfrq \(\quad\) Frequency shift of the \(f n\) spectrum in \(\mathrm{Hz}(\mathrm{P})\)
ntype3d \(\quad\)-type peak selection in \(f_{1}\) or \(f_{2}(P)\)
ssfilter Full bandwidth of digital filter to yield a filtered FID (P)
sslsfrq Center of solvent-suppressed region of spectrum (P)
ssorder Order of polynomial to fit digitally filtered FID (P)
ssntaps Number of coefficients to be used in the digital filter (P)
wft Weight and Fourier transform 1D data (C)

\section*{parfix Update parameter sets (M)}

Description: Corrects upper limits, lower limits, and step sizes of a number of parameters in the current experiment. In addition, the template parameter dgs is updated. This is automatically done via the macro fixpar if the parameter parversion is less than 4.3. parfix is used by the macro updatepars to correct saved data. This macro has been applied to all parameters as of VNMR version 4.3 and should be run on older parameter sets (e.g., rtp ('pars') svp ('pars') update a parameter set named pars).
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
ap & "All" parameters display control (P) \\
dgs & Control dgs parameter group display (P) \\
fixpar & Correct parameter characteristics in experiment (M) \\
parversion & Version of parameter set (P) \\
updatepars & Update all parameter sets saved in a directory (M)
\end{tabular}

\section*{parlc Create parameters for LC-NMR experiments (M)}

Applicability: Systems with LC-NMR accessory.
Description: Creates the following parameters used for a variety of LC-NMR experiments: curscan, dtrig, inject, nscans, ntrig, and savefile. The parlc macro also creates ni and sw1 (if they don't exist) for use in isocratic runs. Finally, it creates a display parameter dglc , so that the dg ( \(' \mathrm{dglc} \mathrm{c}^{\prime}\) ) command (or the equivalent macro dglc) can be used to display all the LCrelated parameters.
Note that parlc can be used without worrying about losing existing values or attributes; if the parameters already exist, they are left untouched.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & curscan & Scan currently in progress (P) \\
dglc & Control LC-NMR parameter display (P) \\
dtrig & Delay to wait for another trigger or acquire a spectrum (P) \\
inject & Trigger the injection of a sample (P) \\
nscans & Number of scout/real scan repetitions (P) \\
ntrig & Number of trigger signals to wait before acquisition (P) \\
savefile & Base file name for saving FIDs or data sets (P)
\end{tabular}

\section*{parll2d Create parameters for 2D peak picking (M)}

Description: Creates additional parameters th2d and xdiag for use with 112d 2D peak picking program. parll2d is functionally the same as addpar('ll2d').

See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
ll2d Automatic and interactive 2D peak picking (C)
th2d Threshold for integrating peaks in 2D spectra (P)
\(x d i a g \quad\) Threshold for excluding diagonal peaks when peak picking \((\mathrm{P})\)
parlp \(\quad\) Create parameters for linear prediction (M)
Syntax: parlp<(dimension) >
Description: Creates parametrized options for linear prediction (LP) in the current experiment. The display template for the dglp macro is also created if necessary. parlp is functionally the same as addpar ('lp').

Arguments: dimension is the dimension of a multidimensional data set. The default is to create the LP parameters lpalg, lpopt, lpfilt, lpnupts, strtlp, lpext, strtext, lptrace, and lpprint.
parlp(1) creates LP parameters lpalg1, lpopt1, lpfilt1, lpnupts1, strtlp1, lpext1, strtext1, lptrace1, and lpprint1. addpar ('lp',1) is functionally equivalent to parlp(1).
parlp (2) creates LP parameters lpalg2, lpopt2, lpfilt2, lpnupts2, strtlp2, lpext2, strtext2, lptrace2, and lpprint2. addpar ('lp',2) is functionally equivalent to parlp(2).
Examples: parlp
parlp(1)
See also: VnmrJ Liquids NMR
Related: lpalg LP algorithm for np dimension (P)
lpext LP data extension for np dimension (P)
lpfilt LP coefficients to calculate for np dimension (P)
lpnupts \(\quad\) LP number of data points for np dimension ( P )
\begin{tabular}{ll} 
lpopt & LP algorithm data extension for np dimension (P) \\
lpprint & LP print output for np dimension (P) \\
lptrace & LP output spectrum for np dimension (P) \\
proc & Type of processing on np FID (P) \\
proc1 & Type of processing on ni interferogram (P) \\
proc2 & Type of processing on ni2 interferogram (P) \\
strtext & Starting point for LP data extension for np dimension (P) \\
strtlp & Starting point for LP calculation for np dimension (P)
\end{tabular}

\section*{parmax Parameter maximum values (P)}

Description: An array that holds the maximum values of other parameters. The maximum value of a parameter is an index into the array, and more than one parameter can have the same index into parmax. Several global parameters set in the CONFIG window (opened from config) are part of parmax. To display all parmax values, enter display('parmax','systemglobal').
See also: User Programming
Related: config Display current configuration and possibly change it (M display Display parameters and their attributes (C)
paramedit Edit a parameter and its attributes with user-selected editor (C)
paramvi Edit a parameter and its attributes using vi text editor (M)
parmin Parameter minimum values ( P )
parstep \(\quad\) Parameter step size values (P)
parmin \(\quad\) Parameter minimum values \((P)\)
Description: An array that holds the minimum values for other parameters. The minimum value of a parameter is the index into the parmin array. More than one parameter may have the same index into the array. To display all the values in parmin, enter display('parmin','systemglobal').

See also: User Programming
Related: paramvi Edit a parameter and its attributes using vi text editor (M)
display Display parameters and their attributes (C)
paramedit Edit a parameter and its attributes with user-selected editor (C)
parmax \(\quad\) Parameter maximum values ( P )
parstep \(\quad\) Parameter step size values ( P )

\section*{paros \(\quad\) Create additional parameters used by oversampling (M)}

Description: Creates the parameters def_osfilt, filtfile, oscoef,osfb,
osfilt, oslsfrq, and oversamp for oversampling and digital filtering. paros is functionally the same as addpar ('oversamp').

See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to current experiment (M
def_osfilt Default value of osfilt parameter (P)
filtfile File of FIR digital filter coefficients (P)
oscoef Digital filter coefficients for oversampling (P)
os \(£ b \quad\) Digital filter bandwidth for oversampling (P)
osfilt Oversampling filter for real-time DSP (P)
oslsfrq Bandpass filter offset for oversampling (P)
oversamp Oversampling factor for acquisition (P)

\section*{parstep \(\quad\) Parameter step size values ( \(P\) )}

Description: An array that holds the step size values for other parameters. The step size value of a parameter is the index into the array. More than one parameter can have the same index into parstep. Several configuration parameters set in the CONFIG window (from config) are part of parstep. To display all parstep values, enter display('parstep','systemglobal').
See also: User Programming
Related: config Display current configuration and possibly change it (M)
display Display parameters and their attributes (C)
paramedit Edit a parameter and its attributes with user-selected editor (C)
paramvi Edit a parameter and its attributes using vi text editor (M)
parmax Parameter maximum values (P)
parmin \(\quad\) Parameter minimum values ( P )

\section*{parversion Version of parameter set (P)}

Description: Stores the version of a parameter set. When a parameter set is updated with updatepars or parfix, parversion is set to 4.3 to indicate that fact. When a parameter set is retrieved into an experiment, fixpar checks parversion to determine if other parameters need to be updated using parfix.
See also: VnmrJ Liquids NMR
Related: fixpar Correct parameter characteristics in experiment (M)
parfix Update parameter sets (M)
updatepars Update all parameter sets saved in a directory (M)
path3d Path to currently displayed 2D planes from a 3D data set (P)
Applicability: All systems; however, although available on MERCURYplus/Vxsuch systems can only process 3D data and cannot acquire such data.
Description: Stores the absolute path to the current 3D data directory tree. If path3d does not exist, it is created by the macro par3d. The command select, as well as the many macros that make use of select, require path3d in order to know where the 2D planes extracted from a 3D data set can be found.
path3d is set automatically by the macros \(f t 3 d\) and getplane:
- ft3d sets path3d to curexp/datadir3dif \(f t 3 d\) is not supplied with a directory path for the transformed 3D data. If ft 3 d is supplied with such a directory path (e.g., /home / data/test 3D), path3d is set equal to that directory path. In this case, the 3D spectral data would reside in the directory /home/data/test3D/data.
- getplane sets path3d to curexp/datadir3d if getplane is not supplied with a directory path to the transformed 3D data. If getplane is supplied with such a directory path (e.g., /home/data/test3D), path3d is set equal to that directory path. In this case, the extracted 3D planes would reside in the directory /home/data/test3D/extr.

See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
dplane & Display a 3D plane (M) \\
dproj & Display a 3D plane projection (M) \\
dsplanes & Display a series of 3D planes (M) \\
ft3d & Perform a 3D Fourier transform on a 3D FID data set (M) \\
getplane & Extract planes from a 3D spectral set (M) \\
nextpl & Display the next 3D plane (M)
\end{tabular}
\begin{tabular}{ll} 
par3d & Create 3D acquisition, processing, display parameters (C) \\
plane & Currently displayed 3D plane type (P) \\
plplanes & Plot a series of 3D planes (M) \\
prevpl & Display the previous 3D plane (M) \\
select & Select a spectrum or 2D plane without displaying it (C)
\end{tabular}

\section*{patlist \(\quad\) Active pulse template parameter list (P)}

Applicability: Systems with imaging capabilities.
Description: Contains an array of strings, whose values define the rf pattern parameters used in conjunction with the length parameters defined in plist, for example, patlist='p1pat','p2pat','p3pat'. The nD, seqcon, plist, patlist, pwrlist, fliplist and sslist parameters configure a particular parameter set for an application sequence defined by the value of the seqfil parameter. The plist, patlist, pwrlist, fliplist and sslist parameters provide information concerning the rf pulse and conjugate gradients used by the sequence.
See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & fliplist & Standard flip angle list (P) \\
& nD & Application dimension (P) \\
& plist & Active pulse length parameter list (P) \\
& pwrlist & Active pulse power level parameter list (P) \\
& seqcon & Acquisition loop control (P) \\
& seqfil & Application object code name (P) \\
& sslist & Conjugate gradient list (P)
\end{tabular}

\section*{paxis Plot horizontal LC axis (M)}

Applicability: Systems with the LC-NMR accessory.
Syntax: paxis(time,major_tic,mino_tic)
Description: Plots a horizontal LC axis. Horizontal axes are assumed to be used with "LC plots" of an entire LC run are labeled accordingly. It is assumed that relevant parameters (e.g., sc, wc, vo, vp) have not been changed after plotting the data.

Arguments: time is the time scale, in minutes (decimal values are fine), of the axis. major_tic is spacing, in minutes (decimal values are fine), of major tics. minor_tic is spacing, in minutes (decimal values are fine), of minor tics.

See also: VnmrJ Liquids NMR

Pbox Pulse shaping software (U)
Syntax: Pbox file options
Description: Main Pbox (Pandora's Box) program for the generation of shape files for RF and gradients. (See VnmrJ Liquids NMR manual for description of interactive Pbox usage).
Arguments: file is the name of a shape file.
options is any of the Pbox parameters initialized by the ' - ' sign and followed by the parameter value. The following options can be in any order and combinations:
```

-b time
Activates Bloch simulator, sets simtime, in sec.
-c Calibrate only, do not create a shape file.

```
\begin{tabular}{ll}
\(-f\) file & Set name of the output file. \\
\(-h\) wave & Print wave file header. \\
\(-i\) wave & Print wave file parameters. \\
-1 ref_pw90 & Length, in \(\mu \mathrm{s}\), of reference pw90 pulse. \\
-0 & List options. \\
-p ref_pwr & Reference power level, in dB. \\
\(-r\) file & Reshape Pbox pulse. \\
\(-s\) stepsize & Define length, in \(\mu \mathrm{s}\), of a single step in waveform. \\
\(-t\) wave & Print wave title. \\
-w wavestr & Set wave data string. \\
-v & Run in verbose mode. Also print Pbox version. \\
-value & Sets reps to value.
\end{tabular}

Examples: Pbox -i eburp2 Pbox newshape -wc 'eburp1 450-1280.0' -1 Pbox sel.RF -w 'eburp1 420-800' 'eburp1 420 1200' Pbox -w 'eburp1 200-1200' -attn e -p1 4554.2 -b Pbox tst -w 'esnob 20p 170p' -sfrq 150.02 -refofs 55p -ref_pwr 45 -ref_pw90 54.2
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
cpx \\
dprofile
\end{tabular} & \begin{tabular}{l} 
Create Pbox shape file (M) \\
display pulse excitation profile from Pbox software (M) \\
dshapef
\end{tabular} \\
dshapei & Display pulse shape (M) \\
opx & Display last generated pulse shape (M) \\
pbox_bw & Open phape definition file for Pbox (M) \\
pbox_bws & Define excitation band (M) \\
pbox_dmf & Define excitation band for solvent suppression (notch) pulses (M) \\
pbox_dres & Extract dmf value from Pbox shape file (M) \\
pbox_name & Extract name of last shape file generated by Pbox (M) \\
pbox_pw & Extract pulse length from Pbox shape file (M) \\
pbox_pwr & Extract pulse power from Pbox shape file (M) \\
pbox_pwrf & Extract pulse fine power from Pbox (M) \\
pboxget & Extract all calibration data from a Pbox shape file (M) \\
pboxpar & Add parameter definition to the pbox.inp file (M) \\
pboxrst & Reset temporary Pbox/VnmrJ variables (M) \\
pboxunits & Converts to Pbox default units (M) \\
pph & Print pulse header (M) \\
pprofile & Plot pulse excitation profile from Pbox software (M) \\
pshape & Plot pulse shape (M) \\
pshapef & Display pulse shape or modulation pattern interactively (M) \\
putwave & Write a wave into Pbox.inp file (M) \\
pxset & Assign Pbox calibration data to experimental parameters (M) \\
pxshape & Generates a single-band shape file (M) \\
Pxsim & Simulate Bloch profile for a shaped pulse (M) \\
Pxspy & Create shape definition using Fourier coefficients (U) \\
selex & Defines excitation band (M) \\
setwave & Sets a single excitation band in Pbox.inp file (M) \\
shdec & Shaped observe excitation sequence (M)
\end{tabular}
```

pbox_bw Define excitation band (M)
Syntax: pbox_bw< (shapename)>
Description: Defines the excitation band from the position of cursors in the graphics window
and reports them to user. It also sets r1 to excitation bandwidth and r2 to offset.
This macro is used mainly in Pbox menus and macros.
Arguments: shapename is the name of a shape as in wavelib; mainly for use with
menus.
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pbox_bws Define excitation band for solvent suppression (notch) pulses (M)
Syntax: pbox_bws< (shapename) >
Description: Defines the excitation band from the position of cursors in the graphics window
and reports them to user. It also sets r1 to excitation bandwidth and r2 to offset.
Note, the left cursor should be placed on the left side of the excitation band and
the right cursor on resonance of the solvent signal. This macro is mainly used in
Pbox menus and macros.
Arguments: shapename is the name of a shape file as in wavelib, mainly for use with
menus.
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pbox_dmf Extract dmf value from pbox.cal or Pbox shape file (M)
Syntax: pbox_dmf<(shapefile.DEC) > :exp_param
Description: Extracts the dmf value from the file shapefile.DEC created by Pbox or, if
file name is not provided, from the pbox.cal file containing parameters of the
last created Pbox shape file.
Arguments: shapefile.DEC is the name of a shape file.
exp_param is a dmf type experiment parameter.
Examples: pbox_dmf('myfile.DEC'):mydmf
pbox_dmf:dmf2
See also: VnmrJ Liquids NMR
Related: dmf Decoupler modulation frequency for first decoupler (P)
Pbox Pulse shaping software (U)
pbox_dres Extract dres value from pbox.cal or Pbox shape file (M)
Syntax: pbox_dres<(shapefile.DEC) > :exp_param
Description: Extracts the dres value from the file shapefile.DEC created by Pbox or,
if file name is not provided, from the Pbox.cal file containing parameters of
the last created Pbox shape file.
Arguments: shapefile.DEC is the name of a shape file.
exp_param is a dres type experiment parameter.
Examples: pbox_dres('myfile.DEC'):mydres
pbox_dres:dres2

```

See also: VnmrJ Liquids NMR
Related: dres Tip-angle resolution for first decoupler (P)
Pbox Pulse shaping software (U)
pbox_name Extract name of last shape generated by Pbox from pbox.cal (M)
Syntax: pbox_name: exp_name
Description: Extracts name of the last shape file generated by Pbox and stored in the Pbox.cal file. Note, that the file name extension is not stored explicitly and is not provided by this macro.
Arguments: exp_name returns the name of last shape file.
Examples: pbox_pw:shname
pbox_pw:pwpat
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pbox_pw Extract pulse length from pbox.cal or Pbox shape file (M)
Syntax: pbox_pw<(shapefile.RF) >: exp_param
Description: Extracts pulse length from the file shapefile.RF generated by Pbox or, if file name is not provided, from pbox.cal file containing parameters of the last created Pbox shape file. Returns the pulse length, in \(\mu \mathrm{s}\).
Arguments: shapefile.RF is the shape file name, including the extension.
exp_param is a pw type experiment parameter.
Examples: pbox_pw('myfile.RF'):softpw pbox_pw:selpw
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
```

pbox_pwr Extract power level from Pbox.cal or Pbox shape file (M)

```
    Syntax: pbox_pwr<(shapefile.ext) >:exp_param

Description: Extracts the power lever from the file shapefile.ext generated by Pbox or, if file name is not provided, from the pbox. cal file containing parameters of the last created Pbox shape file. Returns the power level, in dB. The exp_param parameter will not be changed by this macro if the parameter is previously set to ' \(n\) ' (not used).
Arguments: shapefile.ext is the name of the shape file.
exp_param is a power type experiment parameter.
Examples: pbox_pwr('myfile.DEC'):mypwr
pbox_pwr:dpwr2
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pbox_pwrf Extract fine power level from pbox.cal or Pbox shape file (M)
Syntax: pbox_pwrf<(shapefile.ext) >:exp_param
Description: Extracts the fine power lever from the file shapefile. ext generated by Pbox or, if file name is not provided, from the pbox.cal file containing
parameters of the last created Pbox shape file. Returns the value of fine power, in dB . Note that the parameter will not be changed by this macro if it was previously set to ' n ' (not used).

Arguments: shapefile.ext is the name of the shape file.
exp_param is a fine power type experiment parameter.
Examples: pbox_pwrf('myfile.DEC'):mypwrf
pbox_pwrf:dpwrf
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

\section*{pboxget Extract Pbox calibration data (M)}

Syntax: pboxget<(shfile.ext) >: \$name, \$pw, \$pwr, \$pwrf, \$dres, \$dmf
Description: Extracts calibration data from the file shfile.ext generated by Pbox or, if a file name is not provided, from the pbox.cal file containing parameters of the last created Pbox shape file. Returns shape name and the values of total pulse length (in \(\mu \mathrm{s}\) ), power ( dB ), fine power, dres, and dmf. The parameter will not be changed by this macro if the parameter was previously set to ' \(n\) ' (not used).
Arguments: shfile.ext is the name of the shape file, including the extension. name is the experiment parameter receiving the shape name (without the extension).
pw is the experiment parameter receiving the total pulse length, in \(\mu \mathrm{s}\). pwr is the experiment parameter receiving the power level, in dB .
pwrf is the experiment parameter receiving the fine power level.
dres is the experiment parameter receiving the decoupler resolution.
\(d m f\) is the experiment parameter receiving the decoupler modulation frequency.
Examples: pboxget('myfile.DEC'):dseq,rl,dpwr,dpwrf,dres,dmf pboxget('selshape.RF'):pwpat, selpw, selpwr pboxget:dseq2,r1,dpwr2,dpwrf2,dres2,dmf2
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pboxpar \(\quad\) Add parameter definition to the Pbox.inp file (M)
Syntax: pboxpar (param, value)
Description: Adds a parameter definition to the Pbox.inp file.
Arguments: param is the parameter name
value is the value of the parameter.
Examples: pboxpar('name','myfile.DEC')
pboxpar('bsim','y')
pboxpar('T1', 0.24)
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

\section*{pboxrst Reset temporary Pbox variables (M)}

Description: Resets \(r 1=0, r 2=0, r 3=0, r 4=0, n 2=' n ', n 3='\) ', and adds some standard comment lines to the Pbox. inp file. This macro is used in menus and other Pbox macros.

See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
pboxunits \(\quad\) Converts to Pbox default units (M)
Syntax: pboxunits
Description: Used by Pbox menus to scale parameters related to time or frequency down to Pbox default units ( Hz or seconds) before the parameter is stored in the Pbox. inp file.
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

\section*{pcmapapply Apply phase correction map to data in EPI experiments (C)}

Applicability: Systems with echo planar imaging (EPI) capabilities.
Syntax: pcmapapply(<file,>index)
Description: Applies a pixel-by-pixel phase shift to the current data file using the complex phase correction values from the phase correction map file, which must exist in \$vnmruser/expN/datdir, where N is the current experiment number. pcmapapply opens and closes a phase map file unless it has been explicitly opened with pcmapopen.

Arguments: file specifies a phase correction map file name that must reside in the
 expN/datdir/pcmap.
index specifies which phase correction map to us in the file. The value is usually 1 , but can range up to the number of map blocks in the file.
Examples: pcmapapply(2)
pcmapapply('mypcmap',1)
See also: VnmrJ Imaging NMR
Related: pcmapclose Apply phase correction map to data in EPI experiments (C)
pcmapgen Generate phase correction map in EPI experiments (C)
pcmapopen Open phase correction map file in EPI experiments (C)
pcmapclose Close phase correction map in EPI experiments (C)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Closes a phase correction map file that was explicitly opened with the pcmapopen command.

See also: VnmrJ Imaging NMR
Related: pcmapapply Apply phase correction map to data in EPI experiments (C)
pcmapgen Generate phase correction map in EPI experiments (C)
pcmapopen Open phase correction map file in EPI experiments (C)
pcmapgen Generate phase correction map in EPI experiments (C)
Applicability: Systems with echo planar imaging (EPI) capabilities.

Syntax: pcmapgen(<file,>index)
Description: Generates pixel-by-pixel complex phase correction values from the current data file and stores them into the selected block in the phase correction map file. One or more phase correction maps can be generated. For multislice echo planar imaging experiments, there can be one phase correction map for each slice.
pcmapgen creates, opens, and closes a phase map file unless the file has been explicitly opened with the pcmapopen command.
Arguments: file specifies a phase correction map file name, which must reside in the directory \(\$\) vnmruser/expN/datdir, where \(N\) is the current experiment number. The default file is \$vnmruser/expN/datdir/pcmap.
index specifies which phase correction map to us in the file. The value is usually 1 , but can range up to the number of map blocks in the file.
Examples: pcmapgen (2)
pcmapgen (mypcmap,1)
See also: VnmrJ Imaging NMR
Related: pcmapapply Apply phase correction map to data in EPI experiments (C)
pcmapclose Close phase correction map file in EPI experiments (C)
pcmapopen Open phase correction map file in EPI experiments (C)

\section*{pcmapopen \\ Open phase correction map in EPI experiments (C)}

Applicability: Systems with echo planar imaging (EPI) capabilities.
```

Syntax: pcmapopen (<file, >max_index)

```

Description: Explicitly opens a phase correction map file, which can significantly speed up data processing. After the map file is open, use pcmapgen and pcmapapply to generate maps and correct data. Use pcmapclose to close the file when you are finished with it.
Arguments: file specifies the phase correction map file name residing in the directory \$vnmruser/expN/datdir, where \(N\) is the current experiment number. The default is the file pcmap.
max_index specifies the maximum number of phase correction maps in the file, which ensures that memory mapping extends to or past the end of the file. max_index must be greater than or equal to the maximum number of phase maps stored in the file.
Examples: pcmapopen (2)
pcmapopen('mypcmap',1)
See also: VnmrJ Imaging NMR
Related: pcmapapply Apply phase correction map to data in EPI experiments (C)
pcmapclose Close phase correction map file in EPI experiments (C)
pcmapgen Generate phase correction map in EPI experiments C)

\section*{pcon \(\quad\) Plot contours on a plotter (C)}

Syntax: pcon<(<'pos'|'neg'><,'noaxis'><,levels><,spacing>) >
Description: Plots positive and negative peaks of a contour plot display using different colors. Specifically, if maxpen is set for \(n\) pens, positive peaks are plotted using colors 1 through \((n+1) / 2\), and negative peaks are plotted using colors \(((n+1) /\) 2 ) +1 through \(n\) (i.e., half the colors for each, plus one extra for positive if an odd number of pens is specified). Pen 1 is always used for the axes, and the lowest contour of the positive peaks is also plotted with pen1. In all cases, the pen colors are cycled if more contours are to be plotted than there are pens available.

To plot both negative and positive contours of a phase-sensitive spectrum on a monochrome device such as a LaserJet or a plotter with a single pen, different numbers of contours may be plotted for the different sign. For example, pcon('pos',10,1.4) pcon('neg',1) will plot ten closely spaced positive contours and one negative contour.
Arguments: 'pos ' is a keyword specifying that phase-sensitive spectra plot positive peaks only. The default is to plot both positive and negative peaks.
' neg ' is a keyword specifying that phase-sensitive spectra plot negative peaks only. The default is to plot both positive and negative peaks.
'noaxis' is a keyword to omit outlining the plot and omit plotting the horizontal and vertical axes.
levels is maximum number of contour levels to plot. The default is 4 .
spacing is relative intensity of successive contour levels. The default is 2 .
Examples: pcon
pcon (4,1.4)
pcon('pos','noaxis')
pcon('neg', 3)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dpcon & Display plotted contours (C) \\
& maxpen
\end{tabular}\(\quad\)\begin{tabular}{l} 
Maximum number of pens to use (P)
\end{tabular}

Calculate and show proton chemical shifts spectrum (M)
Syntax: pcss<(<threshold><,max_cc><,max_width>) >
Description: Calculates and shows the proton chemical shifts spectrum. The dsp command is used to display the results. The list of chemical shifts is saved in the file pcss. outpar. The original spectrum can be calculated by the wft command.

Arguments: threshold sets the level whether a point belongs to a peak or is noise. The default is that pcss automatically calculates the threshold.
max_CC is the maximum allowable coupling constant in the spectrum. The default is 20 Hz .
max_width is the maximum width of a spin multiplet in the spectrum. The default is 60 Hz .

Examples: pcss
pcss (10)
pcss \((9,20,80)\)
See also: VnmrJ Liquids NMR
Related: do_pess Calculate proton chemical shifts spectrum (C)
dsp \(\quad\) Display pulse sequence (C)
wft Weight and Fourier transform 1D data (C)
peak
Find tallest peak in specified region (C)
Syntax: peak<(min_freq, max_freq) ><: height,freq>
Description: Returns the height and frequency of the tallest peak in the selected region, including any referencing (i.e., the same frequency that you would measure by placing a cursor on the peak). A spectrum need not actually be displayed for peak to work.

Arguments: With no return arguments, peak displays on the screen information about peak height and frequency. If two cursors are displayed, peak without arguments finds the tallest peak between the cursors.
min_freq is minimum frequency limit of the region to be searched. The default value is sp .
max_freq is maximum frequency limit, in Hz , of the region to be searched. The default value is \(s p+w p\).
height returns the height, in mm, of the tallest peak in the selected region.
freq returns the frequency, in Hz , of the tallest peak in the selected region.
Examples:
peak: \$ht, \$freq
peak \((0,2000): r 3\)
peak: \$ht, cr
See also: User Programming
\begin{tabular}{lll} 
Related: & sp & Start of plot (P) \\
& wp & Width of plot (P)
\end{tabular}

\section*{peak2d Return information about maximum in 2D data (C)}

Syntax: peak2d:\$maximum_intensity<,\$trace, \$point>
Description: Searches the area defined by sp, wp, sp1, and wp1 in a 2D data set for a maximum intensity.
Arguments: \$maximum_intensity returns the maximum intensity value found.
\$trace returns the trace number of the maximum. The parameter trace defines whether \(f_{1}\) or \(f_{2}\) traces are counted.
\$point returns the data point number of the maximum on that trace.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & sp & Start of plot (P) \\
& sp 1 & Start of plot in 1st indirectly detected dimension (P) \\
& trace & Mode for \(n\)-dimensional data display (P) \\
& wp & Width of plot (P) \\
& wp1 & Width of plot in 1st indirectly detected dimension (P)
\end{tabular}

\section*{Select a pen or color for drawing (C)}

Syntax: pen(<'graphics'|'plotter',><'xor'|'normal',>
pen|color)
Description: Selects the pen number for a plotter or the color for the graphics screen. This command is part of a line drawing capability that includes the move and draw commands. move sets the coordinates from which the line starts. draw draws a line from that point to the new coordinates specified by draw. Refer to the description of draw for examples of using the line drawing capability.
Arguments: 'graphics' and 'plotter' are keywords selecting the output device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands and remains active until a different output is specified.
'xor' and 'normal' are keywords selecting the drawing mode for the 'graphics ' output device. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previously drawn line, the common points are erased. In the 'normal ' mode, the common points remain. The mode selected is passed to subsequent pen, draw, or move
commands and remains active until a different mode is specified. The default mode is 'normal'.
pen is the plotter pen number: 'pen1', 'pen2', 'pen3', etc.
color is the active color for the graphics screen: 'red', 'green',
'blue', 'cyan', 'magenta', 'yellow', 'black', or 'white'.
Examples: pen('pen2')
pen('graphics','red')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
draw \\
move
\end{tabular} & \begin{tabular}{l} 
Draw line from current location to another location (C) \\
Move to an absolute location (C)
\end{tabular}
\end{tabular}

\section*{pexpl Plot exponential or polynomial curves (C)}

Syntax: pexpl<(<options,><line1,line2, ...) >
Description: Plots exponential curves resulting from \(T_{1}, T_{2}\), or kinetics analysis. Also plots polynomial curves from diffusion or other types of analysis. The analyze. out file is the data input file used to make the plot. Refer to the expl entry for the format of this file. The parameters sc, wc, sc2, and wch control the size of the plot.
Arguments: options are any of the following keywords:
- 'linear', 'square', and 'log' provide for plotting of the data points against the square or \(\log\) of the data. ' linear' controls \(x\)-axis scale, 'square' controls the \(y\)-axis. The default is 'linear'.
- ' link' causes the data points to be connected rather than a plot of the theoretical curve.
- 'nocurve ' produces a plot of data points only.
- ' oldbox ' plots an additional curve on an existing plot. Only the first data set in analyze. out is plotted. It causes the program to get box and scale description from expfit. out in the current experiment.
- 'file' followed by a file name replaces analyze. out as the input.
line1, line2, ... specify curves to be plotted. The default is to plot the first six curves (if that many exist) along with the data points.
Examples: pexpl
pexpl (1,3,6)
See also: VnmrJ Liquids NMR, User Programming
Related:
\begin{tabular}{ll} 
expl & Display exponential or polynomial curves (C) \\
SC & Start of chart (P) \\
Sc2 & Start of chart in second direction (P) \\
WC & Width of chart (P) \\
WC2 & Width of chart in second direction (P)
\end{tabular}
pexpladd Add another diffusion analysis to current plot (M)
Applicability: Systems with the diffusion option.
Syntax: pexpladd(integral_region)
Description: Adds results of another diffusion analysis to the currently plotted results.
Arguments: integral_region specifies the number of the region whose results are to be added to the existing plot.
Examples: pexpladd(1)
\[
\begin{array}{lll}
\text { Related: } & \text { expl } & \text { Display exponential or polynomial curves (C) } \\
& \text { pexpl } & \text { Plot exponential or polynomial curves (C) } \\
& \text { expladd } & \text { Add another diffusion analysis to current display (M) }
\end{array}
\]
pfgon Pulsed field gradient amplifiers on/off control (P)
Applicability: Systems with pulsed field gradient (PFG) modules.
Description: A global string parameter controlling the \(\mathrm{X}, \mathrm{Y}\), and Z gradients for the PFG current amplifiers. Entering su or go sets the amplifiers at the current value of pfgon. For pfgon to take effect, gradtype must equal p, q, \(1, t\), or u for the corresponding X, Y, or Z gradient, and a su or a go must be issued.
Values: A three-character string, with the first character controlling the X gradient, the second the Y gradient, and the third the Z gradient. For each gradient, setting the value to \(y\) turns on an amplifier and setting the value to \(n\) turns it off. For example, pfgon= ' nny' turns on only the PFG amplifier on the \(Z\) channel, and pfgon= ' nnn ' turns off the PFG amplifiers on all channels.
\(\begin{array}{ll}\text { See also: } & \text { VnmrJ Liquids NMR; Pulsed Field Gradient Modules Installation; VnmrJ } \\ & \text { Liquids NMR }\end{array}\)
\[
\begin{array}{lll}
\text { Related: } & \text { go } & \text { Submit experiment to acquisition (M) } \\
& \text { gradtype } & \text { Gradients for } X, Y \text {, and } Z \text { axes }(P) \\
& \text { setup } & \text { Set up parameters for basic experiments (M) } \\
& \text { su } & \text { Submit a setup experiment to acquisition (M) }
\end{array}
\]

\section*{pfww Plot FIDs in whitewash mode (C)}

Syntax: pfww< (<start><,finish><,step><,'all'|'imag'>) >
Description: Plots FIDs in whitewash mode (after the first FID, each FID is blanked out in regions in which it is behind an earlier FID). The position of the first FID is governed by parameters wc, sc, and vpf.
Arguments: start is the index of a particular FID for arrayed 1D or 2D data sets. For multiple FIDs, start is the index of the first FID.
finish is the index of the last FID for multiple FIDs.
step specifies the increment for the FID index. The default is 1 .
'all' is a keyword to plot all of the FIDs. This is the default.
'imag' is a keyword to plot only the imaginary FID channel. The default is 'all'.
Examples: pfww
pfww (4,10,2,'imag')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(d f s\) & Display stacked FIDs (C) \\
& \(d f w w\) & Display FIDs in whitewash mode (C) \\
& plfid & Plot FIDs (C) \\
Sc & Start of chart (P) \\
& \(\operatorname{vpf}\) & Current vertical position of FID (P) \\
& wC & Width of chart (P)
\end{tabular}
pge \(\quad\) Convert parameter set to PGE pulse sequence (M)
Applicability: Systems with the diffusion option.
Description: Adds all necessary parameters to perform the PGE (Pulse Gradient Experiment) pulse sequence, taking those parameters from the file/vnmr/parlib/pge.
See also: VnmrJ Liquids NMR
Related: pge_calib Calibrate gradient strengths for PGE pulse sequence (M) pge_data Extract data from single element of PGE pulse sequence (M) pge_output Output results from PGE pulse sequence (M) pge_process Automated processing of data from PGE pulse sequence (M) pge_results Calculate diffusion constant for integral region (M) pge_setup Set up gradient control parameters for PGE pulse sequence (M)

\section*{pge_calib Calibrate gradient strengths for PGE pulse sequence (M)}
Applicability: Systems with the diffusion option.
Description: Calibrates the parameters grad_cw_coef and grad_p_coef, which relate the DAC values (in DAC units) to the gradient strengths (in gauss/cm). Given a diffusion constant measurement (made with pge_results) for a known diffusion constant, pge_calib then adjusts the calibration parameters to produce the correct diffusion constant.
See also: VnmrJ Liquids NMR
Related: pge Calibrate gradient strengths for PGE pulse sequence (M)
pge_results Calculate diffusion constant for integral region (M)
pge_data Extract data from single element of PGE pulse sequence (M)
Applicability: Systems with the diffusion option.
Syntax: pge_data (array_index)
Description: Extracts integral information from a currently displayed element of a PGE (Pulse Gradient Experiment) and writes the results in the current experiment directory as the file info_\#, where \# is the value of the array_index argument (e.g., if array_index is 5, the file is info_5)
Arguments: array_index is the number of the array element from which the data is extracted.
Examples: pge_data(5)
See also: VnmrJ Liquids NMR
Related: pge Calibrate gradient strengths for PGE pulse sequence (M)
pge_output Output results from PGE pulse sequence (M)
Applicability: Systems with the diffusion option.
Description: Prints the calculated results from the PGE (Pulse Gradient Experiment) pulse sequence on a printer and plots the graphs of calculated decay curves.
See also: VnmrJ Liquids NMR
Related: pge Calibrate gradient strengths for PGE pulse sequence (M)
pge_process Automated processing of data from PGE pulse sequence (M)
Applicability: Systems with the diffusion option.
Syntax: pge_process
Description: Performs full automated processing of data from a PGE (Pulse Gradient Experiment) pulse sequence.

Related: pge Calibrate gradient strengths for PGE pulse sequence (M)

\section*{pge_results Calculate diffusion constant for integral region (M)}

Applicability: Systems with the diffusion option.
Syntax: pge_results(integral_region<,reference_region>)
Description: Calculates a diffusion coefficient based on a single integral region in the spectrum (if one input argument) or calculates diffusion coefficient of an integral region consisting of two components (if two input arguments).

Arguments: integral_region is the number of the integral region on which to perform the analysis
reference_region is the number of the integral region used to get the value of the diffusion coefficient.

Examples: pge_results (2)
pge_results (1,3)
See also: VnmrJ Liquids NMR
Related: pge Calibrate gradient strengths for PGE pulse sequence (M)
pge_setup Set up gradient control parameters for PGE pulse sequence (M)
Applicability: Systems with the diffusion option.
Syntax: pge_setup<('no')>
Description: Prompts the user for the values of the g_max, g_min, g_steps, g_array, nt_first, nt_aray, and other parameters for the PGE (Pulse Gradient Experiment) pulse sequence. These parameters are then used to calculate the grad_p1 and nt arrays.

Arguments: ' no ' is a keyword to turn off prompting the user and instead use the current values of the parameters to calculate the grad_p1 and nt arrays.
Examples: \begin{tabular}{rl} 
pge_setup \\
& pge_setup ('no')
\end{tabular}

See also: VnmrJ Liquids NMR
Related: pge Calibrate gradient strengths for PGE pulse sequence (M)
ph Set phased mode in directly detected dimension (C)
Description: Selects the phased mode by setting the parameter \(\mathrm{dmg}=\) ' ph '. In the phased spectra display mode, each real point in the displayed spectrum is calculated from a linear combination of the real and imaginary points comprising each respective complex data point. The coefficients for this linear combination are derived from the phase parameters \(r p\) and \(l p\).
For 2D data, if pmode= 'partial' or pmode=' ' (two single quotes with no space in between), ph has an effect on the data prior to the second Fourier transform. If pmode= ' full ' , ph acts in concert with the commands ph1, av1, or pwr1 to yield the resultant contour display for the 2D data.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & av & Set abs. value mode in directly detected dimension (C) \\
& av1 & Set abs. value mode in 1st indirectly detected dimension (C) \\
& dmg & Data display mode in directly detected dimension (P) \\
& ft & Fourier transform 1D data (C)
\end{tabular}


The ph2 command is only needed if mixed-mode display is desired. If the parameter dmg 2 does not exist or is set to the null string, the display mode along the second indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of ph2 is the same as for traces provided that pmode='partial' or pmode=' '.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & av2 & Set abs. value mode in 2nd indirectly detected dimension (C) \\
\(\mathrm{dmg2}\) & Data display mode in 2nd indirectly detected dimension (P) \\
\(\mathrm{ft1d}\) & Fourier transform along \(\mathrm{f}_{2}\) dimension (C) \\
\(\mathrm{ft2d}\) & Fourier transform 2D data (C) \\
lp2 & First-order phase in 2nd indirectly detected dimension (P) \\
ph & Set phased mode in directly detected dimension (C) \\
pmode & Processing mode for 2D data (P) \\
pwr2 & Set power mode in 2nd indirectly detected dimension (C) \\
rp2 & Zero-order phase in 2nd indirectly detected dimension (P)
\end{tabular}

\section*{phase \(\quad\) Change frequency-independent phase rp (M)}

Syntax: phase (phase_change)
Description: Changes the phase of all peaks in the spectrum by adding a value to the current rp value. Any excess over \(360^{\circ}\) is removed.
Arguments: phase_change is the value to be added to the current rp value (i.e., new \(r p=o l d r p+\) phase_change).
Examples: phase(45)
See also: VnmrJ Liquids NMR
Related: rp Zero-order phase in directly detected dimension (P)

\section*{phase Phase selection (P)}

Description: Selects the phase cycling that determines the experiment type. To create the parameters phase, ni, and Sw1 for acquisition of a 2D data set in the current experiment, enter addpar('2d').
Values: The following values are generally used in experiments with phase cycling. For more details, see the specific pulse sequence.
phase \(=0\) selects an absolute-value 2D experiment.
phase=1,2 selects the required two components of a hypercomplex (StatesHaberkorn) experiment.
phase \(=3\) selects TPPI (Time Proportional Phase Incrementation).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
addpar \\
cosyps \\
dqcosy
\end{tabular} & \begin{tabular}{l} 
Add selected parameters to the current experiment \((M)\) \\
hmqc
\end{tabular} \\
Set up parameters for phase-sensitive COSY (M) \\
hmqcr & Set up parameters for double quantum filtered COSY (M) \\
inadqt & Set up parameters for HMQCR pulse sequence (M) \\
mqcosy & Set up parameters for INADEQUATE pulse sequence (M) \\
noesy & Set up parameters for MQCOSY pulse sequence (M) \\
roesy & Set up parameters for NOESY pulse sequence (M) \\
tocsy & Set up parameters for ROESY pulse sequence (M) \\
& Set up parameters for TOCSY pulse sequence \((M)\)
\end{tabular}

\section*{phase1 Phase of first pulse ( \(P\) )}

Applicability: Systems with a solids NMR module.
Description: Controls the first pulse phase in the cycle, in multipulse experiments.
See also: User Guide: Solid-State NMR
Related: br24 Set up BR24 multiple pulse experiment (M)
flipflop Set up sequences for multipulse (M)
phase2 Phase selection for 3D acquisition (P)
Description: Selects phase cycling type for 3D data acquisitions. Also selects the phase of the second pulse in the sequence set up by flipflop. To create the parameters phase2, d3, ni2, and sw2 for acquisition of a 3D data set in the current experiment, enter addpar('3d').
See also: VnmrJ Liquids NMR; User Guide: Solid-State NMR
\begin{tabular}{lll} 
Related: & addpar & Add selected parameters to the current experiment (M) \\
d3 & Incremented delay for 2nd indirectly detected dimension (P) \\
flipflop & Set up sequences for multipulse (M) \\
ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
par3d & Create 3D acquisition, processing, display parameters (C) \\
sw2 & Spectral width in 2nd indirectly detected dimension (P)
\end{tabular}
phase3 Phase selection for 4D acquisition (P)
Description: Selects phase cycling type for 4D data acquisitions. To create the parameters phase3, d4, ni3, and sw3 for acquisition of a 4D data set in the current experiment, enter addpar('4d').
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & addpar & Add selected parameters to the current experiment (M) \\
d4 4 & Incremented delay for 3rd indirectly detected dimension (P) \\
ni3 & Number of increments in 3rd indirectly detected dimension (P) \\
par4d & Create 4D acquisition parameters (C) \\
sw3 & Spectral width in 3rd indirectly detected dimension (P)
\end{tabular}
phasing Control update region during interactive phasing ( P )
Description: Controls the percentage of the spectrum updated during interactive phasing using the ds command.

Values: 10 to 100 , in percent, where 100 causes the entire spectrum to be updated, and 20 causes the area between the two vertical cursors to be updated.
See also: VnmrJ Liquids NMR
Related: ds Display a spectrum (C)
phfid Zero-order phasing constant for the np FID (P)
Description: Specifies the angle of zero-order rotation. This zero-order rotation is executed as a part of retrieving the time-domain data into the active region of the memory and can be used instead of the parameter rp applied to the frequency-domain data. phfid is used only in a complex phase rotation.
phfid (and related parameters lsfid and lsfrq) operate on complex np FID data, referred to as the \(t_{2}\) dimension in a 2D experiment or as the \(t_{3}\) dimension in a 3D experiment. phfid is in the processing group and is properly handled through the wti display.

Values: -360.0 to +360.0 , in degrees; ' n '
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dfid & Display a single FID (C) \\
ds & Display a spectrum FID (C) \\
ft & Fourier transform 1D data (C) \\
ftld & Fourier transform along \(\mathrm{f}_{2}\) dimension (C) \\
\(\mathrm{ft2d}\) & Fourier transform 2D data (C) \\
lsfid & Number of complex points to left-shift the np FID (P) \\
lsfrq & Frequency shift of the fn spectrum in Hz (P) \\
np & Number of data points (P) \\
phfidi & Zero-order phasing constant for ni interferogram (P) \\
phfid2 & Zero-order phasing constant for ni2 interferogram (P) \\
rp & Zero-order phase in directly detected dimension (P) \\
wft & Weight and Fourier transform 1D data (C) \\
wftld & Weight and Fourier transform \(\mathrm{f}_{2}\) of 2D data (M) \\
\(\mathrm{wft2d}\) & Weight and Fourier transform 2D data (M) \\
wti & Interactive weighting (C)
\end{tabular}

\section*{phfid1 Zero-order phasing constant for ni interferogram ( P )}

Description: Specifies the angle of zero-order rotation. This zero-order rotation is executed as a part of retrieving the time-domain data into the active region of the memory and can be used instead of the parameter rp1 applied to the frequency-domain data. phfidl is used in a complex phase rotation for complex \(t_{1} / t_{2}\) interferograms and in a hypercomplex phase rotation for hypercomplex \(t_{1} / t_{2}\) interferograms.
phfidl (and related parameters lsfidl and lsfrq1) operate on ni interferogram data, both hypercomplex and complex. ni interferogram data are referred to as the \(t_{1}\) dimension in both a 2 D and a 3 D experiment. phfid1 is in the processing group and is properly handled through the wti display; that is, a wti operation on an ni interferogram applies the parameters phfid1, lsfid1, and lsfrq1, if selected, to the time-domain data prior to the Fourier transformation.
Values: -360.0 to +360.0 , in degrees; ' n '.
See also: VnmrJ Liquids NMR
Related: lsfid1 Number of complex points to left-shift the ni interferogram (P)
lsfrq1 Frequency shift of the fn1 spectrum in \(\mathrm{Hz}(\mathrm{P})\)
ni \(\quad\) Number of increments in 1st indirectly detected dimension (P)
phfid Zero-order phasing constant for np FID (P)
phfid2 Zero-order phasing constant for ni2 interferogram (P)
rp1 Zero-order phase in 1st indirectly detected dimension (P)
wti Interactive weighting (C)

\section*{phfid2 Zero-order phasing constant for ni2 interferogram (P)}

Description: Specifies the angle of zero-order rotation. This zero-order rotation is executed as a part of retrieving the time-domain data into the active region of the memory and can be used instead of the parameter rp 2 applied to the frequency-domain data. phfid2 is used in a complex phase rotation for complex \(t_{1} / t_{2}\) interferograms and in a hypercomplex phase rotation for hypercomplex \(t_{1} / t_{2}\) interferograms.
phfid2 (and related parameters lsfid2 and lsfrq2) operate on ni2 interferogram data, both hypercomplex and complex. ni2 interferogram data
are referred to as the \(t_{2}\) dimension in a 3D experiment. phfid2 is in the processing group and is properly handled through the wti display.
Values: -360.0 to +360.0 , in degrees; ' n '.
See also: VnmrJ Liquids NMR
Related: lsfid2 Number of complex points to left-shift ni2 interferogram (P)
1sfrq2 Frequency shift of the fn2 spectrum in \(\mathrm{Hz}(\mathrm{P})\)
ni2 Number of increments in 2nd indirectly detected dimension (P)
phfid Zero-order phasing constant for np FID (P)
phfid1 Zero-order phasing constant for ni interferogram (P)
rp2 Zero-order phase in 2nd indirectly detected dimension (P)
wti Interactive weighting (C)

\section*{phi \(\quad\) Euler angle phi from magnet frame (P)}

Applicability: Systems with imaging capabilities.
Description: Euler angle phi from magnet frame.
Values: -180 to +180 , in degrees.
See also: VnmrJ Imaging NMR
Related: psi Euler angle psi from magnet frame (P)
theta Euler angle theta from magnet frame (P)

Phosphorus \(\quad\) Set up parameters for \({ }^{31} \mathrm{P}\) experiment (M)
Description: Set up parameters for \({ }^{31} \mathrm{P}\) experiment.

\section*{pi Inversion pulse length (P)}

Applicability: Systems with imaging capabilities.
Description: Pulse length for an inversion pulse, often used as an optional first pulse preceding the main sequence to provide contrast based on \(T_{1}\) relaxation.
A pi pulse will often be programmed so that it may be toggled on or off by the operator with the inversion-recovery flag ir.
See also: VnmrJ Imaging NMR
Related: ir Inversion recovery mode (P)
pipat \(\quad\) Shape of an inversion pulse ( P )
ti Second delay in an inversion recovery sequence ( P )
tpwri Intensity of an inversion pulse in \(\mathrm{dB}(\mathrm{P})\)
pi3ssbsq \(\quad\) Set up pi/3 shifted sinebell-squared window function (M)
Syntax: pi3ssbsq<(<t1_inc><,t2_inc>) >
Description: Sets up a pi/3 unshifted sinebell-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is \(1 \mathrm{D}, 2 \mathrm{D}\), and 3D.
Arguments: \(t 1\) _inc is the number of \(t 1\) increments. The default is ni.
t2_inc is the number of t 2 increments. The default is ni2.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & gaussian & Set up unshifted Gaussian window function (M) \\
& ni & Number of increments in 1st indirectly detected dimension (P) \\
ni2 & Number of increments in 2nd indirectly detected dimension (P) \\
pi4ssbsq & Set up pi/4 shifted sinebell-squared window function (M)
\end{tabular}
pi4ssbsq \(\quad\) Set up pi/4 shifted sinebell-squared window function (M)
Syntax: pi4ssbsq< (<t1_inc><,t2_inc>) >
Description: Sets up a pi/4 unshifted sinebell-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is \(1 \mathrm{D}, 2 \mathrm{D}\), and 3D.

Arguments: \(t 1\) _inc is the number of \(t 1\) increments. The default is \(n i\).
t2_inc is the number of t 2 increments. The default is ni2.
See also: VnmrJ Liquids NMR
Related: gaussian Set up unshifted Gaussian window function (M)
ni \(\quad\) Number of increments in 1st indirectly detected dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
pi3ssbsq Set up pi/3 shifted sinebell-squared window function (M)
sqcosine Set up unshifted cosine-squared window function (M)
sqsinebell Set up unshifted sinebell-squared window function (M)

\section*{pilot \(\quad\) Automatic sequence setup ( \(\mathbf{P}\) )}

Applicability: Systems with imaging capabilities.
Description: Provides a degree of automatic setup of a sequence, where this capability is available. If pilot='Y', access is provided to automatic setting for the gradients gssr and gror. These gradient levels are then adjusted to compensate for gradient slew rate. The adjustments are made at the time of go; however, the values used are not returned to the parameter set.
Values: ' \(y\) ' means the automatic mode is on.
' \(n\) ' means the manual mode is set.
See also: VnmrJ Imaging NMR
Related: go Submit experiment to acquisition (C)
gror Readout compensation gradient (P)
gssr \(\quad\) Slice selection refocusing gradient (P)
pintvast Plots of integral regions (M)
Applicability: Systems with VAST accessory.
Syntax: pintvast (last)
Description: pintvast plots the integrals of the partial regions of each spectra from wells 0 to last.

Arguments: last is the number last sample well. The default is 96 .
See also: VnmrJ Liquids NMR
Related: intvast Builds text file the integral regions (M)
pipat \(\quad\) Shape of an inversion pulse (P)
Applicability: Systems with imaging capabilities.
Description: Specifies the shape of inversion pulse pi.
Values: 'hard','sinc','gauss','sech', 'sine', or any shape resident in the system pulse shape library or libraries.

See also: VnmrJ Imaging NMR
\begin{tabular}{lll} 
Related: & ir & Inversion recovery mode \((\mathrm{P})\) \\
& pi & Width of an inversion pulse \((\mathrm{P})\)
\end{tabular}
pir Plot integral amplitudes below spectrum (C)
Description: Plots integral amplitudes below the appropriate spectral regions.
See also: VnmrJ Liquids NMR
Related: dpf Display peak frequencies over spectrum (C)
dpir \(\quad\) Display integral amplitudes below spectrum (C)
dpirn \(\quad\) Display normalized integral amplitudes below spectrum (M)
pirn Plot normalized integral amplitudes below spectrum (M)
ppf Plot peak frequencies over spectrum (M)
pirn Plot normalized integral amplitudes below spectrum (M)
Description: Equivalent to the command pir except that the sum of the integrals is normalized to the value of the parameter ins.
See also: VnmrJ Liquids NMR
Related: dpirn Display normalized integral amplitudes below spectrum (M)
ins Integral normalization scale (P)
pir Plot integral amplitudes below spectrum (C)

Plot spectra (C)
Syntax: pl<(<start,finish<,step>><,'int'><,'all'> <, options>) >

Description: Plots one or more spectra. When a single spectrum is plotted, integral plotting is controlled by the parameter intmod as follows: intmod=' off'turns off the integral plot, intmod='full ' plots the entire integral, and intmod='partial ' plots every other integral region.
For arrayed 1D spectra or for 2D spectra, a particular trace can be plotted by supplying the index number as an argument. For 2D data sets, spectra can be plotted from either the \(f_{1}\) or \(f_{2}\) domain by setting the parameter trace to ' f 1 ' or ' \(f 2\) ', respectively. After the command \(f t 1 d\), interferograms can be plotted by setting trace='f1' and then typing pl. Multiple spectra can be plotted by supplying the indexes of the first and last spectra.
The position of the first spectrum is governed by the parameters wc, sc, and vp. For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the vertical and horizontal offset parameters vo and ho. For 2D data, ho defines the total horizontal offset between the first and last spectrum. Also for 2D data, vo is inactive while the parameter wC2 defines the total vertical offset between the first and last spectrum.

The parameter cutof \(f\), if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying cutoff to have two different values, truncation limits above and below the current vertical position can be controlled. For example, cutoff \(=50\) truncates peaks at \(v p+50 \mathrm{~mm}\) and \(v p-50 \mathrm{~mm}\). cutoff \(=50,10\) truncates peaks at \(\mathrm{vp}+50 \mathrm{~mm}\) and \(\mathrm{vp}-10 \mathrm{~mm}\).

Arguments: start is the index of a particular trace for arrayed 1D or 2D spectra. For multiple spectra, start is the index of the first spectrum.
finish is the index of the last spectrum for multiple spectra.
step specifies the increment for the spectral index. The default is 1 .

\section*{pl2d Plot 2D spectra in whitewash mode (C)}

Syntax: pl2d<('nobase'|'fill'|'fillnb')>
Description: Plots a stacked plot of 2D spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra). Color does not represent intensity (unlike dcon), since intensity can be seen visually, but instead successive traces are displayed in different colors so that color represents frequency. The horizontal offset parameter ho is not active for this command.

Arguments: 'nobase' is a keyword to activate th to suppress intensity below th.
' fill ' is a keyword to fill in the peaks. Note that if ' fill ' (or ' filln ') is used, th operates linearly and not logarithmically (with factors of 2 ) as it does in contour or color intensity displays.
' fillnb ' is a keyword to combine base suppression and peak filling.
Examples: pl2d
pl2d('nobase')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dcon & Display noninteractive color intensity map (C) \\
& ds2d & Display 2D spectra in whitewash mode (C) \\
dsww & Display spectra in whitewash mode (C) \\
ho & Horizontal offset (P) \\
plww & Plot spectra in whitewash mode (C) \\
th & Threshold (P)
\end{tabular}

\section*{plan \(\quad\) Display menu for planning a target scan (M)}

Applicability: Systems with imaging capabilities.
Description: Brings up a menu that provides access to the target scan planning utilities. The plan menu has three buttons: Slice, Voxel, and Exit.

The Slice button provides access to the slice planning menu. The user first clears the current experiment of any mark2d. out files using the Clear Marks button. The image display may then be made interactive using the Interactive View button. This activates the dconi program. The user should select and mark two points that lie on the edge of the desired target slice plane using the Mark button of the dconi menu. To write the mark data into the mark2d. out file, the user should exit dconi using the Return button. This exits to the slice planner menu.
The target slice selection can be shown graphically on the image display using the Show Target button of the slice planner menu. This button uses the drawslice macro. The slice parameters (pss, psi, phi, and theta) are calculated and set using the Calculate Target button of the slice planner menu. This button uses the sspl an macro. This program creates the string parameter planlock and assigns it the value 'ssplan'. This prevents a user inadvertently performing a second planning operation without applying the reset command to restore the original parameters for the scout data.
At this point, the current parameters of the scout experiment contain the data needed to acquire the desired slice. The user can use these directly or use the mp or transfer commands to move the information to another experiment.
The Voxel button of the plan menu provides access to the voxel planning menu. The user may enter the interactive mode using the Interactive View button. This activates the dconi program. The user should clear any previous unwanted planning information before starting.
The size and position of the voxel face parallel to the image plane can be selected by positioning the 2D box cursor. Once this is done, the user leaves the interactive mode using the Return button of the dconi menu. This returns the user to the voxel planning menu. The user can plan for more than one voxel. These target voxel selections can be shown graphically on the image display using the Show Target button of the planner menu. This button uses the drawvox macro. The parameter for the voxel can be calculated and set using the Calculate Target button, which uses the voxplan macro.
The voxplan macro requests the user to enter the voxel size in the direction parallel to the scout image slice select axis. Voxel parameters are computed from the 2D box cursor data and user entry. The voxel center is taken to lie in the scout image plane at the center of the 2D box. voxplan also creates the string parameter planlock and assigns it the value 'voxplan'. This provides an interlock against further planning operations. The reset command restores the original scout parameters and removes the planlock parameter.
The current parameters of the scout experiment contain the data needed to acquire the voxel. The user must use the transfer program to copy this data to the parameter set of a suitable voxel selective sequence.
\begin{tabular}{lll} 
See also: & VnmrJ Imaging NMR \\
Related: & drawslice & Display target slices (M) \\
& drawvox & Display target voxels (M) \\
& mp & Move parameters between experiments (C) \\
& phi & Euler angle phi from magnet frame (P) \\
& planlock & Planner lockout (P) \\
& psi & Euler angle psi from magnet frame (p) \\
& pss & Slice position (P) \\
& ssplan & Set slice parameters for target slice (M)
\end{tabular}
\begin{tabular}{ll} 
theta & Euler angle theta from magnet frame (P) \\
voxplan & Set voxel parameters for voxel defined by 2D box cursor (M)
\end{tabular}

\section*{plane \(\quad\) Currently displayed 3D plane type (P)}

Applicability: All systems; however, although plane is available on MERCURYplus/Vxsuch systems can only process 3D data and cannot acquire 3D data.
Description: Stores the type of 3D plane currently displayed within VnmrJ. If plane does not exist, it is created by the macro par3d. The command select, as well as the many macros that make use of select, requires the parameter plane to exist for 3D data sets and to contain an appropriate value.
plane is set automatically by the macro getplane; it can also be set by the macro ft 3 d if automatic plane extraction is requested at the end of the 3D FT. The order of priority for the plane types is 'f1f3', 'f2f3', and then 'f1f2'. In other words, if getplane is requested to extract the \(f_{1} f_{3}\) and the \(\mathrm{f}_{2} \mathrm{f}_{3}\) planes, plane will be set to ' f 1 f 3 '. plane can also be set manually.
Values: 'f1f3','f3f1','f2f3','f3f2','f1f2', or'f2f1'
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
dplane \\
dproj
\end{tabular} & \begin{tabular}{l} 
Display a 3D plane (M) \\
display a 3D plane projection (M)
\end{tabular} \\
& dsplanes & Display a series of 3D planes (M) \\
ft3d & Perform a 3D Fourier transform on a 3D FID data set (M,U) \\
getplane & Extract planes from a 3D spectral set (M) \\
nextpl & Display the next 3D plane (M) \\
par3d & Create 3D acquisition, processing, display parameters (C) \\
path3d & Number of complex points to left-shift np FID (P) \\
plplanes & Plot a series of 3D planes (M) \\
prevpl & Display the previous 3D plane (M) \\
select & Select a spectrum or 2D plane without displaying it (C)
\end{tabular}

\section*{planlock Planner lock (P)}

Applicability: Systems with imaging capabilities.
Description: Created by voxplan and assigned the value 'voxplan' to provide an interlock against further planning operations. This parameter is also created by the \(\operatorname{sspl}\) an macro and assigned the value 'ssplan' to prevents a user inadvertently performing a second planning operation. In both cases, the reset command removes the value assigned to planlock.
See also: VnmrJ Imaging NMR
Related: plan Display menu for planning a target scan (M)
ssplan Set slice parameters for target slice (M)
voxplan Set voxel parameters for voxel defined by 2D box cursor (M)
plapt Plot APT-type spectra automatically (M)
Syntax: plapt<(13Cexp_number) >
Description: Automatically plots APT spectra. The APT spectrum is plotted on top of a standard carbon spectrum if either an experiment with such data is specified or if a file C13 is found in curexp+'/subexp '. If neither such a subfile is found nor an experiment with standard carbon data is specified, the APT spectrum is plotted alone.

Arguments: 13 Cexp_number specifies the number, from 1 to 9 , of an experiment with a standard \({ }^{13} \mathrm{C}\) spectrum.
Examples: plapt
plapt(2)
See also: VnmrJ Liquids NMR
Related: curexp Current experiment directory (P)

\section*{plarray Plotting macro for arrayed 1D spectra (M)}

Description: A generic macro for plotting arrayed 1D spectra. plarray is called by the plot macro, but can also be used directly. For the plot layout, procarray distinguishes between arrays with few elements ( 6 or less), which will be stacked vertically (no horizontal offset), and spectra with many (greater than 6) elements. Those are stacked horizontally by default, unless there are too many lines, in which case a diagonally stacked display is chosen. Horizontal stacking is mostly adequate for pulse and power calibrations, where there are usually few lines only; diagonally stacked displays/plots are frequently chosen for \(T_{1}\) and \(T_{2}\) experiments on entire spectra, often with many lines.
The automatic stacking mode can be overridden by creating and setting a string parameter stackmode in the startup macro or before calling procplot or procarray. Possible values for stackmode are 'horizontal',
'vertical', or 'diagonal'. DEPT-type spectra can, in principle, also be processed with procarray, but no DEPT editing occurs, of course.
See also: VnmrJ Liquids NMR
Related: aexppl Automatic expansion plot (M)
\(\mathrm{plc} \quad\) Plot carbon spectrum (M)
plh Plot proton spectrum (M)
plot Automatically plot spectra (M)
procarray Process arrayed 1D spectra (M)
stackmode Stack control for processing arrayed 1D spectra (P)

\section*{plate_glue Define a glue order for plotting and display (U)}

\section*{Applicability: Systems with VAST accessory}

Description: In a Unix terminal or shell window type plate_glue. The glue order is determined by clicking on the wells to be displayed. Save the glue order file in the user's vnmrsys/templates/glue directory.
See also: VnmrJ Liquids NMR
Related: dsvast2d Display VAST data in a pseudo-2D format (M)
plvast Plot VAST data in a stacked 1D-NMR matrix (M)
plvast2d Plot VAST data in a pseudo-2D format (M)

Plot a carbon spectrum (M)
Syntax: plc<(pltmod) >
Description: Plots a carbon spectrum based on the parameters pltmod (the options 'off ', 'full', and 'fixed' are implemented) and intmod ('off', 'full', and 'partial' are implemented). Peak frequency labels, in ppm, are usually plotted.
Arguments: pltmod is an alternate value of pltmod for this macro only. The value of the pltmod parameter is not changed.
```

 Examples: plc
 plc('full')
 See also: VnmrJ Liquids NMR
 Related: intmod Integral display mode (P)
 pltmod Plotter display mode (P)
    ```
plcosy Plot COSY- and NOESY-type spectra automatically (M)
    Syntax: plcosy(<'pos'|'neg'><,><levels<,spacing<,exp1D>>>)

Description: Automatically plots 2D COSY- and NOESY-type spectra (homonuclear correlated spectra). Features include the following:
- Keeps the orientation \(\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)\) of the spectrum on the screen.
- Plot area is optimized.
- Number of contour levels and their spacing can be selected.
- Negative or positive contours can be suppressed.
- 1D traces can be plotted along both axes; such 1D traces are taken from a full (or reduced) 1D spectrum in an other experiment, or from a subfile from within the current experiment.
- Works correctly for expansions.
- 1D traces can be suppressed, allowing a larger area for the 2D spectrum.
- 1D spectrum can be in any experiment.
- With phase-sensitive spectra using a plotter with one pen or a printer such as a LaserJet, if 'pos ' or 'neg' are not selected, seven positive levels (or the specified number of positive contours) and one negative level are plotted, to distinguish positive and negative signals.
In multiexperiment mode, for the first plot, the experiment with the 1D spectrum should be specified (at least if it is not in exp1). From then on, the 1D spectrum will be stored within the experiment with the 2D spectrum, which allows much faster switching between spectra and also frees the other (1D) experiment for other tasks. Because of this internal storage, the \(\exp 1 \mathrm{D}\) argument is not required for subsequent plots.
Arguments: 'pos ' is a keyword to plot only positive contours.
' neg' is a keyword to plot only negative contours.
levels is the number of contour levels. The default is 7 .
spacing is the spacing between the contours. The default is 2 .
exp1D is the experiment in which the proton 1D spectrum resides. This can be a full 1D spectrum, but the referencing must be the same as for the 2D. A negative number suppresses the proton trace. The default is from a subfile.
Examples: plcosy
plcosy(12,1.5)
plcosy('pos',7,2,3)
plcosy ( \(7,2,-1\) )
plcosy('neg')
See also: VnmrJ Liquids NMR

\section*{pldept Plot DEPT data, edited or unedited (M)}

Description: Plots out DEPT data, either edited or not edited.

\section*{See also: VnmrJ Liquids NMR}
\begin{tabular}{lll} 
Related: & \begin{tabular}{ll} 
adept & Automatic DEPT analysis and spectrum editing (C) \\
autodept \\
deptproc
\end{tabular} & Automated complete analysis of DEPT data (M) \\
padept & Process DEPT data (M) \\
& Perform adept analysis and plot resulting spectra (C)
\end{tabular}
plfid Plot FIDs (C)
Syntax: plfid<(<start><,finish><,step><,'all'|'imag'>
<, pen>) >
Description: Plots one or more FIDs. The position of the first FID is governed by the parameters wc, SC, and vpf. A subsequent FID is positioned relative to the preceding FID by the vertical and horizontal offset parameters vo and ho.
Arguments: start is the index of a particular FID for arrayed 1D or 2D data sets. For multiple FIDs, start is the index of the first FID.
finish is the index of the last FID for multiple FIDs. To include all FIDs, set start to 1 and finish to the parameter arraydim (see example).
step specifies the increment for the FID index. The default is 1 .
'all' is a keyword to plot all of the FIDs. This is the default.
'imag' is a keyword to plot the imaginary FID channel only. The default is 'all'.
pen is a keyword with the plotter pen number: 'pen1', 'pen2', 'pen3', etc. The default is 'pen1'.
Examples: plfid(1,arraydim,3)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
arraydim \\
\(d f s\)
\end{tabular} & \begin{tabular}{l} 
Dimension of experiment (P) \\
\\
\\
\(d f w w\)
\end{tabular} \\
& ho & Display stacked FIDs (C) \\
& sc & Horizontal offset (P) \\
& vo & Start of chart (P) \\
& vpf & Vertical offset (P) \\
& wC & Current vertical position of FID (P) \\
& Width of chart (P)
\end{tabular}
plfit Plot deconvolution analysis (M)
Description: Produces a complete output plot of a deconvolution analysis, plotting the observed spectrum, the full calculated spectrum, each individual component, as well as the numerical results of the analysis.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & fitspec & Perform spectrum deconvolution (C) \\
& showfit & Display numerical results of deconvolution (M) \\
& usemark & Use "mark" output as deconvolution starting point (M)
\end{tabular}

\section*{plgrid \(\quad\) Plot a grid on a 2D plot (M)}

Syntax: (1) plgrid< (<spacing><, ><pen>) >
(2) plgrid<(start_f2,incr_f2,start_f1,incr_f1<,pen>) >

Description: Plots grid lines over a 2D plot.

Arguments: spacing specifies the approximate spacing of the grid lines, in cm . The default is intervals of approximately 1 cm , rounded so that the intervals fall at a multiple of 1,2 , or 5 (in Hz ) or \(1 \mathrm{p}, 2 \mathrm{p}\), or 5 p (in ppm).
pen is a keyword with the plotter pen number: 'pen1', 'pen2', 'pen3', etc. The default is 'pen1'.
start_f2, incr_f2, start_f1, incr_f1 define the starting and increment frequencies in both \(f_{2}\) and \(\bar{f}_{1}\) for a grid. Add the \(p\) suffix to a value to enter it in ppm (see last example below).
Examples: plgrid
plgrid(2)
plgrid('pen5')
plgrid(1.5,'pen2')
plgrid(1p,0.5p,3p,0.5p)
See also: VnmrJ Liquids NMR
Related: grid Draw a grid on a 2D display (C)
plh Plot proton spectrum (M)
Syntax: plh< (pltmod) >
Description: Plots a proton spectrum based on the parameters pltmod (the options 'off', 'fixed', 'full', and 'variable' are implemented) and intmod ('off', 'full', and 'partial' are implemented).
Arguments: pltmod is an alternate value of the parameter pltmod for this macro only.
The value of the pltmod parameter is not changed.
Examples: plh
plh('full')
See also: VnmrJ Liquids NMR
Related: intmod Integral display mode (P)
pltmod Plotter display mode (P)
\(\mathrm{sp} \quad\) Start of plot (P)
wp Width of plot (P)
plhet2dj Plot heteronuclear J-resolved 2D spectra automatically (M)
Syntax: plhet2dj<('pos'|'neg'<,levels<,spacing<,exp1D>>>) >
Description: Automatically plots 2D spectra of type HET2DJ (heteronuclear J-resolved 2D spectra) with the following features:
- Displayed portion of the spectrum is plotted in f2-mode
- Plot area is optimized
- Number of contour levels and their spacing can be selected
- Negative or positive contours can be suppressed
- A 1D trace can be plotted along the \(\mathrm{f}_{2}\) axis; such a 1 D trace is taken from a full (or reduced) 1D spectrum in an other experiment, or from a file from within the current experiment.
- Expansions are handled correctly
- The 1D trace can be suppressed, which allows using a larger area for the 2D spectrum
- The 1D spectrum can be in any experiment
- With phase-sensitive spectra, if 'pos' or 'neg' are not selected and the plotter has only one pen (also for printers like the LaserJet), the specified number of positive contours are plotted (default is 7 ), but only one negative level, to distinguish positive and negative signals.

In multiexperiment mode, for the first plot the experiment with the 1D spectrum should be specified (at least if it is not in exp1). From then on, the 1D spectrum is stored within the experiment with the 2D spectrum, which allows much faster switching between the spectra and also frees the other 1D experiment for other tasks. Because of this internal storage, the exp1D argument is not required for subsequent plots.
Arguments: 'pos ' is a keyword to only plot positive contours 'neg' is a keyword to only plot negative contours levels is the number of contour levels. The default is 7. spacing is the spacing between the contours. The default is 2 .
exp1D is the number from 1 to 9 of the experiment in which the 1D spectrum resides. This can be a full 1D spectrum, but the referencing must be the same as for the 2D. A negative number will suppress the 1D trace. The default is 1 (for exp1).
Examples: plhet2dj
plhet2dj(12,1.5)
plhet2dj('pos',7,2,3)
plhet2dj(7,2,-1)
See also: VnmrJ Liquids NMR
plhom2dj Plot homonuclear J-resolved 2D spectra automatically (M)
Syntax: (1) plhom2dj<(levels<,spacing<,exp1D>>) >
(2) plhom2dj ('pos'|'neg'<, levels<, spacing<, exp1D>>>)

Description: Automatically plots 2D spectra of type HOM2DJ (homonuclear J-resolved 2D spectra). Features include the following:
- The displayed portion of the spectrum is plotted in f2-mode
- The plot area is optimized
- Number of contour levels and their spacing can be selected
- Negative or positive contours can be suppressed
- A 1D trace can be plotted along the \(f_{2}\) axis; such a 1D trace is taken from a full (or reduced) 1D spectrum in an other experiment, or from a file from within the current experiment.
- It also works correctly for expansions
- The 1D trace can be suppressed, which allows using a larger area for the 2D spectrum
- The 1D spectrum can be in any experiment
- With phase-sensitive spectra, if 'pos' or 'neg' are not selected and the plotter has only 1 pen (also for printers like the LaserJet) 7 or the specified number of positive contours are plotted, but only one negative level, to distinguish positive and negative signals.

In multiexperiment mode, for the first plot the experiment with the 1D spectrum should be specified (at least if it is not in exp1). From then on, the 1D spectrum will be stored within the experiment with the 2D spectrum, which allows much faster switching between the spectra and also frees the other (1D) experiment
for other tasks. Because of this internal storage, the exp1D argument is not required for subsequent plots.
Arguments: levels is the number of contour levels. The default is 7 .
spacing is the spacing between the contours. The default is 2 .
exp1D is a number from 1 to 9 for the experiment in which the 1D spectrum resides. The spectrum can be a full 1D spectrum but the referencing must be the same as for the 2D. A negative number will suppress the 1D trace. The default is 1 (for expl).
'pos ' specifies only plot positive contours.
' neg' specifies only plot negative contours.
Examples:
plhom2dj
plhom2dj(25,1.2)
plhom2dj('pos',7,2,3)
plhom2dj(7,2,-1)
See also: VnmrJ Liquids NMR
plhxcor Plot X,H-correlation 2D spectrum (M)
Syntax: plhxcor(<'pos'|'neg'><,><levels<,spacing
<, exp1D_H<,exp1D_X>>>>)
Description: Automatically plots 2D spectra of type HETCOR, COLOC, HMQC, HMBC (direct and indirect detection). Features include the following:
- Keeps the orientation \(\left(f_{1}, f_{2}\right)\) of the spectrum on the screen.
- Plot area is optimized.
- Number of contour levels and their spacing can be selected.
- Negative or positive contours can be suppressed.
- 1D proton and \(X\) traces can be plotted along both axes; such 1D traces are taken from full (or reduced) 1D spectra in other experiments or subfile within the current experiment.
- Works correctly for expansions.
- 1D traces can be suppressed, allowing a larger area for the 2D spectrum.
- 1D spectra can be in any experiment.

Arguments: 'pos' is a keyword to plot only positive contours.
' neg' is a keyword to plot only negative contours.
levels is the number of contour levels. The default is 7 .
spacing is the spacing between the contours. The default is 2 .
exp1D_H is a number from 1 to 9 of the experiment in which the proton 1D spectrum resides; this can be a full 1D spectrum, but the referencing must be the same as for the 2D. A negative number will suppress the proton trace. The default is a subfile in the current experiment.
exp1D_X is a number from 1 to 9 of the experiment in which the X 1D spectrum resides. A negative number suppresses the \(X\) trace. the default is a subfile in the current experiment.
Examples: plhxcor \((12,1.5)\)
plhxcor \((7,2,3)\)
plhxcor (7,2,1,3)
plhxcor('pos',7,2,-1,3)
plhxcor (7,2,-1,-1)
plhxcor('neg')

See also: VnmrJ Liquids NMR
Related: hetcor Set up parameters for HETCOR pulse sequence (M)

\section*{plist \(\quad\) Active pulse length parameter list (P)}

Applicability: Systems with imaging capabilities.
Description: Contains an array of strings, whose values are the names of the rf pulse length parameters used by the sequence (e.g., plist='p1','p2','p3'). The nD, seqcon, plist, patlist, pwrlist, fliplist and sslist parameters configure a particular parameter set for an application sequence defined by the value of the seqfil parameter. The plist, patlist, pwrlist, fliplist and sslist parameters provide information concerning the rf pulse and conjugate gradients used by the sequence.
See also: VnmrJ Imaging NMR
Related: fliplist Standard flip angle list (P)
gcoil Read data from gradient calibration tables (P)
nD Application dimension (P)
patlist Active pulse template parameter list (P)
pwrlist Active pulse power level parameter list (P)
rfcoil RF pulse calibration identity ( P )
seqcon Acquisition loop control (P)
seqfil Application object code name (P)
sslist Conjugate gradient list ( P )

Plot a line list (M)
Syntax: pll<(x,y,minimum_y) >
Description: Produces a columnar line list on a plotter, similar to what would appear on a printer. pll is quite different from the alternative method of plotting peak frequencies using ppf. The output of pll is automatically formatted into multiple columns, depending on the number of lines.
Arguments: x is the \(x\) position of the upper left of the line list.
\(y\) is the \(y\) position of the upper left of the line list.
minimum_y is the minimum \(y\) at which to reset back to top.
Examples: pll
pll (20,150)
pll(5,wc2max*.8,wc2max*.5)
See also: VnmrJ Liquids NMR
Related: ppf Plot peak frequencies over spectrum (M)

\section*{pll2d Plot results of 2D peak picking (C)}

Syntax: pll2d<(options) >
Description: Plots the results of applying the 112 d command to pick 2D peaks in a 2 D spectrum or a 2D plane of a 3D spectrum. Refer to the description of 112 d for a description of the process and the options available.
See also: VnmrJ Liquids NMR
Related: ll2d
Automatic and interactive 2D peak picking (C)

\section*{plot \(\quad\) Automatically plot spectra (M)}

Description: A universal plotting macro normally called through the procplot macro (which by itself serves as processing and plotting facility for automatic experiments). plot can also be used directly by the user who then doesn't have to remember specific plotting macros. Of course, the specialized macros can still be called directly if the user know their names.
The main purpose of plot is to automatically call the correct specialized plotting macro, depending on the user definition or otherwise on the type of data in the experiment. A plotting macro is selected automatically as follows:
\begin{tabular}{ll} 
APT spectra: & plapt \\
other, non-arrayed 1D data: & plot1d \\
DEPT type arrayed spectra: & pldept \\
other arrayed 1D spectra: & plarray \\
J-resolved 2D spectra: & pl2dj \\
homonuclear correlation 2D spectra: & plcosy \\
heteronuclear correlation 2D spectra: & plhxcor
\end{tabular}

Other types of 2D spectra (mostly multiple-quantum 2D spectra such as 2D-
INADEQUATE) are not plotted automatically at this time. For phase-sensitive 2D spectra, automatic plotting is only provided if they were acquired using the method described by States, Haberkorn, and others; TPPI spectra are not covered.
Note that plot macros in general should not adjust the phase, the vertical scale, or change the integral size and reset points; these are assumed to be adjusted either by hand or by a suitable processing macro like procplot and the macros called therein. The plotting macros only make adjustments in order to make spectrum and parameters fit onto the page the desired way.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & plapt & Plot APT spectra (M) \\
& plarray & Plot arrays (M) \\
& plcosy & Plot homonuclear 2D correlation spectra (M) \\
& pldept & Plot DEPT type spectra (M) \\
& plhxcor & Plot heteronuclear correlation spectra (M) \\
& plotld & Plot 1D spectra (M) \\
& procplot & Automatically process FIDs (M)
\end{tabular}
plot1d Plotting macro for simple (non-arrayed) 1D spectra (M)
Description: A generic macro for plotting non-arrayed 1D spectra using a set of standard macros. plot \(1 d\) is called by the plot macro, but can also be used directly. plot \(1 d\) first tries to find a specific macro (e.g., \(p l h, p l c, p l p\) ) for the current observe nucleus. If such a macro exists, it is called. If a nucleus-specific macro is not found in the command path, a "minimal" 1D plot is produced.
See also: VnmrJ Liquids NMR
\begin{tabular}{rll} 
Related: & plc & Plot carbon spectrum (M) \\
& plh & Plot proton spectrum (M) \\
& plp & Plot phosphorus spectrum (M) \\
& plot & Automatically plot spectra (M)
\end{tabular}

\section*{plot2D Plot 2D spectra (M)}

Syntax: plot2D('pos'|'neg'|'both',levels,spacing, \}
'top'|'notop'|'proj', 'side'|'noside'|'proj')
Description: Checks for the presence of appropriate proton or carbon high-resolution spectra in the directory userdir+'/data/'+sample and decides to plot high resolution spectra or a projection depending on whether or not the proton or carbon spectrum exists.

Arguments: ' pos ' is a keyword to plot positive contours.
' neg' is a keyword to plot negative contours.
'both' is a keyword to plot both positive and negative contours.
levels is the number of levels to be plotted.
spacing is the spacing between contour levels.
' top ' is a keyword to plot a high-resolution spectrum on the top.
' notop' is a keyword to plot a non-high-resolution spectrum or projection.
' proj' is a keyword to plot a projection on top.
'side' is a keyword to plot a high-resolution spectrum on the side.
' noside' is a keyword to plot a non-high-resolution spectrum or projection.
'proj' is a keyword that plots a projection on the side.
Examples: plot2D('pos',2,5,'top','side')
Related:
plot Automatically plot spectra (M)
plotside Plot spectrum on side (M)
plottop Plot spectrum on top (M)
plottopside Plot spectrum on top and side (M)
plotside \(\quad\) Plot spectrum on side (M)
Description: Plots projection or high-resolution spectrum on the side of a 2 D spectrum. plotside is used with plot2D and is not useful by itself.

Related: plot2D Plot 2D spectra (M)

\section*{plotter Plotter device (P)}

Description: Sets the plotter in use on the system.
Values: A string with entries such as 'DraftPro', 'ThinkJet_96', 'LaserJet_300', 'jim', 'varianl', and 'Laser1'.
See also: VnmrJ Liquids NMR
Related: setplotdev Return characteristics of a named plotter (C)
showplotter Show list of currently defined plotters and printers (M)
plottop
Plot spectrum on top (M)
Description: Plots projection or high resolution spectra on the top of a 2D spectrum. plottop is used with plot 2 D and is not useful by itself.

Related: plot2D Plot 2D spectra (M)

\section*{plottopside Plot spectrum on top and side (M)}

Description: Plots projection or high-resolution spectrum on the top and side of a 2 D spectrum. plottopside is used with plot 2 D and is not useful by itself.
Related: plot2D Plot 2D spectra (M)

\section*{plp \(\quad\) Plot phosphorus spectrum (M)}

Syntax: \(\mathrm{plp}<(\mathrm{pltmod})>\)
Description: Plots a phosphorus spectrum based on the parameters pltmod (the options
'off', 'full', and 'fixed' are implemented) and intmod ('off', 'full', and 'partial' are implemented). Peak frequency labels, in ppm, are usually plotted.
Arguments: pltmod is an alternate value of pltmod for this macro only. The value of the pltmod parameter is not changed.
Examples: plp
plp('full')
See also: VnmrJ Liquids NMR
Related: intmod Integral display mode (P)
\(\mathrm{plh} \quad\) Plot proton spectrum (M)
pltmod Plotter display mode (P)

\section*{plplanes \(\quad\) Plot a series of 3D planes (M)}

Applicability: All systems; however, although plplanes is available on MERCURYplus/Vx systems, such systems can only process 3D data and cannot acquire 3D data.
Syntax: plplanes(start_plot,stop_plot<,'pos'|'neg'> <, number_levels><,spacing>)
Description: Creates the 2D contour plots for a subset of the 3D planes specified by the parameter plane.
Arguments: start_plot specifies the number, greater than 0 , of the 3 D plane with which plotting is to begin.
stop_plot specifies the number of the 3D plane with which plotting is to end. If start_plot is greater than stop_plot, only the first plane, whose number is start_plot, is plotted. The range of stop_plot depends on the value of the parameter plane:
- if plane='f1f3', stop_plot is between 0 and fn2/2
- if plane='f2f3', stop_plot is between 0 and fn1/2
- if plane= 'f1f2', stop_plot is between 0 and fn/2
' pos ' is a keyword specifying that phase-sensitive spectra plot positive peaks only. The default is to plot both positive and negative peaks.
' neg ' is a keyword specifying that phase-sensitive spectra plot negative peaks only. The default is to plot both positive and negative peaks.
levels is maximum number of contour levels to plot. The default is 4 .
spacing is relative intensity of successive contour levels. The default is 2 .
Note that the optional arguments 'pos'|'neg', number_levels, and spacing are for the VnmrJ plotting command pcon.
Examples: plplanes (1,3)
plplanes(2,3,'pos',4)

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
dplane \\
dproj
\end{tabular} & \begin{tabular}{l} 
Display a 3D plane (M) \\
Display a 3D plane projection (M)
\end{tabular} \\
& dsplanes & Display a series of 3D planes (M) \\
getplane & Extract planes from 3D spectral data set (M) \\
nextpl & Display the next 3D plane (M) \\
path3d & Path to currently displayed 2D planes from a 3D data set (P) \\
pcon & Plot contours on a plotter (C) \\
plane & Currently displayed 3D plane type (P) \\
prevpl & Display the previous 3D plane (M)
\end{tabular}

\section*{pltext Plot text file (M)}
```

Syntax: pltext<(<file><,x<,y<,width>>>) >

```
    <: \$x_next, \$y_next,\$y_increment>

Description: Plots a text file.
Arguments: file is the name of a text file. The default is the current experiment text file.
\(x\) and \(y\) are coordinates, in mm, of the first line of text. This positions the location of the output. The default is the upper left-hand corner of the page. width is the maximum column text width, in characters. pl text uses a word wrap to make the text fit into the width specified.
\$x_next and \$y_next are the coordinates where the start of the next line would have been plotting. This is useful for subsequent character plotting.
\$y_increment is the vertical increment between lines.
Examples:
pltext
pltext (wcmax-70)
pltext (userdir+'/exp3/text')
pltext (100,100)
pltext (userdir+'/exp4/text',200,200,24)
pltext: \(\$ \mathrm{x}, \$ \mathrm{y}, \$ \mathrm{dy}\)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
dtext \\
ptext
\end{tabular} & \begin{tabular}{l} 
Display a text file in the graphics window (C \\
text
\end{tabular} \\
& Print out a text file (M) \\
& Display text or set new text for current experiment (C) \\
& User directory (P)
\end{tabular}

\section*{pltmod Plotter display mode (P)}

Description: Controls plotting of a proton, carbon, or phosphorus spectrum.
Values: 'off' sets no plotting.
'fixed' takes sp and wp as is.
'full' adjusts sp and wp to plot the full spectrum.
'variable' adjusts sp and wp to plot only the region of interest.
See also: VnmrJ Liquids NMR
\begin{tabular}{rll} 
Related: & plc & Plot carbon spectrum (M) \\
& plh & Plot proton spectrum (M) \\
& plp & Plot phosphorus spectrum (M) \\
& sp & Start plot (P) \\
& wp & Width of plot (P)
\end{tabular}
plvast \(\quad\) Plot VAST data in a stacked 1D-NMR matrix format (M)
Applicability: Systems with the VAST accessory.
Syntax: plvast<(display order, number of columns plotted) >
Description: plvast arranges and plots the traces from a reconstructed 2D data set (see vastglue) as an array of 1D spectra in a convenient format (as a matrix of 1D spectra). If no arguments are provided, the number of rows and columns are determined by the periodicity of the display order. For example, if a block of 96 spectra, as is typical for a microtiter-plate, have been acquired using VAST automation, the spectra is plotted in a matrix 8 rows and 12 columns.
The default is to plot the spectra from 1 through arraydim (the number of spectra in the 2D data set). An optional argument (plvast (\#\#)) allows one to specify that only spectra from 1 through \#\# should be plotted.
Arguments: display order is optional and its default value is the glue order as listed in glueorderarray.
number of columns plotted. The default value of is deduced by examining the periodicity of the requested display order. The number of columns plotted can entered as the second argument or as the first argument if the default display order is used.
Examples: plvast
plvast(12)
plvast('glue_file', 4)
See also: VnmrJ Liquids NMR
Related: dsast2d Display VAST data in a pseudo-2D format (M)
dsvast Display VAST data in a stacked 1D-NMR matrix (M)
plvast2d Plot VAST data in a pseudo-2D format (M)
plate_glue define a display order (U)

\section*{plvast2d Plot VAST data in a stacked pseudo-2D format (M)}

Applicability: Systems with the VAST accessory.
Syntax: plvast2d< (number) >
Description: If an array of 1D spectra have been acquired (in particular if a block of 96 spectra has been acquired using VAST automation, especially in a microtiterplate format) and if these spectra have been glued into a reconstructed 2D dataset (see vastglue), plvast 2 d will arrange and plot them (on the plotter) in a convenient pseudo-2D format (almost like an LC-NMR chromatogram). Well labels are not attached to the spectra and spectra are plotted with 12 spectra per row.
Arguments: number specifies that only spectra from 1 through number should be plotted. The default is to plot all the spectra (from 1 through arraydim).
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \begin{tabular}{l} 
dsast2d \\
dsvast
\end{tabular} & \begin{tabular}{l} 
Display VAST data in a pseudo-2D format (M) \\
Display VAST data in a stacked 1D-NMR matrix (M) \\
\\
\\
plvast
\end{tabular} \\
& Plot VAST data in a stacked 1D-NMR matrix (M)
\end{tabular}

\section*{plww Plot spectra in whitewash mode (C)}

Syntax: plww<(start,finish,step><,'all'>)>
Description: Plots one or more spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra).

Arguments: start is the index of the first spectra when plotting multiple spectra. It is also the index number of a particular trace to be plotted when plotting arrayed 1D spectra or 2D spectra. The default is to plot all spectra.
finish is the index of the last spectra when plotting multiple spectra.
step is the increment for the spectral index when plotting multiple spectra. The default is 1 .
'all' is a keyword to plot all spectra in the array. This is the default.
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
dss & Display stacked spectra (C) \\
dsww & Display spectra in whitewash mode (C) \\
pl & Plot spectra (C)
\end{tabular}

\section*{pmode \(\quad\) Processing mode for 2D data ( \(P\) )}

Description: Specifies the type of 2D spectral data that the 2D Fourier transform (FT) will yield. pmode is in the processing group.
Values: ' ' (null string, shown by two single quotes with no space in between) specifies a processing mode in which it is not possible to change either the \(f_{2}\) or \(f_{1}\) display mode after the 2 DFT . If the \(\mathrm{f}_{2}\) display mode has been set to phased ( \(d m g=' p h '\) ), each \(f_{2}\) spectrum is phase rotated using the phase constants rp and \(l p\) prior to the \(F T\) along the second dimension. If the \(f_{2}\) display mode has been set to power ( \(d m g=\) ' \(p w r\) ') or absolute-value ( \(d m g=\) ' \(a v\) '), however, the \(f_{2}\) spectrum is not processed any further after the first FT. The complex \(t_{1}\) interferograms are handled in a similar manner. If the \(f_{1}\) display mode has been set to phased ( \(\mathrm{dmg} 1=\mathrm{ph} 1\) '), each \(\mathrm{f}_{1}\) spectrum is phased using the phase constants rp 1 and 1 p 1 . If the display mode has been set to power (dmg1= 'pwr1') or to absolute value (dmg1='av1'), the appropriate magnitude calculation is performed, with the result being placed in the real part of the appropriate complex datum and a 0 being placed in the imaginary part. At the end of the 2D transform, the spectral data file datdir/data is reduced from complex data to real data ("VnmrJ REDUCE" display message).
'partial' specifies a processing mode in which it is not possible to change the \(\mathrm{f}_{2}\) display mode after the 2D FT. It is possible, however, to select between the three \(f_{1}\) display modes without having to reprocess the \(2 D\) data. If the \(f_{2}\) display mode has been set to phased ( \(\mathrm{dmg}=\) ' ph '), each \(\mathrm{f}_{2}\) spectrum is phase rotated using the phase constants rp and lp prior to FT along the second dimension. If the \(f_{2}\) display mode is set to power ( \(d m g=\) ' pwr ') or absolute value ( \(d m g=' a v^{\prime}\) ), the \(f_{2}\) spectrum is not processed any further after the first FT. Regardless of the requested \(f_{1}\) display mode, no further processing is performed by ft 2 d on the \(f_{1}\) spectra after the second \(F T\). The calculations on \(2 D\) spectral data necessary to achieve the requested \(f_{1}\) display mode are performed by dcon or dconi. If pmode does not exist, it is assigned a value of 'partial' internal to VnmrJ.
' full' specifies a processing mode in which it is possible to select between the three display modes for each dimension without having to reprocess the 2D data. Regardless of any requested display mode, no display mode processing is performed by ft 2 d on the \(\mathrm{f}_{2}\) spectra after the first or second FT. .
The hypercomplex data structure for the 2 D time domain data is:
```

$\{\operatorname{Re}(t 1) \operatorname{Re}(t 2), \operatorname{Re}(t 1) \operatorname{Im}(t 2), \operatorname{Im}(t 1) \operatorname{Re}(t 2)$,
$\operatorname{Im}(t 1) \operatorname{Im}(t 2)\}$

```
and is experimentally composed by the pulse sequence generation arraying mechanism. The hypercomplex data structure for the \(\mathrm{t}_{1}\) interferograms is:
```

{Re(t1)Re(F2), Re(t1)Im(F2), Im(t1)Re(F2),
Im(t1)Im(F2)}

```
where Re represents the real part and Im represents the imaginary part. A hypercomplex FT along \(\mathrm{t}_{1}\) yields a hypercomplex 2 D spectrum with the following data structure per hypercomplex point:
```

{Re(F1)Re(F2), Re(F1)Im(F2), Im(F1)Re(F2),
Im(F1)Im(F2)}

```

Note that if pmode= 'full ', the ft2d program will require an array index or coefficients for the construction of the \(t_{1}\) interferograms.

\section*{See also: VnmrJ Liquids NMR}
Related:
\begin{tabular}{ll} 
av & Set abs. value mode in directly detected dimension (C) \\
av1 & Set abs. value mode in 1st indirectly detected dimension (C) \\
dcon & Display noninteractive color intensity map (C) \\
dconi & Interactive 2D data display (C) \\
dmg & Data display mode in directly detected dimension (P) \\
dmg1 & Data display mode in 1st indirectly detected dimension (P) \\
ft1d & Fourier transform along f f dimension (C) \\
ft2d & Fourier transform 2D data (C) \\
ph & Set phased mode in directly detected dimension (C) \\
ph1 & Set phased mode in indirectly detected dimension (C) \\
pwr & Set power mode in directly detected dimension (C) \\
pwr1 & Set power mode in 1st indirectly detected dimension (C) \\
wft1d & Weight and Fourier transform 2D data (C) \\
wft2d & Weight and Fourier transform 2D data (C)
\end{tabular}

\section*{poly0 Display mean of the data in regression.inp file (M)}

Description: Calculates and displays the mean of data in the file regression.inp.
See also: User Programming
\(\begin{array}{lll}\text { Related: } & \text { averag } & \text { Calculate average and standard deviation of input (C) } \\ \text { expl } & \text { Display exponential or polynomial curves (C) }\end{array}\)

\section*{pos1 - pos3 Position of voxel center (P)}

Applicability: Systems with imaging capabilities.
Description: Define the center position, in cm, of the desired voxel for localized spectroscopy experiments.
See also: VnmrJ Imaging NMR
Related: transfer Move parameters to target experiment (M)
vox1, vox 2 , vox 3 Voxel dimensions ( P )

\section*{Decoupler pulse length ( P )}

Description: Sets the decoupler pulse length for use by pulse sequences such as DEPT, HET2DJ, and HETCOR.

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & AC1-AC9 & Automatic calibration (M) \\
& dept & Set up parameters for DEPT pulse sequence (M) \\
& dhp & Decoupler high-power control with class C amplifier (P) \\
& dpwr & Power level for first decoupler with linear amplifier (P) \\
& hetcor & Set up parameters for HETCOR pulse sequence (M)
\end{tabular}
\begin{tabular}{ll} 
p1 & First pulse width \((\mathrm{P})\) \\
pw & Pulse width \((\mathrm{P})\)
\end{tabular}

Plot a parameter list in plain English (M)
Syntax: ppa< \((\mathrm{x}<, \mathrm{y}>)>\)
Description: Plots parameters in plain English (instead of in a table with parameter names and their values as plotted by the parameter pap).

Arguments: x controls the \(x\) offset, in mm , from the lower left of the plot to the starting position (upper left) of the parameter list. The default is a preset position on the page (upper left corner).
\(y\) controls the \(y\) offset, in mm , from the lower left of the plot to the starting position (upper left) of the parameter list. Default is a preset position on the page (upper left corner).
Examples: ppa
ppa (10)
ppa (wcmax-80,wc2max*.9)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & bpa & Plot boxed parameters (M) \\
& hpa & Plot parameters on special preprinted chart paper (C) \\
& pap & Plot out "all" parameters (C) \\
& pltext & Plot a text file (M)
\end{tabular}

\section*{ppcal Proton decoupler pulse calibration (M)}

Description: Proton decoupler pulse calibration for DEPT, HETCOR, INEPT, etc.
See also: VnmrJ Liquids NMR
Related:
AC1-AC9 Automatic calibration (M)
d2pul Set up parameters for D2PUL pulse sequence (M)
dept Set up parameters for DEPT pulse sequence (M)
hetcor Set up parameters for HETCOR pulse sequence (M)
inept Set up parameters for INEPT pulse sequence (M)
ppe Position of image center on 2D phase encode axis (P)
Applicability: Systems with imaging capabilities.
Description: Position of image center on 2D phase encode axis, in cm .
See also: VnmrJ Imaging NMR
Related: pro Position of image center on the readout axis ( P )
ppf Plot peak frequencies over spectrum (C)
Syntax: (1) ppf< (<'noll'><,'pos'><, noise_mult><,'top'>) >
(2) ppf< (<'noll'><, 'pos'><, noise_mult><,'leader'> <, length>) >

Description: Plots peak frequencies, in units specified by the axis parameter, in the plotter device. Only those peaks greater than th high are selected. Two basic modes of label positioning are available: labels placed at the top, with long "leaders" extending down to the tops of the lines (syntax 1 using the ' top ' keyword), or labels positioned just above each peak, with short leaders (syntax 2 using the ' leader' keyword). The default is short leaders.

Arguments: 'noll' is a keyword to plot frequencies using the last previous line listing.
'pos' is a keyword to plot positive peaks only ('noneg' is the same as 'pos').
noise_mult is a numerical value that determines the number of noise peaks plotted for broad, noisy peaks. The default is 3 . A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold th. Negative values of noise_mult default to 3 . The noise_mult argument is inactive when the 'noll' keyword is specified.
'top ' is a keyword to plot labels at the top with long leaders. In this mode, the height of labels is varied by changing the parameter wC 2 .
'leader' is a keyword to plot labels positioned just above each peak with short leaders.
length specifies the leader length, in mm, if labels are positioned just above each peak. The default length is 20 mm .
Examples: ppf('pos')
ppf('leader',30)
ppf('top','noll')
ppf('pos',0.0,'leader', 30)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & axis & Axis label for displays and plots (P) \\
& dpf & Display peak frequencies over spectrum (C) \\
& dpir & Display integral amplitudes below spectrum (C) \\
& dpirn & Display normalized integral amplitudes below spectrum (M) \\
& pir & Plot integral amplitudes below spectrum (C) \\
pirn & Plot normalized integral amplitudes below spectrum (M) \\
th & Threshold (P)
\end{tabular}

\section*{pph \\ Print pulse header (M)}

Syntax: pph(file)
Description: Prints out the shape file header (i.e., all lines starting with \#).
Arguments: file is the name of the shape file, including the extension.
Examples: pph('shgrad.GRD')
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

\section*{pplvl Proton pulse power level (P)}

Applicability: MERCURYplus/Vx, broadband systems with the diode switching version of RF Control board and systems with amptype='a'.

Description: Sets the pulse power level. pplvl is only a relevant parameter in sequences that use decoupler pulses, such as DEPT, HET2DJ, and HETCOR.
Values: 0 to 63 , in dB , steps of 1 dB .
When used with a \(5-\mathrm{mm}\) Gen. III switchable probe, typical value is 54 or 56.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & amptype & Amplifier type (P) \\
d2pul & Set up parameters for D2PUL pulse sequence (M) \\
dept & Set up parameters for DEPT pulse sequence (M) \\
het2dj & Set up parameters for HET2DJ pulse sequence (M) \\
hetcor & Set up parameters for HETCOR pulse sequence (M)
\end{tabular}

\section*{ppmm \(\quad\) Resolution on printers and plotters \((P)\)}

Description: An internal software parameter, selected automatically based on the plotter configuration, that contains the resolution in dots \(/ \mathrm{mm}\) on raster graphics printers. On pen plotters, ppmm contains the resolution of points drawn. On PostScript printers, ppmm adjusts linewidths.
pprofile \(\quad\) Plot pulse excitation profile (M)
Syntax: pprofile<(axisflag<,profile<,shapefile>>) >
Description: Plots the \(\mathrm{X}, \mathrm{Y}\) and Z excitation (inversion) profile for a pulse shape that has been generated with the Pbox software. If shape names is not provided, the last simulation data stored in the shapelib/pbox.sim file are plotted.
Arguments: The axisflag and profile arguments can be given in any order.
axisflag is ' \(y\) ' to display the full spectrum and a frequency scale, or ' \(n\) ' to suppress the scale and spectrum. The default is ' \(n\) '.
profile is a character string identifying the desired profile. 'xyz' selects X , Y , and Z (inversion) profiles; ' xy ' selects only the excitation (transverse) profiles; ' \(x\) ' selects only the \(X\) transverse excitation profile; and ' \(z\) ' selects only the inversion profile. The default is 'xyz'.
shapefile is the name of a *.RF or *.DEC file, including the extension.
Examples: pprofile
pprofile('y','x')
pprofile('xy','n','softpls.RF')
See also: VnmrJ Liquids NMR
Related: dprofile Display pulse excitation profile (M)
Pbox Pulse shaping software (U)

Plot pulse sequence (C)
Syntax: pps<(file<,x,y,width,height>) >
Description: Plots pulse sequences. The plotted picture consists of three to five parts. At the top is the transmitter pulse sequence. Below that is the decoupler pulse sequence. Next is the second decoupler pulse sequence or gradients, depending on the program. At the bottom is the status.
The parameter of each pulse is plotted if its length is less than 30 letters. The value of each pulse is also plotted. If its value is less than zero, a question mark "?" is plotted. The time units are displayed as letters ( \(s, m\), or u). The height of pulses are plotted according to their power level.
Arguments: file specifies the pulse sequence to be plotted. The default is seqfil.
\(x, y\) specifies the start of the plotting position with respect to the lower-left corner of the plotter.
width, height are in proportion to wcmax and wc 2 max.
Examples: pps
pps('s2pul')
pps (3,50)
See also: VnmrJ Liquids NMR
Related: dps Display pulse sequence (C)
seqfil Pulse sequence name (P)
wcmax Maximum width of chart (P)
wc2max Maximum width of chart in second direction (P)

\section*{P}
prep prepare a scan (M)
Applicability: Imaging systems.
Description: Macro to prepare a scan. It uses execpars to select the prep method.
See also: apptype( P ) execpars(M) execprep( P )
presat \(\quad\) Set up parameters for PRESAT pulse sequence (M)
Description: Sets up a 1D water suppression experiment.
See also: VnmrJ Liquids NMR

Presat \(\quad\) Set up parameters for presat \({ }^{1} \mathrm{H}\) experiment (M)
Description: Set up parameters for presat \({ }^{1} \mathrm{H}\) experiment.
presig Preamplifier signal level selection (P)
Applicability: Systems with imaging capabilities.
Description: Allows the user to select either high or low signal handling on preamplifiers that support this capability:
- UNITY INOVA imaging systems support this capability by using attenuation and a current increase. This allows larger signals and results in a lower overall signal level.
- UNITYINOVA spectrometers with selectable large-signal mode preamplifiers support this capability by allowing a current increase in the preamplifier. This allows larger signals so that the overall signal level is slightly higher.
Using presig to control the hardware depends on the Magnet Leg Driver Board Configuration ID being set to 16 for imaging systems, or to 1 for UNITYINOVA spectrometers with the selectable large-signal mode preamplifier.
Values: ' h ' signifies high-signal mode at the preamplifier.
' I' signifies low-signal mode at the preamplifier. The default is this mode at the preamplifier if the hardware is present
' n ' signifies not used.
See also: VnmrJ Imaging NMR
Related: gain Receiver gain ( P )

\section*{prevpl Display the previous 3D plane (M)}

Applicability: All systems; however, although prevpl is available on MERCURYplus/Vx, such systems can only process 3D data and cannot acquire 3D data.
Description: Displays 2D color map of the previous 3D plane in the set of planes defined by the parameters plane and path3d. For example, if dplane (40) has just been executed, prevpl results in the display of 3D plane 39 of that set. (If prevpl immediately follows the command dproj, an error results because there is no 3 D plane whose number is -1 .) prevpl is more efficient than dplane or dproj because the 3D parameter set (procpar3d) is not loaded into VnmrJ. It is assumed to have already been loaded by, for example, dplane or dproj.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dplane & Display a 3D plane (M) \\
& dproj & Display a 3D plane projection (M) \\
& \(d s p l a n e s ~\) & Display a series of 3D planes (M)
\end{tabular}
```

| getplane | Extract planes from a 3D spectral data set (M) |
| :--- | :--- |
| nextpl | Display the next 3D plane (M) |
| path3d | Path to currently displayed 2D planes from a 3D data set (P) |
| plane | Currently displayed 3D plane type (P) |
| plplanes | Plot a series of 3D planes (M) |

printer Printer device (P)
Description: Selects the printer in use on the system.
Values: A string with entries such as 'ThinkJet_96','LaserJet_300',
'jim','varian1', and 'Laser1'.
See also: VnmrJ Liquids NMR
Related: showplotter Show list of currently defined plotters and printers (M)
printfile Path to the print-to-file image (P)
Description: Defines the path where an image is saved if it is printed to a file.

```

\section*{printformat Format of saved-to-file image (P)}
```

Description: The format of the image to be printed to a file.
Values: 'jpeg','gif','tiff','bmp'

```
```

printlayout Layout of printed image (P)

```
printlayout Layout of printed image (P)
Description: The layout of the printed image.
Values: 'portrait' or 'layout'
printoff Stop sending text to printer and start print operation (C)
Syntax: printoff<('clear'|file) >
Description: Stops redirection of output to printer caused by the printon command and starts the print operation. The command printoff must be entered to obtain output on the printer. Actual printing is controlled by the vnmrprint script in the bin subdirectory of the system directory. printoff can also clear the data in the current print file or save data to a specified file name (i.e., print or plot to a file).
Arguments: 'clear' is a keyword to clear the print file made so far.
file specifies the name of a file to save the printout. If the file already exists, it is overwritten.
Examples: printoff
printoff('clear')
printoff('vnmrsys/papers/peaks.list')
See also: VnmrJ Liquids NMR
Related: printon Direct text output to printer (C)
vnmrprint Print text files (U)
printon \(\quad\) Direct text output to printer (C)
Description: Sends information to the printer that is normally displayed in the text window. After using printon, output from commands that use the text window, such
```

as $d g$ and cat, is sent to the printer and does not appear on the screen. The value of the parameter printer is used to select which printer is used.

See also: VnmrJ Liquids NMR
Related: cat Output one or more files to output text window (C)
$\mathrm{dg} \quad$ Display group of acquisition/processing parameters (C)
printer \quad Printer device (P)
printoff Stop sending text to printer and start print operation (C)

printregion Screen region to be printed (P)

Description: The region of the screen to be printed or saved to a file.
Values: 'vnmrj' -- entire VnmrJ interface.
'graphics' -- the graphics area of the VnmrJ interface.
'frames ' -- selected frames from the graphics area.

printsize \quad Size of printed image (P)

Description: The size of the printed image.
Values: 'quarterpage','halfpage','page'
printsend Defines where image will print (P)
Description: Defines whether the selected image will sent to a file or a printer.
Values: 'file' or 'printer'
pro Position of image center on the readout axis (P)
Applicability: Systems with imaging capabilities.
Description: Position of image center on readout axis, in cm .
See also: VnmrJ Imaging NMR
Related: ppe Position of image center on 2D phase encode axis (P)
probe \quad Probe type (P)
Description: Contains a string with the name of the probe currently in the magnet. This parameter is set automatically when the addprobe macro is entered. The getparam and setparams macros use probe to retrieve and write parameters into the current probe file.

See also: VnmrJ Liquids NMR
Related: addnucleus Add new nucleus to existing probe file (M)
addprobe Create new probe directory and probe file (M)
getparam Receive parameter from probe file (M)
setparams Write parameter to current probe file (M)

Probe_edit Edit probe for specific nucleus (U)
Syntax: (UNIX) Probe_edit probe nucleus
Description: Opens a dialog box showing all the parameters related to a specific nucleus from the probe table.

Arguments: probe is the name of the probe.
nucleus is the specified nucleus from the probe table.

```
Examples: Probe_edit 5mmSW H1
Related: probe_edit Edit probe for specific nucleus (M)
```

probe_edit Edit probe for specific nucleus (M)

Syntax: probe_edit(probe, nucleus)
Description: Opens a dialog box showing all the parameters related to a specific nucleus from the probe table.
Arguments: probe is the name of the probe.
nucleus is the specified nucleus from the probe table.
Examples: probe_edit('5mmSW','H1')
probe_edit(probe,tn)
Related: Probe_edit Edit probe for a specific nucleus (U)

probe_protectionProbe protection control (P)

Description: Controls the power check for probe protection.
See also: VnmrJ Liquids NMR

proc Type of processing on np FID (P)

Description: Specifies the type of data processing to be performed upon the $n p\left(t_{2}\right)$ FID. Similarly, parameters proc1 and proc2 specify the type of data processing on the $\mathrm{ni}\left(\mathrm{t}_{1}\right)$ and ni2 interferograms, respectively.

All Varian data must be processed along np with a complex Fourier transform (FT). Sequentially sampled Bruker data (the usual case) must be processed along this dimension with a real FT, while simultaneously sampled Bruker data must be processed with a complex FT.
Pure absorptive 2D data collected by the States-Haberkorn (hypercomplex) method must be processed along ni or ni2 with a complex FT.
Pure absorptive 2D data collected by the TPPI method on a Varian spectrometer can be processed in one of two ways, depending upon how the data was collected:

```
phase \(=3 \quad\) Complex FT, i.e., proc1='ft' (standard way)
phase=1,4 Real FT, i.e., proc1='rft' (new way)
phase2=3 Complex FT, i.e., proc2 = 'ft'
phase2=1,4 Real FT, i.e., proc \(2=\) 'rft'
```

Pure absorptive 2D data collected by TPPI method on a Bruker spectrometer must be processed along ni with a real FT (i.e., proc1='rft').
Values: 'ft' specifies complex FT data processing.
'rft' specifies real FT data processing.
'lp' specifies linear prediction processing on complex data. If 'lp' is selected, additional parameters must be set to fully define how the time-domain data is to be processed; see the description of the addpar command.

See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
ni \quad Number of increments in 1st indirectly detected dimension (P)
$\mathrm{np} \quad$ Number of data points (P)
parlp \quad Create parameters for linear prediction (C)

| phase | Phase selection (P) |
| :--- | :--- |
| phase2 | Phase selection for 3D acquisition (P) |
| proc1 | Type of processing on ni interferogram (P) |
| proc2 | Type of processing on ni2 interferogram (P) |

proc1 Type of processing on ni interferogram (P)

Description: Specifies the type of data processing to be performed upon the $\mathrm{ni}\left(\mathrm{t}_{1}\right)$ interferogram (2D). Refer to the description of proc for further information.
Values: ' ft ' specifies complex Fourier transform (FT) data processing.
'rft' specifies real FT data processing.
' $1 p$ ' specifies linear prediction processing on complex data. If ' $1 p$ ' is selected, additional parameters must be set to fully define how the time-domain data is to be processed; see the description of the addpar command.
See also: VnmrJ Liquids NMR

Related: addpar
ni
proc

Add selected parameters to the current experiment (M)
Number of increments in 1st indirectly detected dimension (P)
Type of processing on np FID (P)

proc1d Processing macro for simple (non-arrayed) 1D spectra (M)

Description: A generic macro for processing non-arrayed 1D spectra using a set of standard macros. procld is called by the procplot macro, but can also be used directly. proc1d first tries to find a macro of the form $\{\operatorname{tn\} }\}$ with the name of the observe nucleus in lower case (e.g., h1p, c13p). If such a macro exists, it is called. If such a nucleus-specific macro is not found in the command path, minimal 1D processing is performed (the intent is to provide a well-processed spectrum in most cases): Fourier transformation (using pre-set weighting functions), automatic phasing (aphx macro), automatic integration (integrate macro), vertical scale adjustment (vsadj macro), avoiding excessive noise (noislm macro), and threshold adjustment (thadj macro). proc1d does not work with arrayed 1D spectra: use deptproc (for DEPTtype spectra) or procarray (for all other arrayed 1D data).
See also: VnmrJ Liquids NMR

| Related: | aphx | Perform optimized automatic phasing (M) |
| :--- | :--- | :--- |
| | c13p | Process 1D carbon spectra (M) |
| deptproc | Process arrayed dept type spectra (M) | |
| | h1p | Process 1D proton spectra (M) |
| integrate | Automatically integrate 1D spectrum (M) | |
| noislm | Avoids excessive noise (M) | |
| procarray | Process arrayed 1D spectra (M) | |
| procplot | Automatically process FIDs (M) | |
| thadj | Adjust threshold (M) | |
| vsadj | Adjust vertical scale (M) | |

proc2 Type of processing on ni2 interferogram (P)

Description: Specifies the type of data processing to be performed upon the ni2 interferogram (3D). Refer to the description of proc for further information.

Values: 'ft' specifies complex Fourier transform (FT) data processing.
'rft' specifies real FT data processing.
' $1 p$ ' specifies linear prediction processing on complex data. If ' $1 p$ ' is selected, additional parameters must be set to fully define how the time-domain data is to be processed; see the description of the addpar command.
See also: VnmrJ Liquids NMR

| Related: | addpar | Add selecte |
| :--- | :--- | :--- |
| | ni2 | Number of |
| proc | Type of pro | |

Description: A general 2D processing macro that tries to do the appropriate processing for as many types of 2D experiments as possible. It uses wft 2 da for phase-sensitive spectra, wft2d for absolute-value 2D spectra, wft2d('ptype') for HOM2DJ and COSYPS (absolute value). Symmetric homonuclear correlation spectra ($\mathrm{fn}=\mathrm{fn} 1, \mathrm{sw}=\mathrm{sw} 1$) in absolute-value mode is symmetrized using foldt. The resulting spectrum is then normalized (adjustment of vs and th) using nm2d and displayed (if not in background mode). proc 2 d is called as part of the procplot macro, but can also be used directly by the user.
See also: VnmrJ Liquids NMR

| Related: | fn | Fourier number in the directly detected dimension (P) |
| :--- | :--- | :--- |
| | fn1 | Fourier number in 1st indirectly detected dimension (P) |
| foldt | Fold COSY-like spectrum along diagonal axis (C) | |
| | nm2d | Normalize intensity of 2D spectrum (M) |
| | procplot | Automatically process FIDs (M) |
| | sw | Spectral width in the directly detected dimension (P) |
| sw1 | Spectral width in the 1st indirectly detected dimension (P) | |
| th | Threshold (P) | |
| vs | Vertical scale (P) | |
| wft2d | Weight and Fourier transform 2D data (C) | |
| | wft2da | Weight and Fourier transform for pure absorption 2D data (M) |

procarray Process arrayed 1D spectra (M)

Description: A generic macro for processing arrayed 1D data. It is called within the procplot macro, but can also be called directly. It transforms all traces, phase the trace with the largest signal, scale the traces appropriately, and set up the display parameters such that the data can be plotted directly. The plotting is done in a separate macro plarray that is also called in the procplot macro.

For the display setup, procarray distinguishes between arrays with 6 or less elements, which are stacked vertically (no horizontal offset), and spectra with greater than 6 elements, which are stacked horizontally by default, unless there are too many lines, in which case a diagonally stacked display is chosen.
Horizontal stacking is mostly adequate for pulse and power calibrations, where there are usually only a few lines. Diagonally stacked displays and plots are frequently chosen for T_{1} and T_{2} experiments on entire spectra, often with many lines. The automatic stacking mode can be overridden by creating and setting a string parameter stackmode in the startup macro, or before calling procplot or procarray. Possible values for stackmode are 'horizontal', 'vertical', and 'diagonal'. DEPT-type spectra can, in principle, be also processed with procarray but, of course, no DEPT editing occurs.
See also: VnmrJ Liquids NMR
Related: deptproc Process arrayed dept type spectra (M)
plarray Plot arrayed 1D spectra (M)

```
proc1d Processing macro for simple (non-arrayed) 1D spectra (M)
procplot Automatically process FIDs (M)
stack Set stacking control parameter (M)
stackmode Stack control for processing arrayed 1D spectra (P)
```


process \quad Generic automatic processing (M)

Description:
Processes a wide range of data types. It selects a macro depending on the type of data. For simple 1D spectra, process looks for a macro of form $\{t n\} p$ with the observe nucleus in lower case (e.g., h1p, c13p, f19p). If no such macro is found, process calls proc1d, a generic processing macro for 1D spectra. For DEPT type data, deptproc is called. For other arrays of 1D spectra, procarray is called. For 2D spectra, proc2d is called. process by itself is called within the procplot macro.
See also: VnmrJ Liquids NMR
Related: c13p Processing of 1D carbon spectra (M)
deptproc Process array of DEPT spectra (M)
f19p Processing of 1D fluorine spectra (M)
h1p Processing of 1D proton spectra (M)
proc1d Automatically process non-arrayed 1D fids (M)
proc2d Process 2D spectra (M)
procarray Process arrayed 1D spectra (M)
procplot Automatically process FIDs (M)
tn \quad Nucleus for observe transmitter (P)

procplot Automatically process FIDs (M)

Syntax: procplot<(pltmod_value) >
Description: Universal FID processing macro called usually with wexp= 'procplot ' by automatic acquisition macros such as h1, c13, hcapt, and hcosy. The purpose of procplot is not the data processing itself, but rather the selection of the appropriate processing macro for a given data set.
First, procplot calls a macro process that calculates spectra; that macro by itself then selects an appropriate processing macro, like procld for nonarrayed 1D spectra. Depending whether the parameter pltmod is set to ' none ' or not, procplot then calls plot, a universal plotting macro. The setting of the parameter pltmod can be temporarily overridden by specifying an alternative value as argument to procplot.
One of the concepts behind procplot is that the user should never have to modify any processing macro for customizing the processing or the output of automatic experiments or processing; this outcome can happen by selecting a parameter in the calling macro or before calling procplot.
Arguments: pltmod_value is an alternate value for the parameter pltmod that is only used for the current call. The values ' none' and ' off ' suppress plotting. The range of possible (active) values for pltmod_value depends on the plotting macros. Often, the parameter pltmod has no effect other than turning on or off plotting. Note that if only the calculation of a spectrum is desired, it is usually easier to call the process macro.


```
pltmod Determine plot mode (P)
proc1d Processing macro for simple (non-arrayed) 1D spectra (M)
proc2d Process 2D spectra (M)
procarray Process arrayed 1D spectra (M)
process Automatically calculate spectra (M)
```


profile \quad Set up pulse sequence for gradient calibration (M)

Applicability: Systems with the pulsed field gradients (PFG) module.
Description: Performs an rf and gradient echo sequence that gives a high quality profile of the sample. This sequence is used with the macro setgcal to provide gradient strength calibration. The gradaxis parameter is used by profile to select the x, y, or z gradient axis.
See also: Performa I Pulsed Field Gradient Module Installation; Pulsed Field Gradient Modules Installation; User Programming

Related: gcal Gradient calibration constant (P)
gradaxis Gradient axis (P)
setgcal Calibrate gradient strength from measured data (M)

proj Project 2D data (C)

Syntax: proj (exp_number<,'sum'><,start<,width>>)
Description: Projects 2D data onto the axis parallel to the screen x-axis, which can be f_{1} or f_{2}, depending upon the parameter trace. Two projections are available:

- Summing projection. The data at each frequency are summed and the result becomes the projection.
- Skyline projection. The data are searched and the maximum intensity at any given frequency becomes the intensity in the projection (similar to looking at the skyline of a city where only the largest building along any given line of sight is visible).
Phase-sensitive data can be projected, but the resulting projection can only be displayed in an absolute-value mode
Arguments: exp_number is the number of the experiment, from 1 through 9 , in which the resulting spectrum is stored.
' sum' is a keyword to use the summing projection. The default is skyline.
start defines the starting trace, in Hz. The default is to project all data.
width defines the width of the traces, in Hz , to be projected. The default is to project all data. If width is supplied as zero, a single trace corresponding to the start frequency will be stored.

Examples: proj(3)
proj(5,'sum')
proj(4,3*sfrq,6*sfrq)
See also: VnmrJ Liquids NMR
Related: trace Select mode for 2D data display (P)

Proton \quad Set up parameters for ${ }^{1} \mathrm{H}$ experiment (M)

Description: Set up parameters for ${ }^{1} \mathrm{H}$ experiment.

prune \quad Prune extra parameters from current tree (C)

Syntax: prune (file)
Description: Destroys parameters in the current parameter tree that are not also defined in the supplied parameter file. prune is used to remove leftover parameters from previous experimental setups. Recalling a new parameter set into an experiment has a similar effect and, in general, prune is not required.

Arguments: file is the path of a parameter file.

```
Examples: prune(systemdir+'/parlib/cosyps.par/procpar')
    prune('/vnmr/par400/stdpar/H1.par/procpar')
    prune(userdir+'/exp3/curpar')
See also: User Programming
```

| Related: | create
 destroy | Create new parameter in a parameter tree (C)
 display |
| :--- | :--- | :--- |
| | Display parameters and their attributes (C) | |
| fread | Read parameters from file and load them into a tree (C) | |
| fsave | Save parameters from a tree to a file (C) | |

pscale Plot scale below spectrum or FID (C)

Syntax: pscale< (<rev><, axis><,label><, vp0><, sp0><, color><, pen>) >
Description: Plots a scale under a spectrum or FID.
Arguments: rev - reverses the direction of the scale. That is, the smaller numbers will be at the left side of the scale. If used, 'rev' must be the first argument.
axis - If the letter p, h, k, etc. is supplied, it will be used instead of the current value of the parameter axis. For an FID scale, if the letter s, m, or u is supplied, it will be used instead of the current value of the parameter axisf.
label - If a string of 2 or more characters is supplied, it will be used as the axis label.
vp 0 - This is supplied as the first real number. It defines the vertical position where the scale is drawn. The default is 5 mm below the current value of the parameter vp.
spo - This is supplied as the second real number. It is a modified start of plot. If, for example, the display is from 347 to 447 hz , but the scale is desired to read 0 to 100 hz ., sp0 would be input as 0 .
wp 0 - This is supplied as the third real number. It is a modified width of plot. If, for example, the display is from 347 to 447 hz , but the scale is desired to read 0 to 550 Units. sp0 would be input as 0 , wp 0 would be 550 , and the label would be 'Units'.

An optional color or pen number can be supplied to dscale or pscale. The available colors and pens are: 'red', 'green', 'blue', 'cyan',
'magenta', 'yellow', 'black', 'white'
'pen1','pen2', 'pen3', ..., 'pen8'
Examples: pscale
pscale(20)
pscale('h', 0,'pen2')
pscale('fid','m')
pscale('h', vp-10,0)
See also: VnmrJ Liquids NMR

| Related: | axis | Axis label for displays and plots (P) | | |
|---|---|---|---|---|
| | axisf | |\quad| Axis label for FID displays and plots (P) |
| :--- | :--- |

| dscale | Display scale below spectrum or FID (C) |
| :--- | :--- |
| vp | Vertical position of spectrum (P) |

pseudo Set default parameters for pseudo-echo weighting (M)
Syntax: pseudo< (C1, C2, C3, C4) >
Description: Generates an initial guess at good weighting parameters for absolute-value 2D experiments. To generate modified guesses, four coefficients are allowed to set the values of the weighting functions.

Arguments: C 1 sets $\mathrm{lb}=-0.318 /(\mathrm{C} 1 * a t)$. The default value of C 1 is 0.0625 .
C 2 sets $\mathrm{gf}=\mathrm{C} 2 * a t$. The default value of C 2 is 0.25 .
C3 sets $1 \mathrm{bl} 1=-0.318 /(\mathrm{C} 3 *(\mathrm{ni} / \mathrm{sw} 1))$ but is used with 2D experiments only. The default value of C 3 is 0.0625 .
C 4 sets $\mathrm{gf} 1=\mathrm{C} 4$ * ($\mathrm{ni} / \mathrm{sw} 1$) but is used with 2D experiments only. The default value of C 4 is 0.25 .

Examples: pseudo
pseudo(.1, .4, .2, .5)
See also: VnmrJ Liquids NMR
Related: sinebell Select default parameters for sinebell weighting (M)

psg Display pulse sequence generation errors (M)

Description: Helps identify the problem if, after entering go or su, etc., the message is returned that pulse sequence generation (PSG) aborted abnormally. Any parameters that are not found are listed. This information is stored in the user's directory (vnmrsys) in a text file named psg. error. If the message "Maximum communication retries exceeded, Experiment unable to be sent" is displayed, a program communications problem is indicated. Consult the system operator for assistance.

See also: User Programming

psggen Compile a user PSG object library (M,U)

Description:
A user PSG (pulse sequence generation) kit is supplied that allows editing lowlevel pulse sequence code. psggen compiles these edits so that subsequent pulse sequence generation with the seqgen command uses the customized pulse sequence source.

See also: User Programming

psgset \quad Set up parameters for various pulse sequences (M)

Syntax: psgset(file,par1,par2,..., parN)
Description: Sets up parameters for various pulse sequences using information in a parlib file. Rather than returning the entire parameter file, psgset returns the parameters listed. psgset, in general, is never entered from the keyboard but is used as part of experiment setup macros.
Arguments: file is the file from the user or system parlib that provides information on setting up the parameters listed. The parameters seqfil and pslabel are set to the supplied file name.
par1, par2, . . , pN are 1 to 11 parameters to be returned from parlib.
Examples: psgset('cosy','dg','ap','ss','d1','axis','phase')

See also: User Programming
Related: pslabel Pulse sequence label (P)
seqfil Pulse sequence name (P)
psgupdateon Enable update of acquisition parameters (C)
Description: Permits the interactive updating of acquisition parameters.
See also: SpinCAD
Related: psgupdateoff \quad Prevent update of acquisition parameters (C)
updtparam Update specified acquisition parameters (C)
psgupdateoff Prevent update of acquisition parameters (C)
Description: Prevents the interactive updating of acquisition parameters.
See also: SpinCAD
$\begin{array}{lll}\text { Related: } & \text { psgupdateon } & \text { Enable update of acquisition parameters (C) } \\ & \text { updtparam } & \text { Update specified acquisition parameters (C) }\end{array}$
pshape \quad Plot pulse shape or modulation pattern (M)
Syntax: pshape<(pattern.ext) >
Description: Plots the real (X) and imaginary (Y) components of a shaped pulse. Any type of waveform (.RF, .DEC or ,GRD) can be plotted.

Arguments: pattern is the name of a shape or pattern file specified by an absolute file name, relative file name, or a simple pattern file name. ext is a file name extension that specifies the file type. In the case of a simple file name, dshape searches for the file in the local directory, then in the user's shapelib, and finally in the directory /vnmr/shapelib. If pattern. ext is not given, pshape displays the last created waveform stored in the pbox.fid file.
Examples: pshape
pshape('my_shape.DEC')
See also: VnmrJ Liquids NMR

| Related: | dshape | Display the last created pulse shape (M) |
| :--- | :--- | :--- |
| Pbox | Pulse shaping software (U) | |

pshapef \quad Plot the last created pulse shape (M)
Description: Plots real (X) and imaginary (Y) components of the last created shaped pulse.
See also: VnmrJ Liquids NMR
Related: dshape Display the last created pulse shape (M)
Pbox Pulse shaping software (U)
psi \quad Euler angle psi from magnet frame (P)
Applicability: Systems with imaging capabilities.
Description: Euler angle psi from magnet frame.
Values: -90 to +90 , in degrees
See also: VnmrJ Imaging NMR
Related: phi Euler angle phi from magnet frame (P)
theta Euler angle theta from magnet frame (P)

pslabel

 Pulse sequence label (P)
 Description: Contains the text to be displayed in the Seq : field on the top line of the screen. This string may be different from the pulse sequence name selected with seqfil. However, the string in seqfil is the name of the pulse sequence searched for when an experiment is started. Generally seqfil=pslabel, and when seqfil is set, the system sets pslabel to the same string.
See also: VnmrJ Liquids NMR
Related: seqfil Pulse sequence name (P)

pss Slice position (P)

Applicability: Systems with imaging capabilities.
Description: Position of slice, in cm .
See also: VnmrJ Imaging NMR
Related: plan Display menu for planning a target scan (M)

psso

Applicability: Systems with imaging capabilities.
Description: Shift of stack center along z, the axis perpendicular to the plane. Also used for pos3.
See also: VnmrJ Imaging NMR
Related: pos1-pos3 Position of voxel center (P)
ptext
Print out a text file (M)
Syntax: ptext (file)
Description: Prints out a text file.
Arguments: file is the name of the text file.
Examples:
ptext('/vnmr/maclib/ptext')
ptext (curexp+'/dept.out')
See also: VnmrJ Liquids NMR

| Related: | curexp | Current experiment directory (P) |
| :--- | :--- | :--- |
| dtext | Display a text file in the graphics window (C) | |
| lookup | Look up words and lines from a text file (C) | |
| pltext | Plot a text file (C) | |
| text | Display text or set new text for current experiment (C) | |
| textvi | Edit text file of current experiment (M) | |
| vi | Edit text file with vi text editor (C) | |

ptspec3d Region-selective 3D processing (P)

Applicability: All systems; however, although pt spec3d is available on MERCURYplus/Vx, such systems can only process 3D data and cannot acquire 3D data.
Description: Sets whether region-selective 3D processing occurs. If pt spec3d does not exist, it is created by the macro par3d. ptspec3d is functional at this time only for the f_{3} dimension. If ptspec3d=' ynn ', only the currently displayed region of f_{3} is retained as non-zero values after the f_{3} transform in the 3D FT. A larger f_{3} region may be kept to ensure that the number of hypercomplex f_{3} points is a power of 2 ; but that portion of the f_{3} spectrum that is retained outside of the
currently displayed region contains only zeroes. This 3D utility can reduce the fully transformed 3D data size by factors of 2 to 4 , especially in some of the triple resonance experiments.

Values: A three-character string such as 'nnn', 'nny', 'nyn', etc. The default is 'nnn '. The first character refers to the f_{3} dimension (sw, np, fn); the second character, to the f_{1} dimension ($\mathrm{sw} 1, \mathrm{ni}, \mathrm{fn1}$); and the third character, to the f_{2} dimension (sw2, ni2, fn2). Each character may take one of two values: ' n ' for no region-selective processing in the relevant dimension, or ' Y ' for regionselective processing in the relevant dimension.
See also: VnmrJ Liquids NMR

| Related: | fiddc3d | 3D time-domain dc correction (P) |
| :--- | :--- | :--- |
| | fn | Fourier number in directly detected dimension (P) |
| fn1 | Fourier number in 1st indirectly detected dimension (P) | |
| fn2 | Fourier number in 2nd indirectly detected dimension (P) | |
| ft3d | Perform a 3D Fourier transform (M) | |
| ni | Number of increments in 1st indirectly detected dimension (P) | |
| ni2 | Number of increments in 2nd indirectly detected dimension (P) | |
| np | Number of data points (P) | |
| ntype3d | N-type peak selection in f_{1} or $\mathrm{f}_{2}(\mathrm{P})$ | |
| par3d | Create 3D acquisition, processing, display parameters (C) | |
| specdc3d | 3D spectral dc correction (P) | |
| sw | Spectral width in directly detected dimension (P) | |
| sw1 | Spectral width in 1st indirectly detected dimension (P) | |
| sw2 | Spectral width in 2nd indirectly detected dimension (P) | |

ptsval PTS frequency synthesizer value (\mathbf{P})

Description: Configuration parameter for the frequency of the PTS synthesizer on each channel. Every broadband system is equipped with a PTS frequency synthesizer as part of broadband frequency generation. The frequency of the unit is marked on its front panel. The value is set for each channel using the Synthesizer label in the CONFIG window (opened from config).
Values: 0 (Not Present choice in CONFIG window); 160, 200, 250, 320, 500, 620, 1000 (PTS 160, PTS 200, PTS 250, PTS 320, PTS 500, PTS 620, PTS 1000 choices in CONFIG window, respectively). On MERCURYplus/Vx, ptsval has no meaning.

See also: VnmrJ Installation and Administration.

| Related: | config | Display current configuration and possibly change it (M) |
| :--- | :--- | :--- |
| | latch | Frequency synthesizer latching (P) |
| | overrange | Frequency synthesizer overrange (P) |

pulsecal Update and display pulse calibration data file (M)

Applicability: Systems with the imaging capabilities.
Syntax: (1) pulsecal<(name, pattern,length,flip, power) >
(2) pulsecal (name, 'remove')

Description: Creates and maintains a database file of rf coil calibration data. This database is accessed by the SEQD command setflip in order to automatically enter power level settings for various types of rf pulses.
If entered without arguments, pulsecal displays the current contents of the database file. Using pulsecal with syntax 1 creates an entry in the file userdir+'/pulsecal '. Using syntax 2 removes the entire line associated with the calibration name.

Arguments: name is the name of the rf coil or calibration.
pattern is the rf pattern used in the calibration experiment.
length is the length of the rf pulse, in $\mu \mathrm{s}$, used for calibration.
flip is the flip angle calibrated, in degrees.
power is the calibrated power level, in attenuator units.
'remove' is a keyword to remove the line associated with the calibration name.

Examples:
pulsecal
pulsecal('small_coil','sinc',5000,180,88)
pulsecal('small_coil','remove')
See also: VnmrJ Imaging NMR
Related: setflip Set rf power levels for desired flip angle (M)
userdir User directory (P)

pulseinfo Shaped pulse information for calibration (M)

Syntax: pulseinfo<(shape,pulse_width<,reference_power>) >
:width,power

Description: Returns or prints a table with the bandwidth and predicted pulse power settings for a given pulse shape. No parameter settings are changed. The necessary data is contained in the file shapeinfo in the system shapelib subdirectory.
Arguments: shape is the name of the pulse shape. The default is the system interactively prompts the operator for the name of the shape and the duration of the pulse and then prints a table containing the bandwidth of that pulse and the predicted pulse power settings.
pulse_width is the duration of the pulse, in $\mu \mathrm{s}$.
reference_power is a value, in dB , for power calculations. The default is 55. This value replaces the assumption used for power calculation that pw90 is set for a tpwr of 55 .
width returns the bandwidth of that pulse, in Hz .
power returns the predicted 90° pulse power settings.
Examples: pulseinfo('gauss',1000):bw,pwr
See also: User Programming
Related: bandinfo Shaped pulse information for calibration (M)
pw90 90° pulse width (P)
tpwr Observe transmitter power level with linear amplifiers (P)

pulsetool RF pulse shape analysis (U)

Syntax: pulsetool <-shape filepath>
Description: Enables examination of shaped rf pulses. It is started from a UNIX window.
Arguments: The optional-shape filepath specifies the name of an rf pulse template file that is displayed when pulsetool is started.

Examples: pulsetool
pulsetool -shape /vnmr/shapelib/sinc.RF
See also: VnmrJ Liquids NMR

purge \quad Remove macro from memory (C)

Syntax: purge<(file) >
Description: Removes one or more macros from memory, freeing extra memory space.
Arguments: file is the name of a macro file to be removed from memory. The default is to remove all macros that have been loaded into memory.
CAUTION: The purge command with no arguments should never be called from a macro. The purge command with an argument should never be called by the macro being purged.
Examples: $\begin{aligned} & \text { purge } \\ & \text { purge ('_sw') }\end{aligned}$
See also: User Programming
Related: macrold Load a macro into memory (C)
puttxt \quad Put text file into a data file (C)
Syntax: puttxt (file)
Description: Copies text from current experiment into a data file.
Arguments: file is the name of a data file (i.e., a directory with a .fid or . par suffix). Do not include the suffix in the name provided to file.

Examples: puttxt('mydata')
See also: VnmrJ Liquids NMR
Related: gettxt Get text file from another file (C)
putwave \quad Write a wave into Pbox.inp file (M)
Syntax: putwave (sh,bw, pw,ofs,st,ph,fla,trev, d1, d2, do)
Description: Sets up a single excitation band in the Pbox. inp file. An unlimited number of waves can be combined by reapplying putwave.
Arguments: 1 to 11 wave parameters in the following predefined order:
sh is the name of a shape file.
bw is the bandwidth, in Hz .
pw is the pulsewidth, in sec.
ofs is the offset, in Hz.
st is a number specifying the spin status: 0 for Mz , or 1 for Mxy.
ph is the phase (or phase cycle, see wavelib/supercycles).
fla is the flip angle. Note that fl a can override the default flip angle.
trev concerns time reversal. It can be used to cancel time reversal if spin status ($s t$) is set to 1 for Mxy.
d 1 is the delay, in sec, prior the pulse.
d 2 is the delay, in sec, after the pulse.
d 0 is a delay or command prior to d 1 . If $\mathrm{d} 0=a$, the wave is appended to the previous wave.
Examples: putwave('eburp1')
putwave ('GARP',12000.0)
putwave('esnob', 600,-1248.2,1,90.0,'n', 'n', 0.001)

See also: VnmrJ Liquids NMR

| Related: | Pbox | Pulse shaping software (U) |
| :--- | :--- | :--- |
| | setwave | Write a wave definition string into the Pbox.inp file (M) |

Enter pulse width pw in degrees (C)
Syntax: pw(flip_angle,<90_pulse_width>)
Description: Calculates the flip tim, in $\mu \mathrm{s}$, given a desired flip angle and 90° pulse. The value is entered into the parameter pw.

Arguments: flip_angle is the desired flip angle, in degrees.
90 _pulse_width is the 90° pulse length, in $\mu \mathrm{s}$. The default is the value of parameter pw90, if it exists.
Examples: pw (30)
pw $(90,12.8)$
See also: VnmrJ Liquids NMR
Related: ernst Calculate the Ernst angle pulse (C)
pw Pulse width (P)
pw90 90° pulse width (P)

pw Pulse width (P)

Description: Length of the final pulse in the standard two-pulse sequence. In "normal" 1D experiments with a single pulse per transient, this length is the observe pulse width.

Values: On MERCURYplus/Vx: 0, 0.2μ s to $150,000 \mathrm{sec}$.
On INOVA : $0,0.1 \mu$ s to 8190 sec , smallest value possible is $0.1 \mu \mathrm{~s}$, finest increment possible is 12.5 ns .
See also: VnmrJ Liquids NMR

| Related: | p1 | First pulse width (P) |
| :--- | :--- | :--- |
| | pw | Enter pulse width parameter pw in degrees (C) |

pw90 $\quad 90^{\circ}$ pulse width (P)
Description: Length of the 90° pulse. pw90 is not used by pulse sequences directly, but is used by a number of commands to assist in setting up special experiments. pw90 is also used by certain output programs to be able to print the value of the pulse width in degrees instead of microseconds. Note that this parameter must be updated by the user and is not automatically determined or magically correct under all circumstances.

Values: On MERCURYplus/Vx: 0, 0.2μ s to $150,000 \mathrm{sec}$.
On INOVA : $0,0.1 \mu \mathrm{~s}$ to 8190 sec , smallest value possible is $0.1 \mu \mathrm{~s}$, finest increment possible is 12.5 ns .
See also: VnmrJ Liquids NMR
Related: AC1S-AC11S Autocalibration macros (M)
pw \quad Enter pulse width parameter pw in degrees (C)
pwd Display current working directory (C)
Syntax: pwd<:directory>
Description: Displays the path of the current working directory.
Arguments: directory is a string variable with the path of the current directory.

| Examples: | pwd: \$name | |
| ---: | :--- | :--- |
| See also: | VnmrJ Liquids | NMR |
| Related: | cd | Change working directory (C) |
| | dir | List files in current directory (C) |
| | lf | List files in current directory (C) |
| | ls | List files in current directory (C) |

pwpat \quad Shape of refocusing pulse (P)
Applicability: Systems with imaging capabilities.
Description: Specifies the shape of the refocusing pulse pw in imaging experiments
Values: 'hard','sinc','gauss','sech','sine', or any shape resident in the system pulse shape library or libraries.
See also: VnmrJ Imaging NMR
Related: plpat Shape of an excitation pulse (P)
pw Pulse width (P)

pwr
 Set power mode in directly detected dimension (C)

Description: Selects the power spectra display mode by setting $d m g=$ ' pwr '. In the power mode, each real point in the displayed spectrum is calculated as the sum of the squares of the real and imaginary points comprising each respective complex data point. All information, including noise, is positive and the relationship between signal and noise is non-linear.
For multidimensional data, pwr has no effect on data prior to the second Fourier transform. If pmode= ' full', pwr acts in concert with the commands ph1, av1 or pwr1 to yield the resultant contour display for the 2D data.
See also: VnmrJ Liquids NMR
Related:

| av | Set abs. value mode in directly detected dimension (C) |
| :--- | :--- |
| av1 | Set abs. value mode in 1st indirectly detected dimension (C) |
| dmg | Data display mode in directly detected dimension (P) |
| ft | Fourier transform 1D data (C) |
| $\mathrm{ft1d}$ | Fourier transform along f_{2} dimension (C) |
| $\mathrm{ft2d}$ | Fourier transform 2D data (C) |
| pa | Set phase angle mode in directly detected dimension (C) |
| pa1 | Set phase angle mode in 1st indirectly detected dimension (C) |
| ph | Set phased mode in directly detected dimension (C) |
| ph1 | Set phased mode in 1st indirectly detected dimension (C) |
| pmode | Processing mode for 2D data (P) |
| pwr1 | Set power mode in 1st indirectly detected dimension (C) |
| pwr2 | Set power mode in 2nd indirectly detected dimension (C) |
| wft | Weight and Fourier transform 1D data (C) |
| wft1d | Weight and Fourier transform f2 of 2D data (M) |
| wft2d | Weight and Fourier transform 2D data (M) |

pwr1 Set power mode in 1st indirectly detected dimension (C)

Description: Selects the power spectra display mode along the first indirectly detected dimension by setting $d m g 1=$ 'pwrl'. If the parameter dmgl does not exist, pwr1 creates it and sets it to 'pwr1'. In the power mode, each real point in the displayed trace is calculated as the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data
point are used in the summation. In this mode, all information, including noise, is positive and the relationship between signal and noise is non-linear.

The pwr 1 command is only needed if mixed-mode display is desired. If the parameter dmg 1 does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of pwr1 is the same as for traces, provided that pmode='partial' or pmode=' '.

See also: VnmrJ Liquids NMR

| Related: | dmg1 | Data display mode in 1st indirectly detected dimension (P) |
| ---: | :--- | :--- |
| | pa | Set phase angle mode in directly detected dimension (C) |
| pa1 | Set phase angle mode in 1st indirectly detected dimension (C) | |
| pmode | Processing mode for 2D data (P) | |
| | pwr | Set power mode in directly detected dimension (C) |
| | pwr2 | Set power mode in 2nd indirectly detected dimension (C) |

pwr2 Set power mode in 2nd indirectly detected dimension (C)

Description: Selects the power spectra display mode along the second indirectly detected dimension by setting dmg2 = 'pwr2'. If dmg2 does not exist or is set to the null string, pwr2 will create dmg2 and set it equal to 'pwr2 '. In the power mode, all information, including noise, is positive and the relationship between signal and noise is non-linear. Each real point in the displayed trace is calculated as the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data point are used in the summation.

The pwr2 command is only needed if mixed-mode display is desired. If the parameter dmg2 does not exist or is set to the null string, the display mode along the second indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of pwr2 is the same as for traces, provided that pmode='partial' or pmode=' '.
See also: VnmrJ Liquids NMR

| Related: | av2 | Set abs. value mode in 2nd indirectly detected dimension (C) |
| :--- | :--- | :--- |
| | dmg 2 | Data display mode in 2nd indirectly detected dimension (P) |
| $\mathrm{ft1d}$ | Fourier transform along f_{2} dimension (C) | |
| $\mathrm{ft2d}$ | Fourier transform 2D data (C) | |
| | ph2 | Set phased mode in 2nd indirectly detected dimension (C) |
| | pmode | Processing mode for 2D data (P) |
| | pwr | Set power mode in directly detected dimension (C) |

pwrlist \quad Active pulse power level parameter list (P)

Applicability: Systems with imaging capabilities.
Description: Contains an array of strings that define the names of the power level parameters associated with plist and patlist. The nD, seqcon, plist, patlist, pwrlist, fliplist and sslist parameters configure a particular parameter set for an application sequence defined by the value of the seqfil parameter. The plist, patlist, pwrlist, fliplist and sslist parameters provide information concerning the rf pulse and conjugate gradients used by the sequence.
Values: String array such as pwrlist='tpwr1','tpwr2','tpwr3'.

See also: VnmrJ Imaging NMR

| Related: | fliplist | Standard flip angle list (P) |
| :--- | :--- | :--- |
| | nD | Application dimension (P) |
| | patlist | Active pulse template parameter list (P) |
| | plist | Active pulse length parameter list (P) |
| | seqcon | Acquisition loop control (P) |
| | seqfil | Application object code name (P) |
| | sslist | Conjugate gradient list (P) |

pwsadj Adjust pulse interval time (M)

Applicability: Systems with waveform generators.
Syntax: pwsadj(shape_file,pulse_parameter)
Description: Adjusts the pulse interval time so that the pulse interval for the specified shape is an integral multiple of 100 ns . This ensures there is no time truncation error in executing the shaped pulse by waveform generators.
Arguments: shape_file is a file name of a shaped pulse file. The name can be specified with or without the . RF file extension. pwsadj first looks for the file name specified by shape_file in the user's shapelib directory. If the file specified is not found there, pwsadj then looks in the system shapelib directory.
pulse_parameter is a string containing the adjusted pulse interval time.
Examples: pwsadj('pulse12','pulseparam')
See also: User Programming
Related: dmfadj Adjust decoupler tip-angle resolution time (M)
dmf2adj Adjust second decoupler tip-angle resolution time (M)

pwxcal

Description: Provides an interactive method of selecting the decoupler (first, second, or third) and the nucleus $\left({ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right.$, or $\left.{ }^{31} \mathrm{P}\right)$ to calibrate. The pwxcal pulse sequence determines the pulse width characteristics of the probe's decoupler channel(s) in indirect detection or triple resonance experiments. pwxcal can also be used to determine the rf field homogeneity of the decoupler.
The parameter pwx1 is arrayed to calibrate the 90° pulse width on the first decoupler. If a second decoupler is present, the parameter pwx 2 is arrayed to calibrate the 90° pulse width on that decoupler. If a third decoupler is present, the parameter pwx3 is arrayed to calibrate the 90° pulse width on that decoupler. Other parameters include: j C 13 is the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling, constant, $j \mathrm{~N} 15$ is the ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ coupling constant, jP 31 is the ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ coupling constant, and jname is a selected calibration nucleus.
See also: System Administration
pxset Assign Pbox calibration data to experimental parameters (M)
Syntax: pxset<(file.ext)>
Description: Retrieves experimental settings from a file and assigns them to corresponding experimental parameters using a dialog form. If no file name is provided, pxset extracts data from the Pbox.cal file that contains the output data of the last created waveform
Arguments: file.ext is the name of a shape or pattern file.

```
    Examples: pxset
    pxset('Pbox.RF')
    See also: VnmrJ Liquids NMR
    Related: Pbox Pulse shaping software (U)
    pboxget Extract Pbox calibration data (M)
```

```
pxshape Generates a single-band shape file (M)
```

pxshape Generates a single-band shape file (M)
Syntax: pxshape('sh bw/pw ofs st ph fla trev \
Syntax: pxshape('sh bw/pw ofs st ph fla trev \
d1 d2 do',name,disp)
d1 d2 do',name,disp)
Description: Generates a single-band waveform based on wave definition provided as a
single string of wave parameters.
Arguments: A single string of 1 to 12 wave parameters in predefined order. Note that a single
quote is required at the start and the end of the entire string, but no single quotes
are required surrounding characters and strings inside the entire string.
sh is the name of a shape file.
bw/pw is either the bandwidth, in Hz, or the pulsewidth, in sec.
ofs is the offset, in Hz.
st is a number specifying the spin status: 0 for Mz, or 1 for Mxy.
ph is the phase (or phase cycle, see wavelib/supercycles).
fla is the flip angle. Note that fla can override the default flip angle.
trev is a time reversal. This can be used to cancel time reversal if spin status
(st) is set to 1 for Mxy.
d1 is the delay, in sec, prior the pulse.
d2 is the delay, in sec, after the pulse.
d0 is a delay or command prior to d1. If d0=a, the wave is appended to the
previous wave.
name is the output file name. An extension is optional and can be used to
override an internally defined shape type.
disp is the shape is displayed by default in the graphics window. If disp is
set to ' n', the shape is not displayed.
Examples: pxshape('eburp1','myshape.RF')
pxshape('GARP 12000.0','shape2','Y')
pxshape('esnob 600.0-1248.2 n 180.0 n n 0.001','xxx')
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
Pxsim Simulate Bloch profile for a shaped pulse (U)
Syntax: Pxsim file <simtime <num_steps <add/sub>>>
Description: Used by the dprofile macro to simulate a Bloch profile for a shaped pulse. Pxs im extracts the information necessary for simulation from the shape header. Only shape files containing this information can be processed.
Arguments: file is the name of a shape or pattern file including an .RF or .DEC extension. Pxsim searches for the file in the user's shapelib (~/vnmrsys/ shapelib), and if not found there, it searches in the system shapelib (vnmr/shapelib).
simtime is the maximum simulation time (in sec) that can be provided.
num_steps is the number of steps in the profile.

```
add/sub is add (a) or subtract (s) from the previous simulation.
Examples: Pxsim myshape.RF
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

Pxspy
Create shape definition using Fourier coefficients (U)
Syntax: Pxspy file
Description: An interactive program that converts shaped pulse files into a Fourier series and produces an output file pbox.cf in the user's shapelib (~/vnmrsys/ shapelib), which can be used to create a wave definition file in the wavelib directory. Pxspy can also be used to convert hard pulse decoupling sequences into soft ("cool") decoupling waveforms. The resulting Fourier coefficients can depend on the number of points in the waveform.
Arguments: file is the name of a shape or pattern file, including an .RF, .DEC, or .GRD extension. The name can be given as a relative name, absolute name, or as a simple name (i.e., with a path). If given as a simple name, Pxspy searches for the file in the user's shapelib (~/vnmrsys/shapelib), and then if not found there, it searches in the system shapelib (vnmr/shapelib).
Examples: Pxspy myshape.RF
Pxspy /vnmr/shapelib/myshape.RF
Pxspy ~vnmrsys/shapelib/myshape.RF
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
```

QKexp
Set up quick experiment (M)

```
qtune
?

Tune probe using swept-tune graphical tool (C)
Display individual parameter value (C)

\section*{QKexp \(\quad\) Set up quick experiment (M)}

Syntax: QKexp (arguments)
Description: Set up parameters for quick experiment for a chained acquisition. Multiple arguments can be given to define the chain. Default parameter values are used by the macro and or the probe file is used.
Examples: QKexp('PROTON','COSY','HMQC')
QKexp ('PROTON','CARBON','HETCOR','gCOSY')

\section*{qtune \(\quad\) Tune probe using swept-tune graphical tool (C)}

Syntax: qtune<(gain<,power>) >
Description: Displays a real-time graph showing reflected power versus frequency for tuning probes. If the acquisition system has been recently rebooted, enter su before running qtune. Refer to the manual VnmrJ Liquids \(N M R\) for a detailed description of this tool.
Arguments: gain specifies the gain value, typically 20 to 50 . The default is 50 . power specifies the power value, typically 60 to 70 . The default is 60 .
On MERCURY, use qtune ( 0,20 )
Examples: qtune
qtune (20)
qtune \((38,65)\)
See also: VnmrJ Liquids NMR
Related: tugain Amount of receiver gain used by qtune (P)
su Submit a setup experiment to acquisition (M)
tune Assign frequencies on UNITY INOVA (C)
?
Display individual parameter value (C)
Syntax: parameter_name<[index]>?
Description: The question mark displays the current numerical or string value of a parameter when the parameter name is followed by a question mark. No change is made to the value of the parameter. To display an individual element of an parameter array, provide the index in square brackets (e.g., nt [3] ? might display "nt [3] =2")

Certain parameters can be "turned off" by setting the parameter to ' \(n\) '. The display of a parameter that is turned off will be the phrase "Not Used" followed by the actual value in parentheses. For example, if 1 b is set to 1.5 and then set to ' \(n\) ', entering \(l b\) ? will display \(l b=\) Not Used (1.5). Such a parameter can be "turned on" by setting it to ' y '. It will then have its prior value.

To show a parameter's array of values or learn about its attributes, use the display command.
Arguments: index is the integer for a selected member of an arrayed parameter.
```

Examples: lb?
sw?
pw[2]?
See also: VnmrJ Liquids NMR
Related: display Display parameters and their attributes (C)
getvalue Get value of a parameter in a tree (C)

```
```

r
r
ra
radialAngles
rcvrs
rcvrwt
rcvry
react
readallshims
readbrutape
readfile
readhw
readlk
readparam
readultra
real
recon_all
record
redor1
redosy
refresh
reffrq
reffrq1
reffrq2
refpos
refpos1
refpos2
refsource1
refsource2
region
relayh
removeAstack
rename
rescal
resetf3
resetMovie
resolv
resto
restoreStack
resume
return
rev
revdate
*

```
\begin{tabular}{|c|c|}
\hline rfband & RF band in use (P) \\
\hline rfblk & Reverse FID block (C) \\
\hline rfichannel & Independent control of rf channel selection (P) \\
\hline rfchtype & Type of rf channel (P) \\
\hline rfcoil & RF pulse calibration identity ( P ) \\
\hline rfdata & Reverse FID data (C) \\
\hline rfl & Reference peak position in directly detected dimension (P) \\
\hline rfll & Reference peak position in 1st indirectly detected dimension (P) \\
\hline rfl2 & Reference peak position in 2nd indirectly detected dimension (P) \\
\hline rfp & Reference peak frequency in directly detected dimension (P) \\
\hline rfp1 & Reference peak freq. in 1st indirectly detected dimension (P) \\
\hline rfp2 & Reference peak freq. in 2nd indirectly detected dimension (P) \\
\hline rftrace & Reverse FID trace (C) \\
\hline rftype & Type of rf generation (P) \\
\hline rfwg & RF waveform generator ( P ) \\
\hline right & Set display limits to right half of screen (C) \\
\hline rinput & Input data for a regression analysis (M) \\
\hline rl & Set reference line in directly detected dimension (M) \\
\hline rl1 & Set reference line in 1st indirectly detected dimension (M) \\
\hline rl2 & Set reference line in 2nd indirectly detected dimension (M) \\
\hline rm & Delete file (C) \\
\hline rmdir & Remove directory (C) \\
\hline rmsAddData & Add transformed data files with weighting (U) \\
\hline ROESY & Change parameters for ROESY experiment (M) \\
\hline Roesy & Convert the paramaeter to a ROESY experiement (M) \\
\hline roesy & Set up parameters for ROESY pulse sequence (M) \\
\hline Roesyld & Convert the parameter set to a Roesyld experiment (M) \\
\hline rof1 & Receiver gating time preceding pulse (P) \\
\hline rof 2 & Receiver gating time following pulse (P) \\
\hline rotate & Rotate 2D data (C) \\
\hline rotorsync & Rotor synchronization (P) \\
\hline rp & Zero-order phase in directly detected dimension (P) \\
\hline rp1 & Zero-order phase in 1st indirectly detected dimension (P) \\
\hline rp2 & Zero-order phase in 2nd indirectly detected dimension (P) \\
\hline RQdisplay & Display images selected by aipDisplayMode (M) \\
\hline rqfull & Review Queue table width (P) \\
\hline rqselection & Select images in the Review Queue (P) \\
\hline rqsort & Sort images in the Review Queue (P) \\
\hline rqtype & Review Queue type (P) \\
\hline rsliceplan & Generate absolute magnet frame data (M) \\
\hline rt & Retrieve FIDs (M) \\
\hline rtcmx & Return Spinsight data into current experiment (C) \\
\hline rtp & Retrieve parameters (M) \\
\hline rtphf & Return stored phasefile to current phasefile (C) \\
\hline rts & Retrieve shim coil settings (C) \\
\hline rttmp & Retrieve experiment data from experiment subfile (M) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
rtv & Retrieve individual parameters (C) \\
\(r t x\) & Retrieve parameters based on rtx rules (C)
\end{tabular}

Recall display parameter set (M)
Syntax: (1) rset_number
(2) r(set_number)

Description: Recalls the parameters \(\mathrm{sp}, \mathrm{wp}, \mathrm{sp} 1, \mathrm{wp} 1, \mathrm{sp} 2\), wp2, sc, wc, sc2, wc2, ho, vo, vs, and ai/nm of a selected display parameter set. Not recalled are phase parameters, drift correction parameters, integral reset parameters, and reference parameters. This allows, for example, saving a set of display parameters, adjusting the phase or drift correction, and later recalling the display parameters without und0oing the new phase or drift correction.

Arguments: set_number is the number, from 1 to 9 , of a display parameter set.
Examples: r2
r(3)
See also: VnmrJ Liquids NMR
Related: ai Select absolute intensity mode (C)
\(\mathrm{fr} \quad\) Full recall of a display parameter set (M)
ho Horizontal offset (P)
nm \(\quad\) Select normalized intensity mode (C)
s Save display parameters as a set (M)
sc \(\quad\) Start of chart (P)
\(\mathrm{sc} 2 \quad\) Start of chart in second direction ( P )
\(\mathrm{sp} \quad\) Start of plot in directly detected dimension (P)
sp1 Start of plot in 1st indirectly detected dimension (P)
sp2 Start of plot in 2nd indirectly detected dimension (P)
vo Vertical offset (P)
vs Vertical scale (P)
wc Width of chart (P)
wc2 Width of chart in second direction (P)
wp \(\quad\) Width of plot in directly detected dimension (P)
wp1 Width of plot in 1st indirectly detected dimension (P)
wp2 Width of plot in 2nd indirectly detected dimension (P)
r1-r7 Real-value storage for macros (P)
Description: The seven parameters \(r 1, r 2, r 3, r 4, r 5, r 6\), and \(r 7\) are available in each experiment for macros to store a real value.
See also: User Programming
Related: dgs Display group of special/automation parameters (M)
n1, n2, n3 Name storage for macros (P)

Resume acquisition stopped with sa command (C)
Description: Resumes an experiment acquisition that was stopped with the sa command. ra is not permitted after any parameters have been brought into the stopped experiment with the \(r t\) or \(r t p\) macros. The parameters dp and np may not be altered.
ra applies to the experiment that you are joined to at the time the command is entered. If experiment 1 has been previously stopped with sa, you must be
joined to experiment 1 for ra to resume that acquisition. If you are in experiment 2 , entering ra has no effect on experiment 1.
If an experiment has been stopped with sa, you can increase the number of transients nt and resume the acquisition with ra. You cannot, however, increase nt and enter ra if the experiment had completed in a normal fashion (i.e., it was not stopped with sa).

Note that the completion time and remaining time shown in the Acquisition Status window are not accurate after ra is executed.
See also: VnmrJ Liquids NMR
\begin{tabular}{rll} 
Related: & dp & Double precision (P) \\
& np & Number of data points (P) \\
& nt & Number of transients (P) \\
& rt & Retrieve FID (M) \\
& rtp & Retrieve parameters (M) \\
& sa & Stop acquisition (C)
\end{tabular}

\section*{radialAngles Radial slice fan angle (P)}

Applicability: Systems with imaging capabilities.
Description: Fan angle of radial slices.
See also: VnmrJ Imaging NMR

\section*{revrs Which receivers to use (P)}

Applicability: Systems with multiple receivers.
Description: A string of ' y ' s and ' n 's that indicates which receivers should be used in a multiple receiver acquisition. Setting rcvrs = ' \(Y\) ' uses only the first receiver, and is equivalent to the parameter being absent.

Examples: rcvrs='ny' uses only the second receiver.
rcvrs= 'yyyy' uses four receivers.
Related: numrcvrs \(\quad\) Number of receivers in the system (P)

\section*{revrwt \(\quad\) Weighting for different receivers (P)}

Applicability: Systems with multiple receivers.
Description: An array of real numbers giving weighting factors to use when combining multiple receiver data. The \(i\) 'th array element is used to weight data from the \(i\) ith receiver. Applying a weight factor is like increasing the gain of the receiver by the same factor (but the weights are specified as numerical factors rather than in dB).

Examples: rcvrwt=10,12,8
Related: addrcvrs Combine data from multiple receivers (M)

\section*{revry Pre-trigger delay (P)}

Applicability: Systems with imaging capabilities.
Description: Delays the start of most Varian imaging sequences until after the external trigger (the parameter ticks) is received by the system. The delay is still active in the non-triggered mode ( \(\mathrm{ticks}=0\) ). Setting hold=0 removes the delay in the sequence. The delays rcvry and hold are executed once per scan in Varianprovided sequences. In multislice imaging mode, this occurs at the beginning of the multislice pass, but not between the acquisition of individual slices.

Values: \(0.1 \mu\) s to 8192 sec , in units of seconds.
See also: VnmrJ Imaging NMR
Related: hold Post-trigger delay (P)
ticks \(\quad\) Number of trigger pulses ( P )
react Recover from error conditions during werr processing (M)
Syntax: react<('wait')>
Description: When an acquisition error occurs, any action specified by the werr parameter is executed. The react macro is a prototype for handling these errors. This macro can be invoked for error handling by setting werr='react '. The acqstatus parameter is provided so that react can determine which specific error has occurred.
Arguments: ' wait ' is a keyword for a special type of error handling during an automation run. The react macro always uses the ' next ' option when it calls the command au. Under certain conditions, it is also appropriate to use the ' wait ' option. react checks to see if an argument was passed to it; that is, werr='werr (\'wait\')' to determine whether to use the 'wait' option of au.
See also: VnmrJ Liquids NMR
Related: acqstatus Acquisition status (P)
au Submit experiment to acquisition and process data (C)
werr \(\quad\) Specify action when error occurs (C)
werr When error (P)
readallshims Read all shims from hardware (M)
Description: Reads all shims from the hardware and sets the values into the shim parameters in the current parameter tree. The shims used depend on the shimset configuration. For the shim set on the Ultra•nmr shim system, readallshims is active only if hardware-to-software shim communication is enabled.
See also: VnmrJ Liquids NMR
Related: load Load status of displayed shims (P)
readhw Read current values of acquisition hardware (C)
setallshims Set all shims into hardware (M)
sethw \(\quad\) Set values for hardware in acquisition system (C)
shimset Type of shim set (P)
su \(\quad\) Submit a setup experiment to acquisition (M)
readbrutape Read Bruker data files from 9-track tape (U)
Syntax: (From UNIX) readbrutape file <number_skipped>
Description: A shell script that reads one file from a Bruker tape into a UNIX file with the name specified. Bruker tapes are likely to be made at 1600 bpi, although 1600 bpi is not a requirement.
Arguments: file is the name of the file read into UNIX. For identification, the .bru extension is added to the file name.
number_skipped is the number of files skipped and includes the header file (which is assumed to be the first file on the tape). The default is the script reads the first file after the header file. If number_skipped equals 0 , there is no rewinding and the first file (or the next file) on the tape is read.

Related: convertbru Convert Bruker data (M,U)

\section*{readfile \\ Read the contents of a text file into two parameters (C)}

Syntax:
Description: readfile reads the contents of a file and puts the contents into two supplied parameters. The first word on each line in the file is placed in the first parameter. The remainder of the line is placed in the second parameter. An optional fourth argument specifies a string which is used to match the first word of the line. For example, if the file contained:
```

H1pw 10

```

H1pwr 55
C13pw 14
C13pwr 50
and the comparison string was set to H 1 , only the lines starting with H 1 would be put into the parameters. Namely, H1pw and H1pwr.
Arguments: path is the path name of the file to read.
par1 is the name of the parameter to hold the first word of the line.
par2 is the name of the parameter to hold the remainder of each line.
cmpstr is the optional comparison string for matching the first word.
tree is an optional parameter to select the tree for par1 and par2. The possibilities are current, global, and local. Current is the default. Local is used if the parameters are \$macro parameters. If tree is used, the cmpstr must also be supplied. If cmpstr is ' ', then it is ignored.
The par1 and par2 parameters must already exist. If par1 or par2 are defined as a real parameter, as opposed to a string parameter, then if the value does not have a number as the first word, a zero will be assigned.
num will be set to the number of items in the arrayed parameters par1 and par2.
Lines that only contain whitspace are not added to the parameters. Lines that start with a \# are not added to the parameters. Lines which start with a \# can be used as comment lines. If a line only contains a single word, that word is put into the first parameter. The corresponding array element of the second parameter will be set to an empty string. The readfile will return the number of lines added to the parameters.
Examples: Examples using a prototype file containing the following:
```


A readfile test case

Proton values

H1pw 10
H1pwr 55

Carbon values

C13pw }1
Cl3pwr 50
H1macro ft f full aph vsadj
End
readfile(systemdir+'/probes/testcase','attr','vals')

```

This sets the attr and vals parameters to arrays of six strings.
```

attr='H1pw','H1pwr','C13pw','C13pwr','H1macro','End'
vals='10','55','14','50','ft f full aph vsadj',''
readfile(systemdir+'/probes/
testcase','attr','vals','H1')

```

This sets the attr and vals parameters to arrays of three strings.
```

attr='H1pw','H1pwr','H1macro'
vals='10','55','ft f full aph vsadj'

```

The readfile command might be used in conjunction with the teststr command. The teststr command can be used to search an arrayed parameter to determine the index of a specified element.
For example,
teststr(attr,'H1pwr'): \$e
vals[\$e] will be the value of 'H1Pwr'

\section*{readhw Read current values of acquisition hardware (C)}

Syntax: readhw (param1, param2,...) <:value1, value2,...>
Description: Returns or displays the current values of the lock system parameters
lockpower, lockgain, lockphase, and zo.
The values of the shims can also be obtained. The particular shims that can be read depends upon the type of shim hardware present in the system. See the description of shimset for a list of the shim names for each type of shim hardware.
readhw cannot be used when an acquisition is in progress or when acqi is connected to the acquisition system.
Arguments: param1, param2, . . are the names of the parameters to be read.
value1, value \(2, \ldots\) are return variables to store the settings of the parameters specified. The default is to display the setting in the status window.
Examples: readhw('z1c','z2c','z1','z2')
readhw('z1c','z2c','z1','z2'):r1,r2,r3,r4
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & lockgain & Lock gain (P) \\
lockphase & Lock phase (P) \\
lockpower & Lock power (P) \\
readallshims & Read all shims from hardware (M) \\
sethw & Set values for hardware in the acquisition system (C) \\
shimset & Type of shim set (P)
\end{tabular}
readlk Read current lock level (C)
Syntax: readlk<:lock_level>
Description: Returns the same information as would be displayed on the digital lock display using the manual shimming window. readlk can be used in developing automatic shimming methods such as shimming via grid searching. It cannot be used during acquisition or manual shimming.
Arguments: lock_level returns the current lock level.
Examples: readlk
readlk:\$levell
See also: User Programming
Related: alock Automatic lock status (P)

\section*{readparam Read one of more parameters from a file (C)}

Syntax: readparam(file,parlist[,tree[,type]])-

Description: The readparam command will read one or more parameters from a specified file. The first argument is the name of the file. The second argument is a list of the names of the parameters to be read. It is a string parameter and the names can be separated either by a space or a comma. If a parameter in the list is not present in the file being read, no error is generated. The optional third argument is the tree into which the parameters are read. The variable trees are 'current', 'global', 'processed' and 'systemglobal'. The optional fourth argument controls the behavior of the readparam command. The options are 'read', 'replace', and 'add'. The default type is 'read'.
Examples: In order to specify the type, the tree must also be specified. The behaviors are best illustrated with specific examples. Lets say that there is a temporary file containing only the parameters a and b . We are going to use the readparam command to read parameters into a current tree which contains the parameters \(a\) and \(c\) but does not contain the parameters \(b\) and \(d\). This can be summarized as:
Parameters in mypar: \(a=1 b=2\)
Initial parameters in current tree: \(\mathrm{a}=4 \mathrm{c}=8\) ( b and d do not exist)
readparam(curexp+'/mypar','a b c d','current','read')
Parameter in a current tree is replaced with parameter from mypar. Parameter b in current tree is read in from mypar Parameter c in current tree is unaltered Parameter \(d\) in current tree still does not exist. Final parameters in current tree: \(a=1 \quad b=2 c=8 \quad\) (d does not exist).
readparam(curexp+'/mypar','a b c d','current','replace')
Parameter in a current tree is replaced with parameter from mypar. Parameter b in current tree still does not exist. Parameter c in current tree is deleted. Parameter d in current tree still does not exist. Final parameters in current tree: \(\mathrm{a}=1\) ( b c and d do not exist).
readparam(curexp+'/mypar','a b c d','current','add')
Parameter in a current tree is unaltered. Parameter b in current tree is read in from mypar Parameter c in current tree is unaltered. Parameter \(d\) in current tree still does not exist. Final parameters in current tree: \(a=4 b=2 c=8\) (d does not exist).
This command may be used to read temporary values which have been saved with the writeparam command.
More Examples:
readparam(curexp+'/mypar','in')
reads the parameter in from the file mypar in the current experiment directory.
readparam(curexp+'/mypar','sw ct np','processed')
reads the parameters sw, ct, and np into the processed tree from the file mypar in the current experiment directory.
readultra Read shim coil setting for Ultra•nmr shim system (M)
Applicability: Systems with the Ultra•nmr shim system.
Syntax: readultra<(file_number) >
Description: Reads shim set files for a Ultra•nmr shim system from a Sun floppy disk into VnmrJ. The floppy disk for Ultra•nmr contains up to 63 shim sets named file1.dac to file63. dac.
Arguments: file_number is the number of the shim set file, from 1 to 63 . The default is to read all of the shim set files.
Examples: readultra
readultra(6)

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & shimset & \begin{tabular}{l} 
Type of shim set (P) \\
\\
svs
\end{tabular} \\
Save shim coil settings (C)
\end{tabular}
real
Create a real variable without a value (C)
Syntax: real (variable)
Description: Creates a real variable without a value.
Arguments: variable is the name of the variable to be created.
Examples: real('realval1')
See also: User Programming
Related: create Create a new parameter in a parameter tree (C)
string \(\quad\) Create a string variable (C)

\section*{recon_all Reconstruct images from 2D MRI fid data (C)}

Applicability: Systems with the imaging capabilities.
Syntax: recon_all(acqstring, <pc option>)
or
recon_all(acqstring,<image directory>, <pc option>)
or
recon_all
Description: Produces 2D images (in fdf format) from FID data acquired with most 2D imaging sequence, including sems, gems, fsems, and epi.
Arguments: acqstring: Set to 'acq' to indicate concurrent reconstruction; performs no initializations. Any other value can be used for retrospective reconstruction or the first pass through concurrent reconstruction (initializations are performed). pc option: Optional argument to specify phase correction method (see description of phase correction below).
image directory: Optional argument to specify the directory which will contain produced \(f d f\) files.
NB: for control of some features (see below), recon_all accesses parameters in the PROCESSED tree. It is in the PROCESSED tree that variables should be created and/or modified for effectiveness with recon_all. Input/Output: recon_all reads the FID file in the acqfil subdirectory of the current experiment, and creates \(f d f\) files that are written to the recon subdirectory of the current experiment when run in standalone mode, or to the study tree when run in study mode. If raw data output is selected (see option below), the resulting fdf files are written to the raw subdirectory of the current experiment.
Supported features include:
- Compressed/Standard/Arrayed experiments supported (relevant parameter: seqcon)
- Capable of running concurrently with acquisition (set acqstring to acq after first wnt; empty or dummy string initially).
- Disable image display (relevant parameter: recondisplay. Create in processed tree as a real variable and set it to 0 )
- Display every N images (relevant parameter: recondisplay. Create in processed tree as a real variable and set it to N )
- DC removal (relevant parameter: dcrmv)
- Multi-slice (interleaved) acquisitions (relevant parameter: ns)
- Multi-shot/sorting (relevant parameters: petable, etl, and/or nseg)
- Multiple receiver data (magnitude sum) (relevant parameter: rcvrs)
- Multi-echo imaging support (mems, epi) (relevant parameter: ne)
- Weighting (through VnmrJ panel selections) (relevant parameter: ftproc)
- Zero filling (through VnmrJ panel selections) (relevant parameters: fn and/or fn1)
- Output magnitude and/or phase raw data components. (relevant (optional) parameter: raw. Create in processed tree as a string which can be set to 'm'(magnitude), 'p' (phase), or 'b ' (both))
- Partial k-space conjugation. Relevant parameters are fract_kx and fract_ky, which denote the number of points/echoes acquired beyond the intended \(N / 2\). Example: \(n v=80\), fract_ky=16 results in the central 32 echoes used as a correction map prior to conjugate synthesis. Resulting image has \(128(2 *(80-16))\) lines in the phase encoded direction.
- Phase correction. (relevant parameters: image, epi_pc) Implemented for epi sequences. Phase of transformed imaging data (image=1) is corrected by phase of transformed reference data (image=0). Accepted values for pc option in comand string or for the optional parameter epi_pc are:
1.POINTWISE (the default; direct use of the phase of profile)
2.LINEAR (1st order fit of phase of profile)
3.QUADRATIC (2nd order fit of phase of profile)
4.CENTER_PAIR (even/odd pair at center of echo train used for all even/ odd echoes)
5.PAIRWISE (even/odd pair phase differences along echo train used)
6.FIRST_PAIR (1st and 2nd echoes used for even/odd correction)
- Navigator Echo correction. Requires acquisition of echo train data (fsems, epi), some of which are not phase encoded. Adjusts phase of encoded echoes according to the phase of navigator echoes of the same echo train, relative to the first such navigator echo. Revelant parameters are:
- navigator (can be string set to ' y ' or ' n ', or array of integers giving navigator echo positions within the echo train (ie, navigator=1,2).)
- nav_type (optional; string, set to 'off' to disable correction or ' POINTWISE' (default)).

\section*{Order of operation:}
per echo in block
1.DC removal
2.echo reversal if necessary
3.raw data output if requested
4.windowing if necessary
5.read direction Fourier transform
6.phase correction if necessary
7.sorting if necessary
per slice
1.navigator correction if necessary
```

 2.windowing in phase direction if necessary
 3.partial Fourier correction if necessary
 4.phase direction Fourier transform
 5.accumulation of multi-receiver data
 6.write fdf output file
 Examples: recon_all('','/usr/home/myimages')
 recon_all('','/usr/home/myimages','CENTERPAIR')
 recon_all('ignorethis','LINEAR')
 recon_all('acq')
 record Record keyboard entries as a macro (M)
Syntax: record<(file|'off')>
Description: Records keyboard entries and stores the entries as a MAGICAL macro in the
user's maclib directory. To start recording keyboard entries, enter record.
You are prompted for a macro name (you can also give the name as an argument
to record). The command line prompt then becomes "Command?" to indicate
that the record macro is active. Type the MAGICAL commands to be
recorded on the keyboard. Function keys can be included by entering F1 to F8
for function keys 1 to 8, respectively. Enter off or record ('Off') to finish
the recording.
Arguments: file is the name of the macro file in which the entries are saved. The default
is that the user is prompted for a file name. If the macro file name already exists,
the user is asked if the file should be overwritten.
' off' is a keyword to stop recording the entries.
Examples: record
record('mymacro')
record('off')
See also: User Programming
redor1 Set up parameters for REDOR1 pulse sequence (M)
Applicability: Three-channel UNITY INOVA systems with a triple-tuned MAS solids probe. This sequence is not supplied with MERCURYplus/Vx systems.
Description: Sets up a parameter set, obtained withXPOLAR1, for REDOR (rotational echo double-resonance) experiment.
See also: User Guide: Solid-State NMR
Related: xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)
redosy \quad Restore 2D DOSY display from subexperiment (M)
Description: Restores the previous 2D DOSY display (if one exists) by recalling the data stored by the dosy macro in the file subexp/dosy2Ddisplay in the current experiment. undosy and redosy enable easy switching between the 1D DOSY data (spectra as a function of $g z l v l$) and the 2D DOSY display (signal as a function of frequency and diffusion coefficient).
See also: VnmrJ Liquids NMR

| Related: | dosy | Process DOSY experiments (M) |
| :--- | :--- | :--- |
| | undosy | Restore original 1D NMR data from subexperiment (M) |

```

\section*{refresh Redraw, refresh overlay (C)}

Applicability: Systems with imaging capabilities.
Description: Redraws/refreshes overlays.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
\(r e f f r q \quad\) Reference frequency of reference line ( \(P\) )
Description: Reference frequency, in MHz, of the reference line. This parameter is set by the \(r l\) macro. By defining reffrq as the conversion factor between Hz and ppm using the unit command, ppm calculations can be made.
If referencing is on (i.e., refpos is not set to ' \(n\) '), the go, ga, and au macros calculate values of rfl and rfp based on reffrq and refpos. If referencing is off, go, ga, and au set reffreq to sfrq.
See also: VnmrJ Liquids NMR
Related: au
crl Clear reference line in directly detected dimension (M)
ga Submit experiment to acquisition and FT the result (M)
go Submit experiment to acquisition (M)
reffrq1 Ref. frequency of reference line in 1st indirect dimension (P)
reffrq2 Ref. frequency of reference line in 2nd indirect dimension (P)
refpos Position of reference frequency (P)
rfl Reference peak position in directly detected dimension (P)
\(r f p \quad\) Reference peak frequency in directly detected dimension (P)
\(r l \quad\) Set reference line in directly detected dimension (M)
sfrq Transmitter frequency of observe nucleus (P)
unit Define conversion units (C)
\(r e f f r q 1 \quad\) Reference freq. of reference line in 1st indirect dimension (P)
Description: Reference frequency, in MHz , of the reference line in the first indirect dimension of a \(n D\) experiment. This parameter should be used as the conversion factor between hertz and ppm in the first indirect dimension.
See also: VnmrJ Liquids NMR
Related: crll Clear reference line in 1st indirectly detected dimension (M)
\(r e f f r q \quad\) Reference frequency of reference line (P)
refpos1 Position of reference frequency in 1st indirect dimension ( P )
\(r e f f r q 2 \quad\) Reference freq. of reference line in 2nd indirect dimension (P)
Description: Reference frequency, in MHz , of the reference line in the second indirect dimension of a 2D experiment. This parameter should be used as the conversion factor between hertz and ppm in the second indirect dimension.
See also: VnmrJ Liquids NMR
Related: \(\mathrm{crl} 2 \quad\) Clear reference line in 2nd indirectly detected dimension (M)
reffrq \(\quad\) Reference frequency of reference line ( P )
refpos2 Position of reference frequency in 2nd indirect dimension (P)

\section*{refpos Position of reference frequency ( \(P\) )}

Description: Position of reference frequency, set by the setref and rl macros. Setting refpos='n' indicates that referencing has been turned off. The crl macro turns referencing off.
Values: Because all spectra are (by definition) referenced to a frequency at 0 ppm , refpos is either 0 or "not used".

See also: VnmrJ Liquids NMR
Related: crl
\begin{tabular}{ll} 
reffrq & Reference frequency of reference line (P) \\
refpos 1 & Position of reference frequency in 1st indirect dimension (P) \\
refpos2 & Position of reference frequency in 2nd indirect dimension (P) \\
rl & Set reference line indirectly detected dimension (M) \\
setref & Set frequency referencing (M)
\end{tabular}
refpos1 Position of reference frequency in 1st indirect dimension (P)
Description: Position of reference frequency in the first indirect dimension of a nD experiment, set by setref1 and rll macros. Setting refpos \(1=\) ' \(n\) ' indicates that fl referencing has been turned off. The crll macro turns f1 referencing off.
Values: Because all spectra are (by definition) referenced to a frequency at 0 ppm , refpos 1 is either 0 or "not used".
See also: VnmrJ Liquids NMR
Related: crll Clear reference line in 1st indirectly detected dimension (M)
reffrq1 Ref. frequency of reference line in 1st indirect dimension (P)
refpos Position of reference frequency ( P )
rl1 Set reference line in 1st indirect dimension (M)
setref1 Set frequency referencing for 1st indirectly detected dimension (M)
refpos2 Position of reference frequency in 2nd indirect dimension ( P )
Description: Position of reference frequency in the second indirect dimension of a 3D experiment, set by setref 2 and rl2 macros. Setting refpos \(2=\) ' \(n '\) indicates that f 2 referencing has been turned off in 3D spectra. The crl2 macro turns f2 referencing off.
Values: Because all spectra are (by definition) referenced to a frequency at 0 ppm , refpos2 is either 0 or "not used".
See also: VnmrJ Liquids NMR
Related: crl2
Clear reference line in 2nd indirectly detected dimension (M)
reffrq2
Ref. frequency of reference line in 2nd indirect dimension ( P )
refpos Position of reference frequency ( P )
rl2 Set reference line in 2nd indirect dimension (M)
setref2 Set frequency referencing for 2nd indirectly detected dimension (M)
refsource1 Center frequency in 1st indirect dimension (P)
Description: Holds a parameter name to be used as the center frequency in the first indirect dimension of 2 D experiments. If refsourcel does not exist, the default is 'sfrq'.
For 2D experiments, the second dimension may be related to sfrq if it is a homonuclear experiment. The second dimension may also be related to dfrq
if it is a heteronuclear experiment. refsourcel would then be set as refsource1='sfrq' and refsource1='dfrq', respectively.
See also: VnmrJ Liquids NMR
Related: dfrq Transmitter frequency of first decoupler (P)
refsource2 Center frequency in 2nd indirect frequency (P)
sfrq Transmitter frequency of observe nucleus (P)

\section*{refsource2 Center frequency in 2nd indirect dimension (P)}

Description: Holds a parameter name to be used as the center frequency in the second indirect dimension. refsource 2 is analogous to refsource 1
See also: VnmrJ Liquids NMR
Related: refsource1 Center frequency in 1st indirect dimension (P)
region Divide spectrum into regions (C)
Syntax: region<(tail_length,relative_number,threshold,
number_points,tail_size) ><: number_regions >
Description: Breaks a spectrum up into regions containing peaks.
Arguments: tail_length is the length from 0.0 to sw, in Hz , that is added to the start and end of each calculated peak region; default value is sw/10. The default value is used if a negative number is entered for this argument. If the addition of these wings would cause overlap between adjacent regions, the wings are reduced until the regions no longer overlap.
relative_number is a number that, in combination with other factors, governs the relative number of regions to be found. The default is 12 , which is used if 0 is entered for this argument. relative_number is used as part of a test to determine whether two spectral areas containing peaks are close enough together to be represented as a single region. There are no strict rules that associate the value of relative_number to the total number of regions that will be found. In general, increasing this number decreases the number of regions that will be found and increases the size of an individual region. A value of 1 would give more regions; a value of 100 would give fewer regions.
threshold is a sensitivity factor used to decide if a data point is large enough, relative to the noise level, to qualify it as part of a peak. The default value is 0.6 , which is used if 0 is entered for this argument. Smaller values of threshold make peak selection more sensitive; larger values make peak selection less sensitive.
number_points governs the number of successive data points, normally from 7 to 40 , that must qualify as part of a peak (see the description of threshold above) in order for that spectral area to be considered a real peak. The default value is a function of fn , sw , weighting functions, and other values. The default is used if 0 is entered for this argument. For carbon spectra with large spectral windows, experimental peaks often contain only one or two data points. Adjust number_points to 1 or 2 in those cases.
tail_size is a number that, in combination with relative_number and other factors, governs whether two spectral areas that contain peaks are close enough together to be represented as a single region. The default value is used if 0 is entered for this argument.
number_regions is the total number of regions determined by region.
Examples: region
region: \(\$ 1\)
region (50, 0, 1)
region (-1, 0, 0, 2) :r1

See also: VnmrJ Liquids NMR
Related: \(\mathrm{fn} \quad\) Fourier number in directly detection dimension (P)
sw \(\quad\) Spectral width in directly detected dimension (P)
relayh \(\quad\) Set up parameters for RELAYH pulse sequence (M)
Description: Sets up parameters for absolute-value COSY, or a single or double RELAYCOSY pulse sequence.

See also: VnmrJ Liquids NMR
Related: Cosy Set up parameters for COSY pulse sequence (M)
cosyps \(\quad\) Set up parameters for phase-sensitive \(\operatorname{COSY}\) (M)
dqcosy \(\quad\) Set up parameters for double quantum filtered \(\operatorname{COSY}(\mathrm{M})\)

\section*{removeAstack Remove stack (C)}

Applicability: Systems with imaging capabilities.
Syntax: removeAstack (index)
Description: Removes the stack with the given index.
Arguments: Stack indices begin with zero. If index is not given or index=-1 the selected (active) stack is deleted.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
rename Move and/or rename a file (C)
Syntax: rename (from_file,to_file)
Description: Renames and/or moves a file or directory. rename is identical in function to the command mv.
Arguments: from_file is the name of the file to be moved to renamed.
to_file is the name of the file after moving or renaming it. If the
from_file argument has an extension such as.fid or .par, be sure the to_file argument has the same extension.
Examples: rename('/home/vnmrl/vnmrsys/seqlib/d2pul',
'/vnmr/seqlib/d2pul')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & copy & Copy a file (C) \\
& cp & Copy a file (C) \\
delete & Delete a file, parameter directory, or FID directory (C) \\
& \(m v\) & Move and/or rename a file (C) \\
& rm & Delete file (C)
\end{tabular}
rescal Calculate pixel size and spatial resolution (M)
Applicability: Systems with imaging capabilities.
Syntax: rescal<('silent')><:pixrc,pixrd,pixpc,pixpd
Description: Calculates the pixel sizes for the acquisition (spatial resolution) and display (digital resolution). The results are displayed in the text window. As an option, the results can be returned to variables, which allows the user to call rescal from within other macros and use it to calculate this basic information. This
macro can be used before acquisition to check that the chosen conditions lead to the desired spatial resolution.
Arguments: 'silent' is a keyword to suppress the text window output.
pixrc returns the readout pixel size (collected).
pixrd returns the readout pixel size (displayed).
pixpc returns the phase encode pixel size (collected).
pixpd returns the phase encode pixel size (displayed).
Examples: rescal
rescal('silent'):r1,r2,r3,r4
See also: VnmrJ Imaging NMR
resetf3 Reset parameters after a partial 3D Fourier transform (M)
Description: Restores the acquisition parameter sw, the processing parameter fn, and the display parameters \(s p, w p, r f 1\), and \(r f p\) in the 3D parameter set, which are read into VnmrJ by either the select command or the dplane or dproj macros. These parameters were modified due to the selection of regional \(f_{3}\) processing (ptspec \(3 \mathrm{~d}=\) 'ynn'). The original value for each of these parameters is stored in the parameter \$sv, where \$ represents sw, fn, sp, wp, \(r f l\), or rfp (e.g., swsv).
If a 2D plane into VnmrJ is retrieved from a 3D transformed data set that was processed with regional \(f_{3}\) processing, reset \(f 3\) must be run before executing ft 3 d in that particular VnmrJ environment.
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
dplane & Display a 3D plane (M) \\
dproj & Display a 3D plane projection (M) \\
fn & Fourier number in directly detected dimension (P) \\
ft3d & Perform a 3D Fourier transform (M) \\
ptspec3d & Region-selective 3D processing (P) \\
rfl & Ref. peak position in directly detected dimension (P) \\
rfp & Ref. peak frequency in directly detected dimension (P) \\
select & Select a spectrum or 2D plane without displaying it (C) \\
sp & Start of plot (P) \\
sw & Spectral width in directly detected dimension (P) \\
wp & Width of plot (P)
\end{tabular}

\section*{resetMovie Reset movie to the beginning and restore original display (C)}

Description: Like stopMovie, but rewinds movie to the beginning and restores the original image display.

See also: startMovie, stopMovie, continueMovie

\section*{resolv Set resolution enhancement parameters (M)}

Syntax: resolv<(a,b)>
Description: Calculates a default resolution enhancement function, setting up \(1 . b\) and \(g f\) based on the acquisition time at. "Zero-filling" is also accomplished, if possible, by making \(f n \geq>=2 * n p\).
Arguments: a sets a value of 1 b using \(1 \mathrm{~b}=-0.318 /\left(\mathrm{a}^{*} \mathrm{Sw}\right)\). The default for a is 0.1 . \(b\) sets a value of \(g f\) using \(g f=b * S w\). The default for \(b\) is 0.3 .
```

 Examples: resolv
 resolv(.2,.4)
 See also: VnmrJ Liquids NMR
 Related: at Acquisition time (P)
 fn Fourier number in directly detected dimension (P)
 gf Gaussian function in directly detected dimension (P)
 lb Line broadening in directly detected dimension (P)
 np Number of data points (P)
 sw Spectral width in directly detected dimension (P)
 resto NMR resonance offset frequency (P)
Applicability: Systems with imaging capabilities.
Description: NMR resonance offset frequency, in Hz.
See also: VnmrJ Imaging NMR
Related: tn Transmitter nucleus (P)
sfrq Spectrometer frequency (P)
restoreStack Restore stack (C)
Applicability: Systems with imaging capabilities.
Description: Restores stack to its original spacing and number of slices.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
resume Resume paused acquisition queue (C)
Description: Enables continuing submitting experiments to the acquisition system. For experiments initiated with the command au('wait'), the acquisition is paused during the time of data processing in order to prevent the acquisition from submitting new experiments that might be queued. resume then allows the data processing macro to initiate another acquisition with au ('next'), which is then performed immediately instead of at the end of the queue.
See also: VnmrJ Liquids NMR
Related: au Submit experiment to acquisition and process data (C)
return Terminate execution of a macro (C)
Syntax: return<(expression1, expression2, ...) >
Description: Terminates the execution of a macro and optionally returns values to another calling macro. This is usually used after testing some condition. return is used only in macros and not entered from the keyboard.
Arguments: expression1, expression $2, \ldots$ are return values to another calling macro.
See also: User Programming
Related: abort Terminate action of calling macro and all higher macros (C)
rev System software revision level (P)
Description: Stores a string identifying the VnmrJ software version for the system. This parameter is not be entered by the user, but can be examined by entering rev?.

```

Related: revdate System software preparation date (P)

\section*{revdate \(\quad\) System software preparation date (P)}

Description: Stores a string identifying the date the current VnmrJ software version was prepared. This parameter is not be entered by the user, but can be examined by entering revdate?.

See also: VnmrJ Installation and Administration
Related: rev System software revision level (P)
rfband \(\quad R F\) band in use ( \(P\) )
Applicability: All systems except MERCURYplus/Vx.
Description: Indicates which rf band of the amplifier is in use for each channel.
Values: A string, such as 'hlc', in which the first channel is determined by the first character, the second channel is determined by the second character, and so forth. The following values are available for each channel:
' \(h\) ' indicates the high rf band is in use on the channel.
' l' indicates the low rf band is in use on the channel.
' C' indicates the system software will calculate whether to use the high band or the low band for the channel.
See also: VnmrJ Liquids NMR

\section*{rfblk Reverse FID block (C)}

Syntax: rfblk(<src_expno>, src_blk_no, dest_expno, dest_blk_no)
Description: Reverses and copies data from a source FID block specified by src_blk_no to a destination FID block specified by dest_expno and dest_blk_no, using memory-mapped input and output. The file header determines the size and type of data to reverse.
\(r f b l k\) searches for the source and destination FID file in the directory \$vnmruser/expN/acqfil; \(N\) is the requested experiment number or the current experiment number. If the FID file is not open, \(r f b l k\) opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
rfblk can also be used to append blocks of data to a FID file by specifying that the dest_blk_no is greater than the number of blocks in a file.
Be aware that \(r f b l k\) can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of commands before running rfblk:
cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp', curexp+'/acqfil/fid')
Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
src_blk_no specifies the source block of data to be copied. Block numbers run from 1 to the number of blocks in a file.
dest_expno specifies the experiment number of the destination FID file. dest_blk_no specifies the destination block to send the copied data.

Examples: rfblk \((1,2,1)\) reverses and copies block 1 from the current experiment to block 1 of experiment 2 .

See also: User Programming
\begin{tabular}{lll} 
Related: & mfblk & Move FID block (C) \\
& mfclose & Memory map close FID file (C) \\
& mfdata & Move FID data (C) \\
& mfopen & Memory map open FID file (C) \\
& mftrace & Move FID trace (C) \\
& rfdata & Reverse FID data (C) \\
& rftrace & Reverse FID trace (C)
\end{tabular}

\section*{rfchannel Independent control of rf channel selection (P)}

Applicability: UNITY INOVA systems.
Description: Gives override capability over the selection of rf channels. rfchannel does not normally exist but can be created by a user with the command create('rfchannel','flag').
On UNITY INOVA systems, the control of each rf channel is built around a collection of parameters and pulse sequence statements. The frequency of channel 1 is set by sfrq and tof, its power by tpwr and tpwrf. The first decoupler uses the corresponding parameters dfrq, dof, dpwr, and dpwrf, respectively. Furthermore, the decoupler can have modulation modes specified with the parameters \(d \mathrm{mf}, \mathrm{dm}, \mathrm{dmm}\), dres, dseq, and homo. The second decoupler has the same set of parameters as the first decoupler and they are distinguished by appending a 2 to each name. That is, the names are dfrq2, dof2, dpwr2, dpwrf2, dmf2, dm2, dmm2, dres2, dseq2, and homo2. The third decoupler would use parameters with a 3 appended: dfrq3, dof3, dpwr3, dpwrf3, dmf3, dm3, dmm3, dres3, dseq3, and homo3. The rfchannel parameter provides a mechanism to override the default parameter usage.
Values: A string of one to four characters in which the position of each character identifies the rf channel controlled.
- The first character selects which rf channel (1 to 4) the parameters sfrq, tof, tpwr, etc. control. The first character also identifies the rf channel used as the receiver.
- The second character selects which rf channel (1 to 4 ) the parameters dfrq, dof, dpwr, etc. control.
- The third character maps the parameter set dfrq2, dof2, dpwr2, etc. to an rf channel (1 to 4).
- The fourth character maps tdfrq3, dof3, dpwr3, etc. to an rf channel (1 to 4).
For example, rfchannel = ' 132 ' would exchange control of the second and third rf channels from the default parameter usage.
The number of characters in the rfchannel parameter must match the number of real rf channels (defined by the parameter numrfch) and each rf channel must be selected by the parameter.
Besides remapping the parameters to different rf channels, pulse sequence statements are also remapped. For example, if rfchannel='132', then statements decpulse, decshaped_pulse, decoffset, decpower, decspinlock, and so on are applied on rf channel 3 and dec 2 pulse, dec 2 shaped_pulse, and so on are applied on rf channel 2.
An obvious use for this remapping is on systems with the decoupler set to U+ H1 Only in the CONFIG window. On these systems, if multinuclear pulses are
needed and \({ }^{1} \mathrm{H}\) needs to be observed, the parameter sets that assume a dualbroadband system can be used and the parameters remapped by setting \(r f\) channel = ' 21 '. However, internal logic checks if the first decoupler is set to U+ H1 Only, tn is set to 'H1', and dn is not set to 'H1'. If these settings are the case, the parameter mapping for rf channels 1 and 2 is exchanged automatically.
See also: VnmrJ Liquids NMR; User Programming
\begin{tabular}{lll} 
Related: & create & Create new parameter in parameter tree (C) \\
dfrq & Transmitter frequency for first decoupler (P) \\
\(d m\) & Decoupler mode for first decoupler (P) \\
\(d m f\) & Decoupler modulation frequency for first decoupler (P) \\
\(d m m\) & Decoupler modulation mode for first decoupler (P) \\
\(d n\) & Nucleus for first decoupler (P) \\
dof & Frequency offset for first decoupler (P) \\
dpwr & Power level for first decoupler with linear amplifier (P) \\
dpwrf & First decoupler fine power (P) \\
dres & Tip-angle resolution for first decoupler (P) \\
dseq & Decoupler sequence for first decoupler (P) \\
homo & Homodecoupling control for first decoupler (P) \\
numrfch & Number of rf channels (P) \\
sfrq & Transmitter frequency for observe nucleus (P) \\
tn & Nucleus for observe transmitter (P) \\
tof & Frequency offset for observe transmitter (P) \\
tpwr & Observe transmitter power level with linear amplifiers (P) \\
tpwrf & Observe transmitter fine power (P)
\end{tabular}

\section*{rfchtype \(\quad\) Type of rf channel ( P )}

Applicability: UNITYINOVA systems.
Description: Configuration parameter for type of rf on each channel. The value for a channel is set using the Type of RF label in the CONFIG window (opened by entering config). Pulse sequence programs check rfchtype to determine if indirect detection should be used for some experiments. Indirect detection occurs automatically on a UNITY INOVA if the decoupler is set to \(\mathrm{U}+\mathrm{H} 1\) Only in the CONFIG window, tn is set to ' H 1 ', and dn is not set to ' H 1 '.
Values: The values of rfchtype parallel the rftype values. The only distinction is that the setting for rftype is 'd' on the U+ Direct Synthesis and U+ H1 Only entries.
'U+ Direct Synthesis' is the setting for a UNITY INOVA with direct synthesis (U+ Direct Synthesis in the CONFIG window).
' \(\mathrm{U}+\mathrm{H} 1\) Only' is a fixed-frequency proton \({ }^{\mathrm{UNITY}}\) INOVA ( \(\mathrm{U}+\mathrm{H} 1\) Only in CONFIG window).
'Deuterium Decoupler' is the setting for a \({ }^{\text {UNITY }}\) INOVA deuterium decoupler channel.
'Direct Synthesis' is the setting for direct synthesis (Direct Synthesis in the CONFIG window).
'Broadband' is the setting for broadband (Broadband in the CONFIG window).
'Fixed Frequency' is the setting for fixed frequency (Fixed Frequency in the CONFIG window).
'SIS Modulator' is the setting for imaging modulator (SIS Modulator in the CONFIG window).

\section*{See also: VnmrJ Installation and Administration}
\begin{tabular}{lll} 
Related: & config & Display current configuration and possibly change it (M) \\
dn & Nucleus for first decoupler (P) \\
rftype & Type of rf generation (P) \\
& tn & Nucleus for observe transmitter (P)
\end{tabular}
rfcoil RF pulse calibration identity ( P )
Applicability: Systems with imaging capabilities.
Description: Contains a string identifying the rf pulse calibration.
See also: VnmrJ Imaging NMR
Related: gcoil Read data from gradient calibration tables (P)
plist \(\quad\) Active pulse length parameter list ( P )

\section*{rfdata Reverse FID data (C)}

Syntax: rfdata(<src_expno,>src_blk_no,src_start_loc, \}
dest_expno, dest_blk_no,dēst_star̄t_loc, num_points)
Description: Reverses and copies data specified by src_start_loc from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_blk_no, and dest_start_loc, using memorymapped input and output. The data point locations and the num_points to be reversed are specified by data points corresponding to the np parameter, not bytes or complex points; however, when reversing the data, rfdata looks at the file header to determine the size and type of data to reverse.
rfdata searches for the source and destination FID file in the directory \(\$ v n m r u s e r / \operatorname{expN} / a c q f i l ; N\) is the requested experiment number or the current experiment number. If the FID file is not open, rfdata opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
Be aware that rfdata can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of commands before running rfdata:
cp (curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp', curexp+'/acqfil/fid')
Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
src_blk_no specifies the source block of data to be copied. Block numbers run from 1 to the number of blocks in a file.
src_start_loc specifies the starting data location within the specified block to copy the data. Data locations start from 0 and are specified as data points corresponding to the np parameter.
dest_expno specifies the experiment number of the destination FID file.
dest_blk_no specifies the destination block to send the copied data.
dest_start_loc specifies the starting data destination location within the specified block \(\overline{\text { to }}\) send the copied data.
Examples: rfdata \((1,0,2,1,(n v-1) * n p, n p)\) copies and reverses \(n p\) points of data from the starting location 0 of block 1 of the current experiment to the data location (nv-1) *np of block 1 of experiment 2 .
```

 See also: User Programming
 Related: mfblk Move FID block (C)
mfclose Memory map close FID file (C)
mfdata Move FID data (C)
mfopen Memory map open FID file (C)
mftrace Move FID trace (C)
rfblk Reverse FID block (C)
rftrace Reverse FID trace (C)
rfl
Reference peak position in directly detected dimension (P)
Description: Actual position of the reference line in the spectrum (i.e., the distance from the right edge of the spectrum to the reference line). If there is no reference line in the spectrum, rfl can be used to enter the frequency where the reference line would appear if the line were present in the spectrum.
Values: Number, in Hz.
See also: VnmrJ Liquids NMR

| Related: | $r f l 1$ | Reference peak position in 1st indirectly detected dimension (P) |
| :--- | :--- | :--- |
| | $r f 12$ | Reference peak position in 2nd indirectly detected dimension (P) |
| | $r f p$ | Reference peak frequency in directly detected dimension (P) |

rfll Reference peak position in 1st indirectly detected dimension (P)
Description: Analogous to the $r f 1$ parameter except that $r f l 1$ applies to the first indirectly detected dimension of a multidimensional data set. rfll can either be set manually or be adjusted automatically when the macro rll is used to assign a reference line.
Values: Number, in Hz.
See also: VnmrJ Liquids NMR

| Related: | $r f 1$ | Reference peak position in directly detected dimension (P) |
| :--- | :--- | :--- |
| | $r f 12$ | Reference peak position in 2nd indirectly detected dimension (P) |
| | $r f p 1$ | Reference peak frequency in 1st indirectly detected dimension (P) |

rfl2 Reference peak position in 2nd indirectly detected dimension (P)
Description: Analogous to the $r f l$ parameter except that $r f l 2$ applies to the second indirectly detected dimension of a multidimensional data set. rfl2 can either be set manually or be adjusted automatically when the macro rl2 is used to assign a reference line.
Values: Number, in Hz.
See also: VnmrJ Liquids NMR
Related: rfl Reference peak position in directly detected position (P)
rfll Reference peak position in 1st indirectly detected dimension (P)
$r f p 2 \quad$ Reference peak frequency in 2nd indirectly detected dimension (P)
$r f p \quad$ Reference peak frequency in directly detected dimension (P)
Description: Sets the frequency to be assigned to the reference line in the spectrum. $r f p$ is always stored in Hz , but can be entered in ppm by using the p suffix (e.g., rfp=2.1p).

```

Values: Number, in Hz.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & \(r f 1\) & Reference peak position in directly detected dimension (P) \\
& \(r f p 1\) & Ref. peak frequency in 1st indirectly detected dimension (P) \\
& \(r f p 2\) & Ref. peak frequency in 2nd indirectly detected dimension (P) \\
& \(r l\) & Set reference line in directly detected dimension (M)
\end{tabular}
\(r f p 1 \quad\) Reference peak freq. in 1st indirectly detected dimension (P)
    Description: Analogous to the \(r f p\) parameter except that rfpl applies to the first indirectly
    detected dimension of a multidimensional data set. rfp1 can either be set
    manually or be assigned a value when \(r l 1\) is called with an argument (e.g.,
    rll ( 7.2 p ) assigns the value of 7.2 ppm to rfp 1 ).
        Values: Number, in Hz.
        See also: VnmrJ Liquids NMR
        Related: rflı Ref. peak position in 1st indirectly detected dimension (P)
        \(r f p \quad\) Ref. peak frequency in directly detected dimension (P)
        \(r f p 2 \quad\) Ref. peak frequency in 2nd indirectly detected dimension (P)
        rl1 Set reference line in 1st indirectly detected dimension (M)
rfp2 Reference peak freq. in 2nd indirectly detected dimension (P)
    Description: Analogous to the \(\operatorname{rfp}\) parameter except that \(r f p 2\) applies to the second
    indirectly detected dimension of a multidimensional data set. rfp2 can be set
    manually or be assigned a value when \(r l 2\) is called with an argument. For
    example, entering rl2 (7.2p) assigns the value of 7.2 ppm to rfp 2 .
        Values: Number, in Hz.
        See also: VnmrJ Liquids NMR
        Related: rfl2 Reference peak position in 2nd indirectly detected dimension (P)
        rfp Reference peak frequency in directly detected dimension (P)
        rfp1 Reference peak frequency in 1st indirectly detected dimension (P)
        rl2 Set reference line in 2nd indirectly detected dimension (C)
rftrace Reverse FID trace (C)
        Syntax: rftrace (<src_expno,src_blk_no,src_trace_no, \}
            dest_expno,<dest_blk_no,dest_trace_no)
Description: Reverses and copies FID traces specified by src_trace_no from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_̄̄lk_no, and dest_trace_no, using memorymapped input and output. The file header determines the size and type of data to be reversed.
rftrace searches for the source and destination FID file in the directory \$vnmruser/expN/acqfil; N is the requested experiment number or the current experiment number. If the FID file is not open, rftrace opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
You cannot use rftrace to append data to a FID file. Its purpose is for moving around data.
Be aware that rftrace can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of commands before running rftrace:
```

cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

```

Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
src_blk_no specifies the source block of data to be copied. Block numbers run from 1 to the number of blocks in a file.
src_trace_no specifies the source trace of data within the specified block to be copied. Trace numbers run from 1 to number of traces in a file.
dest_expno specifies the experiment number of the destination FID file. dest_blk_no specifies the destination block to send the copied data.
src_trace_no specifies the destination trace of data within the specified block to be copied. Trace numbers run from 1 to the number of traces in a file.
Examples: rftrace ( \(1,1,2,1, n v\) ) copies and reverses trace 1 from block 1 of the current experiment to trace \(n v\) of block 1 of experiment 2.
See also: User Programming
\begin{tabular}{lll} 
Related: & mfblk & Move FID block (C) \\
& mfclose & Memory map close FID file (C) \\
& mfdata & Move FID data (C) \\
& mfopen & Memory map open FID file (C) \\
& mftrace & Move FID trace (C) \\
& rfblk & Reverse FID block (C) \\
& rfdata & Reverse FID data (C)
\end{tabular}

\section*{rftype \(\quad\) Type of rf generation ( P )}

Description: Configuration parameter for type of rf generation on each rf channel. On MERCURYplus/Vx systems, the value is set using the System Type label in the CONFIG window (opened by entering config). On other systems, the value is set using the Type of RF label in the CONFIG window.
Values: The values of rftype parallel the rfchtype values. The only distinction is that on UNITY INOVA, the setting for rftype is ' d ' on the entries \(\mathrm{U}+\) Direct Synthesis and U+ H1 Only. On the MERCURYplus/Vx, only 'ee' or 'fe' is used.
' d ' is the setting for a \({ }^{\text {UNITY }}\) INOVA with direct synthesis ( \(\mathrm{U}+\) Direct Synthesis in the CONFIG window) or a fixed-frequency proton \({ }^{\text {UNITY }}\) INOVA ( \(\mathrm{U}+\mathrm{H} 1\) Only in CONFIG window).
' \(l\) ' is the setting for a \({ }^{\text {UNITY }}\) INOVA deuterium decoupler channel.
' C ' is the setting for direct synthesis (Direct Synthesis in the CONFIG window).
' b ' is the setting for broadband (Broadband in the CONFIG window).
' \(a\) ' is the setting for fixed frequency (Fixed Frequency in the CONFIG window).
' m ' is the setting for imaging modulator (SIS Modulator in the CONFIG window).
' ee ' is the setting for \(\boldsymbol{v}\) 4-nucleus, MERCURYplus/Vx 4-nucleus or \({ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\) systems (4 Nucleus or 1H/13C in the CONFIG window).
' fe ' is the setting for MERCURYplus/Vx broadband systems (Broadband in the CONFIG window).
\begin{tabular}{lll} 
See also: & VnmrJ Installation and Administration \\
Related: & config & Display current configuration and possibly change it (M) \\
& rfchtype & Type of rf channel (P)
\end{tabular}

\section*{\(r f w g \quad R F\) waveform generator (P)}

Applicability: Not available on MERCURYplus/Vx .
Description: Configuration parameter for whether a waveform generator board is present or not on the current rf channel. The value for each channel is set using the Waveform Generator label in the CONFIG window (opened by entering config).
Values: ' n ' is setting for no waveform generator board on the channel (Not Present choice in CONFIG window).
' y ' is setting for a waveform generation board on the channel (Present choice in CONFIG window).
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)

\section*{right Set display limits to right half of screen (C)}

Description: Sets the horizontal control parameters, SC and wc, to produce a display (and subsequent plot) in the right portion of the screen (and page). For 2D data, space is left for the scales.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & center & Set display limits for center of screen (C) \\
& full & Set display limits for a full screen (C) \\
fullt & Set display limits for full screen with room for traces (C) \\
left & Set display limits for left half of screen (C) \\
SC & Start of chart (P) \\
& wC & Width of chart (P)
\end{tabular}
rinput Input data for a regression analysis (M)
Description: Formats data for regression analysis and places the data into the file regression.inp. The program is interactive. If a regression.inp already exists, rinput starts by asking if you want to overwrite the file. Type \(y\) and press the Return key. It then asks for an \(x\)-axis title and a \(y\)-axis title. Enter the titles as asked (for no title, simply press Return). Next, rinput asks you to input the data in pairs. Separate each pair of values with a blank and press Return after the second value. At the end of the data set, press Return in response to the request for data. If you have another data set, type \(y\) and press Return to the question and then type in the data when it is asked for.
See also: VnmrJ Liquids NMR; User Programming
Related: expl Display exponential or polynomial curves (C)
polyo Find mean of data in the file regression.inp (C)
rl Set reference line in directly detected dimension (M)
Syntax: rl<(frequency) >
Description: Sets the direct dimension reference line, taking into account any frequency scaling with the scalesw parameter.

Arguments: frequency is a value, in Hz , to assign to the reference line. The default is the cursor position cr . To enter the value in ppm , add a p suffix.
Examples: rl
rl(0)
rl(7.2p)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cr & Current cursor position in directly detected dimension (P) \\
& crl & Clear ref. line in directly detected dimension (C) \\
reffrq & Reference frequency of the reference line (P) \\
rll & Set ref. line in 1st indirectly detected dimension (M) \\
rl2 & Set ref. line in 2nd indirectly detected dimension (M) \\
& scalesw & Scale spectral width in directly detected dimension (P)
\end{tabular}

Set reference line in 1st indirectly detected dimension (M)
Syntax: rll<(frequency) >
Description: Sets the first indirect dimension reference line, taking into account any frequency scaling with the scalesw1 parameter.

Arguments: frequency is a value, in Hz , to assign to the reference line. The default is the cursor position crl. You can enter the suffixes \(p, d\), or \(k\) to mean \(p p m\), decoupler ppm , and kilo, respectively. These suffixes are exactly equivalent to using *sfrq, *dfrq, and *1000. Thus, if you are doing a 2D experiment in which the indirect axis is determined by the decoupler channel, you might enter, for example, \(r l 1(10 d)\), which is equivalent to \(r l 1(10 * d f r q)\).
Examples: rlı
rl1(0)
rl1(7.2p)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cr1 & Cursor position in 1st indirectly detected dimension (P) \\
& crl1 & Clear ref. line in 1st indirectly detected dimension (M) \\
& dfrq & Transmitter frequency of first decoupler (P) \\
refpos2 & Position of reference frequency in 2nd indirect dimension (P) \\
rl & Set ref. line in directly detected dimension (M) \\
rl2 & Set ref. line in 2nd indirectly detected dimension (M) \\
& scalesw1 & Scale spectral width in 1st indirectly detected dimension (P) \\
sfrq & Transmitter frequency of observe nucleus (P)
\end{tabular}
rl2 Set reference line in 2nd indirectly detected dimension (M)
Applicability: All systems; however, although rl2 is available on MERCURYplus/Vx, such systems can only process 3D data and cannot acquire 3D data.

Syntax: rl2<(frequency) >
Description: Sets the second indirect dimension reference line, taking into account any frequency scaling with the scalesw2 parameter.

Arguments: frequency is a value, in Hz , to assign to the reference line. The default is the cursor position cr2. You can enter the suffixes \(p, d\), or \(k\) to mean \(p p m\), decoupler ppm, and kilo, respectively. These suffixes are exactly equivalent to using *sfrq, *dfrq, and *1000. Because there is no suffix for the second decoupler (i.e., the third channel), to reference the third axis using rl2 you might enter (e.g., rl2(45*dfrq2)).
```

Examples: rl2
rl2 (0)
rl2(7.2p)

```

See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & cr2 & Cursor position in 2nd indirectly detected dimension (P) \\
crl & Clear ref. line in directly detected dimension (C) \\
crl1 & Clear ref. line in 1st indirectly detected dimension (C) \\
& crl2 & Clear ref. line in 2nd indirectly detected dimension (C) \\
dfrq & Transmitter frequency of first decoupler (P) \\
dfrq2 & Transmitter frequency of second decoupler (P) \\
rl & Set ref. line in directly detected dimension (M) \\
rl1 & Set ref. line in 1st indirectly detected dimension (M) \\
scalesw2 & Scale spectral width in 2nd indirectly detected dimension (P) \\
sfrq & Transmitter frequency of observe nucleus (P)
\end{tabular}

Delete file (C)
Syntax: rm(file1<,file2,...>)
Description: Removes one or more files from the file system, functioning like the UNIX command of the same name. Because it allows wildcard characters (* and ?) in the command argument and recursive file deletion with the \(-r\) option, rm is very powerful. But it can be quite dangerous-without warning important files can be inadvertently deleted, even by experienced users. Using rm to delete files in VnmrJ is not recommended. The delete command is provided as a safer alternative.

Arguments: file1,file2,... are names of files to delete.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & delete & Delete a file, parameter directory, or FID directory (C) \\
delexp & Delete an experiment (C) \\
exists & Determine if a parameter, file, or macro exists (C) \\
mv & Move and/or rename a file (C) \\
rename & Move and/or rename a file (C)
\end{tabular}
rmdir Remove directory (C)
Syntax: rmdir(directory)
Description: Removes one or more empty directories (i.e., directories without files).
Arguments: directory is the name of the directory to be removed.
Examples: rmdir('/home/dan/temp')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & delete & Delete a file, parameter directory, or FID directory (C) \\
dir & List files in current directory (C) \\
lf & List files in current directory (C) \\
ls & List files in current directory (C) \\
mkdir & Create new directory (C)
\end{tabular}
rmsAddData Add transformed data files with weighting (U)
Applicability: Systems with multiple receivers.

Description: This command is not normally executed directly by the user, but is called by the 'addrcvrs' macro.

Related: addrcvrs Combine data from multiple receivers (M)

\section*{ROESY Change parameters for ROESY experiment (M)}

Description: Converts the current parameter set to a ROESY experiment.

\section*{Roesy Convert the paramaeter to a ROESY experiement (M)}

Description: Convert the paramaeter to a ROESY experiement.

\section*{roesy \(\quad\) Set up parameters for ROESY pulse sequence (M)}

Syntax: roesy<(ratio) >
Description: Sets up a rotating frame Overhauser effect spectroscopy experiment.
Arguments: ratio is the value of the parameter ratio used in the sequence (ratio is not used in the ROESY sequence provided with MERCURYplus/-Vx).

Roesy1d Convert the parameter set to a Roesy1d experiment (M)
Description: Convert the parameter set to a Roesyld experiment.
See also: Proton(M) sel1d(M)

\section*{rof1 Receiver gating time preceding pulse (P)}

Description: Sets the period of time in most pulse sequences when the receiver is gated off before each pulse. This allows the amplifier to fully turn on before the start of the pulse. Systems are configured with linear amplifiers that are normally "blanked" to give the best possible signal-to-noise (i.e., the amplifiers are turned off when the receiver is turned on). The \({ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}\) amplifiers have a short turn-on time, usually 1 to \(5 \mu\) s following the removal of blanking by turning the receiver off. The low-frequency amplifier modules have a longer turn-on time, about 40 to \(60 \mu \mathrm{~s}\).
Values: Typically \(2-5\) seconds.
See also: VnmrJ Liquids NMR
Related: rof2 Receiver gating time following pulse (P)
rof2 Receiver gating time following pulse (P)
Description: Sets the time after the final pulse in each pulse sequence that the receiver is gated off before acquisition begins. If "pulse breakthrough" effects are seen (a spike in the beginning of the FID), increasing rof 2 can reduce or eliminate the problem, particularly for low-frequency nuclei.
Values: Typically 10 seconds.
See also: VnmrJ Liquids NMR
Related: rof \(1 \quad\) Receiver gating time preceding pulse ( P )
rotate \(\quad\) Rotate 2D data (C)
Syntax: rotate< (number_degrees) >
Description: Rotates a 2D spectrum. Both complex and hypercomplex 2D data will work.

Arguments: number_degrees is the amount of counter-clockwise rotation, in degrees. The default is 45 .

See also: VnmrJ Liquids NMR
Related: foldcc Fold INADEQUATE data about 2-quantum axis (C)
foldj Fold J-resolved 2D spectrum about \(f 1=0\) axis (C)
foldt Fold COSY-like spectrum along diagonal axis (C)
rotorsync
Rotor synchronization (P)
Applicability: Systems with the solids rotor synchronization module.
Description: Configuration parameter that identifies if the system has the optional solids rotor synchronization module. The value of rotorsync is set using the Rotor Synchronization label in the CONFIG window (opened by entering config). Rotor synchronization requires either the Acquisition Controller board (Part No. 969204) or the Pulse Sequence Controller board (Part No. 992560) in the system.
Values: 1 is setting that system has solids rotor synchronization (Present choice in the CONFIG window).

0 is setting that system does not have solid rotor synchronization (Not Present choice in the CONFIG window).
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)

Zero-order phase in directly detected dimension (P)
Description: Specifies the right phase-correction angles along the directly detected dimension according to
absorption \(\operatorname{spectrum}(\omega)=\)
real channel \((\omega) * \sin \theta+\) imaginary channel \((\omega) * \cos \theta\)
where the phase angle \(\theta\) is a function of frequency:
\(\theta=r p+\left(\omega-\omega_{o}\right)^{*} l p\)
\(\omega_{\mathrm{O}}\) is defined as the right end of the spectrum. This dimension is referred to as the \(f_{2}\) dimension in 2D data sets, \(f_{3}\) dimension in 3D data sets, and so on.
Values: -360 to +360 , in degrees.
See also: VnmrJ Liquids NMR
Related: aph Automatic phase adjustment of spectra (C)
aph0 Automatic phase of zero-order term (C)
lp \(\quad\) First-order phase in directly detected dimension (P)
rp1 Zero-order phase in 1st indirectly detected dimension ( P )
rp2 Zero-order phase in 2nd indirectly detected dimension (P)
rp1 Zero-order phase in 1st indirectly detected dimension (P)
Description: Specifies the right phase parameter along the first indirectly detected dimension, in degrees, for the \(f_{1}\) dimension of a multidimensional data set during the process of phase-sensitive 2 D transformation.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & lp1 & First-order phase in 1st indirectly detected dimension (P) \\
rp & Zero-order phase in directly detected dimension (P) \\
rp2 & Zero-order phase in 2nd indirectly detected dimension (P)
\end{tabular}

\section*{rp2 Zero-order phase in 2nd indirectly detected dimension (P)}

Description: Controls the zero-order phase constant along the second indirectly detected dimension during a d s, dconi, or equivalent display operation on the 2D data or a 1 D trace therein. This dimension is often referred to as the \(\mathrm{f}_{2}\) dimension.
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & dconi & Interactive 2D contour display (C) \\
ds & Display a spectrum (C) \\
lp2 & First-order phase in 2nd indirectly detected dimension (P) \\
rp & Zero order phase in directly detected dimension (P)
\end{tabular}

RQdisplay Display images selected by aipDisplayMode (M)
Syntax: RQdisplay(<'batch', n/'next'/'prev'/'refresh'/ userselection>)

Description: This macro displays images selected by aipDisplayMode:
aipDisplayMode=1, display all loaded images.
aipDisplayMode=3, display images selected in the Review Queue
aipDisplayMode \(=4\), display images in selected frames
aipDisplayMode=5, display images selected by parameter
'userselection'.
3 and 5 works on for review viewport.
The layout depends on aipDisplayMode:
aipAutoLayout=0, use current frame layout, if not enough frames, display images in batches.
aipAutoLayout=1, automatically layout the frames for all images.
For the Review viewport, the images of multiple scans can be globally sorted according to rqsort:
rqsort \(=0\), display images in frames specified in \(R Q\), or by user.
rqsort \(=1\), sort images by scan, ignore "frames" specification.
rqsort \(=2\), sort images by slice, ignore "frames" specification.
Arguments: 'batch', to display batch specified by next augiment (an integer).
'next', to display next batch.
'prev', to display previous btach.
'refresh', to refresh the displayed.
userselection, to display images selected by string userselection (works only for review viewport).
Examples: RQdisplay('g1(1-9:2) [6-]')
to display every orther images in group 1 , starts from frame 6.
rqfull Review Queue table width (P)
Description: An integer of value \(1 / 0\) to indicate the Review Queue table is full width, or fitted width.

\section*{rqselection Select images in the Review Queue ( P )}

Description: A string for selecting images and frames (selection syntax) Used to change selections in RQ table.
Examples: g1-3, g1(1-4)[5-]

\section*{rqsort \(\quad\) Sort images in the Review Queue ( P )}

Description: Parameter to set global sorting of image display.
Values: 0 , no sorting, use frames as specified in Review Queue
1, sort by scans
2 , sort by slices.

\section*{rqtype \(\quad\) Review Queue type ( P )}
Description: Review Queue type only 'imgstudy' is implimented.
Examples: rqtype='imgstudy' to review image studies.
```

rsliceplan Generate absolute magnet frame data (M)

```
Applicability: Systems with imaging capabilities.
Description: rsliceplan is a helper macro to iplan image planning. It combines the iplan data with sequence parameters to generate the absolute magnet frame data. Users without imaging capabilities should use sliceplan.
See also: VnmrJ Imaging NMR
Related: iplan Open interactive image planning tools (M)
sliceplan Set slice parameters for target slice (M)
Retrieve FIDs (M)
Syntax: rt<(file<,'nolog'>) >
Description: Retrieves FIDs from a file into the current experiment.
The rt macro does not copy the FID into the experiment. Instead, it links access to the original FID from the experiment. Most of the time, this behavior is desired, because the FID file is seldom changed. By making a link, disk space is also conserved. However, if the FID file in the experiment is written to, the data in the original file is also written to. It is best to make a copy of a FID file before altering it. The makefid command alters the FID file. The manual entry for makefid gives details on how to make a copy of the FID.
As another somewhat subtle point, because the FID in the experiment is a link to another .fid file, if that .fid file is removed, the link from the experiment may be gone. If you expect the FID in the experiment to be there, even if you delete the .fid file from where it was retrieved using rt, you should explicitly copy the file into the experiment.
Arguments: file is the name of the file that, with the suffix . fid added, contains the FIDs to be retrieved. The default is that the system prompts for the name (in that case, the name can be given without single quotes). If file.fid does not exist and file.par does, rt retrieves the parameters from file.par.
' nolog' is a keyword specifying that the log file is not to be retrieved.
Examples: rt
rt('/vnmr/fidlib/fidld')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & fixpar & Correct parameter characteristics in experiment (M) \\
makefid & Make a FID element using numeric text input (C) \\
rtp & Retrieve parameters (M) \\
rtv & Retrieve individual parameters (C) \\
& svf & Save FIDs in current experiment (M)
\end{tabular}
rtcmx \(\quad\) Return Spinsight data into current experiment (C)
Syntax: rtcmx<(file) >

Description: Retrieves Spinsight data into the current experiment.
Arguments: file is the name of the file. The default is that the macro prompts for the file name.
Alternate: Load button in the files program.
```

Examples: rtcmx
rtcmx('redor.data')

```

See also: VnmrJ Liquids NMR
Related: files Interactively handle files (C)

\section*{rtp \(\quad\) Retrieve parameters (M)}

Syntax: rtp<(file) >
Description: Retrieves parameters from a file into the current experiment.
Arguments: file is the name of the file that, with the suffix . par added, contains the parameters to be retrieved;. The default is that the system prompts for the name (in that case, the name can be given without single quotes). If file. par does not exist and file.fid does, rtp retrieves the parameters only from file.fid.

Examples: rtp
rtp('/vnmr/stdpar/P31')
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & fixpar & Correct parameter characteristics in experiment (M) \\
rt & Retrieve FIDs (M) \\
& rtv & Retrieve individual parameters (C) \\
& svp & Save parameters from current experiment (M)
\end{tabular}
rtphf Return stored phasefile to current phasefile (C)
Applicability: Systems with imaging capabilities.
Syntax: rtphf(file)
Description: Copies a stored phasefile (curexp+'/planes/file', where file is the file name given in the argument) into the phasefile of the current experiment (curexp+'/datdir/phasefile'). This allows the display and manipulation of previously transformed images, provided the parameter values in the current experiment are compatible with the parameter values present in the experiment that generated the stored phasefiles at the time they were stored.
Arguments: file is the file name of the stored phase file. Use only relative path names for file, not absolute path names (i.e., use path names beginning with "/").
Examples: rtphf('waldo')
See also: VnmrJ Imaging NMR
Related: curexp Current experiment directory (P)
imcalc Calculate 2D phasefiles (M,U)
makephf Transform and save images as phasefiles (M)
svphf Save current phasefile (C)

Retrieve shim coil settings (C)
Syntax: rts(file)<:status>
Description: Locates a preexisting file of shim settings and copies the settings into the current parameter set of the current experiment and sets load= ' Y ' to facilitate
subsequent loading of shims with su (or related commands or macros). If the shim file is not found, rts displays the file names it tried.
The rts command returns shims from a .fid file or a . par file, selecting the shim parameters from the parameters stored there.
Arguments: file is the name of a file containing the shim coil settings to be retrieved. If the file name is an absolute path, rts uses it with no modifications. Otherwise, rts searches up to three different directories, as follows:
- First, rts looks for a shims subdirectory in your user directory. If shims exists, it looks for the requested file name there.
- Next, if shims does not exist, rts then looks for the global parameter shimspath. If shimspath is present, it is expected to contain the name of a directory. If this directory exists, rts looks for the file in that directory.
- Finally, if this does not work, rts searches in the shims subdirectory of the system directory.
status is a return variable with one of the following values after rts finishes searching for the shim coil settings file:
- 0 indicates that \(r\) ts failed to find requested file.
- 1 indicates that rts found the requested file, either as an absolute path or in the shims subdirectory of the user directory.
- 2 indicates that rts found the requested file using the global parameter shimspath.
- 3 indicates that rts found the requested file in shims subdirectory of the system directory.
\(\begin{array}{ll}\text { Examples: } & \text { rts('acetone') } \\ & \text { rts('bb10mm'):r1 }\end{array}\)
See also: VnmrJ Liquids NMR
\begin{tabular}{lll} 
Related: & load & Load status of displayed shims (P) \\
shimspath & Path to user's shims directory (P) \\
& su & Submit a setup experiment to acquisition (M) \\
& svs & Save shim coil settings (C)
\end{tabular}

\section*{rttmp \(\quad\) Retrieve experiment data from experiment subfile (M)}

Syntax: rttmp(file)
Description: Retrieves experiment data-parameters, FID, and transformed spectrum-from the file specified in a subdirectory inside curexp+ '/subexp '.
Arguments: file is the name of the subfile from which to retrieve the experiment data.
\begin{tabular}{cll} 
Examples: & rttmp('H1') \\
& rttmp('cosy') \\
See also: & VnmrJ Liquids NMR \\
Related: & captain & Copy experiment data into experiment subfile (M) \\
& curexp & Current experiment directory (P) \\
& svtmp & Move experiment data into experiment subfile (M)
\end{tabular}

\section*{rtv Retrieve individual parameters (C)}

Syntax: \(r\) tv<(file,par1<,index1<,par2,index2...>>) ><:val>
Description: Retrieves one or more parameters from a parameter file. The file might have been made with svf or svp or sd commands, or it might be from another
experiment. If no return argument is added, the parameters are copied into the experiment's current tree. If the parameter does not already exist in the current tree, it is created. If the returned parameter is an array, the entire array is returned.
If a return argument is added, rtv returns values into the macro. This form of rtv command, in which values are passed only to macro variables, is useful if you do not want additional parameters created in the experiment's current tree.
Arguments: file is the name of the directory or a parameter file. If the supplied value for file is a directory (with or without the .fid or .par extension), the parameters are retrieved from the procpar file in that directory. If the supplied value does not correspond to a directory but rather is a parameter file, that file is used. The default is that \(r t v\) prompts for a file name. In that case, the file name can be given without single quotes.
par1, index1, par2, index \(2, \ldots\) are the name and array index of one or more parameters to be retrieved. The default for each array index argument is the first index. Including the array index for a parameter is only useful when returning values to the macro through a return argument.
val is a return argument for values to return to the macro.
If the requested parameter do not exist in the parameter file, \(r\) tv will abort. There is only one exception. If a single parameter is requested and it is being returned into a macro parameter and the ' noabort ' option is given to the command, it will not abort if the parameter does not exist. An example is rtv('parmaster','parameter','noabort'): \$pm
The noabort option must follow the 'parameter' keyword and precede the optional tree argument. If \(r t v\) is executed without macro return values, then the fixpar macro will automatically be run. If return values are requested, fixpar is not executed. If these commands are executed without an argument, they will ask for a filename. In that case, the filename can be given without single quotes.
In LC-NMR, rt will retreive the lcdata (and drunlog) files if these files were saved along with the NMR data by using svf.
Examples: rtv
rtv('/vnmr/parlib/cosy.par','phase')
See also: VnmrJ Liquids NMR
Related:
\begin{tabular}{ll} 
rt & Retrieve FIDs (M) \\
rtp & Retrieve parameters (M) \\
sd & Set first decoupler frequency to cursor position (M) \\
svf & Save FIDs in current experiment (M) \\
svp & Save parameters from current experiment (M)
\end{tabular}

\section*{rtx \(\quad\) Retrieve parameters based on rtx rules (C)}

Description: The rtx command retrieves parameters from filename, based on the setting of the \(\mathrm{P}_{-}\)LOCK protection bit and using the rules below.
keyword1 may be "keep" or "rt". Default is keep. keyword2 may be "clear" or "noclear". Default is clear. keyword2 determines if the \(\mathrm{P}_{-}\)LOCK bit is cleared after it is rtx'ed.
Truth table for rtx.
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Status of P_LOCK \\
bit in current exp.
\end{tabular} & \begin{tabular}{l} 
Status of P_LOCK \\
bit in filename.
\end{tabular} & keyword1 & result \\
\hline on & on & keep or rt & do not rt \\
on & off & keep or rt & do not rt
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Status of \(P_{-}\)LOCK bit in current exp. & Status of \(P_{-}\)LOCK bit in filename. & keywordl & result \\
\hline off & on & keep or rt & do rt \\
\hline off & off & keep & do not rt \\
\hline off & off & rt & do rt \\
\hline <no parameter> & on & keep or rt & do rt \\
\hline <no parameter> & off & keep & do not rt \\
\hline <no parameter> & off & rt & do rt \\
\hline
\end{tabular}
```

s
s2pul
sa
sample
save
savefile
samplename
saveglobal
saveMilestoneStacks
savePrescription
sb
sb1
sb2
sbs
sbs1
sbs2
sc
sc2
scalelimits
scalesw
scalesw
scalesw1
scalesw1
scalesw2
sd
sd2
sd3
sda
sd2a
sd3a
sdp
sediff
sel1d
select
selex
selexcit
sems
send2vnmr
seqcon
seqfil
seqgen
set2D
set2d

```

Save display parameters as a set (M)
Set up parameters for standard two-pulse sequence (M)
Stop acquisition (C)
Submit change sample, Autoshim experiment to acquisition (M)
Save data (M)
Base file name for saving files (P)
Sample name (P)
Save selected parameters from global tree (P)
Save current planning as milestone (C)
Save current planning to file (C)
Sinebell constant in directly detected dimension (P)
Sinebell constant in 1st indirectly detected dimension (P)
Sinebell constant in 2nd indirectly detected dimension (P)
Sinebell shift in directly detected dimension (P)
Sinebell shift in 1st indirectly detected dimension (P)
Sinebell shift in 2nd indirectly detected dimension (P)
Start of chart (P)
Start of chart in second direction (P)
Set limits for scales in regression (M)
Set scaling factor for multipulse experiments (M)
Scale spectral width in directly detected dimension (P)
Set \(\mathrm{f}_{1}\) scaling factor for 2D multipulse experiments (M)
Scale spectral width in 1st indirectly detected dimension (P)
Scale spectral width in 2nd indirectly detected dimension (P)
Set first decoupler frequency to cursor position (M)
Set second decoupler frequency to cursor position (M)
Set third decoupler frequency to cursor position (M)
Set first decoupler frequency array (M)
Set second decoupler frequency array (M)
Set third decoupler frequency array (M)
Show diffusion projection (M)
Set up spin-echo diffusion imaging sequence (M)
Execute protocol actions of apptype selld (M)
Select spectrum, FID, trace, or 2D plane without display (C)
Defines excitation band (M)
Set up PFG selective excitation pulse sequence (M)
Set up basic imaging sequence with oblique capability (M)
Send a command to VnmrJ (U)
Acquisition loop control (P)
Pulse sequence name (P)
Initiate compilation of user's pulse sequence (M,U)
General setup for 2D experiments (M)
General setup for 2D experiments (M)
\begin{tabular}{|c|c|}
\hline set3dproc & Set 3D processing (C) \\
\hline setallshims & Set all shims into hardware (M) \\
\hline setarray & Set up a parameter array (M) \\
\hline setcenter & Set up parameters for center sequence calibration (M) \\
\hline setcolor & Set colors for graphics window and for plotters (C) \\
\hline setdecpars & Set decoupler parameter values from probe file (M) \\
\hline setdec2pars & Set decoupler 2 parameter values from probe file (M) \\
\hline setDefaultSize & Set FOV to default size (C) \\
\hline setDefaultSlices & Set default number of slices (C) \\
\hline setDefaultthk & Set default slice thickness (C) \\
\hline setDefaultType & Set default type (C) \\
\hline setDisplayStyle & Show stripes or lines (C) \\
\hline setDrawInterSection & Show/hide intersection(C) \\
\hline setDraw3D & Show/hide 3D (C) \\
\hline setDrawAxes & Show/hide axes (C) \\
\hline setDrawOrders & Show/hide order of drawings (C) \\
\hline setdgroup & Set the Dgroup of a parameter in a tree (C) \\
\hline setenumeral & Set values of a string parameter in a tree (C) \\
\hline setether & Connect or reconnect host computer to Ethernet (U) \\
\hline setFillPolygon & Show/hide filled polygon (C) \\
\hline setflip & Set rf power levels to desired flip angle (M) \\
\hline setfrq & Set frequency of rf channels (C) \\
\hline setGapMode & Fix/Unfix slice gap (C) \\
\hline setgauss & Set a Gaussian fraction for lineshape (M) \\
\hline setgcal & Set the gradient calibration constant (M) \\
\hline setgcoil & Assign sysgcoil configuration parameter (M) \\
\hline setgpe & Set phase encode gradient levels (M) \\
\hline setgrid & Divide graphics window into rows and columns (C) \\
\hline setgro & Set readout gradient (M) \\
\hline setgroup & Set group of a parameter in a tree (C) \\
\hline setgss & Select slice or voxel selection gradient levels (M) \\
\hline sethw & Set values for hardware in acquisition system (C) \\
\hline setint & Set value of an integral (M) \\
\hline setlimit & Set limits of a parameter in a tree (C) \\
\hline setlk & Set up lock parameters (M) \\
\hline setlockfreq & Set lock frequency (M) \\
\hline setloop & Control arrayed and real-time looping (M) \\
\hline setLP1 & Set F1 linear prediction parameters (M) \\
\hline setMarkMode & Remove/activate mark (C) \\
\hline setnoether & Disconnect host computer from Ethernet (U) \\
\hline setoffset & Calculate offset frequency for given nucleus and ppm (M) \\
\hline setparams & Write parameter to current probe file (M) \\
\hline setpen & Set maximum number of HP plotter pens (M) \\
\hline setplotdev & Return characteristics of a named plotter (C) \\
\hline setpower & Set power and pulsewidth for a given \(\gamma \mathrm{B} 1\) value (M) \\
\hline setprotect & Set protection mode of a parameter (C) \\
\hline setref & Set frequency referencing (M) \\
\hline
\end{tabular}
```

setref1
setref2
setscout
setssfilter
setsw
setsw1
setsw2
setselfrqc
setselinv
settcldefault
settype
setup
setup_dosy
setvalue
setValue
setwave
setwin
sf
sf1
sf2
sfrq
sh2pul
shdec
shell
shelli
shim
shimset
shimspath
showconsole
showfit
showloginbox
showoriginal
showplotter
showplotq
showprintq
showstat
sin
sine
sinebell
sinesq
size
slfreq
sliceorder
sliceplan
slp
slw
smaxf

```
\begin{tabular}{|c|c|}
\hline sminf & Minimum frequency of any transition (P) \\
\hline smsport & Sample Management System serial port connection (P) \\
\hline sn & Signal-to-noise ratio (P) \\
\hline solppm & Return ppm and peak width of solvent resonances (M) \\
\hline solvent & Lock solvent (P) \\
\hline solvinfo & Retrieve information from solvent table (C) \\
\hline sort & Sort real values of a parameter (M) \\
\hline sp & Start of plot in directly detected dimension (P) \\
\hline sp1 & Start of plot in 1st indirectly detected dimension (P) \\
\hline sp2 & Start of plot in 2nd indirectly detected dimension (P) \\
\hline spadd & Add current spectrum to add/subtract experiment (C) \\
\hline spcfrq & Display frequencies of rf channels (M) \\
\hline specde3d & 3D spectral dc correction (P) \\
\hline spin & Submit a spin setup experiment to acquisition (C) \\
\hline spin & Sample spin rate (P) \\
\hline spincad & Run SpinCAD program (C) \\
\hline spingen & \\
\hline spinll & Set up a slfreq array (M) \\
\hline spinner & Open the Spinner Control window (C) \\
\hline spinopt & Spin automation (P) \\
\hline spins & Perform spin simulation calculation (C) \\
\hline split & Split difference between two cursors (M) \\
\hline spmax & Take the maximum of two spectra (C) \\
\hline spmin & Take minimum of two spectra in add/subtract experiment (C) \\
\hline spsm & Enter spin system (M) \\
\hline spsub & Subtract current spectrum from add/subtract experiment (C) \\
\hline sqcosine & Set up unshifted cosine-squared window function (M) \\
\hline sqdir & Study queue directory (P) \\
\hline sqname & Study queue parameter template (P) \\
\hline sqrt & Return square root of a real number (O) \\
\hline sqsinebell & Set up unshifted sinebell-squared window function (M) \\
\hline srate & Spinning rate for magic angle spinning (P) \\
\hline sread & Read converted data into VnmrJ (C) \\
\hline ss & Steady-state transients (P) \\
\hline ssecho & Set up solid-state echo pulse sequence (M) \\
\hline ssecho1 & Set up parameters for SSECHO1 pulse sequence (M) \\
\hline ssfilter & Full bandwidth of digital filter to yield a filtered FID (P) \\
\hline sslsfrq & Center of solvent-suppressed region of spectrum (P) \\
\hline ssntaps & Number of coefficients in digital filter (P) \\
\hline ssorder & Order of polynomial to fit digitally filtered FID (P) \\
\hline ssplan & Set slice parameters for target slice (M) \\
\hline sslist & Conjugate gradient list (P) \\
\hline ssprep & Calculate slice gradient and slice selection parameters (M) \\
\hline stack & Stacking mode for processing and plotting arrayed spectra (M) \\
\hline stackmode & Stacking control for processing arrayed 1D spectra (P) \\
\hline startIplan & Start/restart image planning (C) \\
\hline startMovie & Start running a movie (C) \\
\hline
\end{tabular}
```

status
stdld
stdshm
steam
stepMovie
sth
stopMovie
string
strtext
strtext1
strtext2
strtlp
strtlp1
strtlp2
studyid
su
sub
substr
suselfrq
svdat
svf
svfdf
svfdir
svfname
svib
svp
svphf
svs
svs
svsis
svtmp
sw
sw1
sw2
sw3
sysgcoil
system
systemdir

```
s \(\quad\) Save display parameters as a set (M)

Syntax: (1) sset_number
(2) s (set_number)

Description: Saves a copy of the current values of all display parameters. The set is dataindependent because the parameters that govern a display ( sp , wp, vs, etc.) are saved but no data is saved.

Arguments: set_number is number of the display parameter set to be saved.
```

 Examples: s2
 s(3)
 See also: VnmrJ Liquids NMR
 Related: fr Full recall of display parameter set (M)
 r Recall display parameter set (M)
 s2pul Set up parameters for standard two-pulse sequence (M)
Description: Converts the current experiment to an experiment suitable for the standard twopulse sequence (S2PUL).
See also: VnmrJ Liquids NMR

Stop acquisition (C)

```
Applicability: All systems; however, the option and number arguments are unavailable on MERCURYplus/Vx systems.
Syntax: sa<(option|number) >
Description: Stops an experiment that has been submitted to acquisition. If experiment is active, it is stopped. Data is retained. sa applies to the experiment that you are joined to at the time the sa command is entered. Thus, if experiment 1 is active, you must be joined to experiment 1 for sa to stop that acquisition. If you are in experiment 2 , entering sa has no effect on experiment 1 .
When experiments are queued, the behavior of sa is more complex. If an experiment is active in \(\exp 1\) and queued in \(\exp 2\), entering sa from exp1 stops that experiment and immediately begins acquisition on exp2. Entering sa from \(\exp 2\), on the other hand, removes \(\exp 2\) from the queue, without affecting the active experiment 1 .
Entering sa from an experiment that is not active or queued has no effect.
Arguments: option is one of the following:
- 'eos', 'ct', 'scan' are keywords to stop at the next ct.
- 'eob', 'bs ' are keywords to stop at the next block size.
- 'eof', 'nt', 'fid' are keywords to stop at the next complete FID.
- 'eoc', 'il' are keywords to stop at next complete il cycle (i.e., the latest block size that has been completed for all FIDs in interleave cycle.
number is an integer number to stop at the next \(c t\), where the value of \(c t\) is a multiple of number. This is useful when you want to complete a phasecycle before stopping.
Examples: sa
sa('ct')
sa(4)
See also: VnmrJ Liquids NMR
\begin{tabular}{rll} 
Related: & bs & Block size (P) \\
ct & Completed transients (P) \\
il & Interleave arrayed and 2D experiments (P) \\
nt & Number of transients (P) \\
ra & Resume acquisition stopped with \(s a\) command (C)
\end{tabular}
sample Submit change sample, Autoshim experiment to acquisition (M)
```

Applicability: Systems with a sample changer.

Description: Performs the combined operations change, spin, lock, and shim, making it a convenient setup command for a new sample.

See also: VnmrJ Liquids NMR
Related: au

| au | Submit experiment to acquisition and process data (C) |
| :--- | :--- |
| change | Submit a change sample experiment to acquisition (M) |
| ga | Submit experiment to acquisition and FT the result (C) |
| go | Submit experiment to acquisition (C) |
| lock | Submit an Autolock experiment to acquisition (C) |
| shim | Submit an Autoshim experiment to acquisition (C) |
| spin | Submit a spin setup experiment to acquisition (C) |
| su | Submit a setup experiment to acquisition (M) |

save
Save data (M)
Description: Macro to save data. In a study, it uses sqdir and autoname to construct the data filename. If not in a study, it uses svfdir and svfname to construct the data filename.

savefile \quad Base file name for saving files (P)

Applicability: Systems with LC-NMR accessory.
Description: Contains the base file name using the format savefile. 001 , savefile. 002 , etc., to which a series of FIDs or data sets are saved. If savefile does not exist, the parlc macro can create it.
See also: VnmrJ Liquids NMR
Related: parlc Create LC-NMR parameters (M)
samplename Sample name (P)
Description: Specifies the name of the sample. It is saved with a liquids study.
See also: notebook (P) page (P)
saveglobal Save selected parameters from global tree (P)
Description: Saves an array of parameter names from the global or systemglobal tree. Whenever go is executed, the parameters listed are saved in the current tree with an underscore (_) appended. These parameters are copied back into the global tree (without the underscore) whenever processing by wbs, wnt, wexp, or werr occurs.
See also: VnmrJ Liquids NMR
Related: go Submit experiment to acquisition (C)
loc Location of sample in tray (P)

saveMilestoneStacksSave current planning as milestone (C)

Applicability: Systems with imaging capabilities.
Description: Saves current planning as a milestone prescription. Milestone is saved in both memory and to a file.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)

savePrescriptionSave current planning to file (C)

Applicability: Systems with imaging capabilities.
Syntax: savePrescription(char* path)
Description: Save current planning to a given file.
See also: VnmrJ Liquids NMR
Related: gplan Start interactve image planning (C)

Description: Applies a sinebell constant along the directly detected dimension. This dimension is often referred to as the f_{2} dimension in $2 D$ data sets, the f_{3} dimension in 3D data sets, etc.
Values: A positive value applies a sinebell of the form $\sin \left(\frac{t \cdot \pi}{2 \cdot s b}\right)$
A negative value applies a squared sinebell function of form $\sin ^{2}\left(\frac{t \cdot \pi}{2 \cdot s b}\right)$ sb is given in seconds. Typical value is $\mathrm{sb}=\mathrm{I}^{\mathrm{n}}$ '.
See also: VnmrJ Liquids NMR

| Related: | sb1 | Sinebell constant in 1st indirectly detected dimension (P |
| :--- | :--- | :--- |
| | sb2 | Sinebell constant in 2nd indirectly detected dimension (P) |
| | sbs | Sinebell shift constant in directly detected dimension (P) |
| | sine | Find values for a sine window function (M) |
| | sinebell | Select default parameters for sinebell weighting (M) |
| | sinesq | Find values for a sine squared window function (M) |

sb1 Sinebell constant in 1st indirectly detected dimension (P)
Description: Applies a sinebell constant along the first indirectly detected dimension. This dimension is often referred to as the f_{1} dimension in multidimensional data sets. sb1 works analogously to the parameter sb. The "conventional" parameters, such as 1 b and $\mathrm{g} f$, operate on the detected FIDs, while this " 2 D " parameter is used during processing of the interferograms.
Values: A positive value applies a sinebell of the form $\sin \left(\frac{t \cdot \pi}{2 \cdot \operatorname{sbl} 1}\right)$
A negative value applies a squared sinebell function of form $\sin ^{2}\left(\frac{t \cdot \pi}{2 \cdot s \cdot 1}\right)$
sb1 is given in seconds. Typical value is sb1= ' n '.
See also: VnmrJ Liquids NMR
Related: sb Sinebell constant in the directly detected dimension (P)
sb2 Sinebell constant in 2nd indirectly detected dimension (P)

Sinebell constant in 2nd indirectly detected dimension (P)
Description: Applies a sinebell constant along the second indirectly detected dimension. This dimension is often referred to as the f_{2} dimension in multidimensional data sets. sb2 works analogously to the parameter sb. The value of sb2 can be set with wti on the 2D interferogram data.
Values: A positive value applies a sinebell of the form $\sin \left(\frac{t \cdot \pi}{2 \cdot s \mathrm{~b} 2}\right)$
A negative value applies a squared sinebell function of form $\sin ^{2}\left(\frac{t \cdot \pi}{2 \cdot s b 2}\right)$ sb 2 is given in seconds. Typical value is $\mathrm{sb} 2=\mathrm{n}^{\prime}$.
See also: VnmrJ Liquids NMR
Related: sb Sinebell constant in directly detected dimension (P)
sb1 \quad Sinebell constant in 1st indirectly detected dimension (P)
wt i Interactive weighting (C) Interactive weighting (C)

Description: Working in combination with the parameter sb , sb s allows shifting the origin of the sinebell function along the directly detected dimension. This dimension is often referred to as the f_{2} dimension in 2D data sets, the f_{3} dimension in 3D data sets, etc.
Values: The origin is shifted according to the formula $\sin \left(\frac{(t-s b s) \cdot \pi}{2 \cdot s b}\right)$
The square of this function is applied if sb is negative. sbs is given in seconds. The typical value is $s b s=$ ' n '.
See also: VnmrJ Liquids NMR

| Related: | sb | Sinebell constant in directly detected dimension (P) |
| :--- | :--- | :--- |
| | sbs1 | Sinebell shift in 1st indirectly detected dimension (P) |
| | sbs2 | Sinebell shift in 2nd indirectly detected dimension (P) |
| | sine | Find values for a sine window function (M) |
| | sinesq | Find values for a sine squared window function (M) |

sbs $1 \quad$ Sinebell shift in 1st indirectly detected dimension (P)

Description: Working in combination with the parameter sb1, sbs1 allows shifting the origin of the sinebell function along the first indirectly detected dimension. This dimension is often referred to as the f_{1} dimension in multidimensional data sets. sbs1 works analogously to parameter sbs. The "conventional" parameters, such as $1 . \mathrm{b}$ and $\mathrm{g} f$, operate on the detected FIDs, while this " 2 D " parameter is used during processing of the interferograms.
Values: The origin is shifted according to the form $\sin \left(\frac{(t-s b s 1) \cdot \pi}{2 \cdot \mathrm{sb} 1}\right)$
The square of this function is applied if sb1 is negative. sbs1 is given in seconds. The typical value is $s b s 1=$ ' n '.
See also: VnmrJ Liquids NMR
Related: sb1 Sinebell constant in 1st indirectly detected dimension (P)
sbs \quad Sinebell shift constant in directly detected dimension (P)
sb2 Sinebell constant in 2nd indirectly detected dimension (P)

sbs2 Sinebell shift in 2nd indirectly detected dimension (P)

Description: Working in combination with the parameter sb 2 , sbs 2 allows shifting the origin of the sinebell function along the second indirectly detected dimension. This dimension is often referred to as the f_{2} dimension in multidimensional data sets. sbs2 works analogously to parameter sbs. sbs2 can be set with wti on the 2D interferogram data.
Values: The origin is shifted according to the formula $\sin \left(\frac{(t-s b s 2) \cdot \pi}{2 \cdot \operatorname{sb} 2}\right)$
The square of this function is applied if $s b 2$ is negative. $s b s 2$ is given in seconds. The typical value is $s b s 2=' n$ '.
See also: VnmrJ Liquids NMR
Related: sbs Sinebell shift constant in directly detected dimension (P)
sb2 Sinebell constant in 2nd indirectly detected dimension (P)
wti Interactive weighting (C)

Start of chart (P)

Description: Positions of the start of the plotting position (the "chart") with respect to the right edge of the plotter.
Values: 0 to wcmax, in mm
See also: VnmrJ Liquids NMR
Related: SC2 Start of chart in second direction (P)
wc Width of chart (P)
wemax Maximum width of chart (P)
sc2 Start of chart in second direction (P)
Description: Controls the start of plotting position of the second axis (or y axis) of a 2D contour plot. The parameter wc 2 controls the width of the chart.
Values: 0 to wc 2 max, in mm .
See also: VnmrJ Liquids NMR
Related: Sc Start of chart (P
wc2 Width of chart in second direction (P)
wc2max Maximum width of chart in second direction (P)
scalelimits \quad Set limits for scales in regression (M)
Syntax: scalelimits (x_start,x_end,y_start,y_end)
Description: Causes the command expl, which is used by regression to display data, to use typed-in scale limits. The limits are retained as long as an expl display is retained.

Arguments: x _start, x _end, y _start, y _end are x-axis and y-axis starting and ending limits. The default is that scalelimits prompts for the limits.
See also: VnmrJ Liquids NMR, User Programming
Related: autoscale Resume autoscaling after limits set by scalelimits (M)
expl Display exponential or polynomial curves (C)
scalesw Set scaling factor for multipulse experiments (M)
Description: Sets the spectral width scaling factor for the multipulse sequences set up by macros br24 and mrev8. The value of the scaling factor is stored in the parameter scalesw.

See also: User Guide: solid-State NMR
Related: br24 Set up BR24 multiple pulse experiment (M)
mrev8 Set up MREV8 multiple pulse experiment (M)
scalesw \quad Scale spectral width in directly detected dimension (P)
scalesw $1 \quad$ Set f_{1} scaling factor for 2D multipulse experiments (M)
scalesw \quad Scale spectral width in directly detected dimension (P)
Description: Adjusts the frequency scale dimension used with the parameter sets in the sequences set up by the br24, mrev8, ssecho, and xpolar1 macros. If scalesw is active, the labels for the frequency scales includes the letters sc in parentheses. A scaled frequency can be referenced using the rl macro.
Values: ' n ', number greater than 0.0

See also: User Guide: Solid-State NMR

\begin{tabular}{|c|c|c|}
\hline Related: \& \begin{tabular}{l}
br24 \\
mrev8 \\
rl \\
scalesw \\
scalesw1 \\
scalesw2 \\
ssecho \\
xpolar1
\end{tabular} \& \begin{tabular}{l}
Set up BR24 multiple pulse experiment (M) \\
Set up MREV8 multiple pulse experiment (M) \\
Set reference line (M) \\
Set scaling factor for multipulse experiments (M) \\
Scale spectral width in 1st indirectly detected dimension (P) \\
Scale spectral width in 2nd indirectly detected dimension (P) \\
Set up solid-state echo pulse sequence (M) \\
Set up parameters for XPOLAR1 pulse sequence (M)
\end{tabular} \\
\hline \begin{tabular}{l}
scalesw1 \\
Description:
\end{tabular} \& \begin{tabular}{l}
Set \(\mathrm{f}_{\mathbf{1}} \mathbf{s c}\) \\
Sets the \(f_{1}\) the br24 parameter
\end{tabular} \& \begin{tabular}{l}
actor for 2D multipulse experiments (M) \\
al width scaling factor for the multipulse sequences set up by ev8 macros. The value of the scaling factor is stored in the esw1.
\end{tabular} \\
\hline \begin{tabular}{l}
See also: \\
Related:
\end{tabular} \& \begin{tabular}{l}
User Guide \\
br24 \\
mrev8 \\
scalesw1
\end{tabular} \& \begin{tabular}{l}
lid-State NMR \\
Set up BR-24 multiple pulse experiment (M) \\
Set up MREV8 multiple pulse experiment (M) \\
Scale spectral width in 1st indirectly detected dimension (P)
\end{tabular} \\
\hline \begin{tabular}{l}
scalesw1 \\
Description: \\
Values: \\
See also: \\
Related:
\end{tabular} \& \begin{tabular}{l}
Scale spec \\
Analogous indirectly d frequency 'n', numb User Guide rl1 scalesw scalesw1 scalesw2
\end{tabular} \& \begin{tabular}{l}
width in 1st indirectly detected dimension (P) \\
e scalesw parameter except that scalesw1 applies to firs ed dimension of a multidimensional data set. A scaled this dimension can be referenced using the rll macro. \\
reater than 0.0 \\
lid-State NMR \\
Set reference line in 1st indirectly detected dimension (M) \\
Scale spectral width in directly detected dimension (P) \\
Set \(f_{1}\) scaling factor for 2D multipulse experiments (M) \\
Scale spectral width in 2nd indirectly detected dimension (P)
\end{tabular} \\
\hline \begin{tabular}{l}
scalesw2 \\
Description: \\
Values: \\
See also: \\
Related:
\end{tabular} \& \begin{tabular}{l}
Scale spec \\
Analogous indirectly d frequency 'n', numb User Guide rl2 scalesw scalesw1
\end{tabular} \& \begin{tabular}{l}
width in 2nd indirectly detected dimension (\(P\)) \\
e scalesw parameter except scalesw2 applies to second ed dimension of a multidimensional data set. A scaled this dimension can be referenced using the \(r 12\) macro. reater than 0.0 \\
lid-State NMR \\
Set reference line in 2nd indirectly detected dimension (M) \\
Set scaling factor for multipulse experiments (M) \\
Set \(f_{1}\) scaling factor for 2D multipulse experiments (M)
\end{tabular} \\
\hline sd
Description:

See also:

Related: \& \begin{tabular}{l}
Set first

Sets the fi decoupler transmitte

VnmrJ Liq

dof

dn

sd2

 \&

upler frequency to cursor position (M)

coupler frequency offset parameter dof to place the first cursor position in the spectrum. This works only if the eus and first decoupler nucleus are the same $(\mathrm{tn}=\mathrm{dn})$.

NMR

Frequency offset for first decoupler (P)

Nucleus of first decoupler (P)

Set second decoupler frequency to cursor position (M)
\end{tabular}

\hline
\end{tabular}

sd3 Set third decoupler frequency to cursor position (M)

sda Set first decoupler frequency array (M)

tn \quad Nucleus for observe transmitter (P)
sd2 Set second decoupler frequency to cursor position (M)
Applicability: Systems with a second decoupler.
Description: Sets the second decouple frequency offset parameter dof 2 to place the second decoupler at the cursor position in the spectrum. This works only if the transmitter nucleus and second decoupler nucleus are the same ($\mathrm{tn}=\mathrm{dn} 2$).
See also: VnmrJ Liquids NMR

| Related: | dn2 | Nucleus for second decoupler (P) |
| ---: | :--- | :--- |
| | dof2 | Frequency offset for second decoupler (P) |
| | sd | Set first decoupler frequency to cursor position (M) |
| | sd2a | Set second decoupler frequency array (M) |
| | tn | Nucleus for observe transmitter (P) |

Set third decoupler frequency to cursor position (M)
Applicability: Systems with a third decoupler.
Description: Sets the third decoupler frequency offset parameter dof 3 to place the third decoupler at the cursor position in the spectrum. This works only if the transmitter nucleus and third decoupler nucleus are the same ($\mathrm{tn}=\mathrm{dn} 3$).
See also: VnmrJ Liquids NMR

| Related: | dn3 | Nucleus for third decoupler (P) |
| :--- | :--- | :--- |
| dof3 | Frequency offset for third decoupler (P) | |
| sd | Set first decoupler frequency to cursor position (M) | |
| sd3a | Set third decoupler frequency array (M) | |
| tn | Nucleus for observe transmitter (P) | |

sda Set first decoupler frequency array (M)
Description: Sets up an array of offset values for the first decoupler, using sd for the first decoupler position and sda for subsequent positions. This works only if the transmitter nucleus and first decoupler nucleus are the same ($\mathrm{tn}=\mathrm{dn}$).
See also: VnmrJ Liquids NMR
Related: dn Nucleus for first decoupler (P)
sd Set first decoupler frequency to cursor position (M)
sd2a Set frequency array for second decoupler (M)
sd3a Set frequency array for third decoupler (M)
tn \quad Nucleus for observe transmitter (P)
sd2a Set second decoupler frequency array (M)
Applicability: Systems with a second decoupler.
Description: Sets up an array of offset values for the second decoupler, using sd2 for the first position and sd2a for subsequent positions. This works only if the transmitter nucleus and second decoupler nucleus are the same ($\mathrm{t} \mathrm{n}=\mathrm{dn} 2$).
See also: VnmrJ Liquids NMR
Related: dn2 Nucleus for second decoupler (P)
sd2 Set second decoupler frequency to cursor position (M)

$$
\begin{array}{ll}
\text { sda } & \text { Set first decoupler frequency array (M) } \\
\text { tn } & \text { Nucleus for observe transmitter (P) }
\end{array}
$$

sd3a Set third decoupler frequency array (M)

Applicability: Systems with a third decoupler.
Description: Sets up an array of offset values for the third decoupler, using sd3 for the first position and sd3a for subsequent positions. This works only if the transmitter nucleus and third decoupler nucleus are the same ($\mathrm{t} \mathrm{n}=\mathrm{dn} 3$).
See also: VnmrJ Liquids NMR
Related: dn2 Nucleus for third decoupler (P)
sd3 Set third decoupler frequency to cursor position (M)
sda Set first decoupler frequency array (M)
tn \quad Nucleus for observe transmitter (P)
sdp Show diffusion projection (M)
Description: Displays projection onto diffusion axis using the dsp facility. Use with 2D or 3D DOSY data after DOSY analysis. The unit of the resulting axis is $\mathrm{D}\left(10^{-10}\right.$ $\mathrm{m}^{2} / \mathrm{sec}$). Because sdp overwrites the parameters in the current experiment, use it in only an experiment in which it is okay for existing data to be overwritten.
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
sediff \quad Set up spin-echo diffusion imaging sequence (M)
Applicability: Systems with imaging capabilities.
Description: Sets up a standard spin-echo diffusion weighted experiment using the new user interface for imaging.
See also: VnmrJ Imaging NMR

sel1d Execute protocol actions of apptype sel1d (M)

Description: This macro is used to execute the protocol actions of the sel1d apptype.
Examples: selld('setup')-execute selld experimental setup
selld('process') - execute selld processing
selld('plot') - execute selld plotting
select Select spectrum, FID, trace, or 2D plane without display (C)
Syntax: (1) select<('next'|'prev'|selection) ><:index>
(2) select<(<'f1f3'|'f2f3'|'f1f2'><,'proj'>
<, 'next'|'prev'|plane>)><:index>
Description: Directs future actions to apply to a particular spectrum or FID in a 1D array, to a trace in 2D (syntax 1), or to a particular 2D plane from a 3D data set (syntax 2). If select is called with no arguments, it returns the current index. When VnmrJ is first booted up, select is in 1D mode. select enters the 2D mode if any of the keywords 'f1f3', 'f2f3', 'f1f2', or 'proj' are present in the argument list. Entering the $d s$ and jexp commands set select back in the 1 D mode.
Arguments: For 1D operations (syntax 1):

- ' next' is keyword to increment by 1 the 1 D spectrum or trace index.
- 'prev' is keyword to decrement by 1 the 1D spectrum or trace index.
- selection is a number selecting a 1D spectrum, FID, or trace.
- index returns the number of the current 1D spectrum, FID, or trace.

For selecting various 2D planes of a 3D data set (syntax 2):

- 'f1f3', 'f2f3', and 'f1f2' are types of 2D planes. The parameters plane and index2 serve to indicate the exact 2D plane that is currently viewable by VnmrJ. Note that index2 cannot be entered from the keyboard (i.e., you cannot select a new 2D plane by changing the value of index2); you must use the select command instead.
- 'proj' is keyword to use the 2D projection whose plane type is determined by the parameter plane.
- 'next' is keyword to increment the parameter index2 to its next value and sets up VnmrJ to be ready to display the 2D plane whose number is the new index2 value.
- 'prev' performs analogously except that index2 is decremented.
- plane is a number selecting the plane.
- index returns the number of the current plane.

Examples:

```
select('next')
select(2):r1
select('f1f3')
```

See also: VnmrJ Liquids NMR, User Programming

| Related: | arraydim | Dimension of experiment (P) |
| :--- | :--- | :--- |
| ds | Display a spectrum (C) | |
| index2 | Projection or 3D plane index selected (P) | |
| jexp | Join existing experiment (C) | |
| | plane | Currently displayed 3D plane type (P) |

Defines excitation band (M)

Syntax: selex< (sh<, pw<, st<, ph<,fla<,trev>>>>>) >
Description: Defines the excitation band from the position of cursors in the graphics window and reports them to user. It also sets r1 to excitation bandwidth and r2 to offset. selex is part of the Pbox software environment and uses the Pbox macros pbox_bw and putwave.
Arguments: sh is the name of a shape file.
pw is the pulsewidth, in sec.
st is the spin status: 0 for excitation, 0.5 for refocusing, or 1 for de-excitation.
ph is the phase (or phase cycle, see wavelib/supercycles).
fla is the flip angle.
trev is the time reversal. This argument can be used to cancel time reversal introduced by setting the spin status (st) to 1 for de-excitation.

Examples: selex
selex('esnob',0.0,1,90.0)
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

selexcit \quad Set up PFG selective excitation pulse sequence (M)

Applicability: Systems with a pulsed field gradient module. Not available on MERCURYplus/ Vx systems.
Description: Prepares an experiment for PFG (pulsed field gradient) selective excitation, with presaturation option.

See also: VnmrJ Liquids NMR
sems Set up basic imaging sequence with oblique capability (M)
Applicability: Systems with imaging capabilities.
Description: Sets up a standard multislice spin-echo imaging sequence with oblique imaging capability.
See also: VnmrJ Imaging NMR
send2vnmr Send a command to VnmrJ (U)
Syntax: send2Vnmr \$vnmruser/.talk command
Description: Sends a command from UNIX to VnmrJ using the port number stored in the \$vnmruser/.talk file. This file is created when the macro listenon is entered on the VnmrJ command line.

Arguments: command is any character string (commands, macros, or if statements) normally typed into the VnmrJ command line.
Examples: send2Vnmr \$vnmruser/.talk dg
See also: User Programming
Related: bootup Macro executed automatically when VnmrJ activated (M)
listenon Enable receipt of messages from send2Vnmr (M)
listenoff Disable receipt of messages from send2Vnmr (M)

seqcon Acquisition loop control (P)

Applicability: Systems with imaging capabilities.
Description: Controls the status of various looping processes used during sequence acquisition. The nD, seqcon, plist, patlist, pwrlist, fliplist and sslist parameters configure a particular parameter set for an application sequence defined by the value of the seqfil parameter.

Values: String with five characters, consisting of the characters ' n ', 's ', and 'c', that control where and when the looping occurs:

- ' n ' (null loop) specifies a sequence that has no such loop function.
- 's ' (standard loop) sets the looping operation to occur during the execution of pulse sequence generation in the host computer. Each loop execution generates a new acode set for execution in the acquisition computer. Each acode set will ultimately give rise to its own data block in the FID file. A standard loop operation therefore lies outside the signal averaging (transient counter loop). Parameter arrays and use of the 2D implicit loop are standard loops. The multiecho loop cannot be a standard loop.
- ' C' (compressed loop) sets the looping operation to occur dynamically in the acquisition computer, and each loop execution generates a new data "trace" within the current data "block". This requires space in the on-board HAL memory. Compressed loops lie inside the signal averaging loop.

Each character position has place value and thus affects a different looping operation:

- First character: multiecho looping.
- Second character: multislice looping.
- Third character: 2D phase encode loop.
- Fourth character: 3D phase encode loop.
- Fifth character: 4D phase encode loop.

For example, seqcon= 'ncsnn' is 2D imaging with compressed multislice.
See also: VnmrJ Imaging NMR
Related: fliplist Standard flip angle list (P)
nD Application dimension (P)
patlist Active pulse template parameter list (P)
plist Active pulse length parameter list (P)
pwrlist Active pulse power level parameter list (P)
seqfil Acquisition object code name (P)
sslist \quad Conjugate gradient list (P)

seqfil Pulse sequence name (P)

Description: Identifies the name of the pulse sequence to be used. The value of seqfil is displayed on the top line of the screen after the "Seq:" label. Macros used to set up new pulse sequences, such as dept and apt, automatically change the seqfil parameter.
See also: VnmrJ Liquids NMR
Related: pslabel Pulse sequence label (P)
seqgen Initiate compilation of user's pulse sequence (M,U)
Syntax: (From VnmrJ) seqgen (<-static, >file<.c>)
(From UNIX) seqgen <-static> file<.c> <file1,...>
Description: Begins compilation of a user pulse sequence. When used from VnmrJ, the macro seqgen calls the UNIX shellscript seqgen, which can also be called directly from UNIX, as shown above. The seqgen shellscript then calls the compilation makefile seqgenmake, located in the directory / vnmr/ acqbin.
The specified pulse sequence can be located in ~/vnmrsys/psglib or in / vnmr/psglib. If two files with the same name exist in these two directories, the local directory ($\sim / v n m r s y s / p s g l i b)$ takes precedence. For sequences in /vnmr/psglib, seqgen first copies the file into the local directory ~/ vnmrsys/psglib and then compiles it there; the resulting executable is then placed in $\sim /$ vnmrsys / seqlib. A copy of the pulse sequence is also copied into the seqlib directory along with the executable. As it is running, seqgen reports where it found the specified sequence(s).
seqgen uses library files (object modules) found in /vnmr/lib. If setuserpsg and psggen has been run, the library files in the local directory ~/vnmrsys/psg take precedence of those in /vnmr/lib.
Error messages are written into the file file.errors, where file is the name of the pulse sequence in psglib in which compilation is performed.
Note that seqgen not only accepts file names with and without extensions, but also accepts files specified with wildcards and complex paths (seqgen strips the directory part, and seqgen /vnmr/psglib/apt will compile ~/ vnmrsys/psglib/atp.c if it exists).

Arguments: -static is a keyword for seqgen to use static rather than dynamic binding. Static binding results in larger executables in seqlib (several hundred Kbytes), but these sequences execute slightly faster (i.e., the go command). While insignificant generally, faster execution is helpful in some special applications such as the Scout Scan ${ }^{\mathrm{TM}}$ mode of LC-NMR, where the time spent on the go command becomes critical. Static binding results in a fixed-size time gain, regardless of the number of increments; for large multidimensional experiments, the speed difference is not noticeable.
file is the file name of a standard two-pulse sequence.
. C is the extension on the file name.
file1,file2, ... are the names of files containing more sequences.
Examples: (From VnmrJ) seqgen('/vnmr/psglib/*.c')
(From UNIX) seqgen /vnmr/psglib/*.c
(From UNIX) seqgen apt dept noesy
(From UNIX) seqgen -static lcld
See also: User Programming

set2D General setup for 2D experiments (M)

Syntax: set2D<(F2_dig_res<,F1_dig_res>) >
Description: Similar to set 2 d but does not execute par2d and does not make sw1, rflı, and $r f p 1$ decisions based on $t n=d n$ condition.
Arguments: F2_dig_res is the f_{2} digital resolution desired, in $\mathrm{Hz} / \mathrm{pt}$. Default is 6 .
F1_dig_res is the f_{1} digital resolution desired, in $\mathrm{Hz} / \mathrm{pt}$. Default is 12 .
Related: rfll Reference peak position in 1st indirectly detected dimension (P)
$r f p 1 \quad$ Reference peak frequency in 1st indirectly detected dimension (P)
set2d General setup for 2D experiments (M)
sw1 Spectral width in 1st indirectly detected dimension (P)

set2d General setup for 2D experiments (M)

Syntax: set2d(experiment<,F2_dig_res<,F1_dig_res>>)
Description: Runs the macro par2d to create new parameters needed for 2 D experiments, then selects starting values for a number of parameters. The set 2 d macro is "internal" and not normally typed directly by the user.

Arguments: experiment is the name of a 2D experiment (e.g., ' noesy').
F2_dig_res is the f_{2} digital resolution desired, in $\mathrm{Hz} / \mathrm{pt}$.
F1_dig_res is the f_{1} digital resolution desired, in $\mathrm{Hz} / \mathrm{pt}$.
Examples: set2d('cosyps')
set2d('hetcor',16)
set2d('het2dj',16, (2*sw1)/fn1)
See also: VnmrJ Liquids NMR
Related: par2d Create 2D acquisition parameters (M)

set 3 dproc \quad Set 3D processing (C)

Syntax: set3dproc< (<'nocoef'><,directory>) >
Description: Creates the file procdat that contains binary 3D information used by ft 3 d in processing the 3D FID data. It also creates the 3D parameter set procpar3d that is used by the select command to display the 2D planes from the 3D
transformed data. set 3 dproc can only create the proper 3D coefficient file if the parameters phase and phase 2 are used to generate States-Haberkorn (hypercomplex) or TPPI data along the t_{1} and t_{2} dimensions.
set 3 dproc creates the coefficient file for the following five values of array (where SH is States-Haberkorn):

- if array= ' ' (null string), type of 3D data is $\operatorname{TPPI}\left(\mathrm{t}_{1}\right)-\operatorname{TPPI}\left(\mathrm{t}_{2}\right)$
- if array=' phase', type of 3D data is $\operatorname{SH}\left(\mathrm{t}_{1}\right)-\operatorname{TPPI}\left(\mathrm{t}_{2}\right)$
- if array= 'phase2 ', type of 3D data is $\operatorname{SH}\left(\mathrm{t}_{2}\right)-\operatorname{TPPI}\left(\mathrm{t}_{1}\right)$
- if array = 'phase 2 , phase', type of 3D data is $\mathrm{SH}\left(\mathrm{t}_{1}\right)-\mathrm{SH}\left(\mathrm{t}_{2}\right)$

If array is set to some other value, set 3 dproc cannot create the 3D coefficient file and an error is reported within VnmrJ.
Arguments: 'nocoef' is a keyword that the 3D coefficient file coef is not to be created. directory is the name of the directory for procdat and procpar3d. The default is the subdirectory info in the directory curexp.
Examples: set 3 dproc
set3dproc('nocoef','curexp/info3d')
See also: VnmrJ Liquids NMR

| Related: | array | Parameter order and precedence (P) |
| :--- | :--- | :--- |
| ft3d | Perform a 3D Fourier transform (M,U) | |
| phase | Phase selection (P) | |
| | phase2 | Phase selection for 3D acquisition (P) |
| select | Select a spectrum or 2D plane without displaying it (C) | |
| | wftt3 | Process f_{3} dimension during 3D acquisition (M) |

setallshims Set all shims into hardware (M)
Description: Sets shims from the current parameter tree into hardware. setallshims is equivalent to entering load= ' Y ' su but without setting all the hardware parameters normally set by su (temperature, decoupling, transmitter initialization, etc.). The shims used depend on the shimset configuration. For the shim set on the Ultra•nmr shim system, setallshims is active only if hardware-to-software shim communication is enabled.
See also: VnmrJ Liquids NMR

| Related: | load | Load status of displayed shims (P) |
| :--- | :--- | :--- |
| | readallshims | Read all shims from hardware (M) |
| readhw | Read current values of acquisition hardware (C) | |
| | sethw | Set values for hardware in acquisition system (C) |
| | shimset | Type of shim set (P) |
| | su | Submit a setup experiment to acquisition (M) |

setarray \quad Set up a parameter array (M)
Applicability: Systems with imaging capabilities.
Syntax: setarray<(name, start, step,elements) >
Description: Sets up an array of a numeric acquisition parameter in single-arrayed experiments.
Arguments: name is the name of the parameter to be arrayed. The default (not entering any arguments) is the system prompts for the argument values.
start is the starting value for the array.
step is the step value for the array.
elements is the number of elements in the array.
Examples: setarray
setarray('d1',1,1,10)
See also: VnmrJ Imaging NMR

setcenter \quad Set up parameters for center sequence calibration (M)

Applicability: Systems with imaging capabilities.
Description: Loads parameter sets for center sequence calibration during imaging installation.

See also: VnmrJ Imaging NMR
setcolor Set colors for graphics window and for plotters (C)
Syntax: (1) setcolor('pcl',item_index, 'color')
(2) setcolor('hpgl',item_index, 'color')
(3) setcolor ('pen', pen_nümber, 'color')
(4) setcolor('graphics',item_index, red, green, blue)
(5) setcolor('ps',item_index,red, green, blue)
(6) setcolor('plotter',black_plane, color_planes)

Description: Sets colors used on the graphics window and on plotters. This command is a utility program used by the color macro and other macros. It is not expected that setcolor would be entered directly from the input window.
Arguments: ' pcl ' is a keyword to set colors on a plotter device that uses the PCL language. PCL plotters are the laser type of plotter.
'hpgl' is a keyword to set colors on a plotter device that uses the HPGL language. HPGL plotters are the pen type of plotter.
' pen ' is a keyword that next two arguments set the color for a physical pen on a plotter device that uses the HPGL language.
'graphics' is a keyword to set colors on the graphics window.
'ps ' is a keyword to set colors on a plotter using the PostScript language.
red, green, blue are three integers between 0 and 255 that set the amount of red, green, and blue color on the graphics window or PostScript plotter.
'plotter' is a keyword that the next two arguments set the black mode and number of colors available for a plotter device.
item_index is an index number from the following list that represents a specific drawing item.

| 8 | background of images |
| :--- | :--- |
| 9 | real channel of an FID |
| 10 | imaginary channel of an FID |
| 11 | spectrum |
| 12 | integral |
| 13 | parameters |
| 14 | scale |
| 15 | threshold line (graphics device only) |
| 16 | second spectrum or FID in addi (graphics device only) |
| 17 | result spectrum or FID in addi (graphics device only) |
| 18 | cursors (graphics device only) |
| 19 | foreground of images |

| 20 | background color of graphics window (graphics device only) |
| :--- | :--- |
| $20-35$ | contour 0 to contour 15 of absolute value 2D display |
| $36-42$ | contours -7 to -1 of phased 2D display |
| $44-50$ | contours 1 to 7 of phased 2D display |

pen_number is an integer from 1 to 8 that specifies the physical pen used. color is a string for the color set for the device: 'red ', 'green ', 'blue ', 'cyan', 'magenta', 'yellow', 'white', or 'black'.
black_plane is 1 or 0 , specifying whether the plotter has a separate black mode. Because all currently supported plotters have this feature, the value is usually 1 .
color_planes specifies how many colors are available. Use 3 for color plotters and 0 for black and white plotters.
Examples: setcolor('pcl',11,'green') setcolor('hpgl',11,'red')
setcolor('pen',2,'red')
setcolor('graphics',11,255,0,0)
setcolor('ps',11,255,255,0)
setcolor('plotter',1,0)
See also: VnmrJ Liquids NMR
Related: addi Start interactive add/subtract mode (C)
color \quad Select plotting colors from a graphical interface (M)
setdecpars \quad Set decoupler parameter values from probe file (M)
Syntax: setdecpars
Description: Reads from the probe file pwxlvl, pwx, pplvl, pp, dpwr, dmf, dmm, dres, and dseq values, if they exist, and updates the current experiment parameters.
Related: setdec2pars Set decoupler 2 parameter values from probe file (M)
setdec2pars \quad Set decoupler 2 parameter values from probe file (M)
Syntax: setdec2pars
Description: Reads from the probe file pwx2lvl, pwx2, dpwr2, dmf 2, dmm2, dres2, and dseq 2 values, if they exist, and updates the current experiment parameters.

Related: setdecpars Set decoupler parameter values from probe file (M)

setDefaultSizeSet FOV to default size (C)

Applicability: Systems with imaging capabilities.
Syntax: setDefaultSize(float size)
Description: Sets default size (FOV) to size. All dimensions are set with the same size.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDefaultSlicesSet default number of slices (C)
Applicability: Systems with imaging capabilities.
Syntax: setDefaultslices (ns)
Description: Sets default number of slices to ns.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDefaultThk Set default slice thickness (C)
Applicability: Systems with imaging capabilities.
Syntax: setDefaultThk (float thk)
Description: Sets default thickness of slices to thk.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDefaultType Set default type (C)
Applicability: Systems with imaging capabilities.
Syntax: setDefaultType (type)
Description: Sets the default type to type.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDisplayStyleShow stripes or lines (C)
Applicability: Systems with imaging capabilities.
Syntax: setDisplayStyle (mode)
Description: Sets the display style to stripes or lines.
Arguments: If mode $=0$, shows stripes. If mode >0, shows lines. If mode $=-1$, toggles between the two styles.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDrawInterSectionShow/hide intersection(C)
Applicability: Systems with imaging capabilities.
Syntax: setDrawInterSection (mode)
Description: mode $=0$, does not show intersection. mode >0, shows intersection. mode $=-1$, toggles between the two modes.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDraw3D Show/hide 3D (C)
Applicability: Systems with imaging capabilities.
Syntax: setDraw3D (mode)
Description: Shows or hides drawings in 3D.
Arguments: mode $=0$, does not show 3D. mode >0, shows 3D. mode $=-1$, toggles between the two modes.

See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

setDrawAxes Show/hide axes (C)

Applicability: Systems with imaging capabilities.
Syntax: setDrawAxes (mode)
Description: Shows or hides axes in drawings.
Arguments: mode $=0$, does not show. mode >0, shows. mode $=-1$, toggles.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setDrawOrders Show/hide order of drawings (C)
Applicability: Systems with imaging capabilities.
Description: Shows or hides order of drawings.
Arguments: mode=0, does not show. mode>0, shows. mode $=-1$, toggles.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setdgroup Set the Dgroup of a parameter in a tree (C)
Syntax: setdgroup (parameter,dgroup<,tree>)
Description: Sets the Dgroup of a parameter in a tree. The application determines the usage of setdgroup. Only Tcl-dg currently uses this feature.
Arguments: parameter is the name of the parameter.
dgroup is an integer.
tree is 'current', 'global', 'processed', or 'systemglobal'. The default is 'current '. Refer to the description of the create command for more information on types of trees.
Examples: setdgroup ('a',1)
setdgroup('b',3,'global')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)

setenumeral Set values of a string parameter in a tree (C)

Syntax: setenumeral (parameter, N, enum1, enum2, . .., enumN<, tree>)
Description: Sets the possible values of a string parameter in a parameter tree. To remove enumerated values from a parameter, set argument N to 0 (see example below).

Arguments: parameter is the name of the parameter.
N is the number of enumeral values to be assigned to parameter (or removed from parameter if N is set to 0).
enum1 to enumN are the possible string values of the parameter.
tree is 'current', 'global', 'processed', or 'systemglobal'. The default is 'current '. Refer to the description of the create command for more information on types of trees.
Examples: setenumeral('size',0)
setenumeral('size',2,'large','small')
setenumeral('user',3,'user','superuser','master', 'global')

See also: User Programming
Related: create Create new parameter in a parameter tree (C)

setether Connect or reconnect host computer to Ethernet (U)

Description: Connects or reconnects the host computer to the Ethernet network. Only root can execute this shellscript properly. If the system is already connected to the Ethernet network, setether does nothing.

On systems running Solaris, setether undoes the work of setnoether. You cannot use setether unless you previously entered the setnoether command. setether restores the files hostname. le0, defaultdomain, and defaultrouter so that Ethernet is activated on the host computer when UNIX is rebooted.
See also: VnmrJ Installation and Administration
Related: setnoether Disconnect host computer from Ethernet (U)

setFillPolygonShow/hide filled polygon (C)

Applicability: Systems with imaging capabilities.
Syntax: setFillPolygon (mode)
Description: Shows or hides a filled polygon.
Arguments: mode $=0$, does not show. mode >0, shows. mode $=-1$, toggles.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setflip \quad Set rf power levels to desired flip angle (M)
Applicability: Systems with imaging capabilities.
Syntax: setflip (name, patname, pwrname,flip)
Description: Sets up the rf power levels for a given pulse to obtain a desired flip angle. Power levels are calculated from the calibration data for a square pulse. The calibration data should be located in the file pulsecal, which should reside in the vnmrsys directory. The macro setflip also looks for the pulsecal file in the system directory.
Arguments: name is the name of the pulse parameter.
patname is the name of the pattern parameter.
pwrname is the name of the power parameter.
flip is the flip angle, in degrees.
Examples: setflip('pw','pwpat','tpwr', 90)
See also: VnmrJ Imaging NMR
Related: pulsecal Update and display pulse calibration data file (M)

setfrquen frequency of rf channels (C)

Syntax: setfrq<(channel)><('nucleus')>
Description: Calculates frequencies based on the nucleus (tn, dn, dn2, etc.), referencing (lockfreq), solvent, and the offset parameter (tof, dof, etc.). The result of the calculation is stored in parameters sfrq, dfrq, dfrq2, etc. The parameters are rounded to the resolution of the channel-either 0.1 or 100 Hz .

The setfrq command should never need to be entered from the keyboard. It is called automatically when the appropriate parameters are changed or a parameter set is returned. If a parameter is entered that affects a single frequency, setfrq is called from an internal underscore macro (e.g., _tn, _tof, _dn, _dof) to recalculate the frequency for that channel. Likewise, if a $\overline{\text { parameter is entered that affects all frequencies, setfrq is called from an }}$ internal underscore macro (e.g., _solvent, _lockfreq) to recalculate the frequencies.
Arguments: channel is a single integer specifying the rf channel to be set. The default is to calculate the frequencies for all rf channels.
nucleus displays or returns the frequency of the supplied nucleus. Channel 1 is assumed for rounding information and an offset (e.g., tof or dof) is not added to the result.
Examples: setfrq
setfrq(2)
setfrq('P31'):freq
See also: VnmrJ Liquids NMR
Related: spcfrq Display frequencies of rf channels (M)

setGapMode Fix/Unfix slice gap (C)

Applicability: Systems with imaging capabilities.
Syntax: setGapMode (mode)
Description: Fixes or unfixes gap between slices.
Arguments: mode $=0$, gap is not fixed. mode >0, gap is fixed.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setgauss Set a Gaussian fraction for lineshape (M)
Syntax: (1) setgauss (fraction)
(2) setgauss (fraction*)

Description: Modifies the output of a deconvolution using pure Lorentzian lineshape (fitspec.outpar) and makes it the input for a subsequent analysis (fitspec.inpar), after first modifying the Gaussian fraction. To allow this fraction to vary, use syntax 1 ; to fix the fraction, use syntax 2.
Arguments: fraction is the Gaussian fraction of the lineshape, a number from 0 to 1 . To fix the fraction (syntax 2), suffix the value with an asterisk (*) and enclose the value in single quotes (see the second example below).
Examples: setgauss (0.4)
setgauss('1.0*')
See also: VnmrJ Liquids NMR
Related: fitspec Perform spectrum deconvolution (C)

setgcal Set the gradient calibration constant (M)

Applicability: Systems with pulsed field gradients (PFG) or imaging capabilities.
Description: Determines the gradient calibration constant gcal by using a proton phantom of known dimensions. setgcal requests the linear dimension of the phantom in the readout direction. It uses the value entered, together with cursor separation of this dimension from the image profile and the strength of the
readout gradient gro, or gzlvll if pulsed field gradients, to calculate gcal in units of gauss/cm-DAC units. You are then prompted whether this value should be entered. If you answer yes, it is stored as a system constant in the your global file.
Note that a particular value of gcal is closely related to the current eddy current compensation settings. If these settings are changed (e.g., reading in a new curecc file), a different value of gcal should be expected.
Before running setgcal, use the pulse sequence set up by profile to acquire a signal from a known sized object while the gradient is on.
See also: Pulsed Field Gradient Modules Installation; VnmrJ Imaging NMR
Related: gcal Gradient calibration constant (P)
gro Readout gradient strength in DAC units (P)
profile Set up pulse sequence for gradient calibration (M)

setgcoil Assign sysgcoil configuration parameter (M)

Syntax: setgcoil<(file)>
Description: Allows users to change the configured gcoil for the system. setgcoil updates the systemglobal parameter sysgcoil to the named table and updates the assignment values for the hardware-specific gradient calibration parameters gcoil, gxcal, gycal, gzcal, griserate, and boresize to their corresponding values, described in the named table. The directory \$vnmrsystem/imaging/gradtables must have write permission for all users for the macro to be effective. This table now exists in the system local /var/vnmr/gradtables directory, with a soft link from \$vnmrsystem/imaging/gradtables to that directory.
Arguments: file is the any legal file name defined for the parameter gcoil.
See also: VnmrJ Imaging NMR

Related: boresize
config Display current configuration and possible change it (M)
gcoil Read data from gradient calibration tables (P)
griserate
gxcal,gycal,gzcal
sysgcoil

Magnet bore size (P)

Gradient rise rate (P)
Gradient strength for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ gradients (P)
System value for gcoil parameter (P)

setgpe

Applicability:

Set phase encode gradient levels (M)

Description:

Provides for selection of the phase encode gradient step size levels (gpe, gpe2, gpe3) and gradient pulse timing (tpe, tpe2, tpe3) from the FOV parameters (lpe, lpe2, 1pe3).
The program requires no inputs and automatically calculates the values of gpe and tpe (2D, 3D, 4D), gpe 2 and tpe 2 (3D and 4D), and gpe 3 and tpe 3 (4D) from the corresponding FOV parameters and requested acquisition matrix sizes (nv1, nv2, nv3). Defaults are supplied for 2D, 3D, and 4D matrix sizes if these have not been set by the user.
The result of the setgpe calculations results in setting the phase encode gradient levels so as to give the shortest possible phase encode timing. This prepares the sequence to collect data at the minimum te. Sequence applications, however, are free to rescale the values of the gradient level and timing parameters to meet their own requirements. Rescaling requires that:
gpe*tpe = gpe'*tpe'

The product of the gradient set size and phase encode pulse remain constant.
See also: VnmrJ Imaging NMR

| Related: | gpe | Phase encoding gradient increment (P) |
| :--- | :--- | :--- |
| lpe | Field of view for phase encode axis (P) | |
| tpe | Duration of phase encoding gradient pulse (P) | |

setgrid Divide graphics window into rows and columns (C)
Syntax: setgrid (row<, column>)
Description: Divides graphics window into an array of rows and columns (or window panes). Only one pane is active at a time. An individual pane can be activated by double-clicking in it with the left mouse button or by entering setwin in the input window.
Arguments: row is the number of rows (maximum is 3) in the graphics window. If 0 is entered, the number of rows remains the same; e.g., in setgrid (0,2), the number of rows is unchanged and two columns are created in each row.
column is the number of columns (maximum is 3) in the graphics window.
Examples: setgrid(3)
setgrid $(3,3)$
setgrid $(0,2)$
See also: VnmrJ Liquids NMR

| Related: | curwin | Current window (P) |
| :--- | :--- | :--- |
| | fontselect | Open FontSelect window (C) |
| | jwin | Activate current window (M) |
| | mapwin | List of experiment numbers (P) |
| | setwin | Activate selected window (C) |

setgro Set readout gradient (M)

Applicability: Systems with imaging capabilities.
Syntax: setgro<('min'|level) >
Description: Sets the readout gradient by adjusting the values of gro, sw, and at. If entered without arguments, setgro operates in the automatic mode and uses a novel algorithm to estimate the maximum usable readout gradient. The algorithm is designed to provide a compromise between chemical shift artifact and S / N ratio in the image.
Arguments: 'min' is a keyword to operate setgro in the automatic mode, to use simple algorithms to estimate the maximum usable readout gradient, and to set gro, sw, and at based on the estimate. Typical usage would be when operating at the shortest practical echo time.
levels is a real number that is interpreted as a gradient level in gauss $/ \mathrm{cm}$. Provided that the number is in the range 0 to gmax, setgro then calculates sw and sets gro and at.
Examples: setgro
setgro('min')
setgro(1.0)
See also: VnmrJ Imaging NMR
Related:

| at | Acquisition time (P) |
| :--- | :--- |
| gmax | Maximum gradient strength (P) |
| gro | Readout gradient strength (P) |
| Sw | Spectral width (P) |

setgroup \quad Set group of a parameter in a tree (C)

Syntax: setgroup (parameter, group<,tree>)
Description: Sets the group of a parameter in a tree.
Arguments: parameter is the name of the parameter.
group is one of the following keywords: 'all', 'sample', 'acquisition', 'processing', 'display', or 'spin'.
tree is one of the keywords 'current', 'global', or 'processed'. The default is 'current '. See the create command for information on the types of trees.

```
Examples: setgroup('a','sample')
setgroup('b','all','global')
```

See also: User Programming

| Related: | create
 destroy | Create new parameter in a parameter tree (C)
 destroygroup |
| :--- | :--- | :--- |
| | Destroy a parameter (C) | |
| display | Destroy parameters of a group in a tree (C) | |
| groupcopy | Display parameters and their attributes (C) | |
| paramvi | Copy parameters of group from one tree to another (C) | |
| setlimit | Edit a parameter and its attributes using vi text editor (M) | |
| setprotect | Set limits of a parameter in a tree (C) | |
| | Set protection mode of a parameter (C) | |

setgss \quad Select slice or voxel selection gradient levels (M)

Applicability: Systems with imaging capabilities.
Syntax: setgss<(<gradient_name><,thickness_name>) >
Description: Sets slice or voxel selection gradient levels, given the gradient level parameter and the thickness parameter. setgss searches the configuration list sslist (conjugate gradients) for the desired gradient level name.
If the gradient name is found (possibly multiple times), setgss calculates the bandwidth, in Hz, "cut" by each corresponding rf template on the list (patlist), at the length pointed to by the list (plist), and for the flip angle on the list (fliplist). The minimum bandwidth is assumed to define the "thickness" of the "cut." The gradient level is then calculated from the minimum bandwidth selected by the rf pulses.
If setgss fails to find the supplied gradient_name, it returns the message "All RF templates used with gradient_name are nonselective."
Arguments: gradient_name is the name of the gradient level parameter whose value is to be set. The default is the user is prompted for the parameter name.
thickness_name is the name of the thickness parameter from which to compute the gradient level. The default is the user is prompted for the parameter name.
Examples: setgss
setgss('gss','thk')
See also: VnmrJ Imaging NMR
$\begin{array}{lll}\text { Related: } & \text { fliplist } & \text { Standard flip angle list (P) } \\ & \text { patlist } & \text { Active pulse template parameter list (P) } \\ & \text { sslist } & \text { Conjugate gradient list (P) }\end{array}$

sethw

Set values for hardware in acquisition system (C)

Applicability:
Syntax 1 through 5 apply to all systems. Syntax 6 applies only to systems with a sample changer. Syntax 7 and 8 apply only to systems with a variable temperature (VT) controller. Syntax 9 applies only to MERCURYplus/Vx.
Syntax: (1) sethw(<'wait'|'nowait',>par1,val1<,par2,val2,...)
(2) sethw ('lock','on'|'off')
(3) sethw('spin',speed)
(4) sethw('spinner','bump')
(5) sethw('eject','on'|'off')
(6) sethw ('loc',location)
(7) sethw ('vt','reset'|'off')
(8) sethw('temp',temperature)
(9) sethw('lockfreq',lockfreq_value)

Description: Sets acquisition system hardware values. sethw cannot be used when an acquisition is in progress or when the acqi program is active.
Syntax 1 can be used to set the lock system parameters lockpower, lockgain, lockphase, and zo. This syntax can also be used to set the values of the shims. The particular shim that can be set depends upon the type of shim hardware present in the system. See the description of shimset for a list of the shim names for each type of shim hardware.
Syntax 2 turns the hardware lock on or off.
Syntax 3 controls spinning speed.
Syntax 4 carries the sample to bump by giving it a short burst of eject air. This is sometimes useful to reseat the sample if it is failing to spin.
Syntax 5 ejects and inserts samples into the probe. Entering the command sethw ('eject', 'on') is equivalent in function to macros eject and e; and sethw ('eject', 'off') is equivalent to macros insert and i.
Syntax 6 sets a location for the sample currently in the magnet on a system with a sample changer. The parameter loc is updated.
Syntax 7 resets the VT controller, useful when changing the probe in a system with VT regulation. By entering sethw ('vt', 'reset') after installing a new probe in the magnet and attaching the VT controller interface to the probe, the VT controller is ready to regulate the temperature. No other parameters can be modified by the command. As an alternate, you can manually turn the VT controller unit off and then back on. Syntax 7 also turns the VT controller off by entering sethw ('vt', 'off').
Syntax 8 sets the temperature in degrees celsius. The host computer does not wait for the temperature to regulate.
Syntax 9 sets the lock frequency, in MHz, on the UNITY INOVA, MERCURYplus/ $V x$.
Arguments: 'wait' or 'nowait' keyword must be either the first or last argument.

- 'wait' sends the new values to the acquisition console, verifies these values, and updates the corresponding parameters. This is the default.
- ' nowait' sends the new values to the console without verifying them or changing parameters.
parameter1, value1, parameter2, value2, ... are paris of parameter names and their values (see the first two examples below). At least one parameter name and its value must be specified. A maximum of ten parameters can be set.
'lock', 'on' is a keyword pair to turn the hardware lock on.
'lock', ' off' is a keyword pair to turn the hardware lock off.
'spin' is a keyword that identifies the next argument, speed, as the sample spinning speed, in Hz .
'spinner', 'bump ' is a keyword pair to bump the sample.
'eject', 'on' is a keyword pair to eject the sample from the probe.
'eject ', 'off' is a keyword pair to insert the sample into the probe.
'loc' is a keyword to identify that the next argument, location, is a number for the sample currently in the magnet (1 lOC' is unrelated to the loc parameter).
'vt ', 'reset ' is a keyword pair to reset the VT controller after the controller has been disconnected from the probe. This is equivalent to turning the VT controller power off and on.
'vt', 'off' is a keyword pair to turn the VT controller off.
' temp ' is a keyword that identifies the next argument, temperature, as the requested sample temperature, in degrees celsius.
'tune' is a keyword that identifies the next argument, mode, as the tune mode to perform probe tuning on MERCURY. Mode is 1 for high band, 2 for low band, and 3 for off.
'lockfreq' is a keyword that the next argument is the lock frequency.
lockfreq_value is the lockfreq value, in MHz, for the lock frequency.
Examples: sethw('z1c', 30,'z2c',-50)
sethw('wait','z1',150,'z2', -400)
sethw('lock','on')
sethw ('spin', 20)
sethw ('spinner','bump')
sethw('eject','on')
sethw ('loc',5)
sethw('vt','reset')
sethw ('lockfreq', 46.042)
See also: VnmrJ Liquids NMR
Related: loc Location of sample in tray (P)
lockpower Lock power (P)
lockfreq Lock frequency (P)
lockgain Lock gain (P)
lockphase Lock phase (P)
readhw Read current values of acquisition hardware (C)
spin Sample spin rate (P)
z0 Z0 field position (P)

setint \quad Set value of an integral (M)

Syntax: setint (int_number<, value>)
Description: Sets the value of an integral.
Arguments: int_number is the integral number. It corresponds to the index number displayed by dli if all integrals are shown (i.e., intmod='full') or the region if alternating integrals are shown (i.e., intmod='partial').
value sets the actual value of the selected integral. The default is ins.
Examples: setint(2)
setint (1, 3)
See also: VnmrJ Liquids NMR
Related: dli Display list of integrals (C)
ins \quad Integral normalization scale (P)

setlimit \quad Set limits of a parameter in a tree (C)

Syntax: (1) setlimit (parameter, max,min,step_size<,tree>)
(2) setlimit (parameter, index<,tree>)

Description: If syntax 1 is used, when a parameter value is changed, the new value is checked against the limits set by max and min. The new value must also be a multiple of step_size + min (e.g., setlimit ('r1', $80,10,20$) allows the values $10,30,50$, and 70). The value of the parameter can be further modified by a macro called _parameter if the proper protection bit is set (see the setprotect command).
If syntax 2 is used, the max min, and step_size for a parameter are obtained from the index-th entry of a table set for the parameter by parmax, parmin, and parstep in conpar.
Arguments: parameter is the name of the parameter.
max and min are the maximum and minimum limits on a parameter value. step_size is the size of the steps allowed for a parameter within the limits max and min.
tree is one of the keywords 'global', 'current','processed', or 'systemglobal. The default is 'current'. Refer to the create command for a more information on the types of parameter trees.
index is an index into a lookup table. When a single index argument is given, the parameter's protection bits (see the setprotect command) are set so that the table lookup is turned on.
Examples: setlimit('a', $80,10,20$)
setlimit('b',1e5,-3e2,1,'global')
setlimit('dpwr',9)
See also: User Programming
Related: create Create new parameter in a parameter tree (C
destroy Destroy a parameter (C)
display Display parameters and their attributes (C)
fread Read parameters from file and load them into a tree (C)
fsave \quad Save parameters from a tree to a file (C)
paramvi Edit a parameter and its attributes using vi text editor (M)
parmax \quad Parameter maximum values (P)
parmin Parameter minimum values (P)
parstep Parameter step size values (P)
prune Prune extra parameters from current tree (C)
setgroup \quad Set group of a parameter in a tree (C)
setprotect Set protection mode of a parameter (C)
settype \quad Change type of a parameter (C)
setvalue Set value of any parameter in a tree (C)
setlk \quad Set up lock parameters (M)
Syntax: setlk(solvent)
Description: Called from other macros to provide adjustment of locking and shimming as a function of solvent. Removing quotation marks from around different parts of the text file of the macro places that particular section into effect. If the macro is left unchanged, setting alock='s' is required in the parameter sets where used.

Arguments: solvent is the solvent to be used.
See also: VnmrJ Liquids NMR
Related: alock Automatic lock status (P)
setlockfreq Set lock frequency (M)
Description: Calculates and sets the lock frequency parameter lockfreq. Before using setlockfreq, you must acquire a signal using ${ }^{1} \mathrm{H}$ as the transmitter nucleus (tn='H1'). To avoid errors in calculating frequencies, set lockfreq='n' before starting the acquisition.
See also: VnmrJ Installation and Administration
Related: lockfreq Lock frequency (P)
tn \quad Nucleus for observe transmitter (P)

setloop
 Control arrayed and real-time looping (M)

Applicability:
Description:
Systems with imaging capabilities.
Set the values for $n f$ and ni to control arrayed and real-time looping.
Loop control in imaging experiments, such as multislice, multiecho, and phase encoding, is set through a series of parameters (ne, ns, nv, nv2, nv3) directly set by the user. Underlying these parameters are two lower level parameters, nf and ni, used during pulse sequence execution to determine the mode of data acquisition. setloop manages the values of nf and ni as required to be consistent with the experiment parameters ne, nv, etc.
Two modes of data acquisition are supported in VnmrJ: arrayed and compressed. The difference between the modes is mainly in the data flow timing between host and acquisition computers:

- Arrayed data acquisition involves continuous communications between host and acquisition computers as pulse sequence instructions are sent to the acquisition CPU and data is returned to the host Sun for each element in the arrayed experiment. All explicitly arrayed experiments (e.g., $\mathrm{pw}=10,20,30$) run in this manner. 2D experiments, including most highresolution liquids and many imaging experiments, also run as "implicit" arrays, with the array size set by the parameter ni. Although communications between acquisition and host computers are quite fast, a small delay (typically a few milliseconds) is required to accommodate the communications and reinitialization between array elements. Certain fast imaging experiments, such as turboflash, Echo Planar Imaging (EPI), or even conventional multislice, often require loop timing similar to this interelement delay. These experiments use a second mode of data acquisition: the compressed mode.
- In compressed data acquisition, a single pulse sequence instruction set is sent to the acquisition computer, which then manages the entire experiment through real-time loops and pulse sequence elements. All data accumulated in the real-time loops is retained in the acquisition data memory until the experiment or array element is complete, at which time the data is sent back to the host. No timing overhead is associated with a real-time loop, and extremely short timing intervals may therefore be achieved with the compressed mode. Compressed data acquisition is controlled by the parameter $n f$, which requires that the number of points acquired must be $\mathrm{nf} * \mathrm{np}$. Experiments may be run completely in arrayed acquisition mode, or completely in compressed acquisition mode, or in a combination of the two.
set loop uses the seqcon parameter to determine which acquisition loops, if present, are arrayed and which are compressed. It then computes nf as the product of all compressed loop counts, and sets ni appropriately as either nv in the case of uncompressed phase-encode, or zero in the case of compressed phase-encode.
Each of the parameters ne, ns, nv, nv2, and nv3 have corresponding underscore macros that execute setloop. Therefore, setloop is a lower level "management" macro that is run automatically each time one of these parameters is entered, and will not normally be run explicitly by the user. The comprehensive setup macro imprep also performs the setloop function. If imprep has been executed, there is no need to run setloop.
See also: VnmrJ Imaging NMR

| Related: | do | Overhead delay between FIDs (P) |
| :--- | :--- | :--- |
| flashc | Convert compressed 2D data to standard 2D format (C) | |
| ne | Number of echoes to be acquired (P) | |
| nf | Number of FIDs (P) | |
| ns | Number of slices to be acquired (P) | |
| nv | umber of 2D phase encode steps to be acquired (P) | |
| seqcon | Acquisition loop control (P) | |

setLP1 Set F1 linear prediction parameters (M)

Syntax: setLP1<(extended_length<,current_length>) >
Description: Sets F1 linear prediction parameters. If no arguments are specified, the interferograms are quadrupled in length.

Arguments: extended_length is the number of complex points now existing (ni).
current_length is the number of points desired after the (forward) linear prediction.
See also: VnmrJ Liquids NMR
Related: ni Number of increments in 1st indirectly detected dimension (P)

setMarkMode Remove/activate mark (C)

Applicability: Systems with imaging capabilities.
Syntax: setMarkMode (mode)
Description: Removes or activates one mark each time it is executed. If all marks (maximum number is 3) are removed or activated, it does nothing. When a mark is activated (mode >0), cursor changes into a pencil. Clicking a graphic area places a mark on the area, then the cursor turns back into an arrow.
mode $=0$, removes mark. mode >0, activates mark.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)

setnoether Disconnect host computer from Ethernet (U)

Description: Disconnects the host computer from the Ethernet network. Only root can execute this shellscript properly. setnoether does nothing if the system is already disconnected from the Ethernet network.
On systems running Solaris, setnoether renames the hostname. le0, defaultdomain, and defaultrouter files so that Ethernet is not activated when the system is rebooted.

See also: VnmrJ Installation and Administration
Related: setether Connect or reconnect host computer to Ethernet (U)

setoffset Calculate offset frequency for given nucleus and ppm (M)

Syntax: setoffset (nucleus, ppm) : offsetfreq
Description: Using the setref macro, setoffset calculates the offset frequency for a given chemical shift and returns the value.
Arguments: nucleus is the given nucleus.
ppm is the chemical shift.
offsetfreq returns the offset frequency for the given chemical shift.
Examples: setoffset (tn,5):tof
setoffset ('C13', 85) : dof
See also: VnmrJ Liquids NMR
Related: setref Set frequency referencing for proton spectra (M)

setparams Write parameter to current probe file (M)

Syntax: setparams (param, value<, nucleus>)
Description: Writes the value of a parameter to the current probe file. The name of the probe file is referenced from the parameter probe.
Arguments: param is the name of the parameter to write.
value is a string with the value to be written for the parameter.
nucleus is the nucleus to write in the probe file. The default is the current value of the parameter $t n$.
Examples: setparams('pw90','10')
setparams('pplvl','60')
setparams('dpwr', \$strdpwr,'H1')
See also: VnmrJ Liquids NMR
Related: addnucleus Add new nucleus to existing probe file (M)
addparams Add parameter to current probe file (M)
addprobe \quad Create new probe directory and probe file (M)
getparam Retrieve parameter from probe file (M)
probe Probe type (P)
tn \quad Nucleus for the observe transmitter (P)
updateprobe Update probe file (M)
setpen \quad Set maximum number of HP plotter pens (M)
Syntax: setpen<(maxpen,max_number_pens) >
Description: Allows the user to interactively define the maximum number of pens when changing to a Hewlett-Packard plotter.

Arguments: maxpen is the current value of the parameter maxpen.
maximum_number_pens is the maximum number of pens to be used. If the value of max_number_pens is less than or equal to the current value of the parameter maxpen, this value becomes the new value of maxpen.
See also: VnmrJ Liquids NMR
Related: color Select plotting colors from a graphical interface (M)
maxpen Maximum number of pens to use (P)

setplotdev Return characteristics of a named plotter (C)

Syntax: setplotdev<:plotter_type, plotter_host,ppmm,raster>
Description: Returns information from the devicenames and devicetable files to identify the characteristics of a plotter. This command need never be entered directly by a user because it is automatically called whenever the plotter parameter is set. Note that different "types" of plotters (and printers) are characterized in devicetable. The devicenames file associates different "names" to a given "type."
Arguments: plotter_type returns the type of the named plotter.
plotter_host returns the host associated with the plotter.
ppmm returns the plotter resolution in points per millimeter.
raster returns the value from the devicetable file.
See also: VnmrJ Installation and Administration
Related: plotter Plotter device (P)

setpower

Set power and pulsewidth for a given $\gamma \mathbf{B 1}$ value (M)
Syntax: setpower (γ B1, nucleus)
Description: Sets power level and pw90 values. For tn, setpower uses ref_pwr and ref_pw90 from the parameter set or from the probe table. For dn, it uses ref_pwxlvl and ref_pwx90 from the parameter set or from the probe table. For dn2, it uses ref_pwx2lvl and ref_pwx290 from the parameter set or from the probe table. If the reference power levels and pulse width do not exist, setpower uses tpwr (pw90), dpwr (1/dmf) or dpwr2 (1/ dmf2) (if the nucleus is tn, setpower uses tpwr; if the nucleus is dn, it uses dpwr; if the nucleus is dn2, it uses dpwr2).
Arguments: $\gamma \mathrm{B} 1$ is a given $\gamma \mathrm{B} 1$ value.
nucleus is a given nucleus.
Examples: setpower (sw,tn)
setpower (5000, H1)
Related:
dn \quad Nucleus for first decoupler (P)
dn2 Nucleus for second decoupler (P)
dpwr Power level for first decoupler with linear amplifiers (P)
dpwr2 Power level for second decoupler (P)
pw90 90° pulse width (P)
sw \quad Spectral width in directly detected dimension (P)
tpwr Observe transmitter power level with linear amplifiers (P)

setprotect \quad Set protection mode of a parameter (C)

Syntax: setprotect (parameter,'set'|'on'|'off',bit_vals<,tree>)
Description: Enables changing the protection bits associated with a parameter.
Arguments: parameter is the name of the parameter.
' set ' causes the current protection bits for the parameter to be completely replaced with the bits specified by bit_vals.
' on ' causes the bits specified in bit_vals to be turned on without affecting any other protection bits.
' off' causes the bits specified in bit_vals to be turned off without affecting any other protection bits.
' list ' causes all parameter with the specified bit_vals to be listed. This list may be returned to the calling macro.
' clear ' option clears the specified bit_vals from all parameters. For both the list and clear options, the names argument can be ' '. The return value when setprotect is called with the list option can be used as the 'names' argument for other forms of setprotect. It can also be names for other commands which use lists of parameter names, such as writeparam and readparam.
bit_vals is the sum of the values of bits selected from the following list:

| Bit | Value | Description |
| :--- | :--- | :--- |
| 0 | 1 | Cannot array the parameter |
| 1 | 2 | Cannot change active/not active status |
| 2 | 4 | Cannot change the parameter value |
| 3 | 8 | Causes _parameter macro to be executed (e.g., if parameter
 is named sw, macro_sw is executed when sw is changed) |
| 4 | 16 | Avoids automatic redisplay |
| 5 | 32 | Cannot delete parameter |
| 6 | 64 | System ID for spectrometer or data station |
| 7 | 128 | Cannot copy parameter from tree to tree |
| 8 | 256 | Will not set array parameter |
| 9 | 512 | Cannot set parameter enumeral values |
| 10 | 1024 | Cannot change the parameter's group |
| 11 | 2048 | Cannot change protection bits |
| 12 | 4096 | Cannot change the display group |
| 13 | 8192 | Look up minimum, maximum, step values in table |
| 14 | 16384 | Parameter marked for locking (P_LOCK; see rtx) |
| 15 | 32768 | Global parameter not shared in multiple VJ viewports |
| 16 | 65536 | Force automatic redisplay in VJ templates |

For example, to change the first two protection bits, with values 1 and 2, either enter setprotect twice (once for each value) with the keyword ' on ', or enter setprotect once with bit_vals set to 3 (sum of 1 and 2) with the keyword 'set'.
tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on the types of parameter trees.

| Examples: | setprot
 setprot | $\begin{aligned} & (' s y n, ' o n ', 2) \\ & (' p s l a b e l ', ' o n ', 8) \end{aligned}$ |
| :---: | :---: | :---: |
| See also: | User Progr | |
| Related: | array | Parameter order and precedence (P) |
| | create | Create new parameter in a parameter tree (C) |
| | destroy | Destroy a parameter (C) |
| | display | Display parameters and their attributes (C) |
| | fread | Read parameters from file and load them into a tree (C) |
| | fsave | Save parameters from a tree to a file (C) |
| | paramvi | Edit a parameter and its attributes using vi text editor (M) |
| | prune | Prune extra parameters from current tree (C) |
| | setlimit | Set limits of a parameter in a tree (C) |

setref

Set frequency referencing (M)

Syntax: setref<(nucleus) >: \$rfl,\$rfp,\$reffrq,\$refpos
Description: Calculates the referencing for a given parameter or FID data set, for samples locked on deuterium, and based on the chemical shift of the lock solvent line. setref uses information in /vnmr/solvents $\left({ }^{2} \mathrm{H}\right.$ chemical shift for current solvent) and /vnmr/nuctables/nuctabref (absolute reference frequencies for NMR nuclei) to predict the position of the reference frequency with the current solvent, spectral window, and spectrometer frequency. setref assumes a locked sample.
Arguments: An argument and return values are beneficial for the use of setref within other macros such as setref1 and setref2. By default (i.e., without an argument), setref calculates the referencing for 1D spectra or for the directly detected dimension in nD spectra (f 2 in $2 \mathrm{D}, \mathrm{f} 3$ in 3 D).

When only nucleus is used as an argument, setref returns values without setting parameters.
\$rfl, \$rfp, \$reffrq, \$refpos are return values for reference peak position, reference peak frequency, reference line frequency, and reference line position, respectively.
Examples: setref
setref('C13'):\$rfl,\$rfp
See also: VnmrJ Liquids NMR

| Related: | reffrq | Reference frequency of reference line (P) |
| :--- | :--- | :--- |
| | $r e f p o s$ | Position of reference frequency (P) |
| | $r f l$ | Reference peak position (P) |
| $r f p$ | Reference peak frequency (P) | |
| rl | Set reference line in directly detected dimension (M) | |
| setref1 | Set frequency referencing for 1st indirectly detected dimension (M) | |
| setref2 | Set frequency referencing for 2nd indirectly detected dimension (M) | |
| setup | Set up parameters for basic experiments (M) | |
| tmsref | Reference 1D proton or carbon spectrum to TMS (M) | |

setref1 Set freq. referencing for 1st indirectly detected dimension (M)
Syntax: setref1 (nucleus)
Description: Calculates the referencing for the first indirect dimension (f1) in nD parameters and FID data sets, for samples locked on deuterium, and for the solvent specified by the solvent parameter. setref1 uses the setref macro to calculate the reference frequency and based on the chemical shift of the lock solvent line and /vnmr/nuctables/nuctabref (absolute reference frequencies for NMR nuclei) to predict the referencing in fl (reffrql, rfll, $r f p 1$) with the current solvent, sw1, and for the frequency of the specified nucleus.
Arguments: nucleus is the frequency-relevant nucleus in f 1 .
Examples: setref1(tn)
setref1 ('C13')
See also: VnmrJ Liquids NMR
Related: reffrq1 Reference frequency of reference line in 1st indirect dimension (P)
refpos $1 \quad$ Position of reference frequency in 1st indirect dimension (P)
rfl Reference peak position (P)
rflı Reference peak position in 1st indirectly detected dimension (P)

$$
\begin{array}{ll}
\text { rfp1 } & \text { Reference peak frequency in 1st indirectly detected dimension (P) } \\
\text { setref } & \text { Set frequency referencing }(M)
\end{array}
$$

```
setref2 Set freq. referencing for 2nd indirect detected dimension (M)
    Syntax: setref1(nucleus)
```

Description: Calculates the referencing for the second indirect dimension (f2) in nD parameters and FID data sets, for samples locked on deuterium, and for the solvent specified by the solvent parameter. setref 2 uses setref to calculate the reference frequency and based on the chemical shift of the lock solvent line and /vnmr/nuctables/nuctabref (absolute reference frequencies for NMR nuclei) to predict the referencing in f 2 (reffrqq $2, r f 12$, rfp2) with the current solvent, sw2, and for the frequency of the specified nucleus.
Arguments: nucleus is the frequency-relevant nucleus in f 2 .

```
Examples: setref2(tn)
setref2('C13')
```

See also: VnmrJ Liquids NMR

| Related: | reffrq2 | Reference frequency of reference line in 2nd indirect dimension (P) |
| ---: | :--- | :--- |
| | refpos2 | Position of reference frequency in 2nd indirect dimension (P) |
| | $r f 12$ | Reference peak position in 2nd indirectly detected dimension (P) |
| | $r f p 2$ | Reference peak frequency in 2nd indirectly detected dimension (P) |
| | $r l 2$ | Set reference line in 2nd indirectly detected dimension (M) |
| | setref | Set frequency referencing (M) |

setscout Set up a scout run (M)
Applicability: Systems with LC-NMR accessory.
Description: Designed to help run simple experiments during the setup phase of LC-NMR or to be the first of two experiments run on peaks in a stopped-flow or loopflushing mode. In the latter application, you can set wexp='setwet au' so that the scout run is analyzed, parameters adjusted, and an appropriate solventsuppressed experiment run.
If parameters already exist in the current experiment for performing the lc1d pulse sequence, setscout turns off the solvent suppression portion of the sequence; if they do not exist, they are created and set to default values using lcld.
See also: VnmrJ Liquids NMR
Related: lc1d Pulse sequence for LC-NMR (M)
setwet \quad Set up a solvent-suppressed experiment (M)

setssfilter Set sslsfrq to the frequencies of each suppressed solvents (M)

Applicability: Systems with LC-NMR accessory.
Description: Sets sslsfrq to the frequencies of each of the suppressed solvents.
See also: VnmrJ Liquids NMR
setsw
Set spectral width (M)
Syntax: setsw(downfieldppm, upfieldppm)
Description: Sets sw and tof for the given spectral window and also does referencing.

Arguments: downfieldppm is the downfield frequency, in ppm.
upfieldppm is the upfield frequency, in ppm.
Examples: setsw $(12,0)$
setsw $(235,-15)$
See also: VnmrJ Liquids NMR
Related: setsw1 Set spectral width in evolution dimension (M)
setsw2 Set spectral width in 2nd evolution dimension (M)
sw \quad Spectral width in directly detected dimension (P)
tof \quad Frequency offset for observe transmitter (P)
setsw1 Set spectral width in evolution dimension (M)
Syntax: setsw1 (nucleus, downfieldppm, upfieldppm) : offset
Description: Sets sw1 for the given spectral window and also does referencing.
Arguments: nucleus returns the nucleus.
downfieldppm is the downfield frequency, in ppm.
upfieldppm is the upfield frequency, in ppm.
offset returns the appropriate offset.
Examples: setsw1 (tn, 12,0)
setsw1 (dn, 235,-15) : dof
See also: VnmrJ Liquids NMR

| Related: | setsw | Set spectral width (M) |
| :--- | :--- | :--- |
| sw1 | Spectral width in 1st indirectly detected dimension (P) | |

setsw2 Set spectral width in 2nd evolution dimension (M)
Syntax: setsw2 (nucleus, downfieldppm, upfieldppm) : offset
Description: Sets sw2 for the given spectral window and also does referencing.
Arguments: nucleus returns the nucleus.
downfieldppm is the downfield frequency, in ppm.
upfieldppm is the upfield frequency, in ppm.
offset returns the appropriate offset.
Examples: setsw2 (tn, 12,0)
setsw2 (dn, 235,-15) : dof
See also: VnmrJ Liquids NMR

| Related: | setsw | | |
|---|---|---|---|
| sw2 | |\quad| Set spectral width (M) |
| :--- |
| Spectral width in 2nd indirectly detected dimension (P) |

setselfrqc \quad Set selective frequency and width (M)

Description: Sets selective frequency and width of the excitation bandwidth for selective excitation. Used after TOCSY1D and NOESY1D selection. Selected frequencies and widths of the excitation bandwidth are used by suselfrq.
Related: NOESY1D Change parameters for NOESY1D experiment (M)
suselfrq Select peak, continue selective excitation experiment (M)
TOCSY1D Change parameters for TOCSY1D experiment (M)

setselinv

Description: Sets power, pulsewidth, and shape for selective inversion; used by suselfrq. By default, setselinv selects a q3 gaussian cascade pulse if a waveform generator or linear modulator is present (${ }^{U N I T Y}$ INOVA). Otherwise, setselinv selects a "rectangular" pulse.
Related: setselfrqc Select selective frequency and width (M) suselfrq Select peak, continue selective excitation experiment (M)

settcldefault Select default display templates for pulse sequence (M)

Syntax: settcldefault<(<default><,sequence>) >
Description: Selects the display templates to use as the default for a pulse sequence.
Arguments: default is the name of the set of display templates to use for the default display of the current pulse sequence (defined by the parameter seqfil). If no arguments are given, the user is prompted for the name of the display templates. sequence defines which pulse sequence will use the default displays of the pulse sequence given as the first argument. The default is the pulse sequence defined by the parameter seqfil.
Examples: settcldefault
settcldefault('cosy')
settcldefault('default2d','HMQC8')
See also: User Programming
Related: seqfil Pulse sequence name (P)
settype \quad Change type of a parameter (C)
Syntax: settype (parameter, type<,tree>)
Description: Changes the type of an existing parameter. A string parameter can be changed into a string or flag type, or a real parameter can be changed into a real, delay, frequency, pulse, or integer type. Note that settype cannot change a string parameter into a real, or change a real into a string.
Arguments: parameter is the name of an existing parameter.
type is one of the keywords 'string', 'flag', 'real', 'delay', 'frequency', 'pulse', or 'integer'.
tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on the types of parameter trees.
Examples: settype('in','flag','global')
settype('p12','pulse')
See also: User Programming

| Related: | create
 display | Create new parameter in a parameter tree (C) |
| :--- | :--- | :--- |
| setgroup | | |
| setlimit | Display parameters and their attributes (C) | |
| setprotect | Set group of a parameter in a tree (C) | |
| setvalue | Set protection mode of a parameter (C) | |
| | Set value of any parameter in a tree (C) | |

setup \quad Set up parameters for basic experiments (M)

Syntax: setup<(nucleus<,solvent>) >

Description: Returns a parameter set to do the experiment requested, complete with positioning of the transmitter and decoupler. Parameters set by setup are recalled from the /vnmr/stdpar directory or from the user's stdpar directory if the appropriate file exists there. Any changes made to the files in these directories are reflected in setup. The default parameters for carbon and proton survey spectra are in files /vnmr/stdpar/C13.par and/vnmr/ stdpar/H1. par, respectively. These files should be modified as desired to produce spectra under desirable conditions.
Arguments: nucleus is a nucleus chosen from the files in/vnmr/stdpar or in the user's stdpar directory (e.g., 'H1', 'C13', 'P31').
solvent is a solvent chosen from the file /vnmr/solvents (e.g., 'CDCl3', 'C6D6', 'D2O'). The default is 'CDCl3'.

Examples: setup
setup ('H1')
setup ('C13','DMSO')
See also: VnmrJ Liquids NMR

setup_dosy Set up gradient levels for DOSY experiments (M)

Description: Initiates a dialogue to set up an array of gzlvll values for DOSY experiments. setup_dosy requests the number of array increments and an initial and a final gzlvll value and sets up an array that gives increments in gzlvll squared between these limits. setup_dosy retrieves the gradient strength from the probe calibration file if probe<> ' ' and stores it in the local experimental parameter DAC_to_G. If probe $=$ ' ' (i.e., the probe is not defined), then DAC_to_G is set to the current value of the global parameter gcal.
See also: VnmrJ Liquids NMR
Related:

| dosy | Process DOSY experiments (M) |
| :--- | :--- |
| DAC_to_G | Parameter to store gradient calibration value in DOSY sequences (P) |
| setgcal | Set the gradient calibration constant (M) |

setvalue \quad Set value of any parameter in a tree (C)
Syntax: setvalue (parameter, value<,index><,tree>)
Description: Sets the value of any parameter in a tree. This command bypasses the normal range checking for parameter entry, as well as bypassing any action that would be invoked by the parameter's protection mode (see the setprotect command). If the parameter entry normally causes a parameter macro to be executed, this action also is bypassed.

Arguments: parameter is the name of the parameter.
value is the value to set to the parameter.
index is the number of a single element in an arrayed parameter. The default is 1 .
tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on the types of parameter trees.
Examples: setvalue('arraydim',128,'processed')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
setprotect Set protection mode of a parameter (C)

setValue Set parameter values (C)

Applicability: Systems with imaging capabilities.
Syntax: setValue(char* paramName, float value, int index)
Description: Sets imaging parameter values.
See also: VnmrJ Imaging NMR
Related: gplan Start interactve image planning (C)
setwave \quad Write a wave definition string into Pbox.inp file (M)
Syntax: setwave('sh bw/pw ofs st ph fla trev d1 d2 do')
Description: Sets up a single excitation band in the Pbox. inp file. An unlimited number of waves can be combined by reapplying setwave.

Arguments: A single string of 1 to 10 wave parameters in predefined order. Note that a single quote is required at the start and the end of the entire string, but no single quotes are required surrounding characters and strings inside the entire string.
sh is the name of a shape file.
$\mathrm{bw} / \mathrm{pw}$ is either the bandwidth, in Hz , or the pulsewidth, in sec.
ofs is the offset, in Hz.
st is a number specifying the spin status: 0 for excitation, 1 for de-excitation, or 0.5 for refocusing.
ph is the phase (or phase cycle, see wavelib/supercycles).
fla is the flip angle. Note that fla can override the default flip angle.
trev is a time reversal. This can be used to cancel time reversal if spin status (st) is set to 1 for Mxy.
d 1 is the delay, in sec, prior the pulse.
d 2 is the delay, in sec, after the pulse.
d 0 is a delay or command prior to d . If $\mathrm{d} 0=a$, the wave is appended to the previous wave.
Examples: setwave('eburp1')
setwave('GARP 12000.0')
setwave('esnob 600-1248.2 190.0 n n 0.001')
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)

setwin Activate selected window (C)

Syntax: setwin (row<, column>)
Description: Activates a specific pane in the graphics window. Panes are numbered sequentially from left to right and top to bottom.
Arguments: row is the number of the row containing the pane to be activated.
column is the number of the column containing the pane to be activated.
Examples: setwin(3)
setwin (1,2)
See also: VnmrJ Liquids NMR
Related: Curwin Current window (P)
fontselect Open FontSelect window (C)
jwin Activate current window (M)

Description: Sets the start of the interferogram display in the first indirectly detected dimension.

Values: 0 to $(2 \times n i) /$ sw1, in seconds.
See also: VnmrJ Liquids $N M R$

| Related: | ni | Number of increments in 1st indirectly detected dimension (P) |
| :--- | :--- | :--- |
| | sf | Start of FID (P) |
| | Sw1 | Spectral width in 1st indirectly detected dimension (P) |
| | $\mathrm{wf1}$ | Width of interferogram in 1st indirectly detected dimension (P) |

Description: Sets the start of the interferogram display in the second indirectly detected dimension.

Values: 0 to $(2 \times$ ni2 $) /$ sw2, in seconds.
See also: VnmrJ Liquids NMR

| Related: | ni2 | Number of increments in 2nd indirectly detected dimension (P |
| :--- | :--- | :--- |
| Sf | Start of FID (P) | |
| | Sw2 | Spectral width in 2nd indirectly detected dimension (P) |
| | wf2 | Width of interferogram in 2nd indirectly detected dimension (P) |

sfrq Transmitter frequency of observe nucleus (P)
Description: Contains the frequency for the observe transmitter. sfrq is automatically set when $t n$ is changed, and it should not be necessary for the user to manually set this parameter.

Values: Number, in MHz.
See also: VnmrJ Liquids NMR

| Related: | $d f r q$ | Transmitter frequency of first decoupler (P) |
| :--- | :--- | :--- |
| | $d f r q^{2}$ | Transmitter frequency of second decoupler (P) |
| | $d f r q^{3}$ | Transmitter frequency of third decoupler (P) |
| | tn | Nucleus for observe transmitter (P) |

$$
\begin{array}{ll}
\text { tof } & \text { Frequency offset for observe transmitter }(\mathrm{P}) \\
\text { spcfrg } & \text { Display frequencies of rf channels }(\mathrm{M})
\end{array}
$$

sh2pul Set up for a shaped observe excitation sequence (M)

Applicability: Systems with waveform generators.
Syntax: sh2pul
Description: Behaves like standard two-pulse sequence S2PUL but with the normal hard pulses changed into shaped pulses from the waveform generator. The name of the shaped pulse associated with pw is pwpat and p1 is p1pat. Information about the specifics of power settings and bandwidths is available from the macros bandinfo and pulseinfo.
See also: User Programming
Related: bandinfo Shaped pulse information for calibration (M)
p1pat \quad Shape of an excitation pulse (P)
pwpat \quad Shape of refocusing pulse (P)
pulseinfo Shaped pulse information for calibration (M)
shdec Set up for shaped observe excitation sequence (M)
Applicability: Systems with waveform generators.
Description: Sets up the SHDEC pulse sequence that generates a shaped pulse on the observe channel using the waveform generator. It also allows for programmed (e.g.: multiselective) homodecoupling or solvent presaturation using the observe transmitter, and an optional gradient pulse following the excitation pulse.
See also: VnmrJ Liquids NMR
Related: Pbox Pulse shaping software (U)
shell Start a UNIX shell (C)
Syntax: shell<(command) >: \$var1, \$var2, . .
Description: Brings up a normal UNIX shell for the user. On the Sun, a pop-up window is created. On the GraphOn terminal, the entire terminal is used.
Arguments: command is a UNIX command line to be executed by shell. The default is to bring up a UNIX shell. If the last character in the command line is the symbol $\&$, the command is executed in background, which allows commands to be entered and executed while the shell command is still running. Note that if this background feature is used, any printed output should be redirected to a file. Otherwise, the output may pop up in the text window at random times.
shell calls involving pipes or input redirection (<) require either an extra pair of parentheses or the addition of ; cat to the shell command string.
\$var1, \$var2, . . . are names of variables to hold text lines that are generated as a result of the UNIX command. The default is to display the text lines. Each variable receives a single display line. shell always returns a text line; in many cases, it is a simple carriage return. To prevent this carriage return from being shown, capture it in a dummy variable, such as
shell('command'): \$dum
Examples: shell
shell('ps')
shell('ls -lt'): \$filelist
shell (systemdir+'/acqbin/Acqstat '+hostname+' \&')
shell('ls -t|grep May; cat')
or
shell('(ls -t|grep May)')
See also: VnmrJ Liquids NMR, User Programming
Related: shelli Start an interactive UNIX shell (C)
shelli \quad Start an interactive UNIX shell (C)
Syntax: shelli (command)

Description: On a terminal, runs interactively the UNIX command line given as the argument. No return or output variables are allowed.
Arguments: command is a UNIX command line to be executed.
Examples: shelli('vi myfile')
See also: VnmrJ Liquids NMR, User Programming
Related: shell Start a UNIX shell (C)
shim Submit an Autoshim experiment to acquisition (C)
Description: Performs validity checks on the acquisition parameters and then submits an Autoshim experiment to acquisition.
See also: VnmrJ Liquids NMR
Related:
au
change
ga
go
lock
sample
spin
su

Submit experiment to acquisition and process data (C)
Submit a change sample experiment to acquisition (M)
Submit experiment to acquisition and FT the result (C)
Submit experiment to acquisition (C)
lock Submit an Autolock experiment to acquisition (C)
sample Submit change sample, autoshim experiment to acquisition (M)
spin Submit a spin setup experiment to acquisition (C)
su
Submit a setup experiment to acquisition (M)
shimset \quad Type of shim set (P)
Description: Configuration parameter for the type of shims on the system. The value of shimset is set using the Shimset label in the CONFIG window (opened from config).
Values: 1 to 14 , where the value identifies one of the following shim sets:
1 is a shim set in a Varian 13 -shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{zlc}, \mathrm{z} 2, \mathrm{z} 2 \mathrm{c}, \mathrm{z} 3, \mathrm{z} 4$, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3$. Shims can be adjusted from -2047 to +2047 . This value is used with the Ultra•nmr shim system when operated from the HIM box (Varian 13 Shims choice in CONFIG window).
2 is a shim set in a Oxford 18 -shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{z} 1 \mathrm{c}, \mathrm{z2}, \mathrm{z2c}, \mathrm{z} 3, \mathrm{z} 4, \mathrm{z} 5$, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{xz2}$, $\mathrm{yz2}, \mathrm{zxy}, \mathrm{zx} 2 \mathrm{y} 2$. Shims can be adjusted from -2047 to +2047 (Oxford 18 Shims choice in CONFIG window).
3 is a shim set in a Varian 23 -shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{z2}, \mathrm{z} 3, \mathrm{z} 4, \mathrm{z5}, \mathrm{z6}$, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{xz2}, \mathrm{yz} 2$, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy. Shims can be adjusted from -32767 to +32767 (Varian 23 Shims choice in CONFIG window).
4 is a shim set in a Varian 28 -shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{z2}, \mathrm{z} 3, \mathrm{z4}, \mathrm{z5}, \mathrm{z6}, \mathrm{z} 7$, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{xz2}$, $y z 2, ~ z x y, ~ z x 2 y 2, ~ z 3 x, ~ z 3 y, ~ z 2 x 2 y 2, ~ z 2 x y, ~ z x 3, ~ z y 3, ~ z 4 x, ~ z 4 y$. Shims can be
adjusted from -32767 to +32767 (Varian 28 Shims choice in CONFIG window).
5 is a shim set in an Ultra•nmr shim system (39 shim channels) with computercontrolled axial shims $\mathrm{z} 1, \mathrm{z} 1 \mathrm{c}, \mathrm{z} 2, \mathrm{z} 2 \mathrm{c}, \mathrm{z} 3, \mathrm{z3c}, \mathrm{z} 4, \mathrm{z} 4 \mathrm{c}, \mathrm{z5}, \mathrm{z}, \mathrm{z} 7, \mathrm{z} 8$, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, z4x, z4y, z3x2y2, z3xy, z2x3, z2y3, z3x3, z3y3, z4x2y2, z4xy, $z 5 x$, z5y. Shims can be adjusted from -32767 to +32767 (Ultra Shims choice in CONFIG window).

6 is a shim set in a Varian 18 -shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3, \mathrm{z} 4, \mathrm{z} 5$, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{xz} 2, \mathrm{yz} 2, \mathrm{zxy}$, zx2y2. Shims can be adjusted from -32767 to +32767 (Varian 18 Shims choice in CONFIG window).
7 is a shim set in a Varian 20-shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3, \mathrm{z} 4, \mathrm{z} 5$, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{xz} 2, \mathrm{yz} 2, \mathrm{zxy}$, zx2y2, z3x, z3y. Shims can be adjusted from -32767 to +32767 (Varian 20 Shims choice in CONFIG window).
8 is a shim set in a Oxford 15 -shim supply with computer-controlled axial shims $z 1, z 2, z 3, z 4$, and radial shims $x 1, y 1, x z, y z, x y, x 2 y 2, z x 2 y 2, x z 2, y z 2, z x y$. Shims can be adjusted from -2047 to +2047 (Oxford 15 Shims choice in CONFIG window).
9 is a shim set in a Varian Ultra•nmr shim system II (40 shim channels) with computer-controlled axial shims z1, z1c, z2, z2c, z3, z3c, z4, z4c, z5, z6, z7, z8, and radial shims $\mathrm{x} 1, \mathrm{y} 1, \mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{x} 2 \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3, \mathrm{x} 4, \mathrm{y} 4, \mathrm{xz} 2, \mathrm{yz} 2, \mathrm{zxy}, \mathrm{zx} 2 \mathrm{y} 2$, z3x, z3y, z2x2y2, z2xy, zx3, zy3, z4x, z4y, z3x2y2, z3xy, z2x3, z2y3, z3x3, z3y3, z4x2y2, z4xy, z5x, z5y. Shims can be adjusted from -32767 to +32767 (Varian 40 Shims choice in CONFIG window).
10 is a shim set in a Varian 14-shim supply with computer-controlled axial shims z1, z1c, z2, z2c, z3, z4, z5, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3. Shims can be adjusted from -2047 to +2047 (Varian 14 Shims choice in CONFIG window).

11 is a shim set in a Varian 8-shim supply with computer-controlled axial shims $\mathrm{z} 1, \mathrm{z} 2$, and radial shims x1, y1, xz, yz, xy, x2y2. Shims can be adjusted from 32767 to +32767 (Whole Body Shims choice in CONFIG window).
12 is a shim set in a Varian 26 -shim supply with computer-controlled axial shims z1, z2, z3, z4, z5, and radial shims $x 1, y 1, x z, y z, x y, x 2 y 2, x 3, y 3, x z 2$, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, x4, y4. Shims can be adjusted from -32767 to +32767 (Varian 26 Shims choice in CONFIG window).
13 is a shim set in an Varian 29-shim supply with computer-controlled axial shims z1, z2, z3, z4, z5, z6, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, z4x, z4y, z5x, z5y. Shims can be adjusted from -32767 to +32767 (Varian 29 Shims choice in CONFIG window).
14 is a shim set in a Varian 35 -shim supply with computer-controlled axial shims z1, z2, z3, z4, z5, z6, and radial shims $x 1, y 1, x z, y z, x y, x 2 y 2, x 3, y 3, x 4$, y4, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, z4x, z4y, z3x2y2, z3xy, z4x2y2, z4xy, z5x, z5y. Shims can be adjusted from -32767 to +32767 (Varian 35 Shims choice in CONFIG window).
15 is the Varian 15 Shim.
16 is the Ultra 18 Shims.
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M
shimspath
Description: Contains an absolute path to a user's shims directory, which has files of shim settings. If shimspath exists for a user, it must be defined in the user's global parameter file, To create shimspath, enter.
create('shimspath','string','global').
See also: VnmrJ Liquids NMR
Related: rts Retrieve shim coil settings (C)
svs \quad Save shim coil settings (C)
showconsole Show UNITYINOVA console configuration parameters (U)
Description: Displays console hardware configuration parameters and system versions. This information is recorded during console bootup and represents the system hardware options recognized by the acquisition computer. The command is used mainly when troubleshooting or performing diagnostics.
See also: VnmrJ Liquids NMR
Related: ihwinfo Hardware status of ${ }^{\text {UNITY }}$ INOVA console (C)
showfit \quad Display numerical results of deconvolution (M)
Description: After a deconvolution, the results are written into file fitspec.outpar in an abbreviated format. showfit converts these data to an output format more suitable for examination and printing.
See also: VnmrJ Liquids NMR
Related: fitspec Perform spectrum deconvolution (C)
plfit Plot deconvolution analysis (M)
usemark Use "mark" output as deconvolution starting point (M)
showloginbox Shows operator login dialog (M)
Description: Shows the login dialog for operators.
showoriginal Restore first 2D spectrum in 3D DOSY experiment (M)
Description: Restores the first 2D spectrum in a 3D DOSY experiment (if it has been saved by the dosy macro).
See also: VnmrJ Liquids NMR
Related: dosy Process DOSY experiments (M)
showplotter Show list of currently defined plotters and printers (M)
Description: Shows a list of currently defined plotters and printers.
See also: VnmrJ Liquids NMR
Related: plotter Plotter device (P)
printer \quad Printer device (P)
showplotq Display plot jobs in plot queue (M)
Description: Displays current plot jobs in the plot queue for the active plotter.

See also: VnmrJ Liquids NMR
Related: killplot Stop plot jobs and remove from plot queue (C
showprintq Display print jobs in print queue (C)

showprintq \quad Display print jobs in print queue (M)

Description: Displays current print jobs in the print queue for the active printer.

See also: VnmrJ Liquids NMR

Related: killprint Stop print jobs and remove from print queue (C)
showplotq Display plot jobs in plot queue (M)
showstat Display information about status of acquisition (M,U)
Syntax: (From VnmrJ) showstat<(remote_system) > (From UNIX) showstat <remote_system>
Description: Displays information in the text screen about the status of acquisition on a spectrometer. The command is similar to Acqstat, but displays the information in a non-graphical manner and only once.
Arguments: remote_system is the host name of a remote spectrometer. The default is to display information about acquisition on the local system.
See also: VnmrJ Liquids NMR
Related: Acqstat Bring up the acquisition status display (U)

sin
 Find sine value of an angle (C)

Syntax: $\sin ($ angle) <: n>
Description: Finds the sine value of an angle.
Arguments: angle is the angle given in radians.
n is a return value giving the sine of angle. The default is to display the sine value in the status window.
Examples: $\sin (.5)$
sin(val):sin_val
See also: User Programming
Related: acos Find arc cosine of number (C)
$\arccos \quad$ Calculate arc cosine of real number (M)
arcsin Calculate arc sine of real number (M)
arctan Calculate arc tangent of real number (M)
asin Find arc sine of number (C)
atan \quad Find arc tangent of a number (C)
$\cos \quad$ Find cosine value of an angle (C)
$\exp \quad$ Find exponential value (C)
In \quad Find natural logarithm of a number (C)
tan Find tangent value of an angle (C)
sine \quad Find values for a sine window function (M)
Syntax: sine<(shift<,number_points<,domain>) >
Description: Calculates appropriate values for parameters sb and sbs (if the domain argument is ' $f 2^{\prime}$) or for parameters sb1 and sbs1 (if the domain argument is ' $\mathrm{f} 1^{\prime}$ ') in order to achieve a sine window function. The value of the parameter trace is used if the domain argument is not entered.

Arguments: If shift is greater than 1 , the sbs parameter is calculated as $2 *$ sb/shift ($\operatorname{sbs} 1$ is calculated as $2 *$ sb1/shift). sine (2) gives a "PI/2-shifted" sine window, i.e., cosine weighting. sine (3) gives a "PI/3" shifted sine window, etc. If shift is less than or equal to 1 , an unshifted sine window is used (sbs='n' or sbsl='n').
number_points specifies the number of real points that the window function spans. The value of the window function for subsequent points is 0 . number_points must be greater than 0 and a multiple of 2 . The default is ni*2 if trace='f1', or np if trace='f2'.
domain is ' $£ 1$ ' or ' $£ 2$ '. The default is the current setting of trace.
See also: VnmrJ Liquids NMR
Related:

| np | Number of data points (P) |
| :--- | :--- |
| sb | Sinebell const. in directly detected dimension (P) |
| sb1 | Sinebell const. in 1st indirectly detected dimension (P) |
| sbs | Sinebell shift const. in directly detected dimension (P) |
| sbs1 | Sinebell shift const. in 1st indirectly detected dimension (P) |
| sinesq | Find values for a sine squared window function (M) |
| trace | Mode for n-dimensional data display (P) |

sinebell Select default parameters for sinebell weighting (M)

Description: Generates initial guess at good sinebell weighting parameters by setting the sb and sb1 parameters to one-half the acquisition time and turning off all other weighting. Use sinebell in absolute-value 2D experiments only.
See also: VnmrJ Liquids NMR
Related: pseudo Set default parameters for pseudo-echo weighting (M)
sb \quad Sinebell const. in directly detected dimension (P)
sb1 Sinebell const. in 1st indirectly detected dimension (P)

sinesq \quad Find values for a sine-squared window function (M)

Syntax: sinesq<(shift<,number_points<,domain>) >
Description: Calculates appropriate values for parameters sb and sbs (if the domain argument is ' $f 2^{\prime}$) or for parameters sb1 and sbs 1 (if the domain argument is 'f1') in order to achieve a sine-squared window function. The value of parameter trace is used if the domain argument is not entered.

Arguments: shift sets the starting value for the window function. If shift is greater than 0 , the starting value is given by sin $\mathrm{p} /$ shift; otherwise, if shift is less than or equal to 0 , the starting value is 0 . The default value is 0 .
number_points specifies the number of real points that the window function spans. The value of the window function for subsequent points is 0 . The number_points argument must be greater than 0 and a multiple of 2 . The default is ni*2 iftrace='f1', or np if trace='f2'.
domain is ' f 1 ' or ' f 2 '. The default is the current setting of trace.
See also: VnmrJ Liquids NMR

| Related: | ni | Number of increments in 1st indirectly detected dimension (P) |
| :--- | :--- | :--- |
| | np | Number of data points (P) |
| | sb | Sinebell const. in directly detected dimension (P) |
| | sb1 | Sinebell const. in 1st indirectly detected dimension (P) |
| | sbs | Sinebell shift const. in directly detected dimension (P) |
| | sine | Find values for a sine window function (M) |
| | trace | Mode for n-dimensional data display (P) |

| size | Returns the number of elements in an arrayed parameter (0) | |
|---|---|---|
| Description: | In MAGICAL programming, an operator that returns the number of elements in an arrayed parameter. |
| Examples: | r1 = size('d2') |
| See also: | User Programming |
| Related: | arraydim Dimension of experiment (P) |
| | typeof \quad Return identifier for argument type (O) |
| | length Determine length of a string (C) |
| slfreq | Measured line frequencies (P) |
| Description: | Contains a list of measured line frequencies. In iterative spin simulation, a calculated spectrum is matched to the lines in the list. The spinll macro fills in slfreq from the last line listing or a mark operation. Use assign to make assignments between the measured lines and the calculated transitions. slfreq is a global parameter and is displayed by dla. |
| See also: | VnmrJ Liquids NMR |
| Related: | assign Assign transitions to experimental lines (M) |
| | cla Clear all line assignments (M) |
| | dla Display spin simulation parameter arrays (M) |
| | fitspec Perform spectrum deconvolution (C) |
| | mark Determine intensity of a spectrum at a point (C) |
| | spinll \quad Set up an slfreq array (M) |
| sliceorder | Reorder the slice position list (M) |
| Applicability: | Systems with the imaging capabilities. |
| Syntax: | sliceorder<('a'\|'d'|'i') > |
| Description: | Reorders the slice position list, pss, in ascending, descending, or alternating odd/even order. |
| | Alternating order is often used for multislice excitation to separate physically adjacent slices in time to reduce saturation effects. For example, if pss=-3,-$2,-1,0,1,2,3$ is reordered by alternating odd/even order, the result is pss $=-3,-1,1,3,-2,0,2$ so that the adjacent slices -1 and -2 , for example, are separated by three time intervals instead of just one. |
| Arguments: | ' a ' is a keyword to reorder the list in alternating odd/even order. This is the default. |
| | ' d ' is a keyword to reorder the list in descending order. |
| | ' i ' is a keyword to reorder the list in ascending order. |
| Examples: | sliceorder('d') |
| See also: | VnmrJ Imaging NMR |
| Related: | pss \quad Slice position (P) |

sliceplan Set slice parameters for target slice (M)

Applicability: Systems with imaging capabilities.
Description: Calculates and sets the slice parameters for the target slice defined in the file curexp+'/mark2d.out'. The slice parameters (i.e., pss, psi, phi, theta) are calculated and set by using sliceplan. The Calculate Target button of the slice planner menu also uses sliceplan. See the plan macro for further details.

See also: VnmrJ Imaging NMR

| Related: | curexp
 drawslice | Current experiment directory (P)
 Display target slices (M) |
| :--- | :--- | :--- |
| drawvox | Display target voxels (M) | |
| | plan | Display menu for planning a target scan (M) |
| voxplan | Set voxel parameters for voxel defined by 2D box cursor (M) | |

slp \quad Family of offset Frequencies of SLP shapes (P)
Applicability: Systems with LC-NMR or VAST accessory.
Syntax: slp(frequency offset from the trans transmitter)
Description: Specifies frequencies, in Hz, of Shifted Laminar Pulses (SLP) shapes used for suppression of solvent peaks. There are 6 members of the slp family, slp0 (solvent 1), slp (solvent 2), slp2 (solvent 3), slp3 (solvent 4), slp4 (solvent 5), slp6 (solvent 6), and slp6 (solvent 7). There is no slp1 parameter.

slw Spin simulation linewidth (P)

Description: Sets linewidth for individual transitions in the displayed spectrum. Only one linewidth is provided, so all transitions must be given the same linewidth. If the Set Params button is used in setting up spin simulation parameters, slw is automatically set to the measured linewidth of the tallest line displayed. slw is also the starting default linewidth for deconvolution calculations. This linewidth will be set automatically when deconvolution is operated using the menu mode and is bypassed if the usemark command has been used in conjunction with two cursor input.
Values: 0.01 to 1 e 6 . The typical value is 1 .
See also: VnmrJ Liquids NMR
Related: usemark Use "mark" output as deconvolution starting point (M)
smaxf \quad Maximum frequency of any transition (P)
Description: Sets the maximum frequency limit for the calculation of the final simulated spectrum. It should be set before the calculation is performed. If the Set Params button is used in setting up spin simulation parameters, smaxf is initialized to $\mathrm{sp}+\mathrm{wp}$; which assumes that you have already expanded the region of the spectrum that you wish to simulate before beginning the spin simulation process.
Values: -1 e 10 to 1 e 10 , in Hz . The typical value is the maximum chemical shift +50 .
See also: VnmrJ Liquids NMR
Related:

| sminf | Minimum frequency of any transition (P) |
| :--- | :--- |
| sp | Start of plot (P) |
| wp | Width of plot (P) |

sminf \quad Minimum frequency of any transition (P)

Description: Sets the minimum frequency limit for the calculation of the final simulated spectrum. It should be set before the calculation is performed. If the Set Params button is used in setting up spin simulation parameters, sminf is initialized to sp , which assumes that you have already expanded the region of the spectrum that you wish to simulate before beginning the spin simulation process.
Values: - 1 e 10 to 1 e 10 , in Hz . The typical value is 0 .

See also: VnmrJ Liquids NMR

| Related: | smaxf | Maximum frequency of any transition (P) |
| :--- | :--- | :--- |
| | sp | Start of plot (P) |
| | wp | Width of plot (P) |

smsport Sample Management System serial port connection (P)
Applicability: UNITY INOVA systems only.
Description: Sets which serial port on the host computer is connected to a Sample Management System (i.e., a sample changer). The value of smsport is set using the Sample Changer Serial Port label in the CONFIG window (opened from config).
Values: ' a ' sets the connection for serial port A . This value is the default.
' b ' sets the connection for serial port B .
See also: VnmrJ Installation and Administration; VnmrJ Liquids NMR
Related: config Display current configuration and possibly change it (M)
sn \quad Signal-to-noise ratio (P)
Description: Sets a ratio for testing signal-to-noise. The testsn macro checks whether a signal-to-noise ratio equal to sn has been achieved.
Values: Typical value is 35 .
See also: VnmrJ Liquids NMR

| Related: | dsn | Measure signal-to-noise (C) |
| :--- | :--- | :--- |
| | getsn | Get signal-to-noise estimate of a spectrum (M) |
| | testsn | Test signal-to-noise of a spectrum (M) |
| | testct | Check $c t$ for resuming signal-to-noise testing (M) |

solppm \quad Return ppm and peak width of solvent resonances (M)
Syntax: solppm:chemical_shift,peak_width
Description: Returns to the calling macro information about the chemical shift and peak spread of solvent resonances in various solvents for either ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$, depending on the observe nucleus tn and the parameter solvent. This macro is used "internally" by other macros only.
Arguments: chemical_shift returns the chemical shift of the solvent in ppm.
peak_width returns the approximate peak spread of solvent resonances.
See also: User Programming
Related: solvent Lock solvent (P)
tn \quad Nucleus for observe transmitter (P)

solvent Lock solvent (P)

Description: Contains one of a series of lock solvents from the /vnmr/solvents file, which contains the ${ }^{2} \mathrm{H}$ chemical shift of each lock solvent. By editing the file, additional solvents can be added. Values for solvent are not case- sensitive (e.g., solvent $=$ ' C6D6' and solvent='c6d6' are identical)

The auto_dir macro now controls most of the automation features, including setting the value of solvent.

Values: Standard values in /vnmr/solvents include:

| Deuterium Oxide | $\mathrm{CDCl3}$ | MethyleneChloride |
| :--- | :--- | :--- |
| D2O | Cyclohexane | MethylAlcohol-d4 |
| Acetone | C6D12 | CD2C12 |
| CD3COCD3 | Toluene | CD3OD |
| Benzene | C6D5CH3 | Chloroform |
| C6D6 | Acetic_Acid | |
| DMSO | CD3COOD | |

See also: VnmrJ Liquids NMR
Related: lastlk Last lock solvent used (P)
solvinfo Retrieve information from solvent table (C)
tof \quad Frequency offset for observe transmitter (P)
solvinfo Retrieve information from solvent table (C)
Syntax: solvinfo(solvent) : \$chemical_shift, \$name
Description: Retrieves solvent shift and solvent name from the solvent table.
Arguments: solvent is the name of a solvent from the /vnmr/solvents file. This argument is not case-sensitive (e.g., 'c6d6' is the same as 'C6D6').
chemical_shift returns the chemical shift of the solvent, in ppm.
name returns the name of the solvent. The name returned will match the case of the letters (upper or lower) in/vnmr/solvents.
Examples: solvinfo('acetone'):\$shift solvinfo('d2o'): \$shift,solvent
See also: VnmrJ Liquids NMR
Related: lookup Look up words and lines from a text file (C) solvent Lock solvent (P)

sort \quad Sort real values of a parameter (M)

Syntax: sort(parametername<,sortType>:order,val
Description: Sorts the real values of a parameter. The sort macro is not used for parameters holding string values. The default behavior is to the the array into values of increasing value. A sortType can be given to sort into descending order ('r').
If only unique values are wanted, the 'u' sortType can be used. The 'ru' sortType given unique values in descending order.
The name of a parameter is is the first argument to sort. Two return values hold the results of the sort. The first return value is an array containing the original indexes of the sorted array. The second return value gives the sorted array.

Examples: With par=10,8,6,4,2 the display('par') command will show:
$[1]=10$
$[2]=8$
$[3]=6$
$[4]=4$
$[5]=2$

The command sort ('par') : \$order, \$val will set:
\$order=5, 4, 3, 2, 1
\$val $=2,4,6,8,10$

Description: Low-frequency limit of the display or plotted region of the spectrum. sp is always stored in Hz , but can be entered in ppm by using the p suffix (e.g., $\mathrm{sp}=2 \mathrm{p}$ sets the start of plot to 2 ppm).

See also: VnmrJ Liquids NMR
Related: $\quad \mathrm{sp} 1 \quad$ Start of plot in 1st indirectly detected dimension (P)
sp2 Start of plot in 2nd indirectly detected dimension (P)
sp1 Start of plot in 1st indirectly detected dimension (P)
Description: Analogous to the sp parameter except that sp1 applies to the first indirectly detected dimension of a multidimensional data set.

See also: VnmrJ Liquids NMR
Related: $\quad \mathrm{sp} \quad$ Start of plot in directly detected dimension (P)
sp2 Start of plot in 2nd indirectly detected dimension (P)
sp2 Start of plot in 2nd indirectly detected dimension (P)
Description: Analogous to the sp parameter except that sp2 applies to the second indirectly detected dimension of a multidimensional data set.
See also: VnmrJ Liquids NMR
Related: $\mathrm{sp} \quad$ Start of plot in directly detected dimension (P)
spadd Add current spectrum to add/subtract experiment (C)
Syntax: (1) spadd<(multiplier<,shift>) >
(2) spadd ('new')
(3) spadd ('trace',index)

Description: Performs noninteractive spectral addition. The last displayed or selected spectrum is added to the current contents of the add/subtract experiment (exp5). A multi-element add/subtract experiment can be created using the ' new' keyword. Individual spectra in a multi-element add/subtract experiment can be subsequently added to using the 'trace' keyword followed by an index number of the spectrum.
Arguments: multiplier is a value to multiply each spectrum being added to the add/ subtract experiment (exp5). The normal range of multiplier would be +1 to -1 but the range is actually unlimited. The default is 1.0 .
shift is the number of data points to shift each spectrum. A positive value shifts the spectrum being added to a higher frequency, or to the left. A negative value shifts the spectrum to a lower frequency, or to the right. The default is 0 . ' new' is a keyword to create a new spectrum in the add/subtract experiment.
'trace' is a keyword to select the spectrum given by the index number argument (index) and add it to the add/subtract experiment. The default is to add to the first spectrum in the add/subtract experiment.
index is the index number of the spectrum to be used as a target in a multielement add/subtract experiment.
Examples: spadd
spadd (.5,25)
spadd('new')
spadd('trace',2)

See also: VnmrJ Liquids NMR

| Related: | add | Add current FID to add/subtract experiment (C) |
| :--- | :--- | :--- |
| addi | Start interactive add/subtract mode (C) | |
| clradd | Clear add/subtract experiment (C) | |
| ds | Display a spectrum (C) | |
| jexp | Join existing experiment (C) | |
| select | Select a spectrum without displaying it (C) | |
| spmin | Take minimum of two spectra in add/subtract experiment (C) | |
| spsub | Subtract current spectrum from add/subtract experiment (C) | |

spcfrq \quad Display frequencies of rf channels (M)

Description: Displays the parameters sfrq, dfrq, dfrq2, and dfrq3 with seven decimal points (to nearest 0.1) to provide the exact frequencies of each rf channel. The number of values displayed depends on numrfch.
Prior to VNMR version 4.3, spcfrq set the frequency of the observe channel. The parameter sfrq now sets the frequency instead of spcfrq.
See also: VnmrJ Liquids NMR

| Related: | $d f r q$ | Transmitter frequency of first decoupler (P) |
| :--- | :--- | :--- |
| | $d f r q 2$ | Transmitter frequency of second decoupler (P) |
| | dfrq3 | Transmitter frequency of third decoupler (P) |
| | numrfch | Number of rf channels (P) |
| setfrq | Set frequency of rf channels | |
| | sfrq | Transmitter frequency of observe nucleus (P) |

specde3d 3D spectral dc correction (P)
Description: Sets whether a 3D spectral dc correction occurs. The spectral dc correction is the last operation to be performed upon the data prior to forming linear combinations of the data, using the coefficients in the 3D coefficient file (coef), and then writing the data to disk. If specdc 3 d does not exist, it is created by the macro par3d.
Values: A three-character string selected from 'nnn', 'nny', 'nyn', etc. Each character may take one of two values: n for no spectral dc correction along the relevant dimension, and y for spectral dc correction along the relevant dimension. The first character refers to the f_{3} dimension ($s w, n p, f n$), the second character refers to the f_{1} dimension (sw1, ni, fn1), and the third character refers to the f_{2} dimension (sw2, ni2, fn2). The default is 'nnn'.
See also: VnmrJ Liquids NMR

| Related: | dc | Calculate spectral drift correction (C) |
| :--- | :--- | :--- |
| fiddc3d | 3D time-domain dc correction (P) | |
| fn | Fourier number in directly detected dimension (P) | |
| fn1 | Fourier number in 1st indirectly detected dimension (P) | |
| fn2 | Fourier number in 2nd indirectly detected dimension (P) | |
| ft3d | Perform a 3D Fourier transform (M) | |
| ni | Number of increments in 1st indirectly detected dimension (P) | |
| ni2 | Number of increments in 2nd indirectly detected dimension (P) | |
| np | Number of data points (P) | |
| par3d | Create 3D acquisition, processing, display parameters (C) | |
| ptspec3d | Region-selective 3D processing (P) | |
| sw | Spectral width in directly detected dimension (P) | |
| sw1 | Spectral width in 1st indirectly detected dimension (P) | |
| sw2 | Spectral width in 2nd indirectly detected dimension (P) | |

spin \quad Submit a spin setup experiment to acquisition (C)

Description: Regulates sample spinning according to the parameter spin, using the acquisition computer. It also sets rf frequency, decoupler status, and temperature.
See also: VnmrJ Liquids NMR
Related: a

| au | Submit experiment to acquisition and process data (C) |
| :--- | :--- |
| change | Submit a change sample experiment to acquisition (M) |
| ga | Submit experiment to acquisition and FT the result (C) |
| go | Submit experiment to acquisition (C) |
| lock | Submit an Autolock experiment to acquisition (C) |
| sample | Submit change sample, autoshim experiment to acquisition (M) |
| shim | Submit an Autoshim experiment to acquisition (C) |
| spin | Sample spin rate (P) |
| su | Submit a setup experiment to acquisition (M) |

spin Sample spin rate (P)

Description: Selects a regulated spin rate. The rate is changed when a sample is inserted or spin, go, ga, au, or sample are entered.
Values: 0 indicates non-spinning operation.
5 to 39 are spinning rates.
' n ' leaves the spin rate at the currently used value and does not wait for regulated spinning before performing acquisition.
See also: VnmrJ Liquids NMR

| Related: | au | Submit experiment to acquisition and process data (C) |
| :--- | :--- | :--- |
| | ga | Submit experiment to acquisition and FT the result (C) |
| go | Submit experiment to acquisition (C) | |
| | sample | Submit change sample, Autoshim experiment to acquisition (M) |
| | sethw | Set values for hardware in acquisition system (C) |
| | spin | Submit a spin setup experiment to acquisition (C) |

spincad Run SpinCAD program (C)

Applicability: SpinCAD Software.
Description: Opens the graphical pulse sequence generation utility.
See also: SpinCAD
Related: vnmr2sc VNMR to SpinCAD pulse sequence translator (M)
spingen \quad Compile SpinCAD pulse sequence (M, U)
Applicability: SpinCAD Software.

```
Syntax: (From VnmrJ)
spingen
spingen(pulsesequence)
spingen<(<option,>pulsesequence<,pulsesequence2>) >
spingen('-psg',pulsesequence)
spingen('-all',pulsesequence)
spingen('-dps',pulsesequence)
(From UNIX)
spingen pulsesequence < pulsesequence2,,>
spingen <option> pulsesequence < pulsesequence2,, >
spingen -psg pulsesequence
```

```
spingen -dps pulsesequence
spingen -all pulsesequence
```

Description: Compiles the SpinCAD pulse sequence. The most common usage is the first one (spingen, with no arguments), which compiles the current pulse sequence. Two or more options to SpinCAD compilation are: (1) '-psg ' option: compilation for the acquisition go command (2) ' -dps ' option: compilation for dps usage and (3)' -all ' option: include both of the above options and compilation of any Java programs that the pulse sequence may use.

The spingen macro with no arguments does both the go and dps compilations. Individual compilations for go (1 -psg ' option) and dps ($1-$ dps ' option) can also be done (these are rarely used)
In case of SpinCAD sequences and C sequences having the same name, the last compiled sequence will be used for the go command. The isspincad macro can be used to check if the current sequence is SpinCAD or of C type.
Compilation of a SpinCAD sequence generates two files in the user's seqlib directory, pulsesequence.psg and pulsesequence_dps.psg, for every source file pulsesequence. Compiled SpinCAD files are distinct from the C files, in that they have . psg extension in the filenames. Java program files (if used) must reside in ~/vnmrsys/spincad/classes directory. Java programs are compiled and the class files placed in the same ~/vnmrsys/ spincad/classes directory. The spingen macro checks for any Java files in /vnmr/spincad/classes directory, if it does not exit in the users's classes directory.
Compilation of a SpinCAD sequence differs from the conventional compilation of C sequences; it involves the expansion of any composites used; transformation of parallel events to a format that Jpsg program can resolve.
Arguments: <no option> - compilations for go and dps
-psg - compilation for go only
-dps - compilation for dps only
-all - compilations for go, dps, and also compile any Java programs called from the SpinCAD sequence.
See also: SpinCAD
Related: spincad Display SpinCAD interface(M)

spinll Set up a slfreq array (M)

Syntax: spinll<('mark') >
Description: Copies a list of frequencies to the slfreq parameter in iterative spin simulation and runs dla. This macro also clears previous line assignments.
Arguments: 'mark' is a keyword to copy the list of frequencies from the markid. out file to slfreq. The default is to copy the frequencies from the last line listing by nll or dll to the slfreq. Use the cursor and the mark button to place the lines to be assigned in markld. out. Enter mark ('reset') to clear the file, and use $n l$ to move the cursor to the center of a selected line.
See also: VnmrJ Liquids NMR
Related: dla Display line assignments (M)

| dll | Display listed line frequencies and intensities (C) |
| :--- | :--- |
| mark | Determine intensity of the spectrum at a point (C) |
| nl | Position the cursor at the nearest line (C) |
| nll | Find line frequencies and intensities (C) |
| slfreq | Measured line frequencies (P) |

spinner Open the Spinner Control window (C)

Description: Opens the Spinner Control window. This window has the following capabilities:

- Turn the sample spinner off.
- Turn the sample spinner on at a specified speed, in Hz .
- Enable spinner control from within an experiment using the spin parameter and the spin, go, ga, or au commands. This mode is the default.
- Alternatively, turn off experiment control of the sample spinner and allow only the Spinner Control window (and acqi and sethw) to set the spinning speed. This mode has the advantage that, often times, the spin parameter is different between experiments. Joining a different experiment and entering go can unexpectedly change the spinning speed. This alternate mode prevents this problem. In this mode, when a go, su, ga, or au is entered, the spin parameter is first set to the speed selected in the Spinner Control window and then the spin parameter is set to "Not Used."
- Select the style of spinner: low-speed style or a high-speed style. If the high-speed style of spinner (used for solids) is selected, the choice of setting the spinning speed or the air flow rate is provided. Setting the air flow rate is useful when setting up the solids spinning apparatus.
If the spinning speed is controlled only through the Spinner Control window, the action to be taken after a spinner error can be selected:
- Display a warning but continue acquisition.
- Stop acquisition and display a warning.

If experiment control of spinning speed is selected, these selections are faded because they are inoperative, and the selection of the action to be taken after a spinning speed error is provided by the parameter in.
See also: VnmrJ Liquids NMR

| Related: | acqi | Interactive acquisition display process (C) |
| :--- | :--- | :--- |
| au | Submit experiment to acquisition and process data (C) | |
| change | Submit a change sample experiment to acquisition (M) | |
| ga | Submit experiment to acquisition and FT the result (C) | |
| go | Submit experiment to acquisition (C) | |
| in | Lock and spin interlock (P) | |
| lock | Submit an Autolock experiment to acquisition (C) | |
| sample | Submit change sample, autoshim experiment to acquisition (M) | |
| sethw | Set values for hardware in acquisition system (C) | |
| shim | Submit an Autoshim experiment to acquisition (C) | |
| spin | Sample spin rate (P) | |
| su | Submit a setup experiment to acquisition (M) | |

spinopt \quad Spin automation (P)

Applicability: MERCURYplus/Vx systems.
Description: Specifies whether spin hardware is installed. The hardware is always present and spinopt=' Y ' is the default.

Values: ' y ' is the default.
' n ' disables spin hardware.

Syntax: spins<(options) >
Description: Performs a spin simulation, using the current spin system parameters. Refer to the description of spsm for setting up the parameters. Use dsp to display the spectrum resulting from the simulation. The output file is spins.list in the current experiment. This file includes the calculated transitions ordered by frequency.
Line assignments are required for the iteration. These consist of a list of observed frequencies, which is stored in the arrayed parameter slfreq, and the line assignments stored in the array clindex. spinll copies the frequencies from the last line listing by nll or dll into the parameter slfreq. The line listing can be from an observed spectrum or from the results of deconvolution. After spinll, line assignments are most easily made by entering assign. dla displays the assignments. Single assignments can also be made by assign (transition_number, line_number), where transition_number is the index of a transition and $\overline{1}$ ine_number is the index of the measured line. Setting the line_number argument to 0 deletes assignments. dla('long') produces an expanded display of assignments.
Be aware that spin simulation line numbers and line list line numbers are not the same. Conventional line lists produced by dll number the lines from left to right (low- to high-field). The spin simulation software numbers lines according to a more complicated scheme, and these numbers are rarely if ever in frequency order.
The parameters to be iterated are chosen by setting the string parameter iterate (e.g, iterate= 'A, B, JAB'). If several parameters have the same value due to symmetry, use iterate='A, B, C, JAB, JAC=JAB'. This string sets the iterated parameter JAC to JAB during the iteration. JAB must be defined as an iterated parameter in the string before it can be used at the right side of the equal sign. Sets of parameters with up to six members may be set up in this way. The member in the set that is used on the right side of the equal sign must always come first in the parameter display (e.g., JAB=JAC would be wrong). A parameter is held constant during iteration if it is not included in the iterate string.
The command initialize_iterate sets iterate to iterate all spins not named X, Y, or Z and the associated coupling constants.
Following an iterative spin simulation, dga displays the new values of the coupling constants and chemical shifts. undospins restores a spin system as it was before the last iterative run. It returns the chemical shifts, coupling constants, and line assignments, making it possible to continue from this state with modified line assignments.
Note that major changes in the starting values of parameters may change the numbering of the energy levels and hence the line numbers. The line assignments would then be incorrect and would have to be reentered.
For a successful iteration, it is often necessary to keep some parameters fixed. For example, it is sometimes useful to alternately iterate couplings and shifts, keeping one group fixed while the other is iterated independently.
Arguments: The following variations of spins are available:

- spins ('calculate', 'energy') puts an energy-level table in the output file.
- spins('calculate','transitions') puts a second table of transitions ordered by transition number in the output file.
- spins('display') and dsp are equivalent.
- spins('system','spinsystemname') and spsm('spinsystemname') are equivalent.
- spins ('iterate') runs interactively to match experimental and calculated lines.
- spins('iterate','iteration') lists parameters after each iteration in the output file.
- spins ('iterate'<,options>) provides for determining the chemical shifts and coupling constants to produce a spectrum that matches a table of observed lines. spins iterates until the rms (root-mean-square) error of the line matching meets a built-in test, unless it first reaches the value given by number_iterations. Iteration also stops if the rms error increases.
- Put multiple list options into the second argument, separated by a blank (e.g., spins('calculate','transitions energy')).

Examples:

spins
spins('calculate','energy')
spins('iterate')
See also: VnmrJ Liquids NMR

| Related: | assign
 clindex | Assign transitions to experimental lines (M)
 dga
 dla |
| :--- | :--- | :--- |
| dll | Index of experimental frequency of a transition (P) | |
| dsp | Display parameter groups (spin simulation) (C) | |
| initialize_iterate | Display line assignments (M) | |
| iterate | Display listed line frequencies and intensities (C) | |
| niter | Parameters to be iterated (P) | |
| nll | Number of iterations (P) | |
| slfreq | Find line frequencies and intensities (C) | |
| spinll | Measured line frequencies (P) | |
| spsm | Set up slfreq array (M) | |
| undospins | Enter spin system (M) | |
| | Restore spin system as before last iterative run (M) | |

split Split difference between two cursors (M)

Description: Repositions the left-hand cursor halfway between its original position and the position of the other cursor. This macro is very useful for finding the center of a powder pattern: place the two cursors on the horns of the pattern and then enter split to give the center.
See also: VnmrJ Liquids NMR; UNITY INOVA Solids Hardware Installation
Related: delta Difference of two frequency cursors (P)

spmax \quad Take the maximum of two spectra (C)

Description: Takes the maximum of two spectra, considered point-by-point in an absolutevalue sense. For example, if the two corresponding values are -2 and +3 , the spmax spectrum will have +3 ; if the two values are +2 and -3 , the spmax spectrum will have -3 at that point.
spmin Take minimum of two spectra in add/subtract experiment (C)
Description: Takes the minimum of two spectra, considered point-by-point in an absolutevalue sense. For example, if the two corresponding values are -2 and +3 , the spmin spectrum will have -2 ; if the two values are +2 and -3 , the spmin spectrum will have +2 at that point.

The function of spmin is to essentially select for common features within two spectra while eliminating features that are not common between them. In particular, if two CP/MAS spectra are obtained at different spin rates, the peaks stay in the same place (and hence the spmin spectrum also contains the same peaks), but the sidebands move. If spectrum 1 has baseline where spectrum 2 has sideband, and spectrum 2 has baseline where spectrum 1 has sideband, then the spmin spectrum will contain only baseline in these regions, eliminating the spinning sidebands.
See also: VnmrJ Liquids NMR
Related: addi Start interactive add/subtract mode (C)
spadd Add current spectrum to add/subtract experiment (C)
spsub \quad Subtract current spectrum from add/subtract experiment (C)

Enter spin system (M)

Syntax: spsm(spin_system)
Description
Enables entry of the spin system for spin simulation and creates and initializes the appropriate parameters to describe the various chemical shifts and coupling constants. Chemical shifts can be entered for the X-nucleus, and the spectrum is calculated if that shift is in the window. Generally, however, it is not necessary to enter the X-nucleus chemical shift, and its value has no effect on the spectrum of the remainder of the spin system.

Arguments: spin_system is an alphanumeric string of upper-case letters for chemical shift and coupling constant parameters. Chemical shifts are stored in parameters A through Z , and the coupling constants are stored in the parameters starting with JAB and ending with JYZ. Different nucleus types are handled by using letters starting with A for the first type, X for the second, and M for the third.
Once created, these parameters are entered and modified in the usual way (e.g., $A=78.5 \mathrm{JAC}=5.6$). Entry of chemical shifts in ppm is entered by using sfrq (e.g., $B=7.5 *$ sfrq).

Examples: spsm('AB')
spsm('A3B2')
spsm ('AB2CMXY')
See also: VnmrJ Liquids NMR
Related: sfrq Transmitter frequency of observe nucleus (P)
spins \quad Perform spin simulation calculation (C)

spsub \quad Subtract current spectrum from add/subtract experiment (C)

Syntax: (1) spsub<(multiplier<,shift>) >
(2) spsub ('new')
(3) spsub ('trace', index)

Description: Performs non-interactive spectral subtraction. The last displayed or selected spectrum is subtracted from the current contents of the add/subtract experiment ($\exp 5$). A multi-element add/subtract experiment can be created using the ' new' keyword. Individual spectra in a multi-element add/subtract experiment can be subsequently subtracted from using the 'trace' keyword followed by an index number of the spectrum.

Arguments: multiplier is a value to multiply each spectrum being subtracted from the add/subtract experiment (exp5). The normal range of multiplier would be +1 to -1 but is actually unlimited. The default is 1.0 .
shift is the number of data points to shift each spectrum. A positive value shifts the spectrum being added to a higher frequency, or to the left. A negative value shifts the spectrum to a lower frequency, or to the right. The default is 0 . ' new' is a keyword to create a new spectrum in the add/subtract experiment. 'trace' is a keyword to select the spectrum given by the index number argument (index) and subtract it from the add/subtract experiment. The default is to subtract from the first spectrum in the add/subtract experiment. index is the index number of the spectrum to be used as a target in a multielement add/subtract experiment.
Examples: spsub
spsub (.5,25)
spsub('new')
spsub('trace', 2)
See also: VnmrJ Liquids NMR
Related:

| clradd | Clear add/subtract experiment (C) |
| :--- | :--- |
| ds | Display a spectrum (C) |
| jexp | Join existing experiment (C) |
| spadd | Add current spectrum to add/subtract experiment (C) |
| select | Select a spectrum without displaying it (C) |
| spmin | Take minimum of two spectra in add/subtract experiment (C) |
| sub | Subtract current FID from add/subtract experiment (C) |

sqcosine \quad Set up unshifted cosine-squared window function (M)
Syntax: sqcosine< (<t1_inc><,t2_inc>) >
Description: Sets up an unshifted cosine-squared window function in 1,2 , or 3 dimensions. The macro checks whether the data is $1 \mathrm{D}, 2 \mathrm{D}$, and 3 D .

Arguments: $t 1$ _inc is the number of $t 1$ increments. The default is ni.
t2_inc is the number of t 2 increments. The default is ni2.
See also: VnmrJ Liquids NMR
Related: gaussian Set up unshifted Gaussian window function (M)
ni \quad Number of increments in 1st indirectly detected dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
pi3ssbsq Set up pi/3 shifted sinebell-squared window function (M)
pi4ssbsq Set up pi/4 shifted sinebell-squared window function (M)
sqsinebell Set up unshifted sinebell-squared window function (M)

sqdir \quad Study queue directory (P)

Description: Specifies the fullpath directory where a study is stored. It is set when a new study is created.
See also: autodir (P), globalauto (P), studyid(P$)$, sqname (P)

sqname

Description:

Study queue parameter template (P)

Stores a string in the global tree that determines where a study is stored. It is set from the Save data setup dialog in the Utilities menu. Dollar signs (\$) are used to delimit a string to search for a parameter to be used in the study file name. Percent signs (\%) are used to delimit a numeric extension, e.g. $\% \mathrm{Rn} \%$, or time specifications. Strings from the sampleinfo file are not used, since studies are created in foreground, not automation. Text not delimited by dollar signs or percent signs is copied from sqname without any changes.

If sqname does not start with a slash mark (/), the study is stored in the path given by autodir or globalauto; otherwise the name is used as is. A revision number is automatically appended. Values: If sqname is a null string, it defaults to $\%$ R 2%, and the resulting study id is a two-digit revision number. Note that the resulting path and file name must be accessible (with read-write permission) by that user.
Examples: sqname='s_\%DATE\%_\%R3\%' studyid='s_20040501_001'
sqname='s_\$loc\$_' studyid='s_7_01'
sqname= 'r\$vrack\$z\$vzone\$/well\$loc\$\%R0\%'
studyid='rlz3/well16'
See also: autodir(P), autoname(P), globalauto(P), sqdir(P), studyid(P)

sqrt \quad Return square root of a real number (0)

Description: In MAGICAL programming, an operator that returns the square root of a real number. If the argument is negative, sqrt evaluates to 0.0 .

| Examples: | a $=$ sqrt (b) | |
| ---: | :--- | :--- |
| See also: | User Programming | |
| Related: | acos | Find arc cosine of number (C) |
| | arccos | Calculate arc cosine of real number (M) |
| | arcsin | Calculate arc sine of real number (M) |
| | arctan | Calculate arc tangent of real number (M) |
| | asin | Find arc sine of number (C) |
| | atan | Find arc tangent of a number (C) |
| | cos | Find cosine value of an angle (C) |
| | exp | Find exponential value (C) |
| | ln | Find natural logarithm of a number (C) |
| | tan | Find tangent value of an angle (C) |
| | trunc | Truncates real numbers (O) |
| | typeof | Return identifier for argument type (O) |

sqsinebell Set up unshifted sinebell-squared window function (M)
Syntax: sqsinebell<(<t1_inc><,t2_inc>) >
Description: Sets up an unshifted sinebell-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is $1 \mathrm{D}, 2 \mathrm{D}$, and 3 D .

Arguments: t 1 _inc is the number of tl increments. The default is ni.
t2_inc is the number of t 2 increments. The default is ni2.
See also: VnmrJ Liquids NMR
Related: gaussian Set up unshifted Gaussian window function (M
ni \quad Number of increments in 1st indirectly detected dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
pi3ssbsq Set up pi/3 shifted sinebell-squared window function (M)
pi4ssbsq Set up pi/4 shifted sinebell-squared window function (M)
sqcosine Set up unshifted cosine-squared window function (M)

srate \quad Spinning rate for magic angle spinning (P)

Applicability: Systems with solids module.
Description: Set to the spinning speed for magic angle spinning (MAS). srate must be correct for the pulse sequence set up by xpolar1 to run TOSS or dipolar
dephasing correctly. If hsrotor= ' Y ', the measured spinning speed is reported in srate for systems that have rotor synchronization.
Values: 0 to 10^{7}, in Hz .
See also: User Guide: Solid-State NMR
Related: hsrotor Display rotor speed for solids operation (P)
xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)

sread Read converted data into VnmrJ (C)

Syntax: sread (file<,template>)
Description: Reads 32-bit data files into VnmrJ. For Bruker data files in the AMX and AM formats, each file must first be converted using the convertbru command before sread can read the data in the file into VnmrJ.
Arguments: file is the name of a file containing data converted using convertbru.
template is the full path of a parameter template file, but without appending the . par extension on the file name. The default is bruker.par. If no parameter template is specified and bruker. par cannot be found in the user or system parlib directory, sread aborts with an error message.
Examples: sread('brudata.cv','/vnmr/parlib/bruker')
See also: VnmrJ Liquids NMR
Related: convertbru Convert Bruker data (M,U)

ss

Steady-state transients (P)
Description: Sets the number of complete executions of the pulse sequence not accompanied by data collection prior to the acquisition of the real data (sometimes known as dummy scans). If ss is positive, ss steady-state transients are applied on the first increment only, and if ss is negative, -ss steady-state transients are applied at the start of each increment.
Values: 'n', -32768 to 32767
See also: VnmrJ Liquids NMR; User Programming
ssecho Set up solid-state echo pulse sequence (M)
Applicability: Systems with a solids module. Not supplied with MERCURYplus/Vx.
Syntax: ssecho
Description: Converts a standard two-pulse experiment to a ready-to-run solid-state NMR echo (SSECHO) pulse sequence.
See also: User Guide: Solid-State NMR
ssecho1 Set up parameters for SSECHO1 pulse sequence (M)
Applicability: UNITY INOVA system with a wideline solids module. Not supplied with MERCURYplus/Vx.
Description: Sets up a parameter set for the quadrupole echo pulse sequence SSECHO1.
See also: User Guide: Solid-State NMR

ssfilter \quad Full bandwidth of digital filter to yield a filtered FID (P)

Description: Specifies the full bandwidth of the digital filter applied to the original FID to yield a filtered FID for solvent subtraction. If ssfilter does not exist in the current experiment, enter addpar ('ss') to add it. The command addpar('ss') creates additional time-domain solvent subtraction parameters ssfilter, sslsfrq, ssntaps, and ssorder.
Values: ' n ', 10 to $\mathrm{sw} / 2$, in steps of 0.1 Hz . The default is 100 Hz .
If ssfilter is set to a value and ssorder is set to some value, the zfs (zerofrequency) option of solvent subtraction is selected.
If ssfilter is set to 'n', ("Not Used"), both the lfs (low-frequency suppression) and zfs options are turned off.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
ft Fourier transform 1D data (C)
parfidss Create parameters for time-domain solvent subtraction (M)
ssntaps Number of coefficients in the digital filter (P)
sslsfrq Center of solvent-subtracted region of spectrum (P)
ssorder \quad Order of polynomial to fit digitally filtered FID (P)
sw \quad Spectral width in directly detected dimension (P)
wft Weight and Fourier transform 1D data (C)

sslsfrq Center of solvent-suppressed region of spectrum (P)

Description: Specifies the location of the center of the solvent-suppressed region of the spectrum. If sslsfrq does not exist in the current experiment, enter addpar ('ss') to add it. addpar ('ss') also creates time-domain solvent subtraction parameters ssfilter, ssntaps, and ssorder.

Values: ' n ' (or 0) specifies solvent suppresses a region centered about the transmitter frequency. This is the default
Non-zero value shifts the solvent-suppressed region by sslsfrq Hz. Multiple regions may be suppressed by arraying the value of sslsfrq. Up to 4 values are allowed.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
parfidss Create parameters for time-domain solvent subtraction (M)
ssfilter Full bandwidth of digital filter to yield a filtered FID (P)
ssntaps Number of coefficients in the digital filter (P)
ssorder Order of polynomial to fit digitally filtered FID (P)
ssntaps \quad Number of coefficients in digital filter (P)
Description: Specifies the number of taps (coefficients) to be used in the digital filter for solvent subtraction. If ssnt aps does not exist in the current experiment, enter addpar ('ss') to add it. addpar ('ss') also creates time-domain solvent subtraction parameters ssfilter, sslsfrq, and ssorder.
Values: Integer from 1 to $\mathrm{np} / 4$. The default is 121 . An odd number is usually best.
The more taps in a filter, the flatter the passband response and the steeper the transition from passband to stopband, giving a more rectangular filter.
For the lfs (low-frequency suppression) option, the default is suitable.
For the zfs (zero-frequency suppression) option, a value between 3 and 21 usually works better.

See also: VnmrJ Liquids NMR

| Related: | addpar | Add selected parameters to the current experiment (M) |
| :--- | :--- | :--- |
| ft | Fourier transform 1D data (C) | |
| ni | Number of increments in 1st indirectly detected dimension (P) | |
| | np | Number of points (P) |
| parfidss | Create parameters for time-domain solvent subtraction (M) | |
| ssfilter | Full bandwidth of digital filter to yield a filtered FID (P) | |
| | sslsfrq | Center of solvent-suppressed region of spectrum (P) |
| ssorder | Order of polynomial to fit digitally filtered FID (P) | |
| wft | Weight and Fourier transform 1D data (C) | |

ssorder \quad Order of polynomial to fit digitally filtered FID (P)

Description: Specifies the order of the polynomial to fit the digitally filtered FID if the zfs (zero-frequency suppression) option is selected for solvent subtraction. ssorder is not used if the lfs (low-frequency suppression) option is selected. If ssorder does not exist in the current experiment, enter addpar ('ss') to add it. addpar ('ss') also creates time-domain solvent subtraction parameters ssfilter, sslsfrq, and ssntaps.
The solvent subtraction option (zfs or lfs) is selected as follows:

- If ssorder and ssfilter are both set to values, zfs is selected.
- If ssorder='n' and ssfilter is set to a value, lfs is selected.
- If ssorder='n' and ssfilter='n', zfs and lfs are both turned off.

Values: ' n ', integer from 1 to 20 . The default is ' n '.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
parfidss Create parameters for time-domain solvent subtraction (M)
ssfilter Full bandwidth of digital filter to yield a filtered FID (P)
sslsfrq Center of solvent-suppressed region of spectrum (P)
ssntaps Number of coefficients in the digital filter (P)
wft Weight and Fourier transform 1D data (C)

ssplan Set slice parameters for target slice (M)

Applicability: Systems with imaging capabilities.
Description: Used by the Calculate Target button of the slice planner menu to calculate and set the slice parameters pss, psi, phi, and theta. ssplan creates the string parameter planlock and assigns it the value 'ssplan '. This prevents a user inadvertently performing a second planning operation without applying the reset command to restore the original parameters for the scout data.
See also: VnmrJ Imaging NMR

| Related: | drawslice | Display target slices (M |
| ---: | :--- | :--- |
| | plan | Display menu for planning a target scan (M |
| phi | Euler angle phi from magnet frame (P)) | |
| | psi | Euler angle psi from magnet frame (p) |
| | pss | Slice position (P) |
| | theta | Euler angle theta from magnet frame (P) |

sslist \quad Conjugate gradient list (P)

Applicability: Systems with imaging capabilities.

Description: Sets an array of strings that defines the names of gradient parameters used for slice or voxel selection. If the pulse performs no slice selection operation, the user may enter ' ' or ' n ' for the value of sslist (e.g., sslist='n','gss','gss'). The nD, seqcon, plist, patlist, pwrlist, fliplist, and sslist parameters configure a particular parameter set for an application sequence defined by the value of the seqfil parameter. The plist, patlist, pwrlist, fliplist, and sslist parameters provide information concerning the rf pulse and conjugate gradients used by the sequence.
See also: VnmrJ Imaging NMR

| Related: | fliplist | Standard flip angle list (P) |
| :--- | :--- | :--- |
| | $n D$ | Application dimension (P) |
| | patlist | Active pulse template parameter list (P) |
| | plist | Active pulse length parameter list (P) |
| | pwrlist | Active pulse power level parameter list (P) |
| | seqcon | Acquisition loop control (P) |
| | seqfil | Application object code name (P) |

ssprep \quad Calculate slice gradient and slice selection parameters (M)
Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Calculates the slice gradient parameter, $g s s$, and the slice selection parameters, tpwr1 and tpwr2, for use in the EPI experiment. Unlike imprep, readout and phase encode related parameters are not modified by ssprep.

See also: VnmrJ Imaging NMR
Related: gss Slice selection gradient strength (P)
imprep Calculate gradient and rf parameters for imaging (M)
tpwr1 Intensity of an excitation pulse (P)
tpwr2 Intensity of an inversion pulse (P)
stack \quad Stacking mode for processing and plotting arrayed spectra (M)
Syntax: stack (mode)
Description: When processing and plotting arrayed 1D spectra, VnmrJ automatically determines if the stacking mode is horizontal, vertical or diagonal from the number of traces and the number of lines in the spectrum. If you do not want this automatic function (or it makes an undesirable decision), you can override it by placing the stack macro in the experiment startup macro or by calling stack before processing (or reprocessing) a spectrum. The macro autostack switches back to automatic determination of the stack mode by destroying the parameter stackmode.
Arguments: mode is one of the stacking modes 'horizontal', 'vertical', or 'diagonal'.
See also: VnmrJ Liquids NMR
Related: autostack Automatic stacking for processing and plotting arrays (M)
procarray Process arrayed 1D spectra (M)
plarray Plot arrayed 1D spectra (M)
stackmode Stacking control for processing (P)

stackmode Stacking control for processing arrayed 1D spectra (P)

Description: Controls whether stacking for processing arrayed 1D spectra is automatic or nonautomatic. The automatic stacking mode can be overridden by creating and setting stackmode in the startup macro or before calling procplot or procarray. The autostack macro switches back to automatic determination of the stack mode by destroying this parameter.
Values: 'horizontal','vertical', or 'diagonal'.
See also: VnmrJ Liquids NMR
Related: autostack Automatic stacking for processing and plotting arrays (M)
procarray Process arrayed 1D spectra (M)
procplot Automatically process FIDs (M)
stack Fix stacking mode for processing and plotting arrayed spectra (M)

startIplan Start/restart image planning (C)

Applicability: Systems with imaging capabilities.
Syntax: startIplan<(type) >
Description: Starts/restarts image planning with the Active prescription, and sets the default type as type.
Values: type is an integer. If type is not given, type $=0$; if type $=-1$, type is determined by current parameters.
See also: VnmrJ Imaging User Guide: Image Processing
Related: gplan Start interactve image planning (C)

startMovie Start running a movie (C)

Applicability: Systems with imaging capabilities.
Description: Start running the current movie. It is run in the first selected frame, or if none is selected, in the first frame.

See also: VnmrJ Imaging User Guide: Image Processing
Related: stopMovie (C)

status Display status of sample changer (C,U)

Applicability: Systems with an automatic sample changer.
Syntax: status<(directory<,config_file>) >
(From UNIX) status directory <config_file>
Description: Displays a status window with a summary of all experiments and a scrollable list of individual experiments. Individual experiments are selected by clicking anywhere on the experiment of interest. status updates as the state of an automation run changes. If an experiment finishes or a new experiment is added, the status display is updated.
Arguments: directory is the path to the directory where the done queue (doneQ) is stored. In the UNIX shell, a directory path is required. In VnmrJ, a directory path is optional. The default is the automation mode directory.
config_file is the name of a user-supplied file that customizes status for local use. Refer to the manual User Programming for details.
Examples: (From VnmrJ) status
(From VnmrJ) status ('/home/vnmr1/AutoRun_621')
(From UNIX) status /home/vnmr1/AutoRun_621 mystatus
See also: VnmrJ Walkup NMR; User Programming
Related: autodir Automation directory absolute path (P)Prefix for automation data file (P)
autoname \quad Prefix for automation data file (P)
enter \quad Enter sample information for automation run (C,U)
std1d Execute protocol actions of apptype std1d (M)
Applicability: Liquids systems.
Description: This macro is used to execute the protocol actions of the std1d apptype.
Examples:
std1d('setup') - execute std1d experimental setup
std1d('process') - execute std1d processing
std1d('plot') - execute std1d plotting
stdshm Interactively create a method string for autoshimming (M)
Syntax: stdshm
Description: Creates a method string to be used in adjusting the spinning controls z1, z2,
z 3 , and z 4 when a sample is changed. If non-spin controls also need adjusting,
further shimming operations are required.
The method string is constructed in answer to questions about the sample
length, the time available for shimming, and the solvent T_{1} or, in FID shimming,
the T_{1} of the sample. In asking about sample height, stdshm assumes that z3
and z4 need adjusting only with short samples; therefore, select "sample height
will vary" if z3 and z 4 shimming is definitely wanted.
Try lock shimming first to see if it produces a satisfactory result. Lock
shimming requires a much shorter shimming time than FID shimming and
usually adjusts z1 and z2 just as well. If lock shimming is unsatisfactory, try FID
shimming. Again, when z3 and z4 adjustment is required, lock shimming is
faster, but FID shimming is more effective. stdshm displays the estimated
shimming time, permitting revision when the time is too long.
To shim after running stdshm, enter method= ' std ' (for lock shimming) or
method='fidstd' (for FID shimming). Then enter shim or set the wshim
parameter to shim before the start of acquisition.
Note that the command newshm is much like stdshm but that newshm
provides more flexibility in making method strings
See also: VnmrJ Liquids NMR
Related: dshim Display a shim method string (M)
method Autoshim method (P)
newshm Interactively create a shim method with options (M)
shim Submit an Autoshim experiment to acquisition (C)
wshim Conditions when shimming is performed (P)
steam
Set up volume localized spectroscopy sequence (M)
Applicability: Systems with optional Imaging Pulse Sequences installed.
Description: Sets up a sequence for volume localized spectroscopy that uses the stimulated echo technique.
See also: VnmrJ Imaging NMR
stepMovie \quad Step one frame in a movie (C)
Syntax: stepMovie('+' | '-')

Description: Shows either the next frame (with the $\quad{ }^{+}+$argument) or the previous frame (with the $'$ - ' argument) of the current movie.
Examples: stepMovie('+')
See also: VnmrJ Imaging User Guide: Image Processing
Related: startMovie
stopMovie
sth Minimum intensity threshold (P)
Description: Intensity threshold above which transitions are printed and included in the simulated spectrum. Transitions whose intensity falls below this threshold are omitted from the simulation.

Values: 0 to 1.00 . A typical value is 0.05 .
See also: VnmrJ Liquids NMR
Related: spins Perform spin simulation calculation (C)
spsm Enter spin system (M)
th Threshold (P)

stopMovie Stop running a movie (C)

Description: Stops the current movie, if it is running.
See also: VnmrJ Imaging User Guide: Image Processing
Related: startMovie
string \quad Create a string variable (C)
Syntax: string (variable)
Description: Creates a string variable without a value.
Arguments: variable is the string variable to be created.
Examples: string('strvarl')
See also: User Programming

strtext \quad Starting point for LP data extension in np dimension (P)

Description: Specifies inclusively the complex time-domain data point at which LP (linear prediction) data extension (alteration) is to begin in the np dimension. Enter addpar ('lp') to create strtext and other np dimension LP parameters in the current experiment.
Values: 1 to $\mathrm{np} / 2$
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
$\mathrm{np} \quad$ Number of data points (P)
strtlp Starting point for LP calculation in np dimension (P)

strtext1 Starting point for LP data extension in ni dimension (P)

Description: Specifies inclusively the complex time-domain data point at which LP (linear prediction) data extension (alteration) is to begin in the ni dimension. Enter
addpar ('lp',1) to create strtext1 and other ni dimension LP parameters in the current experiment.
Values: 1 to ni/2
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpalg1 LP algorithm in ni dimension (P)
ni \quad Number of increments in 1st indirectly detected dimension (P)
strtlp1 Starting point for LP calculation in ni dimension (P)
strtext2 Starting point for LP data extension in ni2 dimension (P)
Description: Specifies inclusively the complex time-domain data point at which LP (linear prediction) data extension (alteration) is to begin in the ni2 dimension. Enter addpar ('lp', 2) to create strtext2 and other ni2 dimension LP parameters in the current experiment.
Values: 1 to ni2/2
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpalg2 LP algorithm in ni2 dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
strtlp2 Starting point for LP calculation in ni2 dimension (P)
strtlp \quad Starting point for LP calculation in np dimension (P)
Description: Specifies the first complex, time-domain data point to be used in calculating the complex linear prediction (LP) coefficients in the np dimension. If
lpopt = 'b', the strtlp-th complex time-domain data point and the ensuing ($2 * l p f i l t-1$) data points are used in this calculation. If lpopt='f', the strtlp-th complex time-domain data point and the preceding
($2 * l p f i l t-1$) data points are used in this calculation. Enter
addpar ('lp') to create strtlp and other np dimension LP parameters in the current experiment.
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
lpfilt LP coefficients to calculate in np dimension (P)
lpnupts \quad LP number of data points in np dimension (P)
lpopt LP algorithm data extension in np dimension (P)
strtext Starting point for LP data extension in np dimension (P)

strtlp1 Starting point for LP calculation in ni dimension (P)

Description: Specifies the first complex, time-domain data point to be used in calculating the complex linear prediction (LP) coefficients in the ni dimension. It functions analogously to strlp. Enter addpar ('lp', 1) to create strtlpl and other ni dimension LP parameters in the current experiment.
See also: VnmrJ Liquids NMR

| Related: | addpar | Add selected parameters to the current experiment (M) |
| :--- | :--- | :--- |
| lpalg1 | LP algorithm in ni dimension (P) | |
| lpfilt1 | LP coefficients to calculate in ni dimension (P) | |
| | lpnupts1 | LP number of data points in ni dimension (P) |

```
lpopt1 LP algorithm data extension in ni dimension (P)
strtext1 Starting point for LP data extension in ni dimension (P)
```


strtlp2 Starting point for LP calculation in ni2 dimension (P)

Description: Specifies the first complex, time-domain data point to be used in calculating complex linear prediction (LP) coefficients in the ni2 dimension. strtlp2 functions analogously to strlp. Enter addpar ('lp', 2) to create strtlp2 and other ni 2 dimension LP parameters in the current experiment.

See also: VnmrJ Liquids NMR

Related: addpar Add selected parameters to the current experiment (M)
lpalg2 LP algorithm in ni2 dimension (P)
lpfilt2 LP coefficients to calculate in ni2 dimension (P)
lpnupts2 LP number of data points in ni2 dimension (P)
lpopt2 LP algorithm data extension in ni2 dimension (P)
strtext2 Starting point for LP data extension in ni2 dimension (P)
studyid Study identification (P)
Description: Specifies the relative directory where a study is stored. In Walkup, it is relative to autodir. In imaging, it is relative to global auto; It is set when a new study is created.
See also: autodir (P), globalauto (P), sqdir (P), sqname (P)

Submit a setup experiment to acquisition (M)

Description: Sets up the system hardware to match the current parameters but does not initiate data acquisition. Typical uses of su are to change the system frequency in preparation for probe tuning, to change the sample temperature in advance of beginning an experiment (or after a variable temperature experiment is run), and to turn the decoupler on or off. If load= ' y ', su can be used to set shim values. su also sets lock parameters (lockpower, lockgain, lockphase) and the field offset parameter (z0).
su does not delete any existing data in the current experiment (only go, ga, and au do that). Everything that su does is also done by go, ga, and au.
On UNITY INOVA systems, shim DAC values are automatically loaded when the acquisition system boots up; if the acquisition system has been recently rebooted, su must be entered before acqi or qtune can be run.
See also: VnmrJ Liquids NMR
Related:

| acqi | Interactive acquisition display process (C) |
| :--- | :--- |
| au | Submit experiment to acquisition and process data (C) |
| change | Submit a change sample experiment to acquisition (M) |
| ga | Submit experiment to acquisition and FT the result (C) |
| go | Submit experiment to acquisition (C) |
| load | Load status of displayed shims (P) |
| lock | Submit an Autolock experiment to acquisition (C) |
| lockgain | Lock gain (P) |
| lockphase | Lock phase (P) |
| lockpower | Lock power (P) |
| qtune | Tune probe using swept-tune graphical tool (C) |
| sample | Submit change sample, autoshim experiment to acquisition (M) |
| shim | Submit an Autoshim experiment to acquisition (C) |

spin Submit a spin setup experiment to acquisition (C)
z0 Z0 field position (P)

sub Subtract current FID from add/subtract experiment (C)

Syntax: (1) sub<(multiplier<,'new'>) >
(2) sub ('new')
(3) sub ('trace',index)

Description: Subtracts the last displayed or selected FID from the current contents of the add/ subtract experiment (exp5). Isfid and phfid can be used to shift or phase rotate the selected FID before it is subtracted from the data in add/subtract experiment. A multi-FID add/subtract experiment can be created by using the ' new' keyword. Individual FIDs in a multi-FID add/subtract experiment can subsequently be subtracted by using the 'trace ' keyword followed by the index number of the FID.
Arguments: multiplier is a value that the FID is to be multiplied by before being subtracted from the add/subtract experiment $(\exp 5)$. The default is 1.0 .
' new' is a keyword to create a new FID element in an add/subtract experiment.
'trace ' is a keyword to use the next argument (index) as the number of the FID to subtract from in an add/subtract experiment. The default is to subtract from the first FID in a multi-FID add/subtract experiment.
index is the index number of the FID to be used as a target in a multi-FID add/ subtract experiment.
Examples: sub
sub (0.75)
sub('new')
sub('trace', 2)
See also: VnmrJ Liquids NMR
Related:

| add | Add current FID to add/subtract experiment (C) |
| :--- | :--- |
| clradd | Clear add/subtract experiment (C) |
| lsfid | Number of complex points to left-shift ni interferogram (P) |
| phfid | Zero-order phasing constant for np FID (P) |
| select | Select a spectrum without displaying it (C) |
| spsub | Subtract current spectra from add/subtract experiment (P) |

substr \quad Select a substring from a string (C)
Syntax: (1) substr (string, word_number) : substring
(2) substr (string, index, length): substring

Description: Returns a substring from a string based on the number of a word in the string (syntax 1) or on the starting character and length of the substring (syntax 2).
Arguments: string is the string or a string variable.
word_number is the number of the word to be selected. A word is defined here as any string of characters separated by spaces or tabs. For example, if string is 'There are 10 samples to run' and word_number is 4, the substring 'samples' is returned (see first example below).
substring returns the substring from string.
index is the character to start from, with the first character considered 1.
length is the length of substring in characters or spaces. For example, if string is 'abcdefg', index is 2 , and length is 3 , the substring 'bod' is returned (see second example below)

```
Examples: substr('There are 10 samples to run',4):sa
    substr('abcdefg', 2,3 ): sa
    See also: User Programming
    Related: length Determine length of a string (C)
    string \(\quad\) Create a string variable (C)
```

suselfrq
Select peak, continue selective excitation experiment (M)
Syntax: suselfrq

Description: Sets up selective frequency pulse, power, and shape and continue with the selective excitation experiment. Used by NOESY1D, and TOCSY1D.

Related: NOESY1D Change parameters for NOESY1D experiment (M)
setselinv Set up selective inversion (M)
setselfrqc Select selective frequency and width (M)
TOCSY1D Change parameters for TOCSY1D experiment (M)

svdat \quad Save data (C)

Syntax: svdat (file<,'f'|'m'|'i'|'b'>)
Description: Outputs current data from the current experiment to a file. Integer data is scaled when it is written.
Arguments: file is the name of the data file. The file is created in the current directory VnmrJ is in unless a full directory path is given. If a file of the same name already exists, the user will queried to overwrite the file. If a fully qualified filename is not given, the file will be created in VnmrJ's current directory.
'f'|'m'|'i'|'b' defines how the data is to be written out: ' f ' is 32 -bit floating point, ' m ' or ' i ' is 16 -bit integer scaled to 12 bits, and ' b ' is 8 -bit byte integer. The default is ' f '.

Floating point data is not scaled when written.
Integer data is scaled when written. A data value x is scaled as $\mathrm{ax}+\mathrm{b}$ where:
a $=$ (vs*grays1*numgray)/64.0
b = numgray*(0.5-(grays1*grayctr/64.0))
where numgray (see below) has a default of 4096 for ' m ' and ' i ' formats and a default of 256 for the ' b ' format, grays 1 has a default of 1 , and grayctr has a default of 32.0 .
To scale 16-bit integer data other than 12-bits, the global parameter numgray can be created using create (numgray, real, global) and set to the value 2^{n}, where n is the number of bits desired. For example, to scale to 15 -bits, set numgray $=32768$.
The display parameters graysl and grayctr are used by the macros svib and svsis to save data files for ImageBrowser.
Examples: svdat(rathead,'b')
See also: VnmrJ Imaging NMR
Related: browser Start ImageBrowser (U)
create \quad Create new parameter in parameter tree (C)
fdfgluer Make FDF file from header and data parts (C)
grayctr Gray level window adjustment (P)
graysl Gray level slope (contrast) adjustment (P)
svib Generate and save images as ImageBrowser FDF files,(M)
svsis \quad Generate and save images as FDF files (M)

Save FIDs in current experiment (M)

Syntax: svf<(file<,'nolog'><,'arch'><,'force'><,'nodb'>)>
Description: Saves parameters, text, and FID data in the current experiment to a file. No data is removed from the current experiment; svf merely saves a copy of the data in a different file. You can enter rt to retrieve the complete data set, or enter rtp to retrieve parameters only.

Arguments: file is the name of the file, with the suffix . fid added, to be created to save the data. The default is the system prompts for a file name. You are warned if you attempt to overwrite a file that already exists. In fact, if data has been acquired with the file parameter set, the data does not need to be saved. It is already stored in a named file.
' nolog' is a keyword to not save the log file with the data. The default is to save the \log file.
' arch ' is a keyword to assume that the data goes to a database and appends to the (or creates a) doneQ file with information that can be used by the command status.
If force is given, you are not warned and the older parameter set is removed. nodb is a keyword to prevent svp from adding information to a database. This prevention is useful if temporary parameter files are saved that will soon be removed.
Examples: svf
svf('/home/vnmri/mydatafile')
See also: VnmrJ Liquids NMR
Related: file File name (P)
rt Retrieve FID (M)
rtp \quad Retrieve parameters (M)
status Display status of all experiments (C)
svfdf \quad Save FID data in FDF format (M)
Syntax: svfdf(directory)
Description: Saves raw data from the FID file of the current experiment as an FDF (Flexible Data Format) file. Data is saved in multiple files, with one trace per file. The files are named fid0001.fdf, fid0002.fdf, etc. The procpar file from the current experiment is also saved in the same directory.

The FDF file format is described in the manual User Programming. Note that the data is complex (FDF type="complex"), and the FDF ordinate $=$ \{"intensity", "intensity"\}, indicating that each point consists of a pair of intensities. The FDF headers also contain the following special fields:

- nfile gives the sequential number of this file in the series.
- ct is the value of the ct parameter. The data should be divided by ct to give the average signal intensity for one scan.
- scale gives the power of two scaling factor for the data. The data should be multiplied by $2^{\text {scale }}$ to give the true values.

Arguments: directory_name is the directory in which to store the files. The extension. dat is appended to the given name.

```
Examples: svfdf(curexp+'/raw')
    See also: User Programming
    Related: ct
        Completed transients (P)
        svib \(\quad\) Save image data in FDF format (M)
```


svfdir Directory for non-study data (P)

Description: Specifies the directory where data is saved when not using a study in VnmrJ.
See also: fidsave(M), svfname(P)

svfname

Filename parameter template for non-study data ((P)
Description
Specifies the filename template where data is saved when not using a study in VnmrJ. The template is constructed using the same keywords and delimiters, dollar signs (\$) and percent signs (\%), as autoname.
Examples: If svfdir=userdir+'/data', the result from fidsave is: svfname='Spslabel\$_\$tn\$_' -> userdir+'/data/Proton_H1_01.fid' svfname='\%DATE\%/t\%TIME\%\%R0\%' -> userdir+'/data/20040501/ t113005.fid'

Applicability:
Generate and save images as ImageBrowser FDF files (M)
Systems with imaging capabilities.
Syntax: svib(directory<,'f'|'m'|'i'|'o'>)
Description: Generates images from the current experiment and saves them into the specified directory as FDF (Flexible Data Format) files. svib can save a single image, or a number of images in the case of multislice experiments.
The resulting FDF image files are composed of two parts: a text header, followed by the binary image data.
svib uses a the command svdat to dump the transformed data out to the data file. After dumping the headers out, a UNIX shell command fdfgluer is called to glue the headers to the data. svdat dumps the data so that the $(0,0)$ coordinates are the first data point in the file.
Note that modifications to svib should be made in the user's maclib and that the output values of the direction cosines may not be correct.
Arguments: directory is the name of a directory that is made in the current working directory. The . dat extension is appended to the name. Image files are created in this directory as image0001.fdf, image0002.fdf, and so on. A procpar file is also saved into this directory.
'f', 'm', 'i', and 'o' are keywords that define the type of image data:

- ' f ' outputs the data in floating point format. This is the default.
- 'm' or 'i' outputs the data as 12 -bit integer values in 16-bit words.
- ' b ' outputs the data in 8-bit integer bytes.

Examples: svib('rat.images')
See also: VnmrJ Imaging NMR

| Related: | dmi | Display multiple images (M) |
| :--- | :--- | :--- |
| | fdfgluer | Make FDF file from header and data parts (U) |
| | svdat | Save data (C) |

svp \quad Save parameters from current experiment (M)
Syntax: $\operatorname{svp}(f i l e)<(f i l e<, ' f o r c e '><, ' n o d b '>)>$
Description: Saves parameters from current experiment to a file. The parameter set can be retrieved with the $r t p$ and $r t$ macros. $s v p$ reflects any changes made in parameters up to the moment of entering svp, including acquisition parameters (unlike macro svf).

Arguments: file is the name of the file, with the suffix . par added, to be created to save the parameters. The default is the system prompts for a file name. You are warned if you attempt to overwrite a parameter set that already exists.

If force is given, you are not warned and the older parameter set is removed. nodb is a keyword to prevent svp from adding information to a database. This prevention is useful if temporary parameter files are saved that will soon be removed.

Examples: svp('/vnmr/stdpar/P31')
svp('/usr/george/testdata')
See also: VnmrJ Liquids NMR

| Related: | rt | Retrieve FID (M) |
| :--- | :--- | :--- |
| | rtp | Retrieve parameters (M) |
| | svf | Save FIDs in current experiment (M) |

svphf Save current phasefile (C)

Applicability: Systems with imaging capabilities.
Syntax: svphf(file)
Description: Copies current experiment phasefile (curexp+'/datdir/phasefile') to planes directory of current experiment (curexp+'/planes/file', where $f i l e$ is the file name given in the argument). The current phasefile is the current processed data set after apodization, Fourier transformation, vertical scaling, and phasing or absolute-value calculation, but before the contrast windowing controlled by the grayctr and graysl parameters. No parameters of any kind are stored with the phasefile. svphf creates the planes directory if it does not already exist.

Arguments: file is the name to be given to the phasefile when copied to the planes directory. Use only a relative path for file , not an absolute path.
Examples: svphf('elsa')
See also: VnmrJ Imaging NMR
Related: curexp Current experiment directory (P)
grayctr Gray level window adjustment (P)
graysl Gray level slope (contrast) adjustment (P)
imcalc Calculate 2D phasefiles (M,U)
makephf Transform and save images as phasefiles (M)
rtphf \quad Return stored phasefile to the current phasefile (C)

Save shim coil settings (C)

Syntax: svs(file)<:status>
Description: Saves all shim coil settings except Z 0 to a file. If svs cannot store the shim file, it displays the directories it tried to use.
Arguments: file is the name of a file for saving the shim coil settings. If the file name is an absolute path, svs uses it with no modifications. Otherwise, svs tries to go into up to three different directories, as follows:

- First, it looks for a shims subdirectory in your user directory. If that exists, the settings are stored there.
- Next, if the shims subdirectory does not exist, it then looks for the global parameter shimspath. If shimspath is present, it is expected to contain a directory name. If this directory exists and a new file entry can be created in the directory, the file is saved there.
- Finally, if this does not work, the file is saved in the shims subdirectory of the system directory.
status is a return variable with one of the following values after svs finishes:
- 0 indicates svs failed to store shim file.
- 1 indicates svs stored the shim file, either as an absolute path or in the shims subdirectory of the user directory.
- 2 indicates svs stored the file using the global parameter shimspath.
- 3 indicates svs stored the file in shims subdirectory of the system directory.

```
Examples: svs('acetone')
svs('bb10mm'): r1
See also: VnmrJ Liquids NMR
```

Related: rts Retrieve shim coil settings (C)
shimspath Path to user's shims directory (P)

svs \quad Spin simulation vertical scale (P)

Description: Vertical scale for simulated spectrum.
Values: 0 to 1 e 10 . A typical value is 200 .
See also: VnmrJ Liquids NMR
Related: spins Perform spin simulation calculation (C)
spsm Enter spin system (M)

svsis \quad Generate and save images as FDF files (M)

Applicability: Systems with imaging capabilities.
Syntax: svsis(directory<,'f'|'m'>)
Description: Generates images from the current experiment and saves them into the specified directory as Flexible Data Format (FDF) files. svs is saves one image, or a number of images in the case of multislice experiments.
svsis only saves images from the standard SISCO imaging sequences: image, shorte, stecho, multiecho, csi2D, and ssfp. However, svsis can be easily modified to produce images from user sequences, provided the sequences use standard SISCO parameters, slice select pulse shapes, and generate data in the same manner as the standard SISCO sequences.
To modify svisis for a user sequence, add a line similar to the following in the "Valid Sequences" section:

```
$k=$k+1 $seqfil[$k]='tlimage' $seq[$k]='ncsnn'
    $thk[$k]='image'
```

The new sequence name is t1image. Its reconstruction properties are given by \$seq, whose values are similar to the parameter seqcon. The string characters for seqcon are defined as follows:

| First character: | multiecho looping |
| :--- | :--- |
| Second character: | multislice looping |
| Third character: | 2D phase encode loop |
| Fourth character: | 3D phase encode loop |
| Fifth character: | 4D phase encode loop |

The values of each character are ' n ' for a null loop, ' s ' for a standard loop, or ' c ' for a compressed loop.

In this case, ' ncsnn' is a standard 2D image with compressed multislice. The \$thk value is the slice thickness type, as defined by the type of acquisition, which in this case is the standard image sequence.
svsis uses the command svsdfd to dump the transformed data out to the data file. After dumping the headers out, the UNIX shell command fdfgluer is called to glue the headers to the data. svsdfd dumps the data in such a way that the $(0,0)$ coordinates are the first data point in the file.
More detailed modifications can be made to svsis but it is left to the user to make these adjustments. Modifications to the macro should be made in the user's maclib.
Arguments: directory is the directory name desired. The specified directory is made in the user's data directory and is appended with the suffix . dat. Image files are created under this directory as image0001.fdf, image0002.fdf, etc. A procpar file is also saved into this directory.
' f '|'m ' defines the type of image data. ' $£$ ' outputs the data in floating point format. ' m ' outputs the data in 12-bit integer values in 16-bit words. The default is ' f '. ImageBrowser currently only accepts data in floating point values.
See also: VnmrJ Imaging NMR
Related: seqcon Acquisition loop control (P)

svtmp Move experiment data into experiment subfile (M)

Syntax: svtmp<(file) >

Description: Moves the experiment data (parameters, FID, and transformed spectrum) from current experiment into a subdirectory inside curexp+'/subexp '. Unlike the macro cptmp, the experiment data is no longer accessible in the current experiment; only a copy of the parameters is still present.
Arguments: file is the name of the subfile that receives the experiment data. The default name is either the transmitter nucleus (if seqfil='s2pul') or the pulse sequence name.
Examples: svtmp
svtmp('cosy')
See also: VnmrJ Liquids NMR

| Related: | cptmp | Copy experiment data into experiment subfile (M) |
| :--- | :--- | :--- |
| curexp | Cttmp | Current experiment directory (P) |
| | seqfil | Pulse sequence name (P) |

sw \quad Spectral width in directly detected dimension (P)
Description: Sets the total width of the spectrum to be acquired, from one end to the other. All spectra are acquired using quadrature detection. The spectral width determines the sampling rate for data, which occurs at a rate of 2 * sw points per second (actually sw pairs of complex points per second). Note that the sampling rate itself is not entered, either directly or as its inverse (known on some systems as the dwell time).

The sampling rate is:

- 12.5 ns on INOVA.
- 100 ns on MERCURY.

If a value of sw is entered whose inverse is not an even multiple of the time base listed above, sw is automatically adjusted to a slightly different value to give an acceptable sampling rate.
A value of sw greater than the value of the maxsw_loband parameter forces $d p=$ ' y '.
To enter a value in ppm, append the character p (e.g., $s w=200 p$).
If a DSP facility is present in the system (i.e., $d s p={ }^{\prime} i^{\prime}$ or $d s p=r^{\prime} r^{\prime}$) and oversampling in the experiment has not been turned off by setting oversamp=' n ', then the oversampling factor will be recalculated.
Values: Number, in Hz. The range possible is based on the system:
On UNITY INOVA: 100 Hz to 500 kHz .
On MERCURYplus/Vx , 100 Hz to 100 kHz .
On ${ }^{\text {UNITY }}$ INOVA with solids: up to 5 MHz .
See also: VnmrJ Liquids NMR

| Related: | dp | Double precision (P) |
| :--- | :--- | :--- |
| | dsp | Type of DSP for data acquisition (P) |
| maxsw_loband | Maximum spectral width of input board (P) | |
| oversamp | Oversampling factor for acquisition (P) | |
| sw1 | Spectral width in 1st indirectly detected dimension (P) | |
| sw2 | Spectral width in 2nd indirectly detected dimension (P) | |
| sw3 | Spectral width in 3rd indirectly detected dimension (P) | |

sw1 Spectral width in 1st indirectly detected dimension (P)
Description: Analogous to the sw parameter except that sw1 applies to the first indirectly detected dimension of a multidimensional data set. The increment of the variable evolution time d 2 is automatically calculated from sw1. The number of increments for this dimension is set by ni. To create sw1 in the current experiment, as well as ni and phase, enter addpar('2d').
See also: VnmrJ Liquids NMR

| Related: | addpar | Add selected parameters to the current experiment (M) |
| :--- | :--- | :--- |
| d2 | Incremented delay in 1st indirectly detected dimension (P) | |
| ni | Number of increments in 1st indirectly detected dimension (P) | |
| phase | Phase selection (P) | |
| Sw | Spectral width in directly detected dimension (P) | |
| Sw2 | Spectral width in 2nd indirectly detected dimension (P) | |
| Sw3 | Spectral width in 3rd indirectly detected dimension (P) | |

sw2 Spectral width in 2nd indirectly detected dimension (P)
Description: Analogous to the sw parameter except that sw2 applies to the second indirectly detected dimension of a multidimensional data set. The increment of the variable evolution time d3 is automatically calculated from sw 2 . The number of increments for this dimension is set by ni2. To create sw2 in the current experiment, as well as d3, ni2, and phase2, enter addpar('3d').
See also: VnmrJ Liquids NMR
Related: addpar Add selected parameters to the current experiment (M)
d3 Incremented delay for 2nd indirectly detected dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
phase2 Phase selection for 3D acquisition (P)
SW
sw1
sw3

Spectral width in 2nd indirectly detected dimension (P) Spectral width in 3rd indirectly detected dimension (P)

sw3

Spectral width in 3rd indirectly detected dimension (P)
Description: Analogous to the sw parameter except that sw3 applies to the third indirectly detected dimension of a multidimensional data set. The increment of the variable evolution time $d 4$ is automatically calculated from sw3. The number of increments for this dimension is set by ni3. To create sw3 in the current experiment, as well as d4, ni3, and phase3, enter addpar('4d').
See also: VnmrJ Liquids NMR

Related: addpar
d4
ni3
par4d
phase3
SW
swl
sw2

Add selected parameters to the current experiment (M) Incremented delay for 3rd indirectly detected dimension (P)
Number of increments in 3rd indirectly detected dimension (P)
Create 4D acquisition parameters (C)
Phase selection for 4D acquisition (P)
Spectral width in directly detected dimension (P)
Spectral width in 1st indirectly detected dimension (P)
Spectral width in 2nd indirectly detected dimension (P)

sysgcoil System gradient coil (P)

Description: Specially reserved string parameter that specifies which physical gradient set is currently installed, and allows convenient updating of important gradient characteristics when one gradient set is interchanged for another. The value to sysgcoil is assigned to the parameter gcoil when joining experiments or retrieving parameter sets.

This parameter is set in the CONFIG window (opened by entering config) to the name of the gradient set in use. Once set, it is then available to all experiments and to all users.
See also: VnmrJ Installation and Administration; VnmrJ Imaging NMR

| Related: | boresize | Magnet bore size (P) |
| :--- | :--- | :--- |
| | config | Display current configuration and possibly change it (M) |
| creategtable | Generate new gradient calibration file (M) | |
| | gcoil | Current gradient coil (P) |
| gmax | Maximum gradient strength (P) | |
| | setgcoil | Assign sysgcoil configuration parameter (M) |
| trise | Gradient rise time (P) | |

system \quad System type (P)

Description: A global parameter that sets the basic type of system: spectrometer or data station. The value is set using the System Type label in the CONFIG window (opened from config).
Values: 'spectrometer' is a spectrometer system (Spectrometer choice in CONFIG window).
'datastation' is a system used as a data station (Data Station choice in CONFIG window). Acquisition is not allowed in this setting.

See also: VnmrJ Installation and Administration

| Related: | config | Display current configuration and possibly change it (M) |
| :--- | :--- | :--- |
| Console | System console type (P) | |

systemdir VnmrJ system directory (P)

Description: Contains path to VnmrJ system directory, typically / vnmr. The UNIX environmental variable vnmrsystem initializes systemdir at bootup.
See also: VnmrJ Liquids NMR

T

| t1 | T_{1} exponential analysis (M) |
| :---: | :---: |
| tlimage | Fit arrayed imaging data to T_{1} exponential data (M) |
| t1s | T_{1} exponential analysis with short output table (M) |
| t2 | T_{2} exponential analysis (M) |
| t2image | Fit arrayed imaging data to T_{2} exponential data (M) |
| t2s | T_{2} exponential analysis with short output table (M) |
| tabc | Convert data in table order to linear order (M) |
| tan | Find tangent value of an angle (C) |
| tape | Read tapes from VXR-style system (M,U) |
| tape | Control tape options of files program (P) |
| tbox | Draw a tilted box (C) |
| tcapply | Apply table conversion reformatting to data (C) |
| tcclose | Close table conversion file (C) |
| tcl | Send Tcl script to Tcl version of dg window (C) |
| tcopen | Open table conversion file (C) |
| te | Echo time (P) |
| techron | Set up parameters for gradient amplifier tests (M) |
| temp | Open the Temperature Control window (C) |
| temp | Sample temperature (P) |
| tempcal | Temperature calculation (C) |
| tep | Post-acquisition delay in EPI experiments (P) |
| testct | Check ct for resuming signal-to-noise testing (M) |
| testsn | Test signal-to-noise of a spectrum (M) |
| teststr | Find which array matches a string (M) |
| text | Display text or set new text for current experiment (C) |
| textis | Return the current text display status (C) |
| textvi | Edit text file of current experiment (M) |
| th | Threshold (P) |
| th2d | Threshold for integrating peaks in 2D spectra (P) |
| thadj | Adjust threshold for peak printout (M) |
| theta | Euler angle theta from magnet frame (P) |
| thk | Slice thickness (P) |
| ti | Inversion recovery time (P) |
| ticks | Number of trigger pulses (P) |
| time | Display experiment time or recalculate number of transients (M) |
| tin | Temperature interlock (P) |
| title | Plot a title on a plotter (M) |
| tlt | First-order baseline correction (P) |
| tmove | Left-shift FID to time-domain cursor (M) |
| tmsref | Reference 1D proton or carbon spectrum to TMS (M) |
| tn | Nucleus for observe transmitter (P) |
| tncosyps | Set up parameters for TNCOSYPS pulse sequence (M) |
| tndqcosy | Set up parameters for TNDQCOSY pulse sequence (M) |

| tnmqcosy | Set up parameters for TNMQCOSY pulse sequence (M) |
| :---: | :---: |
| tnnoesy | Set up parameters for TNNOESY pulse sequence (M) |
| tnroesy | Set up parameters for TNROESY pulse sequence (M) |
| tntocsy | Set up parameters for TNTOCSY pulse sequence (M) |
| TOCSY | Change parameters for TOCSY experiment (M) |
| Tocsy | Convert the parameters to a TOCSY experiement (M) |
| tocsy | Set up parameters for TOCSY pulse sequence (M) |
| Tocsyld | Convert the parameter set to a Tocsy1d experiment (M) |
| TOCSY1D | Change parameters for TOCSY1D experiment (M) |
| tof | Frequency offset for observe transmitter (P) |
| tpe | Duration of the phase encoding gradient pulse (P) |
| tpe2,tpe3 | Duration of second and third phase encoding gradient periods (P) |
| tpwr | Observe transmitter power level with linear amplifiers (P) |
| tpwr1 | Intensity of an excitation pulse (P) |
| tpwr2 | Intensity of an excitation pulse (P) |
| tpwrcal | Calibrate power levels of 90° and 180° pulse (M) |
| tpwrf | Observe transmitter fine power (P) |
| tpwri | Intensity of inversion pulse (P) |
| tpwrm | Observe transmitter linear modulator power (P) |
| tr | Repetition time in imaging and localized spectroscopy (P) |
| trace | Mode for n-dimensional data display (P) |
| transfer | Move parameters to target experiment (M) |
| traymax | Sample changer tray slots (P) |
| trfunc | Translate screen coordinates (M) |
| trfuncd | Translate screen distance (M) |
| trise | Gradient rise time (P) |
| troesy | Set up parameters for TROESY pulse sequence (M) |
| trunc | Truncate real numbers (O) |
| tshift | Adjust tau2 to current cursor position (M) |
| tspoil | Gradient spoiling time (P) |
| tugain | Amount of receiver gain used by qtune (P) |
| tune | Assign a frequency to a channel for probe tuning (C) |
| tuneoff | Turn off probe tuning mode on MERCURYplus/-Vx (M) |
| typeof | Return identifier for argument type (O) |

tnmqcosy
tnnoesy
tnroesy
tntocsy
TOCSY
Tocsy
tocsy
Tocsy1d
TOCSY1D
tof
tpe
tpe2, tpe3
tpwr
tpwr1
tpwr2
tpwreal
tpwrf
tpwri
tpwrm
tr
trace
transfer
traymax
trfunc
trfuncd
trise
troesy
trunc
tshift
tspoil
tugain
tune
tuneoff
typeof

Set up parameters for TNMQCOSY pulse sequence (M)
Set up parameters for TNNOESY pulse sequence (M)
Set up parameters for TNROESY pulse sequence (M)
Set up parameters for TNTOCSY pulse sequence (M)
Change parameters for TOCSY experiment (M)
Convert the parameters to a TOCSY experiement (M)
Set up parameters for TOCSY pulse sequence (M)
Convert the parameter set to a Tocsy1d experiment (M)
Change parameters for TOCSY1D experiment (M)
Frequency offset for observe transmitter (P)
Duration of the phase encoding gradient pulse (P)
Duration of second and third phase encoding gradient periods (P)
Observe transmitter power level with linear amplifiers (P)
Intensity of an excitation pulse (P)
Intensity of an excitation pulse (P)
Calibrate power levels of 90° and 180° pulse (M)
Observe transmitter fine power (P)
Intensity of inversion pulse (P)
Observe transmitter linear modulator power (P)
Repetition time in imaging and localized spectroscopy (P)
Mode for n-dimensional data display (P)
Move parameters to target experiment (M)
Sample changer tray slots (P)
Translate screen coordinates (M)
Translate screen distance (M)
Gradient rise time (P)
Set up parameters for TROESY pulse sequence (M)
Truncate real numbers (O)
Adjust tau2 to current cursor position (M)
Gradient spoiling time (P)
Amount of receiver gain used by qtune (P)
Assign a frequency to a channel for probe tuning (C)

Return identifier for argument type (O)

T_{1} exponential analysis (M)

Description: Processes data obtained using an array of values of the parameter d 2 for a T_{1} experiment. It runs expfit, which does an exponential curve fitting that determines the value of T_{1}. The output is matched to the equation:

$$
M(t)=(M(0)-M 0) * \exp (-t / T 1)+M 0
$$

where $M 0$ is the equilibrium Z magnetization and $M(0)$ is the magnetization at time zero (e.g., immediately after the 180° pulse for an inversion recovery T_{1} experiment). Notice that this equation will fit inversion recovery data (for which $M(0)$ is approximately equal to $-M 0$) or saturation recovery data (for which $M(0)$ is 0).
The required input is the file $f p$. out from $f p$ and the values of the arrayed parameter. The T_{1} analysis is done for all the peaks listed in fp . out. Peaks are
selected for analysis by entering fp (index1, index2, . .) before running the analysis. The output file is the analyze.list in the current experiment. The file analyze. out is used by exp1 to display the results. The output of the analysis program shows T_{1} and its standard deviation, but does not explicitly show $M(0), M 0$, or their standard deviations. The $M(0)$ and $M 0$ values can be found in "raw" form in analyze. out in the current experiment, but their standard deviations are not part of the program output.
See also: VnmrJ Liquids NMR

| Related: | d2 | Incremented delay in 1st indirectly detected dimension (P) |
| :--- | :--- | :--- |
| expfit | Make least squares fit to polynomial or exponential curve (C) | |
| fp | Find peak heights (C) | |
| t 1 s | T_{1} exponential analysis with short output table (M) | |
| t 2 | T_{2} exponential analysis (M) | |
| t 2 s | T_{2} exponential analysis with short output fable (M) | |

t1image \quad Fit arrayed imaging data to T_{1} exponential data (M)

Applicability: Systems with imaging capabilities.
Description: Does preprocessing required for fitting arrayed imaging data to T_{1} data using the imfit program. The user is prompted for the base phasefile names and the lower limit noise threshold. t1image then transforms and saves all of the images, and calls imfit to complete the fitting process.
See also: VnmrJ Imaging NMR
Related: imfit Fit arrayed imaging data to T_{1} or T_{2} exponential data (M,U)
t2image \quad Fit arrayed imaging data to T_{2} exponential data (M)
t1s $\quad T_{1}$ exponential analysis with short output table (M)
Description: Performs the same analysis as t1 but produces a short output table showing only a summary of the measured relaxation times.
See also: VnmrJ Liquids $N M R$
Related: t1 $\quad T_{1}$ exponential analysis (M)

Description: Processes data obtained using an array of values for the base time parameter bt for a T_{2} experiment. It runs expfit, which does an exponential curve fitting that determines the value of T_{2}. The output is matched to the equation:
$M(t)=(M(0)-M(i n f)) * \exp (-t / T 2)+M(i n f)$
where $M(0)$ is the magnetization at time zero (i.e., the full magnetization excited by the observe pulse) and M (inf) is the xy-magnetization at infinite time (zero unless the peak is sitting on an offset baseline).
The required input is the file $f p$. out from $f p$ and the values of the arrayed parameter. The T_{2} analysis is done for all the peaks listed in fp . out. Peaks are selected for analysis by entering fp (index1, index2, . . .) before running the analysis. The output file is the file analyze. list in the current experiment. The file analyze. out is used by expl to display the results. The output of the analysis program shows T_{2} and its standard deviation, but does not explicitly show $M(0), M($ inf $)$, or their standard deviations. The $M(0)$ and $M(i n f)$ values can be found in "raw" form in analyze. out in the current experiment, but their standard deviations are not part of the program output.
See also: VnmrJ Liquids NMR

| Related: | expfit | Make least squares fit to polynomial or exponential curve (C) |
| :---: | :--- | :--- |
| fp | Find peak heights (C) | |
| tI | T_{1} exponential analysis (M) | |
| t 1 s | T_{1} exponential analysis with short output table (M) | |
| t 2 s | T_{2} exponential analysis with short output fable (M) | |

t2image \quad Fit arrayed imaging data to T_{2} exponential data (M)

Applicability: Systems with imaging capabilities.
Description: Does preprocessing required for fitting arrayed imaging data to T_{2} data using the imfit program. The user is prompted for the base phasefile names and the lower limit noise threshold. t2image then transforms and saves all of the images, and calls imfit to complete the fitting process.

See also: VnmrJ Imaging NMR

Related: imfit \quad Fit arrayed imaging data to T_{1} or T_{2} exponential data (M,U)
t1image Fit arrayed imaging data to T_{1} exponential data (M)
t2s $\quad T_{2}$ exponential analysis with short output table (M)
Description: Performs the same analysis as $t 2$ but produces a short output table showing only a summary of the measured relaxation times.
See also: VnmrJ Liquids NMR
Related: $\mathrm{t} 2 \quad T_{2}$ exponential analysis (M)

tabc \quad Convert data in table order to linear order (M)

Syntax: tabc<(dimension) >
Description: Converts arbitrarily ordered data obtained under control of an external AP table to linear monotonic order, suitable for processing in VnmrJ. The data must have been acquired according to a table in the tablib directory.
Imaging and other 2D experiments are normally acquired so that the order of the incremented acquisition parameter, such as the phase-encode gradient, is linear and monotonic. For a standard imaging experiment, this linear order means that the phase-encode gradient progresses from a starting negative value monotonically up through zero to a positive value (e.g., $-64,-63,-62, \ldots,-1$, $0,1, \ldots, 62,63)$. The ft 2 d program assumes this structure in its operation.
Data from table-driven 2D pulse sequences is used by entering tabc only once before normal 2D processing and/or parameter storage. In this situation, tabc takes no arguments and is executed by entering tabc in the command window. A simple check is done by tabc to prevent it from being executed more than once on the same data set.
2D data is expected to be in the standard VnmrJ format, but if the 2D data is in the compressed format, setting dimension to 1 converts the data. tabc supports all 2D data types recognized by VnmrJ : arrayed, compressed multislice, and arrayed compressed multislice,
3 D data is expected to be in the compressed/standard format, in which there are ni standard 2D planes of data (the third dimension), each consisting of nf compressed FIDs (the second dimension). Setting dimension to 3 reorders 3D data acquired with an external table.
tabc reads the file fid in the acqfil subdirectory of the current experiment. Before the data is reordered, this file is written to the file fid.orig in the same acqfil directory. If for any reason tabc fails or results in an
unpredictable or undesired transformation, the original raw data can be recovered by moving fid. orig back to fid. To gain more disk space, you can delete fid.orig after you are satisfied that conversion is successful.
Use tabc on saved data that has been loaded into an experiment or on data in an experiment that has just been acquired but not yet saved. In the first case, converted data must be resaved for the saved data set to reflect conversion.
tabc requires that data must have the same number of "traces" as the table elements. It does not support any of the advanced features of table expansion (e.g., the entire table must be explicitly listed in the table file), and expects to find only one table in a file; whether the table is $t 1$ or t60 is unimportant.
Arguments: dimension specifies the type of data to be converted: 1 for 2D compressed data, 2 for 2D standard data, or 3 for 3D compressed/standard data. The default is 2 .
$\begin{aligned} \text { Examples: } & \text { tabc } \\ & \text { tabc (1) } \\ & \text { tabc (3) }\end{aligned}$
See also: VnmrJ Imaging NMR
Related: flashc Convert compressed 2D data to standard 2D format (C)
ft2d Fourier transform 2D data (C)
ni \quad Number of increments in 1st indirectly detected dimension (P)
nf \quad Number of FIDs (P)

tan \quad Find tangent value of an angle (C)

Syntax: tan(angle)<:n>
Description: Finds the tangent of an angle.
Arguments: angle is an angle, in radians.
n is the return value giving the tangent of angle. The default is to display the tangent value in the status window.
$\begin{array}{ll}\text { Examples: } & \tan (.5) \\ & \tan (\mathrm{val}): \text { tan_val }\end{array}$
See also: User Programming
Related: arccos Calculate arc cosine of real number (M)
arcsin Calculate arc sine of real number (M)
arctan \quad Calculate arc tangent of real number (M)
atan Find arc tangent value of a number (C)
$\cos \quad$ Find cosine value of an angle (C)
$\exp \quad$ Find exponential value of a number (C)
In \quad Find natural logarithm of a number (C)
$\sin \quad$ Find sine value of an angle (C)

tape \quad Read tapes from VXR-style system (M,U)

Syntax: (From VnmrJ) tape (<-d device, ><type, >option <,file1,file2,...>)
(From UNIX) tape <-d device> <type> <option>
<file1> <file2>...

Description: Displays the contents of a VXR-style (Gemini, VXR-4000, or XL) 9-track tape for use with VnmrJ or reads one or several files from the tape into the current directory. Note that the write option is not supported (i.e., VnmrJ only reads tapes in a VXR-style format and does not write to a tape).

Arguments: device is the tape drive device name. The default value is / dev/rst8. For AIX systems, device should be / dev/rmto. If the default value is not set properly or another device name is wanted, be sure to type -d and a space before the device name you want to input.
type is the type of tape to be accessed. ' - q ' or ' - s ' select the $1 / 4$-inch tape unit ("streaming" or cartridge tape); this is the default. '-9', '-h', or '-n' select the $1 / 2$ - inch tape unit (open reel tape drive).
option is one of the following:

- 'help' is a keyword to display help on the use of the system.
- ' cat' is a keyword to display a catalog of files on tape.
- 'read' is a keyword to read one or more files. This option requires that the files be listed as the next argument.
- 'rewind ' is a keyword to rewind tape ($1 / 2$-inch tape only).
- 'quit' is a keyword to release the tape drive (1/2-inch tape only).
file1, file2, . . . are the names of one or more files to be read. Wildcard characters (* and ?) can be used.
Examples: tape('cat')
tape('-h','read','mydata')
tape -h read mydata
tape -d /dev/rmt/0lb read mydata
Related: decomp Decompose a VXR-style directory (C)
vxr_unix Convert VXR-style text files to UNIX format (M,U)

tape \quad Control tape options of files program (P)

Description: Defines device that files program accesses when it is instructed to read or write to a tape. The parameter tape is in the user's global parameter tree.
Values: Name of a device. The default device is / dev/rst8. If tape does not exist or is set to the null string (two single quotes with no space between), files uses its default device value. Notice that different computers define tape drives differently. For VnmrSGI, tape= '/dev/tapens ' is appropriate. For Solaris, tape $=$ '/dev/rmt $/ 0 \mathrm{mb}$ '.
Related: files Interactively handle files (C)

tbox Draw a tilted box (C)

Applicability: Systems with imaging capabilities.
Syntax: (1) tbox (<'keywords'>angle, xcenter, ycenter, hlen, vlen)
(2) tbox (<'keywords'>angle, xcenter, ycenter, hlen, vlen, vspace, nboxes)
Description: Draws a tilted box centered at xcenter, ycenter (as indicated by a small diamond) (syntax 1) or produces an aligned array of nboxes tilted boxes centered at xcenter, ycenter (syntax 2) and separated by vspace.
Arguments: 'keywords'identifies the output device ('graphics'|'plotter'), drawing mode ('xor'|'normal'), and drawing capability ('newovly'|'ovly'|'ovlyC').

- 'graphics'|'plotter' is a keyword selecting the output device. The default is 'plotter'. The output selected is passed to subsequent pen,
move, or draw commands and remains active until a different mode is specified.
- 'xor', ' normal ' is a keyword for the drawing mode when using the 'graphics' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous ' xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent pen, move, and draw commands and remains active until a different mode is specified.
- 'newovly', 'ovly' and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the 'xor' mode but more consistent in color. ' newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multi-segment figures can be created. 'ovlyC' clears without drawing.
angle is the tilt angle, in radians, of a box.
xcenter, ycenter are coordinates on the screen, in mm, specifying the point at which a box is centered.
hlen is the horizontal coordinate on the screen, in mm.
vlen is the vertical coordinate, on the screen, in mm.
vspace controls the separation or overlap of boxes.
nboxes is the number of boxes.
Examples: tbox('plotter',20,100,40,150)
See also: VnmrJ Imaging NMR
Related: box Draw a box on a plotter or graphics display (C)

tcapply Apply table conversion reformatting to data (C)

Applicability: Systems with imaging capabilities.
Syntax: tcapply<(file)>
Description: Rearranges the spectra in a 2D data set that resides in the current data file. You must apply ftid to the data before you can use tcapply. Using values from an AP table, tcapply arranges the spectra corresponding to the value in the AP table from low value to high value. The values might have already been read in by the tcopen command.
Arguments: file specifies the name of the file containing the AP table to be read. The file must be in \$vnmruser/tablib.
Examples: tcapply('petable')
See also: VnmrJ Imaging NMR

| Related: | tabc | Close table conversion file (C) |
| :--- | :--- | :--- |
| | ft1d | Fourier transform along f_{2} dimension (C) |
| | ft2d | Fourier transform along f_{2} dimension (C) |
| | tcclose | Close table conversion file (C) |
| | tcopen | Open table convert file (C) |

tcclose Close table conversion file (C)
Applicability: Systems with imaging capabilities.
Description: Removes a table conversion file and frees the memory used to store the sorted table indices read in with the tcopen command.

See also: VnmrJ Imaging NMR

| Related: | tcapply | Apply table conversion reformatting to data (C) |
| :--- | :--- | :--- |
| tcopen | Open table convert file (C) | |

tcl Send Tcl script to Tcl version of dg window (C)

Syntax: tcl(script)
Description: Sends a Tcl (Tool Command Language) script to the Tcl version of the dg window. If this window is not active, this command does nothing.
Arguments: script is any legal Tcl script.
See also: User Programming
Related: dg Display group of acquisition/processing parameters (C)
tcopen Open table conversion file (C)
Applicability: Systems with imaging capabilities.
Syntax: tcopen<(file) >
Description: Explicitly reads, sorts, and stores in memory, a table conversion file. tcopen uses the file when tcapply is called.
Arguments: file specifies the file to be read; it must be in \$vnmruser/tablib.
Examples: tcopen('petable')
See also: VnmrJ Imaging NMR
Related: tcapply Apply table conversion reformatting to data (C)
tcclose Close table convert file (C)

te \quad Echo time (P)

Applicability: Systems with imaging capabilities.
Description: Echo time for imaging and some localized spectroscopy experiments.
In gradient and spin echo imaging sequences, te is usually defined as the time measured from the middle of the initial rf excitation pulse to the center of the resulting echo.
In multiecho sequences, te may also define the time duration between successive echoes, normally a constant interval. Multiecho sequences with variable echo times are also possible, in which case the te period between successive echoes may take on a range of values represented by a te array.
Some more unusual pulse sequences, such as stimulated echo, RARE and Fast Spin Echo, may use te in ways somewhat different from the normal standards.
See also: VnmrJ Imaging NMR
Related: ne Number of echoes to be acquired (P)
techron Set up parameters for gradient amplifier tests (M)
Applicability: Systems with imaging capabilities.
Description: Recalls parameters sets for gradient amplifier tests during microimaging installation.

See also: Microimaging Module Installation

temp Open the Temperature Control window (C)

Applicability: Systems with a variable temperature (VT) controller.
Description: Opens the Temperature Control window, which has the following capabilities:

- Turn temperature control off.
- Set temperature control on at a specified temperature in degrees C.
- Enable temperature control from within an experiment using the temp parameter and the su, go, ga, or au macros. This mode is the default.
- Alternatively, turn off experiment control of the temperature and allow only the Temperature Control window (and sethw) to set the temperature. This mode has the advantage that, often times, temp is different between experiments. Joining a different experiment and entering go can unexpectedly change the temperature. This mode prevents this problem.
- Resetting the temperature controller when the temperature cable is reconnected to a probe.

| See also: | VnmrJ Liquids | NMR |
| :--- | :--- | :--- |
| Related: | acqi | Interactive acquisition display process (C) |
| | au | Submit experiment to acquisition and process data (M) |
| | ga | Submit experiment to acquisition and FT the result (M) |
| | go | Submit experiment to acquisition (M) |
| | sethw | Set values for hardware in acquisition system (C) |
| | su | Submit a setup experiment to acquisition (M) |
| | temp | Sample temperature (P) |
| | tin | Temperature interlock (P) |

temp Sample temperature (P)

Applicability: Systems with a variable temperature (VT) module.
Description: Sets the temperature of sample.
Values: ' n ' or -150 to +200 , in steps of $0.1^{\circ} \mathrm{C}$. ' n ' instructs the acquisition system not to change the VT controller and to ignore temperature regulation throughout the course of the experiment.
See also: VnmrJ Liquids NMR

| Related: | temp | Open the Temperature Control window (C) |
| :--- | :--- | :--- |
| tempcal | Temperature calculation (C) | |
| | tin | Temperature interlock (P) |
| | vtc | Variable temperature cutoff point (P) |

tempcal Temperature calculation (C)

Applicability: Systems with a variable temperature (VT) module.

```
Syntax: tempcal(solvent) <:temperature>
```

Description: For exact determination of sample temperature when using the VT unit, a temperature calibration curve must be made for each probe used. All data, such as gas flow, must be noted. Use samples of ethylene glycol for high-temperature calibration, and use samples of methanol for low-temperature calibration. To make the calculation:

- Bring the sample to the desired temperature and allow sufficient time for equilibration, then obtain a spectrum.
- Next, align two cursors on the two resonances in the spectrum, then enter tempcal ('e') for ethylene glycol, or enter tempcal ('m') for
methanol. The temperature is calculated based on the difference frequency between the cursors.
Arguments: solvent is the sample solvent: 'glycol', 'e', or ' g ' for ethylene glycol, or 'methanol' or 'm' for methanol.
temperature returns the calculated value of the sample temperature. The default is the system displays the value.
Examples: tempcal('glycol')
tempcal('m'):temp
See also: VnmrJ Liquids NMR

tep Post-acquisition delay in EPI experiments (P)

Applicability: Systems with echo planar imaging (EPI) capabilities.
Description: Delay used in the EPI sequence to adjust the beginning of data acquisition. This correction is necessary to allow for the finite (propagation) delay of gradient pulses. This allows the user to center the EPI echoes in the acquisition window.
Values: Number, in $\mu \mathrm{s}$. Typically 0 to $50 \mu \mathrm{~s}$, depending on the gradient hardware.
See also: VnmrJ Imaging NMR
Related: episet Set up parameters for EPI experiment (M)
testct \quad Check ct for resuming signal-to-noise testing (M)
Description: Used by the testsn macro to decide when to resume testing of signal-tonoise. See the description of testsn for details.
See also: VnmrJ Liquids NMR
Related: Ct Completed transients (P)
testsn Test signal-to-noise of a spectrum (M)

testsn Test signal-to-noise of a spectrum (M)

Description: Part of the automatic periodic signal-to-noise testing that occurs during various automated acquisitions, most notably c13. Transforms the data using $\mathrm{fn}=16000$, and then baseline corrects, setting the left-most 10% of the spectrum and the right-most 2% as baseline. After the baseline correction, testsn uses getsn to calculate the signal-to-noise.

- If signal-to-noise exceeds the desired goal in parameter sn (found in the standard carbon parameter set/vnmr/stdpar/c13), testsn aborts the experiment using the command halt, which initiates processing according to the wexp parameter.
- If signal-to-noise is not reached, testsn estimates the signal-to-noise ratio at the end of the experiment. If signal-to-noise target will not be reached by then, it cancels subsequent signal-to-noise testing, but allows the experiment to proceed.
- If the signal-to-noise target will be reached before the end of the experiment, it saves the estimated number of transients required to reach the goal in the parameter r7 (using a conservative estimate), and then sets the processing at future blocks to be only testct, which simply tests if $c t$ is greater than $r 7$, and, if so, resumes testing of signal-to-noise with testsn.

See also: VnmrJ Liquids NMR

| Related: | c13 | Automated carbon acquisition (M) |
| ---: | :--- | :--- |
| | fn | Fourier number in directly detected dimension (P) |
| | getsn | Get signal-to-noise estimate of a spectrum (M) |
| | halt | Abort acquisition with no error (C) |
| | r1-r7 | Real parameter storage for macros (P) |
| sn | Signal-to-noise ratio (P) | |
| | testct | Check ct for resuming signal-to-noise testing (M) |
| | wexp | Specify action when experiment completes (C) |

teststr Find which array matches a string (M)
Syntax: teststr(parameter, string <,tree>) : \$ret
Description: The teststr command requires at least two arguments. The first is the name of a string parameter. The first argument must generally be enclosed in single quotes. The teststr command needs the name of the parameter, not its values. The second is a string. The optional third argument is the parameter tree. The default is current.

Macro parameters can be used as the first argument. In this case, the third argument must be 'local'.
This command sets \$ret to the index of the array element that matches the second argument. If none of the array values of the parameter match the second argument, a zero is returned.
Examples: n1='hello','labas','gidday','hola','bonjour','ciao' teststr('n1','labas'):r1
sets $r 1=2$, since 'labas' matches element 2 of the $n 1$ array.
The elements do not need to be single words. For example,
n1='good night','labanaktis','bonne nuit','gute
Nacht','boa noite','buonas noces'
teststr('n1','boa noite'):r1
sets $r 1=5$. The strings must match exactly, including upper and lower case
teststr('n1','gute nacht'):r1
sets $r 1=0$, since the lower case n in nacht does not match the upper case N in Nacht.
For local dollar variables, the 'local' argument must be used. Again, enclose the name of the local parameter in single quotes.

```
$greet='hello','labas','gidday','hola', 'ciao'
teststr('$greet','labas','local'):rl
```


text Display text or set new text for current experiment (C)

Syntax: text<(text_string) ><:string_variable>
Description: Associated with each experiment is a text file, consisting of a block of text, that can be used to describe the sample and experiment. text allows displaying the text file and changing the text file for the current experiment. A UNIX text editor, such as vi, or the macro textvi can also be used to edit the text file of the current experiment.
Arguments: text_string is a string of text that replaces the existing text file. The default is to display the text file in the current experiment. The characters $\backslash \backslash$ or $\backslash \mathrm{n}$ can be used in the string to denote a new line, and the characters $\backslash t$ can be used to denote a tab (see example below).
string variable returns the text in text string as a string variable. Thus, for example, the text:n1 and text ($n \overline{1}+$ 'cosy experiment') commands, where $n 1$ is a string, can be used in a macro to add a "cosy experiment" to the text. An equivalent operation using the atext command would be atext('cosy experiment').
Examples: text('Sample $101 \backslash t C D C l 3 \backslash \backslash 13$ February')
See also: VnmrJ Liquids NMR

| Related: | atext
 ctext
 curexp
 dtext | Append string to the current experiment text (M)
 Clear the text of the current experiment (C) |
| :--- | :--- | :--- |
| puttxt | Current experiment directory (P) | |
| textvi | Put text file into another file (C) | |
| vnmrprint | Edit text file of current experiment (M) | |
| | Print text files (U) | |

textis Return the current text display status (C)
Syntax: (1) textis (command) : \$yes_no
(2) textis:\$display_command

Description: Determines if a command given by the user currently controls the text window (syntax 1) or returns the name of the command currently controlling the text window (syntax 2).

Arguments: command is the name of a command that potentially may be controlling the text window.
\$yes_no returns 1 if command controls the text window, or 0 if it does not.
\$display_command returns the name of the command currently controlling the text window.

Examples: textis:\$display
if (\$display = 'dg') then . . . endif
See also: User Programming
Related: graphis Return the current graphics display status (C)
textvi Edit text file of current experiment (M)
Description: Edits the text file of the current experiment using the UNIX text editor vi. textvi is equivalent to the command vi (curexp+'/text').
See also: VnmrJ Liquids NMR
Related: edit Edit a file with user-selectable editor (M)
text Display text or set new text for current experiment (C)
vi Edit text file with vi editor (M)
th Threshold (P)
Description: Sets threshold for printout of peak frequencies so that peaks greater than th on the plot appear on any peak listings. th is always bipolar (i.e., negative peaks greater in magnitude than th also appear in peak listings).
Values: 0 to 1 e 9 , in mm .
See also: VnmrJ Liquids NMR
Related: thadj Adjust threshold for peak printout (M)

th2d Threshold for integrating peaks in 2D spectra (P)

Description: Used by 112 d when determining the bounds of a peak and calculating its volume. To create the 2D peak picking parameters th2d and xdiag in the current experiment, enter addpar ('ll2d').
Values: From 0.0 to 1.0 . If $\operatorname{th} 2 \mathrm{~d}=1.0,112 \mathrm{~d}$ integrates all points in the peak that are above the current threshold for the spectrum (i.e., the portion of the peak that can be seen in a contour plot of the spectrum). A smaller value causes 112 d to integrate a larger area when determining the volume of a peak. If $\operatorname{th} 2 \mathrm{~d}=0.5$, for example, 112 d integrates all points in a peak that are above 0.5 times the current threshold.
See also: VnmrJ Liquids NMR

| Related: | addpar | Add selected parameters to the current experiment (M) | | |
|---|---|---|---|---|
| ll2d | | |
| xdiag | | |\quad| Automatic and interactive 2D peak picking (C) |
| :--- |

thadj Adjust threshold for peak printout (M)

Syntax: thadj<(max_peaks<, noise_mult<,llarg1<,llarg2>>>) >
Description: Adjusts the threshold th so that no more than a specified maximum number of peaks are found in a subsequent line listing (see nll) and so that th is at least a specified noise multiplier times the root-mean-square noise level.
Arguments: max_peaks is the maximum number of peaks in the displayed spectral range. The default is $\mathrm{wC} / 4$ (i.e., the threshold is adjusted such that ppf will produce a "reasonable" number of lines with any width of plot).
noise_mult is a noise multiplier used to calculate the minimum value for th from the size of the root-mean-square noise.
llarg1 is the noise_mult argument (the default is 3) to the nll command used inside this macro
llarg2 is the keyword argument ('pos', 'neg', 'all'; the default is 'all'.) to the nll command used inside this macro.
Examples: thadj
thadj (50)
thadj $(200,4)$
thadj $(200,4,2)$
thadj (200,4,2,'pos')
See also: VnmrJ Liquids NMR

| Related: | nll | Find line frequencies and intensities (C) |
| :--- | :--- | :--- |
| | ppf | Plot teak frequencies over spectrum (M) |
| th | Threshold (P) | |
| | vsadj | Automatic vertical scale adjustment (M) |
| | vsadj2 | Automatic vertical scale adjustment by powers of two (M) |
| vsadjc | Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M) | |
| vsadjh | Automatic vertical scale adjustment for ${ }^{1} \mathrm{H}$ spectra (M) | |
| wc | Width of chart (P) | |

theta Euler angle theta from magnet frame (P)

Applicability: Systems with imaging capabilities.
Description: Euler angle theta from magnet frame.
Values: -90 to +90 , in degrees.
See also: VnmrJ Imaging NMR
Related: phi Euler angle phi from magnet frame (P)
psi Euler angle psi from magnet frame (P)
thk Slice thickness (P)
Applicability: Systems with imaging capabilities.
Description: Returns the slice thickness, in mm.
See also: VnmrJ Imaging NMR
Applicability: Systems with imaging capabilities.
Description: Specifies the recovery time following an inversion prepulse in inversionrecovery experiments. The value of $t i$ generally has a strong impact on imagecontrast, which depends on the T_{1} relaxation time of the sample in differentregions of the image.
See also: VnmrJ Imaging NMR

| Related: | ir | Inversion recovery mode (P) |
| :--- | :--- | :--- |
| | pi | Width of an inversion pulse (P) |
| | pipat | Shape of an inversion pulse (P) |
| | tpwri | Intensity of inversion pulse (P) |

ticks Number of trigger pulses (P)
Applicability: Systems with imaging capabilities.
Description: Sets the number of trigger pulses the system waits before acquisition begins.This parameter is found in some Varian pulse sequences that feature gating.ticks controls an external gating signal received through an external TTLinput. If ticks $=0$, the system ignores trigger pulses and runs in thenontriggered mode. The pre- and post-trigger delays rcvry and hold remainactive in the nontriggered mode.
Values: Integers from 0 to 100.
See also: VnmrJ Imaging NMR
Related: hold Post-trigger delay (P)
rcvry \quad Pre-trigger delay (P)
time Display experiment time or recalculate number of transients (M)
Syntax: time<(<hours,>minutes) >
Description: Estimates the acquisition time or recalculates the number of transients so thatthe total acquisition time is approximately the requested time. The parameterslooked at when calculating the time per transient are $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, a t, \mathrm{ni}, \mathrm{sw} 1$,ni2, and sw2.
Arguments: hours and minutes are numbers making up a time to be used by the system to recalculate the parameter nt so that the total acquisition time is approximately the time requested; the default (no arguments) is for the system to estimate the acquisition time for a $1 \mathrm{D}, 2 \mathrm{D}$, or 3 D experiment using the parameters in the current experiment.
Examples: time
time (2,45)

See also: VnmrJ Liquids NMR

| Related: | at | Acquisition time (P) |
| :--- | :--- | :--- |
| | d1 | First delay (P) |
| d2 | Incremented delay in 1st indirectly detected dimension (P) | |
| | d3 | Incremented delay in 2nd indirectly detected dimension (P) |
| | exptime | Display experiment time (C) |
| ni | Number of increments in 1st indirectly detected dimension (P) | |
| ni2 | Number of increments in 2nd indirectly detected dimension (P) | |
| nt | Number of transients (P) | |
| sw1 | Spectral width in 1st indirectly detected dimension (P) | |
| sw2 | Spectral width in 2nd indirectly detected dimension (P) | |

tin Temperature interlock (P)

Description: Controls error handling based on temperature regulation. If temperature regulation is lost, tin can be used to select whether an error is generated and acquisition is halted or whether a warning is generated and acquisition continues. In both cases, the lost regulation will cause werr processing to occur, thus providing a user-selectable mechanism to respond to VT failure.

Values: ' n ' turns off the temperature interlock feature
' w ' indicates the variable temperature regulation light is monitored during the course of the experiment and, if it starts to flash (regulation lost), a warning is generated; however, acquisition is not stopped.
' Y ' indicates the variable temperature regulation light is monitored during the course of the experiment and, if it starts to flash (regulation lost), the current data acquisition is stopped. The acquisition will not resume automatically if regulation is regained.
See also: VnmrJ Liquids NMR
Related: in Lock and spin interlock (P)

title Plot a title on a plotter (M)

Applicability: Systems with imaging capabilities.

```
Syntax: title(string)
```

Description: Plots a string provided by the user on the plotter.
Arguments: string is a string of characters.
Examples: title('15 June Image')
See also: VnmrJ Imaging NMR

First-order baseline correction (P)

Description: When spectral display is active, the command dc turns on a linear drift correction (baseline correction). The result of this operation includes calculating a first-order baseline correction parameter $t l t$. The calculation is made by averaging of a small number of points at either end of the display and drawing a straight line baseline between them.
See also: VnmrJ Liquids NMR
Related: cdc Cancel drift correction (C)
dc Calculate spectral drift correction (C)
lvl Zero-order baseline correction (P)
tmove Left-shift FID to time-domain cursor (M)
Description: Provides an alternative method of left shifting time-domain data. To use this method, position the right time cursor at the place that should be the start of the FID, then enter tmove. This adjusts lsfid to left-shift the FID.
See also: VnmrJ Liquids NMR
Related: lsfid Number of complex points to left-shift $n p$ FID (P)

tmsref \quad Reference 1D proton or carbon spectrum to TMS (M)

Syntax: tmsref:tms_found
Description: Tries to locate a TMS line. If found, tmsref re-references the spectrum to the TMS line and returns a 1 to the calling macro; if not found, tmsref returns 0 and the referencing is left as it was. In the case of other signals (e.g., from silicon grease) immediately to the left of the TMS line (even if they are higher than the reference line), tmsref tries avoiding those by taking the rightmost line in that area, as long as it is at least 10% of the main $\mathrm{Si}-\mathrm{CH}_{3}$ signal. Large signals within 0.6 ppm for ${ }^{1} \mathrm{H}$ (or 6 ppm for ${ }^{13} \mathrm{C}$) to the right of TMS may lead to misreferencing.
Arguments: tms_found returns 1 if a TMS line was located or returns 0 if not.
See also: VnmrJ Liquids NMR
Related: C13 Automated carbon acquisition (M)
h1 Automated proton acquisition (M)

tn \quad Nucleus for observe transmitter (P)

Description: Changing the value of tn causes a macro (_tn) to be executed that extracts values for sfrq and tof from lookup tables. The tables, stored in the directory /vnmr/nuctables, are coded by atomic weights.
Values: In the lookup tables, typically given by 'H1', 'C13', 'P31', etc. The value $\mathrm{tn}=$ ' lk ' sets the deuterium frequency, and also holds the lock current and switches the relay in the automated deuterium gradient shimming module, if present, so that deuterium signal may be observed without disturbing lock. The frequency is the same as $\mathrm{tn}={ }^{\prime} \mathrm{H} 2^{\prime}$.
See also: VnmrJ Liquids NMR

| Related: | dn | Nucleus for first decoupler (P) |
| :--- | :--- | :--- |
| | $\mathrm{dn2}$ | Nucleus for second decoupler (P) |
| | dn 3 | Nucleus for third decoupler (P) |
| | sfrq | Transmitter frequency of observe nucleus (P) |
| | tof | Frequency offset for observe transmitter (P) |

tncosyps \quad Set up parameters for TNCOSYPS pulse sequence (M)
Applicability: Sequence is not supplied with MERCURYplus/Vx.
Description: Sets up a homonuclear correlation experiment (phase-sensitive version) with water suppression.
See also: VnmrJ Liquids NMR
tndqcosy \quad Set up parameters for TNDQCOSY pulse sequence (M)
Applicability: Systems with a linear amplifier on the observe channel and a T/R switch. Sequence is not supplied with MERCURYplus/Vx.

Description: Sets up a 2D J-correlation experiment with water suppression.
See also: VnmrJ Liquids NMR

| tnmqcosy | Set up parameters for TNMQCOSY pulse sequence (M) |
| :---: | :---: |
| Applicability: | Systems with hardware digital phaseshifter for transmitting with directsynthesis rf; otherwise, software small-angle phaseshifter for transmitting with the old-style rf is used. Sequence not supplied with MERCURYplus/Vx. |
| Description:
 See also: | Sets up a multiple-quantum filtered COSY experiment with water suppression. VnmrJ Liquids NMR |
| tnnoesy | Set up parameters for TNNOESY pulse sequence (M) |
| Applicability: | Systems with a linear amplifier on the observe channel and a T/R switch. Sequence is not supplied with MERCURYplus/Vx. |
| Description: | Sets up a 2D cross-relaxation experiment with water suppression. |
| See also: | VnmrJ Liquids NMR |
| tnroesy | Set up parameters for TNROESY pulse sequence (M) |
| Applicability: | Sequence is not supplied with MERCURYplus/Vx. |
| Description: | Sets up a rotating-frame NOE experiment with water suppression. |
| See also: | VnmrJ Liquids NMR |
| tntocsy | Set up parameters for TNTOCSY pulse sequence (M) |
| Applicability: | Systems with T/R switch, computer-controlled attenuators, and linear amplifiers on observe channel. Sequence not supplied with MERCURYplus/Vx. |
| Description: | Sets up a total-correlation spectroscopy experiment (HOHAHA) with water suppression. |
| See also: | VnmrJ Liquids NMR |
| TOCSY | Change parameters for TOCSY experiment (M) |
| Description: | Converts the current parameter set to a TOCSY experiment. |
| Tocsy | Convert the parameters to a TOCSY experiement (M) |
| Description: | Convert parameters to a TOCSY experiement. |
| tocsy | Set up parameters for TOCSY pulse sequence (M) |
| Applicability: | Any system with linear amplifiers on the observe channel. |
| Description: | Sets up a total-correlation (TOCSY) experiment, also known as the Homonuclear Hartmann-Hahn (HOHAHA) experiment. |
| See also: | VnmrJ Liquids NMR |
| Related: | ft1dac Combined arrayed 2D FID matrices (M) |
| | ft2dac Combined arrayed 2D FID matrices (M) |
| | wft1dac Combined arrayed 2D FID matrices (M) |
| | wft2dac Combined arrayed 2D FID matrices (M) |

tnmqcosy \quad Set up parameters for TNMQCOSY pulse sequence (M)
Applicability: Systems with hardware digital phaseshifter for transmitting with direct-
synthesis rf; otherwise, software small-angle phaseshifter for transmitting with
the old-style rf is used. Sequence not supplied with MERCURYplus/Vx.
Description: Sets up a multiple-quantum filtered COSY experiment with water suppression.
See also: VnmrJ Liquids NMR
Set up parameters for
Applicability: Systems with a linear amplifier on the observe channel and a T/R switch.
Sequence is not supplied with MERCURYplus/Vx.
Description: Sets up a 2D cross-relaxation experiment with water suppression.
See also: VnmrJ Liquids NMR
nroesy \quad Set up parameters for TNROESY pulse sequence (M)
Applicability: Sequence is not supplied with MERCURYplus/Vx .
Description: Sets up a rotating-frame NOE experiment with water suppression.
See also: VnmrJ Liquids NMR
ntocsy \quad Set up parameters for TNTOCSY pulse sequence (M)
Applicability: Systems with T/R switch, computer-controlled attenuators, and linear
amplifiers on observe channel. Sequence not supplied with MERCURYplus/Vx.
Sets up a total-correlation spectroscopy experiment (HOHAHA) with water
suppression.
See also: VnmrJ Liquids NMR
Description: Converts the current parameter set to a TOCSY experiment.
Description: Convert parameters to a TOCSY experiement.
ocsy \quad Set up parameters for TOCSY pulse sequence (M)
Applicability: Any system with linear amplifiers on the observe channel.
Description:Sets up a total-correlation (TOCSY) experiment, also known as theHomonuclear Hartmann-Hahn (HOHAHA) experiment.Related: ft1dac Combined arrayed 2D FID matrices (M)
ft2dac Combined arrayed 2D FID matrices (M)
wft2dac

Description: Convert the parameter set to a Tocsyld experiment.
See also: Proton(M) selld(M)

TOCSY1D Change parameters for TOCSY1D experiment (M)

Description: Converts the current parameter set to a TOCSY1D (also known as DPFGSEnoe) experiment. A 1D proton spectrum is displayed to do peak selection.

tof \quad Frequency offset for observe transmitter (P)

Description: Controls the exact positioning of the transmitter. As the value assigned to tof increases, the transmitter moves to a higher frequency (toward the left side of the spectrum). The minimum step size of tof is determined by the type of rf hardware in the spectrometer. The limit is specified using the Step Size label in the CONFIG window (opened from config, implicitly set for MERCURYplus/ $V x$ systems). Systems with broadband style rf (rftype= 'b') generally have $100-\mathrm{Hz}$ resolution; all other systems have 0.1 Hz resolution.
Values: Approximate, depends on frequency-100000 to 100000 , in Hz .
See also: VnmrJ Liquids NMR
Related: config Determine current configuration and possibly change it (M)
dof \quad Frequency offset for first decoupler (P)
dof2 Frequency offset for second decoupler (P)
dof3 Frequency offset for third decoupler (P)
rftype Type of rf generation (P)
tpe \quad Duration of the phase encoding gradient pulse (P)
Applicability: Systems with imaging capabilities.
Description: Sets the length of the phase encoding gradient period in imaging and CSI experiments. The spectral width in the indirect dimension (SW1) is determined from tpe as $s w 1=1 /$ tpe. tpe may be recomputed within the pulse sequence to provide optimum performance, such as minimum echo time, or scaled to match the required timing for slice refocusing and readout dephasing.
See also: VnmrJ Imaging NMR
Related: gpe Phase encoding gradient increment in DAC units (P)
nv \quad Number of 2D phase encode steps to be acquired (P)
sw1 Spectral width in 1st indirectly detected dimension (P)
tpe2, tpe3 Duration of second and third phase encoding gradient periods (P)

tpe2, tpe3 Duration of second and third phase encoding gradient periods (P)

Applicability: Systems with imaging capabilities.
Description: Sets the lengths of the phase encoding gradient periods that control second spatial and third spatial dimensions in nD imaging and CSI experiments.

For example, 3D volume imaging sequence have two independent phase encode axes, controlled by tpe and tpe2. It is common to have a single phase encoding time block, in which two independent phase encode gradients share the same time period. In this case, tpe and tpe 2 would be equal.
See also: VnmrJ Imaging NMR

| Related: | Sw2 | Spectral width in 2nd indirectly detected dimension (P)
 tpe |
| :--- | :--- | :--- |
| Duration of the phase encoding gradient pulse (P) | | |

| tpwr | Observe transmitter power level with linear amplifiers (P) |
| :---: | :---: |
| Applicability: | Systems with a linear amplifier on the observe channel. |
| Description: | Controls transmitter power. The value of the attenuator upper safety limit is set using the Upper Limit label in the CONFIG window (opened from config). Depending on hardware adjustments, the system may saturate at a given value of tpwr (i.e., values above a certain value may give equal output). |
| | On systems with $63-\mathrm{dB}$ attenuator installed: 0 to 63 (63 is maximum power), in units of dB. About 55 to 60 is normal. Lower values (e.g., 49) might be used for water suppression experiments like 1-3-3-1. |
| | On systems with 79-dB attenuator installed: -16 to 63 (63 is maximum power), in units of dB . |
| | On MERCURYplus/Vx systems, the range is 0 to 63 , in $\mathrm{dB}, 1-\mathrm{dB}$ steps. |
| CAUTION: | Continuous power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate power to avoid exceeding 2 watts. The maximum value for tpwr on a $200-\mathrm{MHz}, 300-$ MHz , or $400-\mathrm{MHz}$ system with a linear amplifier on the decoupler channel has been set to 49, corresponding to about 2 watts of power. Before using tpwr=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user. |
| See also: | VnmrJ Liquids NMR |
| Related: | cattn Coarse attenuator (P) |
| | config Determine current configuration and possibly change it (M) |
| | dpwr Power level for first decoupler with linear amplifiers (P) |
| | dpwr2 Power level for second decoupler (P) |
| | dpwr3 Power level for third decoupler (P) |
| | dpwrf \quad First decoupler fine power (P) |
| | fattn Fine attenuator (P) |
| | tpwrf \quad Observe transmitter fine power (P) |
| tpwr1 | Intensity of an excitation pulse (P) |
| Applicability: | Systems with imaging capabilities. |
| Description: | Specifies the peak power, in dB , of transmitter pulses corresponding to p 1. |
| See also: | VnmrJ Imaging NMR |
| Related: | $\mathrm{p} 1 \quad$ First pulse width (P) |
| | tpwr Observe transmitter power level with linear amplifiers (P) |
| tpwr2 | Intensity of an excitation pulse (P) |
| Applicability: | Systems with imaging capabilities. |
| Description: | Specifies the peak power, in dB , of transmitter pulses corresponding to p 2. |
| See also: | VnmrJ Imaging NMR |
| Related: | $\mathrm{p} 2 \quad$ Second pulse width (P) |
| | tpwr Observe transmitter power level with linear amplifiers (P) |
| tpwrcal | Calibrate power levels of 90° and 180° pulse (M) |
| Applicability: | Systems with imaging capabilities. |
| Syntax: | tpwrcal (start_tpwr, end_tpwr) |

```
Syntax: tpwrcal(start_tpwr,end_tpwr)
```

Description: Sets up paired arrays of form tpwr1, tpwr2 The parameter array is set as array= ' (tpwr1, tpwr2)'. This macro is especially useful for calibrating the 90° and 180° power levels for a slice.
Arguments: start_tpwr is the starting value for the tpwr part of the arrayed pairs. The starting value for tpwr1 is 6 less than start_tpwr.
end tpwr is the ending value for the tpwr part of the arrayed pairs. The ending value for tpwr1 is 6 less than end_tpwr.
Examples: tpwrcal $(30,45)$
See also: VnmrJ Imaging NMR
Related: array Parameter order and precedence (P)
tpwr Observe transmitter power level with linear amplifiers (P)
tpwr1 Intensity of excitation pulse (P)

tpwrf \quad Observe transmitter fine power (P)

Applicability: Systems with a fine attenuator on the observe transmitter channel.
Description: Controls the transmitter fine attenuator. Systems with this attenuator are designated using the Fine Attenuator label in the CONFIG window (opened from config). The fine attenuator is linear and spans 60 dB (UNITY INOVA) or 6 dB (other systems). If tpwrf is not present, enter create('tpwrf','integer') setlimit('tpwrf', 4095, 0, 1) to create it.

On MERCURYplus/Vx systems, controls the transmitter by simulating a fine attenuator. The fine power control is linear and spans 0 to tpwr.
Values: 0 to 4095, where 4095 is maximum power. If tpwrf does not exist in the parameter table, a value of 4095 is assumed.
On MERCURYplus/Vx systems, 0 to 255 (where 255 is maximum power). If tpwrf or tpwrm do not exist in the parameter table, a value of 255 is assumed. If both exist, tpwrm is used.
See also: VnmrJ Liquids NMR; User Guide: Solids; MERCURYplus/-Vx CP/MAS Installation, Testing, and Operation

| Related: | config | Determine current configuration and possibly change it (M) |
| :--- | :--- | :--- |
| dpwr | Power level for first decoupler with linear amplifiers (P) | |
| dpwrf | First decoupler fine power (P) | |
| | fattn | Fine attenuator (P) |
| | tpwr | Observe transmitter power level with linear amplifier (P) |
| | tpwrm | Observe transmitter linear modulator power (P) |

tpwri Intensity of inversion pulse (P)

Applicability: Systems with imaging capabilities.
Description: Specifies the peak power of transmitter pulses corresponding to pi.
Values: Number, in dB.
See also: VnmrJ Imaging NMR

| Related: | ir | Inversion recovery mode (P) |
| :--- | :--- | :--- |
| | pi | Width of an inversion pulse in microseconds (P) |
| | tpwr | Observe transmitter power level with linear amplifiers (P) |
| | tpwri | Intensity of an excitation pulse (P) |

tpwrm Observe transmitter linear modulator power (P)
Description: Controls the power level on the observe transmitter linear modulator. On MERCURYplus/-Vx systems, tpwrm controls the transmitter by simulating a fine attenuator. The fine power control is linear and spans 0 to tpwr.
Values: 0 to 4095, where 4095 is maximum power. If tpwrm does not exist in the parameter table, a value of 4095 is assumed.
On MERCURYplus/Vx systems, 0 to 255 (where 255 is maximum power). If tpwrm does not exist in the parameter table, a value of 255 is assumed.
See also: VnmrJ Liquids NMR; User Guide: Solids; MERCURYplus/-Vx CP/MAS Installation, Testing, and Operation
Related: config Determine current configuration and possibly change it (M) dpwrf \quad First decoupler fine power (P)
fattn Fine attenuator (P)
tr \quad Repetition time in imaging and localized spectroscopy (P)
Applicability: Systems with imaging capabilities.
Description: Sets the repetition time of an experiment. The definition of repetition time can vary somewhat from pulse sequence to pulse sequence. In general, for imaging experiments, $t r$ is the time required to complete one transient of one phase encode step, including relaxation delay, excitation, data acquisition, and any post-acquire events, such as rf spoiling, phase encode rewinding, and gradient turn-off.
For multislice and/or multiecho imaging sequences, tr includes the complete multslice/multiecho train (for standard arrayed slice acquisitions, where the second character in seqcon is s, the complete train is not included, and tr is the repetition time for each slice position).
Some 1D experiments, such as STEAM and ISIS are also written using tr, with the similar definition that $t r$ is the repetition time per transient.
$t r$ describes the total duration of all events in a pulse sequence, and will never be directly found as an argument to "delay." Instead, tr will generally be used in precalculations to determine the time required to pad the sum of programmed events up to the desired repetition time. This padding delay will often be found in the pulse sequence as "predelay."
See also: VnmrJ Imaging NMR
Related: seqcon Acquisition loop control (P)

trace \quad Mode for \boldsymbol{n}-dimensional data display (P)

Applicability: All systems; however, MERCURYplus/Vx systems can only process 3D data and cannot acquire such data.
Description: Sets the multidimensional data display mode.
Values: ' $£ 1$ ' displays the f_{1} axis horizontally and allows f_{1} traces to be displayed.
' f 2 ' displays the f_{2} axis horizontally and allows f 2 traces to be displayed.
' f 3 ' displays the f 3 axis horizontally and allows f_{3} traces to be displayed if the data set is 3D.
See also: VnmrJ Liquids NMR
transfer Move parameters to target experiment (M)
Applicability: Systems with imaging capabilities.

Syntax: transfer(data_type, <scout_exp, >target_exp)
Description: Transfers selectively parameter data from a scout data set to the target experiment in preparation for the next or future scanning operation. The following series of actions are carried out: (1) transfer joins the scout experiment and saves the current parameters in the userdir+'/parlib' directory, under the file name TRANSFER.par. Any previous parameter sets with this file name are removed. (2) transfer then joins the target experiment and displays the transfer menu. The user may then use the menu to selectively copy groups of parameters from TRANSFER. par to the target experiment. The groups that may be transferred include:

```
Nucleus tn,resto
Voxel pos1-pos3,vox1-vox3,psi1,theta1, mopos, scpos
Slice pss, psi, phi,theta,mopos,scpos
FOV lro,lpe
Coil rfcoil,gcoil
Sample mopos, scpos
```

If any of the parameters pos1, pos2, pos3, psi1, theta1, psi, phi, or theta are arrayed in the scout experiment, in addition to copying the voxel or slice list, transfer sets the array parameter in the target experiment. Other parameters copied by transfer cannot legally be arrayed, except pss.
Parameters tn, gcoil, and pss are special cases that trigger macros execution. transfer executes the _tn, _gcoil, and _pss (setloop) programs once if these parameters are copied to the target. This execution ensures that all the normal side effects of setting these parameters are properly executed.

Arguments: data_type is a keyword defining the type of data for transfer as 'slice ' or 'voxel', which can be abbreviated to 's' or 'v', respectively.
scout_exp is the number of the scout experiment. The default is the current experiment is the source of the scout parameter data.
target_exp is the number of the target experiment.
Examples: transfer('s',5)
transfer('v',5,6)
See also: VnmrJ Imaging NMR

| Related: | gcoil | Read data from gradient calibration tables (P) |
| :--- | :--- | :--- |
| lpe | Field of view size for phase encode axis (P) | |
| lro | Field of view size for readout axis (P) | |
| phi | Euler angle from magnet frame (P) | |
| psi | Euler angle from magnet frame (P) | |
| pss | Slice position (P) | |
| resto | NMR resonance offset frequency (P) | |
| rfcoil | RF pulse calibration identity (P) | |
| theta | Euler angle from magnet frame (P) | |
| tn | Nucleus for observe transmitter (P) | |
| userdir | VnmrJ user directory (P) | |

traymax Sample changer tray slots (P)

Applicability: Systems with an automatic sample changer.
Description: Specifies the type of sample changer. It also can be used to disable the sample changer. The value is set using the Sample Changer label in the CONFIG window (opened from config).

Values: 0 is setting for no sample changer present or, if a sample changer is attached, to disable the changer (None choice in the CONFIG window).
$9,50,100,96,48$ are traymax values that indicate the number of sample slots for the corresponding sample changer (9 is for Carousel, 50 is for SMS/ASM 50 Sample, 100 is for SMS/ASM 100 Sample, 96 is for VAST, and 48 is for NMS, 768 for 768AS).
See also: VnmrJ Installation and Administration; VnmrJ Walkup NMR
Related: config Display current configuration and possibly change it (M)

trfunc Translate screen coordinates (M)

Applicability: Systems with imaging capabilities.
Syntax: trfunc (\$x,\$y): \$xincm, \$yincm
Description: Translates screen coordinates to hertz or centimeters depending upon the axis parameter.
Arguments: $\$ \mathrm{x}$ is a coordinate . . .
\$y is a coordinate . . .
\$xincm is a coordinate. . .
\$yincm is a coordinate . . .
See also: VnmrJ Imaging NMR
Related: axis Axis label for displays and plots (P)
trfuncd Translate screen distance (M)

trfuncd Translate screen distance (M)

Applicability: Systems with imaging capabilities.
Syntax: trfuncd (\$screenlength): \$imagelength
Description: Translates a screen distance into centimeters in a real image. It is only useful in axis='cc' (aspect ratio constrained) images.

Arguments: \$screenlength is the length of the display screen.
\$imagelength is the length of the image.
See also: VnmrJ Imaging NMR

| Related: | axis | Axis label for displays and plots (P) |
| :--- | :--- | :--- |
| | trfunc | Translate screen coordinates (M) |

trise \quad Gradient rise time (P)
Applicability: Systems with imaging capabilities.
Description: Stores the time required for an x, y, or z magnetic field gradient to change from zero to maximum gradient (gmax). Because the gradient system is adjusted by Varian at installation time so that all three gradients have the same rise time, only one parameter is used to describe the rise time for all three gradients.

This parameter accurately describes the time required for gradient changes only in systems that use slew-rate-limited gradient amplifiers, such as the Oxford GPS 2239 gradient amplifier supplied with most imaging systems. Do not confuse this gradient rise time with the amount of time required by a pulse sequence to transmit the DAC value that initiates a gradient value change (see the gradient and vgradient statements in the manual User Programming for a discussion of that timing).
trise is used in some sequences to control various aspects of gradient timing, including the automatic setup of gradient refocusing. This parameter does not need to be declared and initialized in pulse sequence source code files, because it is a standard PSG parameter and is therefore already declared and initialized by the Varian-supplied PSG library. See the source file sems. c for an example.
trise is defined in the system gradient table files found in the directory \$vnmrsystem/gradtables, and is automatically set from one of those files when a value is entered for the parameter gcoil.
Values: 0.005 seconds (nominal).
See also: VnmrJ Imaging NMR

| Related: | boresize | Magnet bore size (P) |
| :--- | :--- | :--- |
| | gcoil | Read data from gradient calibration tables (P) |
| | gmax | Maximum gradient strength (P) |

troesy \quad Set up parameters for TROESY pulse sequence (M)
Applicability: Not available on MERCURYplus/Vx systems.
Description: Sets up parameters for the transverse cross-relaxation experiment in a rotating frame.
See also: VnmrJ Liquids NMR
trunc \quad Truncate real numbers (O)
Description: In MAGICAL programming, an operator that truncates real numbers.

| Examples: | $\$ 3=$ trunc (3.6) |
| ---: | :--- |
| See also: User Programming | |

| Related: | acos | Find arc cosine of number (C) |
| :--- | :--- | :--- |
| arccos | Calculate arc cosine of real number (M) | |
| arcsin | Calculate arc sine of real number (M) | |
| arctan | Calculate arc tangent of real number (M) | |
| asin | Find arc sine of number (C) | |
| atan | Find arc tangent of a number (C) | |
| \cos | Find cosine value of an angle (C) | |
| \exp | Find exponential value (C) | |
| \ln | Find natural logarithm of a number (C) | |
| tan | Find tangent value of an angle (C) | |
| sqre | Return square root of a real number (O) | |
| typeof | Return identifier for argument type (O) | |

tshift Adjust tau2 to current cursor position (M)

Applicability: Systems with a solids module.
Description: Adjusts tau2 to make the current time cursor position the start of acquisition. As the time-domain cursor can move between points, this macro allows the accurate adjustment of tau2 so as to start another acquisition exactly at the top of an echo.
See also: User Guide: Solid-State NMR

tspoil Gradient spoiling time (P)

Applicability: Systems with imaging capabilities.

Description: Delay parameter for use in controlling a spoiling gradient. Many imaging sequences use tspoil to set the additional time that the slice-select gradient is on, symmetrically bracketing the 180° refocusing pulse, to spoil any magnetization excited by the 180 itself.
See also: VnmrJ Imaging NMR
Related: gcrush Crusher gradient level (P)
gspoil Spoiler gradient level (P)
tugain \quad Amount of receiver gain used by qtune (P)
Description: Sets the amount of receiver gain used by the interactive probe tuning program qtune. On some systems, the default receiver gain of 50 causes the signal to saturate, which qtune displays as a mostly flat line. To adjust the receiver gain to avoid saturation, set tugain to an appropriate value for the system before qtune is started.

Values: 0 to 60 , in steps of 2 dB (60 represents the highest possible receiver gain and 0 the lowest). On UNITY INOVA ($500-\mathrm{MHz}$ and higher), low-band gain is limited 18 to 60 . On MERCURY, typically $0,0-38,2 \mathrm{~dB}$ steps.
See also: VnmrJ Liquids NMR
Related: qtune Tune probe using swept-tune graphical tool (C)

tune Assign a frequency to a channel for probe tuning (C)

Applicability: UNITY INOVA systems.
Syntax: (1) tune (freq1, <freq2,freq3,freq4>)
(2) tune (chan1, freq1, <chan2, freq2, . . >)

Description: Assigns a frequency to a channel when tuning the probe. The frequency assignment remains in effect (as a tune frequency) until the next su or go command is executed. Although only the first synthesizer is connected to the tuning system, the console is programmed to set this synthesizer to the desired frequency based on the channel shown on the CHAN readout on the TUNE INTERFACE unit.

The tune program has two formats. If syntax 1 is used, frequencies are assigned to channels based on the order of the arguments. The first argument is interpreted and assigned to the first (observe) channel, the second argument is assigned to the second (decoupler) channel. A third or fourth argument would be interpreted and assigned in a similar manner.
If syntax 2 is used, the arguments are entered in pairs, with the first argument specifying the rf channel and the next argument specifying the frequency.
tune selects the format based on the first argument. If the first argument is a name for an rf channel, syntax 2 is assumed; otherwise, syntax 1 is used.
Arguments: freq1, freq2, freq3, and freq4 specify the frequency of the rf channel as a value in MHz (e.g., 200 or 300) or indirectly using the nucleus for tuning the probe (e.g., 'H1' or 'C13'). If a nucleus is entered, it must be found in the nucleus table. The frequency of any channel without an argument is unaffected. For example, tune ('H1', 'C13', 'N15') sets the first channel to tune at the ${ }^{1} \mathrm{H}$, the second channel at ${ }^{13} \mathrm{C}$, and the third channel at ${ }^{15} \mathrm{~N}$. If a fourth channel is present, it is not affected. Entering tune ('H1', 'C13', 200) assigns the same frequencies for the first and second channels but the third channel tunes to 200 MHz , regardless of the proton frequency.
chan1, chan2, chan3, and chan4 specify the channel directly:

- 'todev' or 'ch1' specify channel 1 (observe transmitter).
- 'dodev' or 'ch2' specify channel 2 (first decoupler).
- 'do2dev' or 'ch3' specify channel 3 (second decoupler).
- 'do3dev' or 'ch4' specify channel 4 (third decoupler).

Only one of these keywords is used per channel (do not enter the channel using just its number). If a channel does not have a keyword entered as an argument, that channel is not affected (e.g., tune ('ch4', 'P31') selects the frequency corresponding to ${ }^{31} \mathrm{P}$ on the fourth channel, but leaves the first three channels unaffected).

| Examples: | tune('
 tune('
 tune(' | $\begin{aligned} & \text { 'C13', 'N15') } \\ & \text { 'C13', } 200)_{\prime}^{\prime} \text { 'P31') } \end{aligned}$ |
| :---: | :---: | :---: |
| See also: | VnmrJ Liquin | NMR |
| Related: | dfrq | Transmitter frequency of first decoupler (P) |
| | dfrq2 | Transmitter frequency of second decoupler (P) |
| | dfrq3 | Transmitter frequency of third decoupler (P) |
| | go | Submit experiment to acquisition (C) |
| | qtune | Tune probe using swept-tune graphical tool (C) |
| | sfrq | Transmitter frequency of observe nucleus (P) |
| | spcfrq | Display frequencies of rf channels (M) |
| | su | Submit a setup experiment to acquisition (C) |

tuneoff \quad Turn off probe tuning mode on MERCURYplus/-Vx (M)

Applicability: MERCURYplus/Vx systems.
Description: Takes a MERCURYplus/Vx broadband system out of tuning mode by turning off the transmitter directing rf to the probe. After entering tuneoff, be sure to change the cables on the probe and magnet leg back to the normal BNC connectors (as they were before they were moved for tuning purposes).
See also: VnmrJ Liquids NMR; Autoswitchable NMR Probes Installation

typeof \quad Return identifier for argument type (0)

Syntax: typeof
Description: In MAGICAL programming, an operator that returns an identifier (0 or 1) for the type (real or string) of an argument.
Examples: if typeof('\$1') then $\$ a r g=1$ else $\$ a r g=\$ 1$ endif
See also: User Programming
Related: on Make a parameter active or test its state (C) size \quad Return number of elements in an arrayed parameter (O)

U

```
undospins
undosy
unit
unlock
updatepars
updateprobe
updaterev
updtgcoil
updtparam
usemark
userdir
usergo
userfixpar
userselection
Restore spin system as before last iterative run (M)
Restore original 1D NMR data from subexperiment (M)
Define conversion units (C)
Remove inactive lock and join experiment (C)
Update all parameter sets saved in a directory (M)
Update probe file (M)
Update after installing new VnmrJ version (M)
Update gradient coil (M)
Update specified acquisition parameters (C)
Use "mark" output as deconvolution starting point (M)
VnmrJ user directory (P)
Experiment setup macro called by go, ga, and au (M)
Macro called by fixpar (M)
Selection for images and frames (P)
```


undospins \quad Restore spin system as before last iterative run (M)

Description: Returns the values of the line assignments and the chemical shifts and coupling constants existing before the last iterative adjustment with spins('iterate'), and then runs spins. The parameters are returned from the file spini. inpar and the transitions from the file spini.savela in the current experiment.

See also: VnmrJ Liquids NMR
Related: spins Perform spin simulation calculation (C)

undosy \quad Restore original 1D NMR data from subexperiment (M)

Description: Restores the 1D DOSY data stored by the dosy macro (if data exists) by recalling the data stored in the file subexp/dosy2Ddisplay in the current experiment. undosy and redosy enable easy switching between the 1D DOSY data (spectra as a function of $g z l v l 1$) and the 2D DOSY display (signal as a function of frequency and diffusion coefficient).
See also: VnmrJ Liquids NMR

| Related: | dosy | Process DOSY experiments (M) |
| :--- | :--- | :--- |
| | redosy | Restore 2D DOSY display from subexperiment (M) |

unit Define conversion units (C)
Syntax: unit<(suffix,label,m<,tree><,'mult'|'div'> \} , $\mathrm{b}<$, tree><,'add'|'sub'>) >
Description: Defines a linear relationship that can be used to enter parameters with units. The unit is applied as a suffix to the numerical value (e.g., $10 \mathrm{k}, 100 \mathrm{p}$). The definition of the linear relations follows the traditional $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ equation, where x is the input value and y is the converted result.

Entering the unit command with no arguments displays all currently defined units. To remove a unit, define the unit with a 0 for the slope.
A convenient place to put unit commands for all users is in the bootup macro. Put private unit commands in a user's login macro.
Arguments: suffix is a string identifying the name for the unit. The length of the string is limited to 12 characters.
label is a string for the name to be displayed when the axis parameter is set to the value of the suffix (if the suffix is only a single character). The length of the string is limited to 12 characters.
m is the slope of the linear relationship, defined either as a numerical value or as the name of a parameter. If a parameter name is used, it may be optionally followed with the parameter tree to use (argument tree) and by another optional keyword that specifies whether the parameter value should be a multiplier (keyword 'mult') or divisor (keyword 'div').
tree is the parameter tree to use (i.e., ' current ', 'processed', 'global', or 'systemglobal'). The default tree is 'current'.
' mult' is a keyword that specifies that a parameter value used for the slope should be a multiplier. This is the default for the slope.
'div' is a keyword that specifies that a parameter value used for the slope should be a divisor.
b is the intercept of the linear relationship, defined either as a numerical value or as the name of a parameter. If a parameter name is used, it may be optionally followed with the parameter tree to use (argument tree) and by another optional keyword that specifies whether the parameter value should be added (keyword 'add') or subtracted (keyword 'sub').
' add ' is a keyword that specifies that a parameter value used for the intercept should be a added. This is the default for the intercept.
' sub ' is a keyword that specifies that a parameter value used for the intercept should be a subtract.
Examples: unit
Displays all currently defined units
unit('k','kHz', 1000)
$r 1=10 \mathrm{k}$ will set $r 1$ to 10000
unit('p','ppm','reffrq','processed')
$r 1=10 p$ will set $r 1$ to $10 * r e f f r q$, where reffrq from processed tree
unit('p','', 0)
$r 1=10 p$ will set $r 1$ to 10 and give an error "unknown unit p "
unit('F','degF',5/9,-32*5/9)
$r 1=212 \mathrm{~F}$ will set $r 1$ to 100 (degrees C)
unit('C','degC', 9/5,32)
$r 1=100 \mathrm{C}$ will set r 1 to 212 (degrees F)
See also: VnmrJ Liquids NMR, User Programming
Related:
axis Axis label for displays and plots (P)
bootup Macro executed automatically when VnmrJ is activated (M)

unlock Remove inactive lock and join experiment (C)

Syntax: unlock (exp_number,'force')
Description: In attempting to join another experiment, the jexp command may abort claiming the experiment is locked. This feature prevents two users from processing the same experimental data at the same time, which could corrupt the data (a "user" can also be a background operation invoked by the same user,
such as in wexp processing). This lock can be left behind if the program or the computer crashes.

The unlock command removes the lock if it is inactive and joins the unlocked experiment. The command will fail if the lock is still active (i.e., the process that made the lock is still executing) or if the lock was placed on the experiment by a remote host. The latter situation can only occur when one or more nodes are sharing the same file system (and experimental data).
Arguments: exp_number is the number of the experiment from 1 to 9 to be unlocked.
force unlocks an experiment under all circumstances and joins the unlocked experiment.
Examples: unlock (3)
See also: VnmrJ Liquids NMR
Related: jexp Join existing experiment (C)

updatepars Update all parameter sets saved in a directory (M)

Syntax: updatepars (directory)
Description: Corrects saved parameter sets. Starting with VNMR version 4.2, all parameters, upper limit, lower limit, and step sizes have been tightened. Further additions were made in VNMR 4.3. updatepars searches a directory for parameter and FID files and corrects the procpar files found. This macro overwrites parameters in the current experiment. The corrections applied to the parameter sets are defined by the parfix macro. Because updatepars uses the current experiment to process the parameter sets, the experiment chosen for running updatepars should not contain a valuable data set.
Arguments: directory is the name of the directory to be searched.

```
Examples: updatepars('myparlib')
updatepars('mydata')
See also: VnmrJ Liquids NMR
```

Related: parfix Update parameter sets (M)
parversion Version of parameter set (P)

updateprobe Update probe file (M)

Syntax: updateprobe (<probe|'tmplt'><,'system'>)
Description: Updates the current existing probe file or probe template.
Arguments: probe is the probe parameter to update. The default is the current probe parameter value.
'tmplt' is a keyword to update the local probe template. The default is the current probe file.
' system' is a keyword to update the system template or probe file, providing you have write permission to the file. The default is to update the local template or probe file.
Examples: updateprobe
updateprobe ('autosw')
updateprobe('autosw','system')
updateprobe('tmplt')
See also: VnmrJ Liquids NMR
Related: addparams Add parameter to current probe file (M)

| getparam | Receive parameter from probe file (M) |
| :--- | :--- |
| setparams | Write parameter to current probe file (M) |

updaterev Update after installing new VnmrJ version (M)
Description: Updates experiment parameters and the global file following installation of a new VNMR software version. updaterev is called by the makeuser command during the installation process.
See also: VnmrJ Installation and Administration
updtgcoil Update gradient coil (M)
Applicability: Systems with three-axis gradients.
Description: Creates the gcoil parameter, if it does not exist, and sets it to the current value of the system gradient coil sysgcoil. updtgcoil only executes if gradients are configured in the system.

The updtgcoil macro is called when a new experiment is joined or new parameters are read into an experiment; however, it is only called at these times if the gcoil parameter exists. If sysgcoil is set to a gradient table name and if the values of sysgcoil and gcoil are different, a message is displayed in the Status window to let the user know that the gradient coil parameters have been updated.
updtgcoil can be called directly if the user wants to update the parameter set with the gcoil and gradient table parameters.
See also: VnmrJ Liquids NMR; User Programming; VnmrJ Imaging NMR

| Related: | creategtable | Generate system gradient table (M) |
| :--- | :--- | :--- |
| | gcoil | Read data from gradient calibration tables (P) |
| | sysgcoil | System gradient coil (P) |

updtparam Update specified acquisition parameters (C)
Description: Enables interactive updating of specified acquisition parameters.
See also: SpinCAD

| Related: | psgupdateoff | | |
|---|---|---|---|
| psgupdateon | |\quad| Prevent update of acquisition parameters (C) |
| :--- |

usemark Use "mark" output as deconvolution starting point (M)
Description: In some cases it is not possible to produce a line list that is a suitable starting point for a deconvolution (e.g., lines may overlap so severely that a line list does not find them). In this case, or in any case, the results of a "mark" operation during a previous spectral display (ds) may be used to provide a starting point. If the "mark" has been made with a single cursor, the information in the file mark1d. out contains only a frequency and intensity, and the starting linewidth is taken from the parameter slw.
If the "mark" is made with two cursors, placed symmetrically about the center of each line at the half-height point, mark1d. out contains two frequencies and an intensity. In this case, the starting frequency is taken as the average of the two cursor positions; the starting linewidth is taken as their difference (thus allowing different starting linewidths for each line).
See also: VnmrJ Liquids NMR

| Related: | ds | Display a spectrum (C) |
| :--- | :--- | :--- |
| | slw | Spin simulation linewidth (P) |

userdir VnmrJ user directory (P)

Description: Stores the full UNIX path of the directory that contains a user's private VnmrJ files. These include a user's private maclib, menulib, shims, psglib, experiments, etc. This parameter is initialized at bootup by the UNIX environmental variable vnmruser.
Values: Typical value is /home/vnmr2/vnmrsys
See also: VnmrJ Liquids NMR
Related: curexp Current experiment directory (P)
systemdir VnmrJ system directory (P)

usergo Experiment setup macro called by go, ga, and au (M)

Description: Called by macros go, ga, or au before starting an experiment. The user typically creates usergo as a means to set up general experiment conditions.
See also: VnmrJ Liquids NMR
Related: au Submit experiment to acquisition and process data (M)
ga \quad Submit experiment to ac acquisition and FT the result (M)
go Submit experiment to acquisition (M)
go_ Pulse sequence setup macro called by go, ga, and au (M)
userfixpar Macro called by fixpar (M)
Description: Called by the macro fixpar to provide an easy mechanism to customize parameter sets.

See also: VnmrJ Liquids NMR
Related: fixpar Correct parameter characteristics in experiment (M)

userselection Selection for images and frames (P)

Description: A string for selecting images and frames (selection syntax). Used by display commands.

Examples: $91-3, \mathrm{gl}(1-4)$ [5-]

```
vast1d
vastget
vastglue
vastglue2
vastgo
vbg
vf
vi
vjhelp
vn
vnmr
vnmr2sc
vnmr_accounting
vnmrexit
vnmrj
vnmrplot
vnmrprint
vo
vorient
vox1 - vox3
voxplan
vp
vpf
vpfi
vphi,vpsi,vtheta
vs
vs2d
vsadj
vsadj2
vsadjc
vsadjh
vsproj
vtc
vttype
vtwait
vxr_unix
```

Set up initial parameters for VAST experiments (M)
Selects and displays VAST spectra (M)
Assemble 1D datasets into a 2D (or pseudo-2D) dataset (M)
Assemble 1D datasets into a 2D (or pseudo-2D) dataset (M)
Turn off LC stop flow automation, start VAST automation (M)
Run VNMR processing in background (U)
Vertical scale of FID (P)
Edit text file with vi text editor (M)
Display VnmrJ help (U)
Start VNMR directly (U)
Start VNMR in current windowing system (U)
VNMR to SpinCAD pulse sequence translator (M)
Open Accounting window (U)
Exit from the VNMR system (C)
Start VnmrJ (U)
Plot files (U)
Print text files (U)
Vertical offset (P)
Voxel orientation
Voxel dimensions (P)
Set voxel parameters for voxel defined by 2D box cursor (M)
Vertical position of spectrum (P)
Current vertical position of FID (P)
Current vertical position of imaginary FID (P)
Euler angles for voxel orientation
Vertical scale (P)
Vertical scale for 2D displays (P)
Automatic vertical scale adjustment (M)
Automatic vertical scale adjustment by powers of 2 (M)
Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M)
Automatic vertical scale adjustment for ${ }^{1} \mathrm{H}$ spectra (M)
Vertical scale for projections and traces (P)
Variable temperature cutoff point (P)
Variable temperature controller present (P)
Variable temperature wait time (P)
Convert VXR-style text files to UNIX format (M,U)
vast1d Set up initial parameters for VAST experiments (M)
Applicability: Systems with VAST accessory.
Description: Sets up initial VAST parameters from the /vnmr/stdpar directory or from the user's stdpar directory if the appropriate file exists there. Any changes
made to the files in these directories are reflected in the setup. The file /vnmr/stdpar/vast1d. par contains the "default" parameters for VAST spectra and should be modified as needed to produce spectra under desirable conditions. After running vast1d, the solvent parameter can be set by choosing it from the list of solvents listed in/vnmr/solvents.
See also: VnmrJ Liquids NMR

vastget \quad Selects and displays VAST spectra (M)

Applicability: Systems with VAST accessory.
Syntax: vastget(<well>,<well>, ...) >
Description: Selects and displays the spectra from any arbitrary well or wells using the well label(s) as arguments. the spectra are displayed in a dss stacked plot.

Arguments: well is the well label from which you want to select and display spectra. The wells are labeled $[\mathrm{A}->\mathrm{H}][1-8]$.
Examples: vastget('B6','B7','C11','G3')
See also: VnmrJ Liquids NMR

vastglue
 Assemble 1D datasets into a 2D (or pseudo-2D) dataset (M)

Applicability: Systems with the VAST accessory.

```
            Syntax: vastglue(<rack,<zone>)
                            vastglue(<glue order>,<plate>)
```

Description: Used to artificially reconstruct a 2D dataset from a series of 1D data sets having similar filenames. It is crucial to ensure that the format of the file names of each of the 1D data sets is identical. vastglue reads in each 1D file, in succession, and adds it to the previous data, but in a 2D format. It assumes that file names are of the format obtained when using the default setting of autoname (autoname = ' '). If autoname has been redefined, use a macro like vastglue2. Save the resulting reconstructed 2D dataset in the normal manner using svf.

Arguments: rack is the rack number; the default is 1 . If you enter a rack number, you must also enter a zone number.
zone is the zone number; the default is 1 . If you want to specify a zone number, you must enter a rack number.
glue order is the specific glue order to be defined based on the order defined in a plate_glue file. If glue order is specified, you can provide a plate number as the second argument and used with the glue order argument.
See also: VnmrJ Liquids NMR
Related: autoname Prefix for automation data file (P)
vastglue2 Assemble related 1D datasets into a 2D (or pseudo-2D) dataset (M)

vastglue2 Assemble 1D datasets into a 2D (or pseudo-2D) dataset (M)

Applicability: Systems with the VAST accessory
Syntax: vastglue2<(number) >
Description: Used to artificially reconstruct a 2D data set from a series of 1D datasets having similar filenames. It is crucial to ensure that the format of the file names of each of the 1D datasets is identical. vastglue2 reads in each 1D file, in succession, and adds it to the previous data, but in a 2D format. It assumes that file names
are of the format obtained using a nondefault setting of autoname (autoname='filename_R\%RACK:\%_Z\%ZONE:\%_S\%SAMPLE\#:\%_'). This definition must be hard coded into the macro by the user. If autoname has not been redefined, use a macro like vastglue. Save the resulting reconstructed 2D data set in the normal manner using svf.
Arguments: number is used to specify that only spectra from 1 through number are to be glued. The default is to glue all the spectra stored in the current directory that have the proper file name format (from 1 through arraydim).
See also: VnmrJ Liquids NMR

| Related: | autoname | Prerix for automation data file (P) | | |
|---|---|---|---|---|
| vastglue | | |\quad| Assemble related 1D datasets into a 2D (or pseudo-2D) dataset (M) |
| :--- |

vastgo Turn off LC stop flow automation, start VAST automation (M)

Applicability: Systems with the LC-NMR and VAST accessory
Description: Turns off LC stopped flow use of automation and starts VAST automation run.

vbg Run VNMR processing in background (U)

Syntax: (From UNIX) vbg exp_number command_string <prefix>
Description: Enables user to perform VNMR tasks in the background. vbg (for "VNMR background processing") must be run from within a UNIX shell, and no foreground or other background processes can be active in the designated experiment (e.g., if you are working in exp2 in VNMR (in the foreground), you cannot execute background processing in exp2 as well).
Foreground processing causes a lock file to be placed in the appropriate experiment. The file has a format such as $f .1268$, where 1268 indicates the process number in the process table (accessed in UNIX by entering the command ps -e). Background processing causes a lock file to be in the appropriate experiment as well. This file has a format such as b. 4356, where 4356 indicates the process number. By displaying the files within an experiment, the user can readily determine whether any foreground or background processes are active in that experiment.
Arguments: exp_number is the number of the experiment, from 1 to 9 , in the user's directory in which the background processing is to take place.
command_string is the command string to be executed by VNMR in the background. Double quotes enclosing the string are mandatory (e.g., "fn=4096 fn1=2048 wft2da").
prefix is a prefix to be added to the name of the log file, making the name prefix_bgf.log. The default name is exp_number_bgf.log, where exp_number is the experiment number. The log file is placed in the experiment in which the background processing takes place.
Examples: (From UNIX) vbg 1 "wft2da bc('f1')" (From UNIX) vbg 3 "vsadj pl pscale pap page" plotlog
See also: User Programming

vf Vertical scale of FID (P)

Description: In normalized intensity (nm) mode, vf is the height of the largest FID. In absolute intensity (ai) mode, vf is a multiplier that is adjusted to produce a desired vertical scale, using the appearance on the display screen as a guide (full scale on the screen gives full scale on the plotter).
vf can be entered in the usual way or interactively controlled by clicking the middle mouse button in the graphics window during a FID display (click above the FID to increase vf or below the FID to decrease it).
Values: $1 \mathrm{e}-6$ to 1 e 9 , in mm (in nm mode) or as a multiplier (in ai mode).
See also: VnmrJ Liquids NMR

| Related: | ai | Select absolute intensity mode (C) |
| :--- | :--- | :--- |
| | df | Display a single FID (C) |
| | nm | Select normalized intensity mode (C) |
| | sf | Start of FID (P) |
| | wf | Width of FID (P) |

Edit text file with vi text editor (M)
Syntax: vi(file)
Description: Invokes the UNIX text editor vi for editing the file name given. On the Sun workstation, a popup screen contains the editing window. On the GraphOn terminal, the main screen becomes the editing window. vi is a powerful text editor, but its user interface is limited: the mouse is not used, menus are not available, and status information is virtually nonexistent.
vi operates in three modes: the command mode (for moving the cursor and editing text), the insert mode (for inserting text into the file), and the last line mode (for special operations). Each mode is described below.

Command mode

vi starts up in the command mode. In this mode, user commands consist mostly of a single character, sometimes in combination with another character, or a number, or both. A number preceding a command typically defines how many times a command should be executed (e.g., 3dd means delete three lines). The commands available include the following:

| G | go to the start of the last line in the file |
| :---: | :---: |
| 3G | go to the start of line 3 |
| 0 | (zero) go to the start of the current line |
| \$ | go to the end of the current line |
| Return or + | go to start of next line |
| - | (hyphen) go to start of previous line |
| Ctrl-d | scroll down (forward) half a screen |
| Ctrl-f | scroll forward by a full screen |
| Ctrl-u | scroll up (back) half a screen |
| Ctrl-b | scroll back by a full screen |
| /expression | find next expression and jump to its first character |
| ?expression | find previous expression, jump to its first character |
| n | find next expression (from the last search) |
| N | find previous expression (from the last search) |
| dd | delete one line and put it into the buffer |
| 3dd | delete three lines and put them into the buffer |
| dw | delete word |
| x | erase one character forward (under cursor) |
| X | erase one character backwards (before cursor) |
| 3x | erase three characters forward |
| rcharacter | erase character and replace with character |
| ZZ | write if necessary and quit $v i$ |

| . | (period) repeat the last command |
| :--- | :--- |
| u | undo the last command |
| J | join the next line to the current line |
| yY or Y | yank one line and put into a buffer (called yank buffer) |
| p | put contents of yank buffer after the cursor |
| P | put contents of yank buffer before the cursor |
| "aY | yank line into buffer a (buffers b to z also available) |
| "ap | put contents of buffer a below current line |
| "aP | put contents of buffer a above current line |

Because there is no command line, these commands do not show up on the screen but are executed immediately (without pressing the Return key).
Insert mode
In the insert mode, characters typed on the keyboard (except for the Esc key) show up in the text. The insert mode is entered by typing one of the following commands from the command mode:

| a text Esc | append text after the current cursor position |
| :--- | :--- |
| A text Esc | append text to the end of current line |
| i text Esc | insert text before current cursor position |
| Cw word Esc | change word from current cursor position to end |
| 2 cw words Esc | change two words from current cursor position to end |
| O text Esc | open line below current line and append text
 O text Esc |
| open line above current line and append text | |

The only way to exit the insert mode is by pressing the Esc key, which leads back to the command mode. Unfortunately, there is no indication on the screen whether vi is in the command mode or in the insert mode. Inexperienced users often press the Esc key to make sure they are still in the command mode. The Esc key can also be used to avoid execution of commands that have been typed partially (e.g., the number has been typed, but not the last character).
You can insert special (normally nondisplayable) characters into the text if they are preceded by a Ctrl-v (e.g., entering Ctrl-v Ctrl-q is displayed in the text as ${ }^{\wedge} \mathrm{Q}$).

Changing selected occurrences

The following actions find one or more occurrences of a particular word and change it to another word:

- First, type / word and press Return, where / is a forward slash and word is word you want to change.
- Next, press n as necessary until you reach the occurrence of the word you want to change.
- Finally, type cw newword and press Esc, where newword is replacement word.
- To repeat for another occurrence of word, press n as necessary to scan forward, and then type . (a period) to repeat cw newword (or whatever was the last change)
Changing selected occurrences of an expression (one or more words) is similar. To change two words, for example, take the same actions as above but use the command 2 cw (or c2w) instead.

Last line mode

The last line mode is initiated with a colon; thereafter, commands such as the following can be used (press Return to execute these commands):

```
:r filename read file named filename (insert in currently open file)
:w write (save) file
:w filename write under a new file named filename
:e filename edita different file named filename
:q quit vi (only possible if file has been written back)
:wq write back file (save changes) and quit vi
:q! quit vi without saving changes
```

Exiting from vi is accomplished by using the ZZ command in the command mode, or with the : q, : wq, or : q ! commands in the last line mode.
This description lists only a selection of the most important commands. For more information on vi, refer to UNIX books and manuals.
Examples: vi(userdir+'/psglib/apt.c')
vi (curexp+'/text')
See also: User Programming

| Related: | edit | Edit a file with user-selectable editor (M) |
| :--- | :--- | :--- |
| | paramvi | Edit a parameter and its attributes with vi text editor (M) |
| macrovi | Edit a user macro with the vi text editor (C) | |
| | menuvi | Edit a menu with the vi text editor (M) |
| | textvi | Edit text file of current experiment (M |

vjhelp Display VnmrJ help (U)
Syntax: vjhelp file:///vnmr/jhelp/jhelp.html
Description: Displays the VnmrJ help in a Netscape browser.

Start VNMR directly (U)
Syntax: (From UNIX) vn <-display Xserver> <-fn font> \&
Description: Starts the VNMR application directly without checking the operating system and attempting to run the window manager.
Arguments: -display Xserver specifies X server display (e.g., hostname: 0.0). The default is the environment set by the DISPLAY variable.
-fn font specifies the size of the font displayed (e.g., $9 \times 15,8 \times 13$, or 7 x 13). The default is the font set in the . Xdefaults file. Note that the size of the font affects the size of the VNMR window.
Examples: vn \&
vn -display hostname:0.0 \&
vn -font $8 x 13$ \&
See also: VnmrJ Liquids NMR
Related: vnmr Start VNMR (U)
vnmr \quad Start VNMR in current windowing system (U)
Description: Starts the VNMR application using the current windowing system. vnmr can also be used to start VNMR from terminals. In this case, the vnmr command is equivalent to the vn command.
See also: VnmrJ Liquids NMR
Related: vn Start VNMR in window environment (U)

vnmr2sc VNMR to SpinCAD pulse sequence translator (M)

Syntax: vnmr2sc<('sequence_name'<,rfchannels<,gradchannels>>) >
Description: Converts the pulse sequence pointed to by the seqfil parameter in the current VNMR parameter set from a C program into a SpinCAD pulse sequence. The conversion result is stored in the local spincad/psglib under the same name as the C pulse sequence (i.e., the name stored in the seqfil parameter), but without the . c extension.
vnmr2sc uses dps output to generate the SpinCAD code, i.e., the pulse sequence must be compiled and must be displayable with dps. Pulse sequences that do not compile with the dps option cannot be translated. For the same reason, vnmr2sc cannot translate features that do not show up in dps. This means that go-time decisions (such as flag-based C if constructs) will not show up in the translated SpinCAD sequence. In such cases, you have two options:

- Translate the sequence several times, once for each of the relevant flag settings. That is, generate several (simpler) SpinCAD pulse sequences from a single C sequence.
- Translate the sequence once (preferably with all options turned on), then manually insert the necessary if statements and other missing elements using SpinCAD.
Arguments: sequence_name is an optional argument that permits the name of the resulting SpinCAD pulse sequence to be specified. By default, vnmr2sc creates a SpinCAD sequence with the name specified in the seqfil parameter (i.e., the SpinCAD sequence has the same name as the C pulse sequence). sequence_name is particularly useful if a C sequence is to be translated into multiple SpinCAD sequences; see the examples.
$r f$ channels is an optional numeric argument specifying the number of rf channels. Use it when you want the SpinCAD sequence to address more rf channels. By default, vnmr2sc determines the number of rf channels from the source sequence. You can only increase the number of rf channels. If you specify 0 rf channels, the number of rf channels is left unchanged.
gradchannels is a second optional numeric argument specifying the number of gradient channels or axes. Use it when you want to convert a nongradient sequence to a gradient sequence or when you want the SpinCAD sequence to address more gradient axes than the source sequence. By default, vnmr2sc determines the number of gradient axes from the source sequence. You can only increase, not decrease, the number of gradient axes.
Examples: vnmr2sc
setup('H1','CDCl3') hmqc null=0.2 vnmr2sc
null=0 mbond='y' vnmr2sc('hmbc')
vnmr2sc('gcosy',2,3)
nt=256 vnmr2sc
vnmr2sc $(4,1)$
vnmr2sc $(0,1)$
See also: SpinCAD Manual
Related: dps Display pulse sequence (C)
spincad Run SpinCAD program (C)

vnmr_accountingOpen Accounting window (U)

Description: Opens a window for creating and maintaining cost accounting data for groups of users on a spectrometer system. The program accommodates multiple rate schedules for spectrometer usage. A calendar tool can be used to define holidays
for holiday rates. There is no limit on the number of rates that can be defined. Multiple printers can be selected.

Any user can view the accounting information (enter cd/vnmr/bin followed by ./vnmr_accounting), but to update information, the user must have root privileges.
See also: System Installation and Administration

vnmrexit Exit from the VNMR system (C)

Description: Exits from the VNMR system in a graceful manner by writing parameters and data to the disk, removing lock files, and restoring the terminal (if on a GraphOn). To provide flexibility when exiting VNMR, the macro exit calls vnmrexit to exit from VNMR.
CAUTION: When you exit from the VNMR user interface on your X display system, whether you are using an X terminal or a Sun computer, and whether you are using OpenWindows, CDE, or Motif, you must first exit from any copy of VNMR running on your system. Failure to do this can cause current parameter values and even current data to be lost.
vnmrj Start VnmrJ (U)
Description: Starts the VnmrJ application using the current windowing system.
Arguments: -display, don't add fonts, for example vnmrj -display hostname adm, opens the VnmrJ Administration interface (vnmrj adm).
See also: VnmrJ Liquids NMR; VnmrJ Walkup NMR
vnmrplot Plot files (U)
Syntax: (From UNIX) vnmrplot <file>
Description: A UNIX command that plots files from inside VNMR commands. To plot a file, you should use the page command, which uses vnmrplot internally.

Arguments: file is the name of the file to be plotted.
See also: VnmrJ Liquids NMR
Related: vnmrprint Print text files (U)

vnmrprint Print text files (U)

Syntax: (From UNIX) vnmrprint printfile <printcap> <printer_type <clear|file>>
Description: A UNIX command installed as part of the VNMR system to print text files. The printon and printoff commands use vnmrprint to print files. vnmrprint can also be used to delete a print file or save a print file to a different name.

Arguments: printfile is the name of the text file to be printed.
printcap is a UNIX printcap entry (e.g. LaserJet_300) for the printer to print the text file. The default is the printer selected by the -p option of the UNIX lp command.
printer_type is the type of printer from the list of VNMR printers (e.g., LaserJet_300). printer_type is required as an argument when it is desired to clear the printer file or save the printer file to another name.
clear is a keyword to delete the current print file. Deleting this file also requires that the printfile, printcap, and printer_type arguments be entered so that clear is the fourth argument.
file is the name of the file to use in saving the printfile. If a file with the name specified already exists, it is overwritten. Saving the file also requires that the printfile, printcap, and printer_type arguments be entered so that file is the fourth argument.
Examples: vnmrprint /vnmr/psglib/tocsy.c LaserJet_300
vnmrprint myfile LaserJet_300 LaserJet_300 clear
vnmrprint myfile ps PS_AR yourfile
See also: VnmrJ Liquids NMR

| Related: | printoff | Stop sending text to printer and start print operation (C | | |
|---|---|---|---|---|
| | printon | |
| | vnmrplot | |\quad| Direct text output to printer (C) |
| :--- |

Vertical offset (P)
Description: For 1D data sets, sets the vertical offset of the each spectrum in a stacked display with respect to the previous spectrum. The parameter ho sets the horizontal offset. For a "left-to-right" presentation, ho is typically negative; for a "bottom-to-top" presentation, vo is positive.

For 2D data sets, the parameter wc 2 sets the distance between the first and last trace and the vo parameter is inactive.
Values: Number, in mm.
See also: VnmrJ Liquids NMR

$$
\begin{array}{lll}
\text { Related: } & \text { ho } & \text { Horizontal offset }(\mathrm{P}) \\
& \text { wc2 } & \text { Width of chart in second direction (P) }
\end{array}
$$

vorient Voxel orientation

Applicability: Systems with imaging capabilities.
Description: Orientation of a voxel in the magnet reference frame, typically in localized single-voxel spectroscopy experiments such as STEAM and ISIS.
vorient corresponds in its basic definitions to its sister parameter orient, with the substitution of the axis designators " 1, ," 2 ," and " 3 " for the descriptors "readout," "phase encode," and "slice select." vorient, in turn, determines three Euler angle parameters, vphi, vpsi, and vtheta, which are analogs to the phi, psi, and theta parameters. For example, if vorient= 'sag',
pos 1 lies along Z, pos 2 along Y, and pos 3 along X, with voxel Euler angles vtheta=90, vpsi=90, and vphi=0.
Values: 'trans','sag','cor','oblique'
Related: orient Slice plane orientation (P)
plan Interactive slice and voxel selection (M)
pos1-pos3 Position of voxel center (P)
vphi, vpsi, vtheta Euler angles for voxel orientation (P)

vox1 - vox3 Voxel dimensions (P)

Applicability: Systems with imaging capabilities.
Description: Defines the dimensions of a desired voxel for localized spectroscopy experiments.
Values: Number, in mm.

voxplan
 Set voxel parameters for voxel defined by 2D box cursor (M)

Applicability: Systems with imaging capabilities.
Description: Calculates and sets the voxel parameters for the voxel defined by the position of the 2D box cursor. The parameter for the voxel can be calculated and set using the Calculate Target button of the voxel planning menu. This uses the voxplan macro. See the plan macro for details.
See also: VnmrJ Imaging NMR

| Related: | drawslixw | Display target slices (M) |
| :--- | :--- | :--- |
| drawvox | Display target voxels (M) | |
| | plan | Display menu for planning a target scan (M) |
| | ssplan | Set slice parameters for target slice (M) |

vp
Description: Contains vertical position of spectrum with respect to the bottom of the display or plotter.

Values: -200 to +200 , in mm .
See also: VnmrJ Liquids NMR
Related: vpf Current vertical position of FID (P)
vpfi Current vertical position of imaginary FID (P)

vpf \quad Current vertical position of FID (P)

Description: Contains the current vertical position of an FID. To create this parameter and the other FID display parameters axisf, crf, deltaf, dotflag, and vpfi (if the parameter set is older and lacks these parameters), enter addpar('fid').
Values: Number, in mm . If $\mathrm{vpf}=0$, the FID is positioned in the middle of the screen.
See also: VnmrJ Liquids NMR

| Related: | addpar
 axisf | Add selected parameters to the current experiment (M)
 crf |
| :--- | :--- | :--- |
| deltaf label for FID displays and plots (P) | | |
| dotflag | Current time-domain cursor position (P) | |
| vp | Difference of two time-domain cursors (P) | |
| Vpfi | Dertical FID as connected dots (P) | |
| | Current vertical position of imaginary FID (P) | |

vpfi Current vertical position of imaginary FID (P)

Description: Contains the current vertical position of the imaginary part of an FID. To create this parameter and the other FID display parameters axisf, crf, deltaf, dotflag, and vpf (if the parameter set is older and lacks these parameters), enter addpar('fid').
Values: Number, in mm . In vpfi=0, the imaginary part is positioned in the middle of the screen.

See also: VnmrJ Liquids NMR

| Related: | addpar
 axisf
 crf | Add selected parameters to the current experiment (M)
 deltaf |
| :--- | :--- | :--- |
| dotflag | Current time-domais cursor position (P) | |
| vp | Difference of two time-domain cursors (P | |
| Vpf | Display FID as connected dots (P) | |
| | Vertical position of spectrum (P) | |
| | Current vertical position of FID (P) | |

vphi, vpsi,vthetaEuler angles for voxel orientation

Applicability: Systems with imaging capabilities.
Description: Euler angles used to define voxel orientation. Definitions are similar to the imaging plane orientation definition parameters phi, psi, and theta.

Generally, voxel Euler angles are not directly set by the user, but instead are set either by entering a string value into vorient or through interactive graphical planning of a voxel plane from an existing scout image.

| Related: | phi | Euler angle for defining imaging plane orientation (P) |
| ---: | :--- | :--- |
| | psi | Euler angle for defining imaging plane orientation (P) |
| | theta | Euler angle for defining imaging plane orientation (P) |
| | plan | Interactive slice and voxel selection (M) |
| | vorient | Voxel orientation (P) |

Vertical scale (P)

Description: In normalized (nm) mode, vs is the height of the largest peak in the spectrum. In absolute intensity (ai) mode, vs is a multiplier that is adjusted to produce a desired vertical scale, using the appearance on the display screen as a guide (full scale on the screen gives full scale on the plotter). vs can be entered in the usual way or interactively controlled by clicking the middle mouse button.
Values: $\quad 1 \mathrm{e}-6$ to 1 e 9 , in mm (in nm mode) or as a multiplier (in ai mode).

See also: VnmrJ Liquids NMR

Related: ai Select absolute intensity mode (C)
isadj Adjust integral scale (M)
nm Select normalized intensity mode (C)
thadj Adjust threshold for peak printout (M)
vsadj Automatic vertical scale adjustment (M)
vsadj 2 Automatic vertical scale adjustment by powers of two (M)
vsadjc Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M)
vsadjh Automatic vertical scale adjustment for ${ }^{1} \mathrm{H}$ spectra (M)

vs2d Vertical scale for 2D displays (P)

Description: Sets a multiplier for 2D spectra and images that is adjusted to produce a desired vertical scale for display or plotting. vs2d takes the place of vs for 2D data display and can be adjusted by explicitly setting it to a value or by clicking the middle mouse button when pointing to a point on a 2 D display. If vs 2 d does not exist, it can be created by running par2d.
Related: par2d Create 2D acquisition, processing, and display parameters (M)
vs \quad Select vertical scale (C)
vsproj Adjust vertical scale for projections and traces (M)

```
vsadj Automatic vertical scale adjustment (M)
```

Syntax: vsadj<(height) >

Description: Automatically sets the vertical scale vs in the absolute intensity (ai) mode so that the largest peak is at the requested height.

Arguments: height is the desired height, in mm, of the largest signal in the displayed portion of the spectrum. The default is $0.9 *(w c 2 m a x-v p-s c 2)$.
Examples: vsadj
vsadj(100)
See also: VnmrJ Liquids NMR

| Related: | ai | Select absolute intensity mode (C) |
| :--- | :--- | :--- |
| isadj | Adjust integral scale (M) | |
| thadj | Adjust threshold for peak printout (M) | |
| vs | Vertical scale (P) | |
| vsadj2 | Automatic vertical scale adjustment by powers of two (M) | |
| vsadjc | Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M) | |
| vsadjh | Automatic vertical scale adjustment for ${ }^{1} \mathrm{H}$ spectra (M) | |
| wc2max | Maximum width of chart in second direction (P) | |

vsadj2 Automatic vertical scale adjustment by powers of $2(\mathrm{M})$
Syntax: vsadj2<(height) >:scaling_factor
Description: Adjusts the vertical scale by powers of two as required for expansion plots (see aexppl for more information).
Arguments: height is desired height of largest (or largest relevant) signal in displayed portion of the spectrum. The default is $0.9 *(w c 2 m a x-v p-s c 2)$.
scaling_factor returns to the calling macro the ratio of the new compared to the old value of vs.
Examples: vsadj2
vsadj2(50):r1
See also: VnmrJ Liquids NMR

| Related: | aexppl
 isadj | Automatic expansions plot (M)
 Adjust integral scale (M) |
| :--- | :--- | :--- |
| | sc2 | Start of chart in second direction (P) |
| thadj | Adjust threshold for peak printout (M) | |
| vp | Vertical position of spectrum (P) | |
| vs | Vertical Scale (P) | |
| vsadj | Automatic vertical scale adjustment (M) | |
| vsadjc | Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M) | |
| vsadjh | Automatic vertical scale adjustment for H1 spectra (M) | |
| wc2max | Maximum width of chart in second direction (P) | |

vsadjc \quad Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M)
Syntax: vsadjc<(height) >
Description: Functionally the same as the macro vsadj, except excludes solvent and TMS signals from the carbon spectra for the adjustment of vs.
Arguments: height is desired height of largest (or largest relevant) signal in displayed portion of the spectrum. The default is $0.9 *(w c 2 m a x-v p-s c 2)$.
Examples: vsadjc
vsadjc (wc2max-sc2-wc2-5)

See also: VnmrJ Liquids NMR

| Related: | isadj | Adjust integral scale (M) |
| :--- | :--- | :--- |
| thadj | Adjust threshold for peak printout (M) | |
| vs | Vertical Scale (P) | |
| vsadj | Automatic vertical scale adjustment (M) | |
| vsadj2 | Automatic vertical scale adjustment by powers of two (M) | |
| | vsadjh | Automatic vertical scale adjustment for H1 spectra (M) |

vsadjh Automatic vertical scale adjustment for ${ }^{\mathbf{1}} \mathrm{H}$ spectra (M)
Syntax: vsadjh<(height<,do_not_ignore_solvent>) >
Description: Works as the same as the macro vsadj, except disregards solvent and TMS signals from proton spectra and, if from the remaining spectrum the highest line is more than three times as high as the second highest line, the spectrum is scaled to this second highest signal (otherwise the highest signal is taken as relevant).

Arguments: height is desired height of largest (or largest relevant) signal in displayed portion of the spectrum. If height is 0 or a negative value, it defaults to $0.9 *$ (wc2max-vp-sc2), which is also the default with no arguments.
do_not_ignore_solvent is any second argument. If present, it signals vsadjh to not ignore the solvent line and regard the solvent line as normal signal (i.e, only exclude the TMS line). This argument was added for the situation where frequently there are high "real" signals at the position of the solvent line. Such signals could otherwise be regarded as solvent line and would then be ignored. This could then lead to overscaling in the result.
Examples: vsadjh
vsadjh (0.7*wc2max)
See also: VnmrJ Liquids NMR
Related: isadj Adjust integral scale (M)
sc2 Start of chart in second direction (P)
thadj Adjust threshold for peak printout (M)
vs \quad Vertical scale (P)
vsadj Automatic vertical scale adjustment (M)
vsadj 2 Automatic vertical scale adjustment by powers of two (M)
vsadjc Automatic vertical scale adjustment for ${ }^{13} \mathrm{C}$ spectra (M)

vsproj Vertical scale for projections and traces (P)

Description: Sets a multiplier that is adjusted to produce a desired vertical scale for projections or traces of 2D data sets. vsproj can be explicitly adjusted by setting it to a value or by clicking the middle mouse button when pointing at the projection or trace. When interactively adjusting the scale with the mouse, the higher the pointer is in the trace display, the larger the vertical scale. If the parameter does not exist, it can be created by running the par 2 d macro.
Related: par2d Create 2D acquisition, processing, and display parameters (M)
vs Select vertical scale(C)
vs2d Adjust vertical scale for 2D displays (M)

Applicability: Systems with a variable temperature (VT) module.
Description: Sets a VT cutoff point. Above this temperature, VT air flows straight into the probe, past the heater, then past the sample. Below this temperature, air goes
first through the heat exchange bucket, for cooling by the heat exchange fluid, and then into the probe and past the heater.
Values: 0 to 50 , in degrees celsius. vtc is typically set $5^{\circ} \mathrm{C}$ higher than the supply gas used for VT regulation.
See also: VnmrJ Liquids NMR
Related: temp Sample temperature (P)
tin Temperature interlock (P)
vttype Variable temperature controller present (P)
Description: In the CONFIG window, this parameter specifies whether a variable temperature (VT) controller is present or not on the system. The value is set using the VT Controller label in the CONFIG window (opened from config).
When entered from command line in VNMR, control of the variable temperature (VT) controller from the current experiment is either engaged (vttype $=2$) or disengaged (vttype $=0$). The current state of the variable temperature (VT) controller is not changed when vttype is set in the command window.
The variable temperature (VT) controller setting in CONFIG is not affected by entering vttype on the command line.
Values: 2 is setting for VT controller (Present choice in CONFIG window).
0 is setting for no VT controller (Not Present choice in CONFIG window).
Examples: If temp $=$ 'some temperature' while vttype $=2$ and vttype is then changed to vttype $=0$ on the command line, the variable temperature (VT) controller will continue regulate the sample at the value set by temp. While vttype $=0$ changes to temp will have no effect.
See also: VnmrJ Installation and Administration; VnmrJ Liquids NMR
Related: config Display current configuration and possibly change values (M)
masvt \quad Type of variable temperature system (P)
vtwait Variable temperature wait time (P)
Applicability: Systems with a variable temperature (VT) module.
Description: Sets a time for establishing temperature regulation. If temperature interlock tin is set and regulation is not established after the time set by vtwait, VNMR displays the message "VT FAILURE" and aborts the experiment.
Values: Number, in seconds, A typical value is 180 seconds.
See also: VnmrJ Liquids NMR
Related: pad Preacquisition delay (P)
tin Temperature interlock (P)
vxr_unix Convert VXR-style text files to UNIX format (M,U)
Syntax: (From VNMR) vxr_unix(VXR_file<,UNIX_file>)
(From UNIX) vxr_ūix VXR_file UNIX_file
Description: Converts a VXR-style text file (from a Gemini, VXR, or XL system) to the UNIX format.
Arguments: VXR_file is the name of the input file, which must be a text file.
UNIX_file is the name of the output file after conversion. The names of the input and output files must be different.

| Examples: | (From VNMR) vxr_unix('oldtextfile', 'newtextfile')
 (From UNIX) vxr_unix oldtextfile newtextfile |
| :---: | :--- |
| See also: | VnmrJ Liquids NMR |

W

| w | Who is using system (C) |
| :---: | :---: |
| walkup | Walkup automation (M) |
| waltz | WALTZ decoupling present (P) |
| wbs | Specify action when bs transients accumulate (C) |
| wbs | When block size (P) |
| wc | Width of chart (P) |
| wc2 | Width of chart in second direction (P) |
| wcmax | Maximum width of chart (P) |
| wc 2 max | Maximum width of chart in second direction (P) |
| werr | Specify action when error occurs (C) |
| werr | When error (P) |
| wet | flag to turn on or off wet solvent suppression ((P) |
| wet1d | Set up parameters for a WET1D pulse sequence (M) |
| Wet1d | Set up parameters for wet ${ }^{1} \mathrm{H}$ experiment (M) |
| wetdqcosy | Set up parameters for a WETDQCOSY pulse sequence (M) |
| wetgcosy | Set up parameters for a WETGCOSY pulse sequence (M) |
| wetghmqcps | Set up parameters for a WETGHMQCPS pulse sequence (M) |
| wetghsqc | Set up parameters for a WETGHSQC pulse sequence (M) |
| wetgmqcosy | Set up parameters for a WETGHSQC pulse sequence (M) |
| wetnoesy | Set up parameters for a WETNOESY pulse sequence (M) |
| wetpwxcal | Set up parameters for a WETPWXCAL pulse sequence (M) |
| wettntocsy | Set up parameters for a WETTNTOCSY pulse sequence (M) |
| wetshape | Shape for pwwet pulses (P) |
| wexp | Specify action when experiment completes (C) |
| wexp | When experiment completes (P) |
| wf | Width of FID (P) |
| wf1 | Width of interferogram in 1st indirectly detected dimension (P) |
| wf2 | Width of interferogram in 2nd indirectly detected dimension (P) |
| wfgtest | Waveform generator test (M) |
| wft | Weight and Fourier transform 1D data (C) |
| wft1d | Weight and Fourier transform f_{2} for 2D data (C) |
| wft1da | Weight and Fourier transform phase-sensitive data (M) |
| wftldac | Combine arrayed 2D FID matrices (M) |
| wft2d | Weight and Fourier transform 2D data (C) |
| wft2da | Weight and Fourier transform phase-sensitive data (M) |
| wft2dac | Combine arrayed 2D FID matrices (M) |
| wftt3 | Process f_{3} dimension during 3D acquisition (M) |
| which | Display which command or macro is used (M) |
| wnt | Specify action when nt transients accumulate (C) |
| wnt | When number of transients (P) |
| wp | Width of plot in directly detected dimension (P) |
| wp1 | Width of plot in 1st indirectly detected dimension (P) |
| wp2 | Width of plot in 2nd indirectly detected dimension (P) |

```
write Write formatted text to a device (C)
writefid Write numeric text file using a FID element (C)
writeparam Write one of more parameters to a file (C)
wrtp Command string executed after rtp command (P)
wsram
wshim
wtfile
wtfile1
wtfile2
wtgen
wti
wtia
wysiwyg
    Send hardware configuration to acquisition console (C)
    Conditions when shimming is performed (P)
    User-defined weighting in directly detected dimension (P)
    User-defined weighting in 1st indirectly detected dimension (P)
    User-defined weighting in 2nd indirectly detected dimension (P)
    Compile user-written weighting functions (M,U)
    Interactive weighting (C)
    Interactive weighting for 2D absorptive data (M)
    Set plot display or full display (P)
```


w Who is using system (C)

Description: Displays information about users currently on the system. It functions like the UNIX command of the same name.
See also: User Programming

walkup \quad Walkup automation (M)

Description: Enables using sample changers for continuous "walk-up" operation. Click on Utilities -> New automation run to run this macro from the VnmrJ Walkup interface. The macro creates a new automation directory each day with the name auto_YyYy.mm.dd, where yyyy is the year, dd is the day of the month, and mm is the month (e.g., auto_20040601). The automation directory is saved in a directory specified by the global parameter globalauto. walkup creates the directory globalauto and the parameterglobalauto, and then sets the globalauto parameter.

> See also: VnmrJ Liquids NMR

Related: enter Enter sample information for automation run (M,U)
globalauto Automation directory name (P)
waltz WALTZ decoupling present (P)
Description: Sets whether system is equipped for WALTZ decoupling. The value is changed by normal parameter entry rather than using the CONFIG window.
Values: ' n ' sets WALTZ decoupling not present.
' Y ' sets WALTZ decoupling present.
See also: VnmrJ Installation and Administration
wbs \quad Specify action when bs transients accumulate (C)
Syntax: wbs(string)
Description: Specifies what action to take when bs transients accumulate. The command wbs sets the corresponding parameter wbs. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the
associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.
Arguments: string is a string argument containing the command or macro to be executed when this event happens. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (\backslash^{\prime}). Maximum length of the string is 256 characters. To turn off wbs processing, enter wbs (' ') , where the argument is two single quotes with no space between.
Examples: wbs('dg wft')
wbs ('mf (3)')
wbs (' ')
See also: VnmrJ Liquids NMR

| Related: | bs | Block size (P) |
| :--- | :--- | :--- |
| | makefid | Make a FID element using numeric text input (C) |
| | phfid | Zero-order phasing constant for np FID (P) |
| | wbs | When block size (P) |
| werr | Specify action when error occurs (C) | |
| wexp | Specify action when experiment completes (C) | |
| wnt | Specify action when nt transients accumulate (C) | |

wbs When block size (P)
Description: Invokes an action to occur automatically after each bs block of transients is completed. For example, wbs = 'wft' results in an automatic weighting and Fourier transformation after each bs transients. To specify no wbs processing, set wbs to the null string. If the acquisition has already started, the wbs command must be used to change this parameter.
Values: Command, macro, or null string ($\mathrm{wbs}=$ ' ' , where the value is given by two single quotes with no space between them).
See also: VnmrJ Liquids NMR

| Related: | bs | | |
|---|---|---|---|
| wbs | |\quad| Block size (P) |
| :--- |
| Specify action when bs transients accumulate (C) |

Description: Specifies the width of the chart (plotting or printing area).
Values: 5 to wcmax, in mm.
See also: VnmrJ Liquids NMR
Related: wc2 Width of chart in second direction (P)
wemax Maximum width of chart (P)
wc2 Width of chart in second direction (P)
Description: Specifies width of chart (plotting or printing area) along the second axis (or y axis) of a 2D contour plot or 2D "stacked display." For plots made in the cutoff mode, wc 2 specifies the width of the plotted area along the y-axis.
Values: Width, in mm.
See also: VnmrJ Liquids NMR
Related: cutoff Data truncation limit (P)
ho Horizontal offset (P)
Sc2 Start of chart in second direction (P)

| wcmax | Maximum width of chart (P) |
| :--- | :--- |
| wc2 max | Maximum width of chart in second direction (P) |

wcmax Maximum width of chart (P)

Description: Specifies the maximum width of a chart (plotting or printing area). Set when plotter or printer is installed.
Values: Width, in mm.
See also: VnmrJ Liquids NMR
Related: wc Width of chart (P)
wC2 Width of chart in second direction (P)

wc2max Maximum width of chart in second direction (P)

Description: Specifies the maximum width of a chart (plotting or printing area) in the second direction (y-axis). Set when the plotter or printer is installed.
Values: Width, in mm.
See also: VnmrJ Liquids NMR
Related: wc2 Width of chart in second direction (P)
wcmax Maximum width of chart (P)
werr \quad Specify action when error occurs (C)
Syntax: werr(string)
Description: Specifies what action to take if an error occurs during acquisition. The command werr sets the corresponding parameter werr. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.

Arguments: string is a string argument containing the command or macro to be executed when this event happens. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (\backslash ' $)$. Maximum length of the string is 256 characters. To turn off werr processing, enter werr (' '), where the argument is two single quotes with no space between them.

Examples: werr('react')
werr('')
See also: VnmrJ Liquids NMR

| Related: | wbs | Specify action when bs transients accumulate (C) |
| :--- | :--- | :--- |
| werr | When error (P) | |
| wexp | Specify action when experiment completes (C) | |
| wnt | Specify action when nt transients accumulate (C) | |

werr \quad When error (P)

Description: Specifies a macro (e.g., werr='react') that will take appropriate action when an error occurs during acquisition. To specify no werr processing, set werr to the null string. If the acquisition has already been started, the werr command must be used to change the werr parameter. Arrayed parameter acqstatus provides the error code to werr in acqstatus [1] and acqstatus [2]. For a list of error codes, refer to the description of acqstatus or view the file acq_errors in directory /vnmr/manual.
Values: Macro or null string (werr=' ', where the value is given by two single quotes with no space between them).
See also: VnmrJ Liquids NMR
Related: acqstatus Acquisition status (P)
react \quad Recover from error conditions during werr processing (M)
werr \quad Specify action when error occurs (C)
wet flag to turn on or off wet solvent suppression ((P)
Description: Specifies if wet solvent suppression is turned on or off. It is now a standard option in many liquids pulse sequences, including Wet1d and sequences of apptype hetero2d and homo2d.
See also: apptype, hetero2d, homo2d, std1d, wet1d
wet1d Set up parameters for a WET1D pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WET1D LC-NMR experiment.
See also: VnmrJ Liquids NMR
Wet1d Set up parameters for wet ${ }^{1} \mathrm{H}$ experiment (M)
Description: Set up parameters for wet ${ }^{1} \mathrm{H}$ experiment.
wetdqcosy Set up parameters for a WETDQCOSY pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETDQCOSY LC-NMR experiment.
See also: VnmrJ Liquids NMR
wetgcosy Set up parameters for a WETGCOSY pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETGCOSY LC-NMR experiment.
See also: VnmrJ Liquids NMR
wetghmqcps \quad Set up parameters for a WETGHMQCPS pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETHMQCPS LC-NMR experiment.
See also: VnmrJ Liquids NMR
wetghsqc Set up parameters for a WETGHSQC pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Syntax: wetghsqc('nucleus')
Description: Sets up for a WETGHSQC LC-NMR experiment.
See also: VnmrJ Liquids NMR

Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETGMQCOSY LC-NMR experiment.
See also: VnmrJ Liquids NMR

wetnoesy \quad Set up parameters for a WETNOESY pulse sequence (M)

Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETNOESY LC-NMR experiment.
See also: VnmrJ Liquids NMR.
wetpwxcal Set up parameters for a WETPWXCAL pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETPWXCAL LC-NMR pulse width calibration.
See also: VnmrJ Liquids NMR
wettntocsy Set up parameters for a WETTNTOCSY pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETTNTOCSY LC-NMR experiment.
See also: VnmrJ Liquids NMR
wetshape \quad Shape for pwwet pulses (P)
Applicability: Systems with LC-NMR accessory.
Description: Sets the name of the shape used for pwwet pulses (e.g., wet shape= 'wet').
See also: VnmrJ Liquids NMR
wexp Specify action when experiment completes (C)
Syntax: wexp(string)
Description: Specifies what action to take when the experiment completes. The wexp command sets the corresponding parameter wexp. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.
Arguments: string is a string argument containing the command or macro to be executed when the experiment completes. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (\backslash^{\prime}). Maximum length of the string is 256 characters. To turn off wexp processing, enter wexp (' ') , where argument is two single quotes with no space between them.
Examples: wexp('wft(\'all\') calcT1') wexp (' ')
See also: VnmrJ Liquids NMR

| Related: | wbs | Specify action when bs transients accumulate (C) |
| :--- | :--- | :--- |
| werr | Specify action when error occurs (C) | |
| wexp | When experiment completes (P) | |
| wnt | Specify action when nt transients accumulate (C) | |

wexp When experiment completes (P)

Description: Invokes a single action to occur automatically after the experiment is finished, which can occur after a single FID or after a number of FIDs in a multi-FID experiment. To specify no wexp processing, set wexp to the null string. If the acquisition has already started, the wexp command must be used to change the wexp parameter. For wexp to execute after an experiment finishes, the execure the experiment with the au command.
wexp processing occurs after wnt processing in a single FID experiment, and both can be used. wexp also occurs after wnt during the last FID of a multiFID experiment. Thus, wnt='wft (\'all\')' wexp='calcT1' and wexp='wft (\'all\') calcT1' transforms each FID in a T_{1} experiment as it is performed, and when each of the FIDs has been collected, performs the calculation of the T_{1} using a hypothetical macro command calcT1. Notice the use of the backslash to include a single quotation mark inside the string.
Values: Command, macro, or null string (wexp= ' ', where the value is given by two single quotes with no space between them). If the command or macro uses a file name as an argument, specifying an absolute path is best. Be sure the path is valid and you have the appropriate write permission.
See also: VnmrJ Liquids NMR

| Related: | wexp | Specify action when experiment completes (C) |
| :--- | :--- | :--- |
| | wnt | When number of transients (P) |
| | au | Submit experiment to acquisition and process data (C) |

Width of FID (P)
Description: Width of the FID display. This parameter can be entered in the usual way or interactively controlled by selecting the sf wf button during a FID display.
Values: 0 to the value of at, in seconds.
See also: VnmrJ Liquids NMR

| Related: | at | Acquisition time (P) |
| :--- | :--- | :--- |
| | dcon | Display noninteractive color intensities map (C) |
| dconi | Interactive 2D data display (C) | |
| $d f$ | Display a single FID (C) | |
| sf | Start of FID (P) | |
| vf | Vertical scale of FID (P) | |
| $\mathrm{wf1}$ | Width of interferogram in 1st indirectly detected dimension (P) | |
| $\mathrm{wf2}$ | Width of interferogram in 2nd indirectly detected dimension (P) | |

wf1 Width of interferogram in 1st indirectly detected dimension (P)
Description: Sets the width of the interferogram display in the first indirectly detected dimension.
Values: 0 to $(2 \times \mathrm{ni}) / \mathrm{sw} 1$, in seconds.
See also: VnmrJ Liquids NMR

| Related: | ni | Number of increments in 1st indirectly detected dimension (P) |
| :--- | :--- | :--- |
| | sf1 | Start of interferogram in 1st indirectly detected dimension (P) |
| | sw1 | Spectral width in 1st indirectly detected dimension (P) |
| | wf | Width of FID (P) |

Description: Sets the width of the interferogram display in the second indirectly detected dimension.
Values: 0 to $(2 \times$ ni2 $) /$ sw 2 , in seconds.
See also: VnmrJ Liquids NMR

| Related: | ni2 | Number of increments in 2nd indirectly detected dimension (P) |
| :--- | :--- | :--- |
| | sf2 | Start of interferogram in 2nd indirectly detected dimension (P) |
| | sw2 | Spectral width in 2nd indirectly detected dimension (P) |
| | wf | Width of FID (P) |

wfgtest Waveform generator test (M)

Applicability: Systems with a waveform generator.
Description: Retrieves a parameter set and pulse sequence, and compiles the sequence, in order to set up an experiment to test the waveform generators.

See also: Waveform Generator Kit Installation

wft Weight and Fourier transform 1D data (C)

Syntax: (1) wft<(<options,><'nf'><, start><,finish><, step>) > (2) wft('inverse',exp_number,expansion_factor)

Description: Performs a Fourier transform on one or more 1D FIDs with weighting applied to the FID. The command executes a left-shift, zero-order phase rotation, and a frequency shift according to the parameters lsfid, phfid, and lsfrq, respectively, on the time-domain data prior to the weighting and Fourier transformation. The type of Fourier transformation to be performed is determined by proc. wft uses the same arguments as the command $f t$, and except for weighting, it functions the same as the ft command.
See also: VnmrJ Liquids NMR
Related: $\mathrm{ft} \quad$ Fourier transform 1D data (C)
lsfid Number of points to left-shift np FID (P)
lsfrq Frequency shift of the fn spectrum in $\mathrm{Hz}(\mathrm{P})$
phfid Zero-order phasing constant for np FID (P)
proc Type of processing on np FID (P)

wft1d Weight and Fourier transform f_{2} for 2D data (C)

Syntax: (1) wftld(element_number)
(2) wftld< (<options, ><coefficients>) >

Description: Performs the first Fourier transformation along the dimension defined by sw, with weighting and matrix transposition. This allows the display of t_{1} interferograms with the dcon and dconi commands.

Except for weighting, wftld functions the same as the ftid command. See the description of $f t 1 d$ for further information.
Arguments: Same as the arguments to ft 1 d . See the ft 1 d command for details.
See also: VnmrJ Liquids NMR

| Related: | dcon
 dconi | Display noninteractive color intensity map (C)
 Interactive 2D data display (C) |
| :--- | :--- | :--- |
| | ft1d | Fourier transform along f_{2} dimension (C) |
| | sw | Spectral width in directly detected dimension (P) |

wft1da Weight and Fourier transform phase-sensitive data (M)

Syntax: wft1da<(options)>
Description: Processes 2D FID data as well as 2D planes at particular t_{1} or t_{2} times from a 3D data set for a pure absorptive display.
wft 1 da differs from $f t 1$ da only in that weighting of the time-domain data is performed prior to the Fourier transform. See the description of $f t 1$ da for further information.

Arguments: Same as arguments to ft 2 da . See the ft 2 da command for details.
See also: VnmrJ Liquids NMR
Related: ftida Fourier transform phase-sensitive data (M)
ft2da Fourier transform phase-sensitive data (M)
wft2da Weight and Fourier transform phase-sensitive data (M)
wft1dac Combine arrayed 2D FID matrices (M)
Syntax: wft1dac<(<mult1>,<mult2>, ,...<multn>) >
Description: Allows the ready combination of 2D FID matrices within the framework of the 2D Fourier transform program. Weighting is performed. This command requires that the data be acquired either without f_{1} quadrature or with f_{1} quadrature using the TPPI method. wft1dac is used with TOCSY (with multiple mixing times).
Arguments: mult1,mult2,..., multn are multiplicative coefficients. The nth argument is a real number and specifies the multiplicative coefficient for the nth 2D FID matrix.
See also: VnmrJ Liquids NMR
Related: ft1dac Combine arrayed 2D FID matrices (M)
tocsy Set up parameters for TOCSY pulse sequence (M)
wft2dac Combine arrayed 2D FID matrices (M)
wft2d Weight and Fourier transform 2D data (C)
Syntax: wft2d<(<options,>coefficients) >
Description: Performs a complete 2D transformation with weighting after 2D data has been acquired. If the first Fourier transformation has already been done using $f t 1 d$, wft1d, ft1da, or wft1da, then the wft2d command performs only the second transform.
For arrayed 2D experiments, a single array element can be transformed and weighted using the array element number as an argument. Interferograms can be constructed explicitly using the following coefficient table:
wft2d(rr1,ir1,rr2,ir2,...ri1,ii1,ri2,ii2,...).
wft2d('ptype',...) transforms P-type spectra, and
wft2d ('ntype', . . .) transforms N-type spectra. The default is N-type.
wft 2 d also completes a 2D transform that has been started with wft1d (or related commands such as wftida). The first transform will not be done again if it has already been performed. For phase-sensitive 2D experiments, the coefficients must be applied as part of the first transform (e.g., with wftida) since the interferograms are formed at that stage. These coefficients need not be repeated when invoking the subsequent transform: a simple wft2d or $f t 2 d$ can suffice.

See the $f t 2 d$ command description for further information.
Arguments: Same as the arguments to ft 2 d . See the ft 2 d command for details.
Examples: wft2d(1,0,0,0)
wft2d(2)
wft2d(1,0,1,0,0,1,0,1)
wft2d(.67,0,.33, 0, 0,.67,0,.33)
See also: VnmrJ Liquids NMR
Related: dconi Interactive 2D data display (C)
ftid Fourier transform along f_{2} dimension (C)
ft1da Fourier transform "halfway" for pure absorption 2D data (M)
ft2d Fourier transform 2D data (C)
wft1d Weight and Fourier transform f_{2} for 2D data (C)
wft1da Weight and FT "halfway" for pure absorption 2D data (M)
wft2da Weight and transform for pure absorption 2D data (M)
wft2da Weight and Fourier transform phase-sensitive data (M)
Syntax: wft2da<(options) >
Description: Processes 2D FID data, as well as 2D planes at particular t_{1} or t_{2} times, from a
3D data set for a pure absorptive display.
wft 2 da differs from $f t 2$ da only in that weighting of the time-domain data is
performed prior to the Fourier transform. See the description of $f t 2$ da for
further information.
Arguments: Same as used with $f t 2$ da. See the $f t 2$ da command for details.
See also: VnmrJ Liquids NMR
Related: ft1da Fourier transform phase-sensitive data (M)
£t2da Fourier transform phase-sensitive data (M)
wft1da Weight and Fourier transform phase-sensitive data (M)
wft2dac Combine arrayed 2D FID matrices (M)
Syntax: wft2dac<(<mult1><,mult2>,...<,multn>) >
Description: Allows the ready combination of 2D FID matrices within the framework of the 2D Fourier transform program. Weighting is performed. This command requires that the data be acquired either without f_{1} quadrature or with f_{1} quadrature using the TPPI method. wft 2 dac is used with TOCSY (with multiple mixing times).
Arguments: mult1,mult2,..., multn are multiplicative coefficients. The nth argument is a real number and specifies the multiplicative coefficient for the nth 2D FID matrix.
See also: VnmrJ Liquids NMR
Related:
ft1dac Combine arrayed 2D FID matrices (M)
ft2dac Combine arrayed 2D FID matrices (M)
tocsy Set up parameters for TOCSY pulse sequence (M)
wft1dac Combine arrayed 2D FID matrices (M)

$w f t t 3 \quad$ Process f_{3} dimension during 3D acquisition (M)

Description: Allows f_{3} processing of 3 D data to be performed concurrently with data acquisition. To invoke this function, set wnt= 'wftt3' and use au to start the acquisition of the 3D data. When wftt 3 detects that all the FIDs comprising a ($\mathrm{t} 1, \mathrm{t} 2$) block have been acquired, it starts up the ft 3 d program in background to process that block of FIDs in f_{3}.

The 3D processing information file, created by entering set 3 dproc within VnmrJ, does not need to contain valid f_{1} and f_{2} processing information but only valid f_{3} processing information. Once the f_{3} processing is complete, a new 3D information file can be created for the $f_{1}-f_{2}$ processing stages that contains valid f_{1} and f_{2} processing information.
The non-standard string parameter path 3 d can be used to specify the directory into which the f_{3} processed 3D data is to be stored. Normally, path3d is absent in the parameter set. If this is the case or if path $3 d=1$ ', the f_{3}-processed 3D data is stored in the directory curexp/datadir. path3d can be created by entering create('path3d','string') setgroup('path3d','display').
See also: VnmrJ Liquids NMR

| Related: | au | Submit experiment to acquisition and process data (C) |
| :--- | :--- | :--- |
| create | Create new parameter in a parameter tree (C) | |
| ft3d | Perform a 3D Fourier transform (M,U) | |
| getplane | Extract planes from a 3D spectral data set (M) | |
| path3d | Path to currently displayed 2D planes from a 3D data set (P) | |
| select | Select a spectrum or 2D plane without displaying it (C) | |
| set3dproc | Set 3D processing (C) | |
| setgroup | Set group of a parameter in a tree (C) | |
| wnt | When number of transients (P) | |

which
 Display which command or macro is used (M)

Syntax: which (name)
Description: Searches VnmrJ libraries and then displays on line 3 which VnmrJ command or macro with the given name will be executed. For macros, which displays the type of macro (user, local, application, or Varian) and the path to the library.
Arguments: name is the name of a command or macro.
Examples: which('wft')
See also: User Programming
Related: exists Determin if a parameter, file, or macro exists (C) hidecommand Execute macro instead of command with same name (M)

wnt \quad Specify action when nt transients accumulate (C)

Syntax:
wnt (string)
Description: Specifies what action to take when nt transients accumulate. The wnt command sets the corresponding parameter wnt. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.
Arguments: string is a string argument containing the command or macro to be executed when this event happens. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (\backslash^{\prime}). Maximum length of the string is 256 characters. To turn off wnt processing, enter wnt (' '), where the argument is two single quotes with no space between them.

Examples: wnt('wft(\'all\')')
wnt(' ')

| See also: | VnmrJ Liquids $N M R$ | |
| :--- | :--- | :--- |
| Related: | nt | Number of transients (P) |
| | wbs | Specify action when bs transients accumulate (C) |
| | werr | Specify action when error occurs (C) |
| | wexp | When experiment completes (P) |
| | wnt | When number of transients (P) |

wnt \quad When number of transients (P)
Description: Invokes a single action to occur automatically after the FID is finished (ct=nt) or after each FID in a multi-FID experiment involving an arrayed parameter. The most common processing to occur after an FID is an automatic weighting and Fourier transformation (i.e., wnt = 'wft'); however, this is normally not needed because the command ga is the exact equivalent of wnt = 'wft (\'acq\')' au (i.e., ga sets the wnt action automatically). To specify no wnt processing, set wnt to the null string. If the acquisition has already been started, the wnt command must be used to change this parameter.
Values: Command, macro, or null string (wnt= ' ', where the value is given by two single quotes with no space between them).

See also: VnmrJ Liquids NMR

| Related: | nt | Number of transients (P) |
| :--- | :--- | :--- |
| | wnt | Specify action when nt transients accumulate (C) |

wp \quad Width of plot in directly detected dimension (P)
Description: Sets the width of the displayed or plotted region of the spectrum.
Values: Always stored in Hz , but can be entered in ppm by using the p suffix (e.g., $\mathrm{wp}=6 \mathrm{p}$ sets the width of plot to 6 ppm$)$.
See also: VnmrJ Liquids NMR
$\begin{array}{lll}\text { Related: } & \text { wp1 } & \text { Width of plot in 1st indirectly detected dimension (P) } \\ & \text { wp2 } & \text { Width of plot in 2nd indirectly detected dimension (P) }\end{array}$

Width of plot in 1st indirectly detected dimension (P)
Description: Analogous to the wp parameter except that wp1 applies to the first indirectly detected dimension of a multidimensional data set.
See also: VnmrJ Liquids NMR
Related: wp Width of plot in directly detected dimension (P)
wp2 Width of plot in 2nd indirectly detected dimension (P)

Width of plot in 2nd indirectly detected dimension (P)
Description: Analogous to the wp parameter except that wp2 applies to the second indirectly detected dimension of a multidimensional data set.

See also: VnmrJ Liquids NMR
Related: wp Width of plot in directly detected dimension (P)
wp1 Width of plot in 1st indirectly detected dimension (P)
write \quad Write formatted text to a device (C)
Syntax: (1) write('keywords'><, color|pen> <,'reverse'>,x,y<,template>) <:height>
(2) write('alpha'|'printer'|'line3'|'error',template)
(3) write('reset'|'file'|'fileline',file<,template>)

Description: Writes text to a graphics screen or plotter in a given format (syntax 1), writes formatted text to another device (syntax 2), clears a file (syntax 3), or writes to a file (syntax 3). The input to the command comes from arguments in template, which can be parameters such as n1 or pw.
Arguments: 'keywords'identify the output device ('graphics'|plotter') and the drawing mode ('xor'|'normal'|'newovly'|'ovly'|'ovlyC').

- 'graphics'|'plotter' is a keyword selecting the output device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands and remains active until a different mode is specified.
- ''xor','normal' is a keyword for the drawing mode when using the 'graphics ' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous ' xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent pen, move, and draw commands and remains active until a different mode is specified.
- 'newovly', 'ovly', and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the 'xor' mode but more consistent in color. ' newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multi-segment figures can be created. 'ovlyC' clears without drawing.
color is the color of the text on a color display: 'red', 'yellow', 'green', 'cyan','blue', 'magenta', and 'white'. The default is 'yellow'.
pen is the plotter pen: 'pen1', 'pen2', etc.
'reverse' is a keyword specifying a sideways orientation of the output.
x and y are coordinates on the screen or plotter, in mm.
template is a string of formatting characters along with arguments to those characters. The format is the same as used with the UNIX printf command (for details, see any basic UNIX manual or enter man printf in UNIX). For example, ' $\mathrm{pw}=\circ 12.5 \mathrm{f}$ ' is a template to format the parameter pw as fixed point with a field width of 12 spaces and 5 decimal places. The following format characters are implemented:

| character | $\% \mathrm{c}$ |
| :--- | :---: |
| integer | $\% \mathrm{~d}$ |
| hexadecimal | $\% \mathrm{~h}$ |
| exponential: | $\% \mathrm{e}$ |
| fixed point | $\% \mathrm{f}$ |
| exponential/fixed point | $\% \mathrm{~g}$ |
| octal | $\% \mathrm{O}$ |
| string | $\% \mathrm{~s}$ |
| write a \% character | use write (...' $\left.\% \mathrm{~s}^{\prime}, \prime^{\prime} \%^{\prime}\right)$ |

height returns the height of the characters on the screen or plotter. This is useful for positioning multiple-line displays. See the source code of the macro dtext in the maclib directory for an example of usage.
'alpha' is a keyword to write text to the alphanumeric screen.
'printer' is a keyword to print text on the printer
'line3' is a keyword to write text as a message on line 3.
'error' is a keyword to write text as an error on line 3 and sound a beep.
'reset' is a keyword to clear the file specified.
file ${ }^{\prime}$ is a keyword to append data to the file specified. Existing data in the file is not overwritten. By writing repeated 'file' calls, a formatted data file can be created (see the fifth example below). Each write command automatically appends a carriage return (linefeed) to the end of the string defined by the template argument. To append data without the automatic linefeed, use the 'fileline' keyword instead of 'file'. Also, two backslashes ($\backslash \backslash$) are interpreted as a new line.
'fileline' is a keyword to append data to the file specified, the same as using the 'file' keyword, but without automatically appending a carriage return (linefeed) to the end of the data. Any linefeeds desired must be explicitly defined (using $\backslash \mathrm{n}$) by the template argument (see the sixth example below). Furthermore, two backslashes $(\backslash \backslash)$ output a single backslash into the file.
file is the name of the file used with the 'reset', 'file', and 'fileline' keywords.
Examples: write('graphics',100,100):\$ys
write('plotter', 20,180, 'pw = \%12.5f',pw)
write('line3', 'Too many arguments')
write('reset','temp1')
write('file','templ','\%10f \%10.1f',n1,pw)
write('fileline','templ','\nEnd of data\n\n')
See also: User Programming
Related: dtext Display a text file in the graphics window (M)
writefid Write numeric text file using a FID element (C)
Syntax: writefid(file<,element_number>)
Description: Writes a text file using data from the selected FID element. The program writes two values per line - the first is the value from the X (or real) channel and the second is the value from the Y (or imaginary) channel. writefid writes the raw FID data (i.e., FID data processing based on the parameters phfid, lsfid, and lsfrq does not occur).
Arguments: file is the name of a text file to store the data.
element_number is an integer larger than 0 for the number of a FID element. The default is 1 .
See also: VnmrJ Liquids NMR, User Programming

| Related: | lsfid | Number of complex points to left-shift np FID (P) |
| :--- | :--- | :--- |
| | lsfrq | Frequency shift of fn spectrum in Hz (P) |
| | makefid | Make a FID element using numeric text input (C) |
| | phfid | Zero-order phasing constant for np FID (P) |

writeparam Write one of more parameters to a file (C)

Syntax: writeparam(file,parlist[,tree]['add' | 'replace')
Description: The writeparam command will write one or more parameters to a specified file. The first argument is the name of the file. The second argument is a list of the names of the parameters to be written. It is a string parameter and the names
can be separated either by a space or a comma. The optional third argument is the tree from which the parameters are copied.
The variable trees are 'current', 'global'. 'processed' and 'systemglobal'.
An optional final argument is the keyword 'add' or 'replace'. The add keyword will cause the parameters to be appended to the specified file.
If they already exists in the file, their values will be updated. The replace keyword will replace the values in the file with the current values from the tree. The parameters must exist in both the file and the tree
A special case for the replace option occurs when the parameter list is an empty string. In this case, all the parameters in the file will be updated with the current values in the tree. If the parameter does not exist in the tree, no change will be made for that parameter.
This command may be used to store temporary values. For example, you may want to save wexp, wbs, wnt, etc. in order to run a setup acquisition. When it is done, you want to reset the original values. The fread command can to used to read the parameters back into an appropriate parameter tree.
Examples: writeparam(curexp+'/mypar','in')
writes the parameter in into the file mypar in the current experiment directory.

```
writeparam(curexp+'/mypar','sw ct np','processed')
```

writes the parameters $s w, c t$, and $n p$ from the processed tree into the file mypar in the current experiment directory.

wrtp Command string executed after rtp command (P)

Description: Holds the command string that is executed after an rtp command finishes. It is mostly used to set frequency-dependent parameter values, such as sw, so that one parameter set can be used on all spectrometers.
Examples: wrtp='setsw (13p, $-2 p$)'

wsram Send hardware configuration to acquisition console (C)

Syntax: wsram<:\$success>
Description: Sends new hardware configuration information to the acquisition console when config is used (e.g., to set lockfreq). wsram (write to static RAM) is not normally entered directly by the user.

Arguments: success returns 1 if wsram is successful, or 0 otherwise.
See also: VnmrJ Installation and Administration.
Related: config Display current configuration and possibly change it (M)
lockfreq Lock frequency (P)

wshim Conditions when shimming is performed (P)

Description: Specifies when automatic shimming is to be used, according to the method specified by the parameter method.
Values: ' n ' sets that no automatic shimming is performed. Even with wshim set to this value, the shimming procedure specified by the parameter method can be activated by using the shim command.
'e' or 'exp ' sets that automatic shimming is done before data acquisition.
's' or 'samp' sets that automatic shimming is done only at the beginning of the first experiment, following the change of a sample using the automatic sample changer.
' g ' sets that automatic shimming using gradient shimming is done only at the beginning of the first experiment, following the change of a sample using the automatic sample changer. The parameter method is ignored. This option is only available in automation and is not used with the go, ga, or au commands.
' f ' or ' fid ' set automatic shimming is done prior to the data collection of each new array member in a multi-FID experiment (this option not implemented on MERCURYplus/Vx, systems).
' $\mathrm{f} n$ ', where n is an integer, sets shimming is done prior to data collection of every nth FID (e.g., wshim=' $£ 16$ ' shims prior to acquiring FIDs $1,17,33$, etc.). This method is only relevant to arrayed or 2D experiments (this option not implemented on MERCURYplus/Vx systems).
See also: VnmrJ Liquids NMR
Related: $\quad \mathrm{f} \quad$ Prepare parameters for FID/spectrum display in acqi (M)
method Autoshim method (P)

wtfile User-defined weighting in directly detected dimension (P)

Description: Set to name of the file containing the user-written weighting function along the directly detected dimension. This dimension is referred to as the f_{2} dimension in 2D data sets, the f_{3} dimension in 3D data sets, etc. The shellscript wt gen is used to compile the user-written weighting module into an executable program. The source file is stored in the directory vnmruser+ $/$ /wt lib ' with a . c file extension. The executable file is in the same directory and has the same name as the source file but has no file extension.
Values: file is the name of the executable weighting function or the name of the weighting function text file.
' ' (two single quotes with no space in between) indicates wt file is inactive and VnmrJ should not look for a user-written weighting function.
See also: VnmrJ Liquids NMR; User Programming
Related: wtfile1 User-defined weighting in 1st indirectly detected dimension (P)
wtfile2 User-defined weighting in 2nd indirectly detected dimension (P)
wtgen Compile user-written weighting functions (C,U)
wtfile1 User-defined weighting in 1st indirectly detected dimension (P)
Description: Set to the name of the file containing the user-written weighting function for the first indirectly detected dimension. This dimension is often referred to as the f_{1} dimension of a multidimensional data set. Otherwise, wtfile1 is analogous to wtfile.

See also: VnmrJ Liquids NMR; User Programming
Related: wtfile User-defined weighting in directly detected dimension (P)
wtfile2 User-defined weighting in 2nd indirectly detected dimension (P)
wtfile2 User-defined weighting in 2nd indirectly detected dimension (P)
Description: Set to the name of the file containing the user-written weighting function along the second indirectly detected dimension. This dimension is often referred to as the f_{2} dimension of a multidimensional data set. wtfile2 can be set with wti on the 2D interferogram data. Otherwise, wtfile2 is analogous to wtfile.

See also: VnmrJ Liquids NMR; User Programming

| Related: | wtfile | User-defined weighting in directly detected dimension (P) |
| :--- | :--- | :--- |
| | wtfile1 | User-defined weighting in 1st indirectly detected dimension (P) |
| | wti | Interactive weighting (C) |

wtgen Compile user-written weighting functions (M,U)
Syntax: (From VnmrJ) wtgen (file<.c>)
(From UNIX) wtgen file<.c>
Description: Allows compilation of a user-written weighting function that subsequently can be executed from within VnmrJ. wt gen performs the following functions:

- Checks for the existence of the /vnmr/bin directory and aborts if the directory is not found.
- Checks for files usrwt. o and weight. h in the /vnmr/bin directory and aborts if either of these two files cannot be found there.
- Checks for the existence of the user's directory and creates this directory if it does not already exist.
- Establishes in the wt lib directory soft links to usrwt. o and weight.h in the /vnmr/bin directory.
- Compiles the user-written weighting function, which is stored in the wt lib directory, link loads it with usrwt. o, and places the executable program in the same directory; any compilation and/or link loading errors are placed in the file errmsg in wtlib.
- Removes the soft links to usrwt. o and weight. h in the/vnmr/bin directory.
The name of the executable program is the same as that for the source file without a file extension (e.g., testwt. c is the source file for the executable file testwt).
Examples: (From VnmrJ) wtgen('testwt')
(From UNIX) wtgen testwt.c
See also: User Programming

| Related: | wtfile | User-defined weighting for $t_{2}(P)$ |
| :--- | :--- | :--- |
| | wtfile1 | User-defined weighting for $\mathrm{t}_{1}(\mathrm{P})$ |
| | wtfile2 | User-defined weighting in ni2 dimension (P) |

wti Interactive weighting (C)

Syntax: wti<(element_number) >
Description: Allows weighting parameters to be set interactively for both t_{2} FIDs and t_{1} interferograms. wti responds appropriately to phfid and lsfid for t_{2} FIDs and to phfidl and lsfidl for t_{1} interferograms. The following parameters can be interactively weighted:

- awc, awc1, and awc 2 set the additive weighting constant; added in to the weighting function after the 1 bb and sb (or s.bs) contributions but before the $g f$ (or $g f s$) contributions.
- $g f, g f 1$, and $g f 2$ set the Gaussian apodization constant, in seconds.
- gfs, gfs1, and gfs 2 set the Gaussian function shift, in seconds; shifts the origin of the Gaussian function; active only if $g f$ ($\operatorname{or} g f 1$) is active.
- 1b, lb1, and lb2 set the line broadening factor, in Hz ; a positive value gives sensitivity enhancement; a negative value gives resolution enhancement.
- sb, sb1, and sb2 set the sinebell time period, in seconds; a negative value give a sine squared bell.
- sbs, sbs1, and sbs 2 set the sinebell shift, in seconds; shifts the origin of the sine bell; active only if sb (or sb1) is active.

These parameters can be typed in or changed with the left mouse button in the proper field. The right mouse button turns off the spectrum for a faster response to changes in the weighting function.
Arguments: element_number specifies which FID element or interferogram trace is to be used in adjusting the weighting parameters. The default is the currently active element or trace.
Examples: wti
wti(3)
See also: VnmrJ Liquids NMR
Related: lsfid Number of complex points to left-shift np FID (P)
lsfid1 Number of complex points to left-shift ni interferogram (P)
phfid Zero-order phasing constant for np FID (P)
phfidl Zero-order phasing constant for ni interferogram (P)
wtia Interactive weighting for 2D absorptive data (C)
wtia Interactive weighting for 2D absorptive data (M)
Syntax: wtia<(element_number) >
Description: Allows weighting parameters to be set interactively for both t_{2} FIDs and t_{1} interferograms in 2D absorptive data. Refer to the description of the wti command for further information.
Arguments: element_number specifies which FID element or interferogram trace is to be used in adjusting the weighting parameters. The default is the currently active trace.

See also: VnmrJ Liquids NMR

| Related: | lsfid | Number of complex points to left-shift np FID (P) |
| :--- | :--- | :--- |
| | lsfid1 | Number of complex points to left-shift ni interferogram (P) |
| | phfid | Zero-order phasing constant for np FID (P) |
| | wti | Interactive weighting (C) |

wysiwyg Set plot display or full display (P)

Description: Sets whether the window display is the same as the plot ("what you see is what you get," or WYSIWYG) or is expanded to fill the window. This allows the user to scale the image to the full window, making it easier to view. This parameter is in the user's global parameter file.
Values: ' Y ' makes the window picture size depend on the current plotter setting. Scaling the window does not change the ratio of the picture. This value is the default display condition.
' n ' makes the window display expand, giving a full display.
See also: VnmrJ Liquids NMR

X

| x0 | X-zero position of HP pen plotter or Postscript device (P) |
| :---: | :---: |
| x1 | X 1 shim gradient (P) |
| $x 2 y 2$ | X2Y2 shim gradient (P) |
| x3 | X 3 shim gradient (P) |
| x4 | X 4 shim gradient (P) |
| xdiag | Threshold for excluding diagonal peaks when peak picking (P) |
| xgate | Load time counter (M) |
| xpol | Cross-polarization (P) |
| xpolar1 | Set up parameters for XPOLAR1 pulse sequence (M) |
| xy | XY shim gradient (P) |
| xz | XZ shim gradient (P) |
| xz2 | XZ2 shim gradient (P) |

$x 0 \quad$ X-zero position of HP pen plotter or Postscript device (P)
Applicability: Systems with a Hewlett-Packard pen plotter or a Postscript output device.
Description: Adjusts the x-zero position on the chart. Use hpa to adjust x 0 (and y 0) to place the numbers in a pleasing position when filled in on the blank lines. $x 0$ is part of vnmrsys/global and hence common to all experiments.
Values: Number, in mm.
See also: VnmrJ Liquids NMR
Related: hpa Plot parameters on special preprinted chart paper (C)
y0 Y-zero position of HP plotter or Postscript device (P)
x1
X1 shim gradient (P)
Description: Holds current setting of the X1 radial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
$\mathbf{x} 2 \mathrm{y} 2 \quad \mathrm{X} 2 \mathrm{Y} 2$ shim gradient (P)
Description: Holds current setting of the X2Y2 radial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

X3 shim gradient (P)
Description: Holds current setting of the X3 radial shim gradient.

Values: If shimset is $1,2,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

Description: Holds current setting of the X4 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
$x d i a g \quad$ Threshold for excluding diagonal peaks when peak picking (P)
Description: Used by the 112 d program to exclude diagonal peaks when peak picking.
To create the 2D peak picking parameters xdiag and th2d in the current experiment, enter addpar('ll2d').
Values: Peaks within xdiag Hz of the diagonal will not be picked by ll2d. Setting xdiag to 0.0 will cause 112 d to pick all peaks, including diagonal peaks.
See also: VnmrJ Liquids NMR

| Related: | addpar
 ll2d | Add selected parameters to the current experiment (M) |
| :--- | :--- | :--- |
| th2d | Automatic and interactive 2D peak picking (C) | |
| | Threshold for integrating peaks in 2D spectra (P) | |

Applicability: Systems with a solids module.
Syntax: xgate (counts)
Description: Loads the (12-bit) time counter on the pulse programmer with the specified number of counts and switches the counter to the external time base (the external trigger). On each trigger, the counter counts one unit down, and the next pulse sequence event starts when the count reaches zero. Often that time count will be just 1 (1.0, as the argument must be a floating point number). If the final pulse is to be performed after a longer delay, two options are available:

- Perform a normal delay, followed by the xgate (1.0) call.
- Calculate how many rotor cycles that delay would be (calculation is typically done based on a parameter srate) and then perform xgate with that calculated number of rotor triggers. Be aware that the only number of rotor cycles that can be counted this way is 4096, because the pulse programmer uses a 12-bit counter). At typical rotor speeds of 5 to 10 kHz , the "counted" delay is limited to 0.8 to 0.4 seconds.

Arguments: counts is the number of counts to load into the time counter. The value must be a floating point number.

Examples: xgate(5.0)
See also: User Guide: Solid-State NMR; VNMR Pulse Sequences
Related: srate Spinning rate for magic angle spinning (P)

xpol Cross-polarization (P)

Applicability: Systems with a solids module.

Description: Selects cross-polarization or direct polarization in solid-state NMR experiments such asXPOLAR1.

Values: ' n ' sets the experiment for direct polarization.
' y ' sets the experiment for cross-polarization.
See also: User Guide: Solid-State NMR
Related: xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)

```
xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)
```

Applicability: UNITY INOVA systems with a solids module. MERCURY with CP/MAS module.
Description: Sets up the solid-state NMR cross-polarization experiment XPOLAR using the parameters preferred for the ${ }^{\text {UNITY INOVA. Otherwise, }}$ xpolar1 contains the same functionality as xpolar.
See also: User Guide: Solid-State NMR
Related: hsrotor Display rotor speed for solids operation (P)
rotorsync Rotor synchronization (P)
$x y$
XY shim gradient (\mathbf{P})
Description: Holds current setting of the XY radial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

XZ shim gradient (P)

Description: Holds current setting of the XZ radial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current.
If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

XZ2 shim gradient (P)
Description: Holds current setting of XZ2 radial shim gradient.
Values: If shimset is $2,8:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

X

Y

yo
y1
y3
y4
yz
Yz2
Y-zero position of HP pen plotter or Postscript device (P)
Y1 shim gradient (P)
Y 3 shim gradient (P)
Y4 shim gradient (P)
YZ shim gradient (P)
YZ2 shim gradient (P)

Y-zero position of HP pen plotter or Postscript device (P)

Applicability: Systems with a Hewlett-Packard pen plotter or a Postscript output device.
Description: Adjusts the y-zero position on the chart. Use hpa to adjust $y 0$ (and $x 0$) to place numbers in a pleasing position when filled in on the blank lines. $y 0$ is part of vnmrsys/global; therefore, it is common to all experiments.
Values: Number, in mm.
See also: VnmrJ Liquids NMR
Related: hpa Plot parameters on special preprinted chart paper (C)
$x 0 \quad$ X-zero position of HP plotter or Postscript device (P)
Y1 shim gradient (P)
Description: Holds current setting of the Y1 radial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
y^{3}
Y3 shim gradient (\mathbf{P})
Description: Holds current setting of the Y3 radial shim gradient.
Values: If shimset is $1,2,10$: -2048 to +2047 , steps of 1,0 is no current.
If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
y4
Y4 shim gradient (P)
Description: Holds current setting of the Y4 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

yz \quad YZ shim gradient (P)

Description: Holds current setting of the YZ radial shim gradient.

Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

YZ2 shim gradient (P)

Description: Holds current setting of the YZ2 radial shim gradient.
Values: If shimset is 2, 8: -2048 to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

Z

| z | Add integral reset point at cursor position (C) |
| :---: | :---: |
| z 0 | Z0 field position (P) |
| z1 | Z1 shim gradient (P) |
| z1c | Z1C shim gradient (P) |
| z2 | Z 2 shim gradient (P) |
| z2c | Z2C shim gradient (P) |
| $z 2 x 2 y 2$ | Z2X2Y2 shim gradient (P) |
| z 2×3 | Z 2 X 3 shim gradient (P) |
| $z 2 x y$ | Z2XY shim gradient (P) |
| $z 2 y 3$ | Z2Y3 shim gradient (P) |
| z3 | Z 3 shim gradient (P) |
| z3c | Z3C shim gradient (P) |
| z3x | Z3X shim gradient (P) |
| $z 3 x 2 y 2$ | Z3X2Y2 shim gradient (P) |
| z3x3 | Z 3 X 3 shim gradient (P) |
| z3xy | Z3XY shim gradient (P) |
| z3y | Z3Y shim gradient (P) |
| $z 3 y^{3}$ | Z3Y3 shim gradient (P) |
| z4 | Z 4 shim gradient (P) |
| z 4 c | Z4C shim gradient (P) |
| z4x | Z 4 X shim gradient (P) |
| $z 4 x 2 y 2$ | Z4X2Y2 shim gradient (P) |
| z4xy | Z4XY shim gradient (P) |
| z4y | Z4Y shim gradient (P) |
| z 5 | Z 5 shim gradient (P) |
| z 5x | Z5X shim gradient (P) |
| z 5y | Z5Y shim gradient (P) |
| z 6 | Z6 shim gradient (P) |
| z7 | Z7 shim gradient (P) |
| z 8 | Z8 shim gradient (P) |
| zap | Set up for gradient refocused high-speed imaging sequences (M) |
| zeroneg | Set all negative intensities of 2D spectra to zero (C) |
| zoom | Adjust display to given width (M) |
| $z x 2 y 2$ | ZX2Y2 shim gradient (P) |
| zx3 | ZX3 shim gradient (P) |
| zxy | ZXY shim gradient (P) |
| zy ${ }^{3}$ | ZY3 shim gradient (P) |

zy3 ZY3 shim gradient (P)

Description: Resets the integral to zero at the point marked by the displayed cursor. The command Cz removes all such integral resets and it should generally be used before starting to enter a series of integral zeros (resets). The resets are stored as frequencies and do not change if fn is changed.

Arguments: reset1, reset $2, \ldots$ are reset points entered, in either Hz or ppm. The default is the cursor position). Reset points can be entered in any order.
Examples: z
z(7.5*sfrq,5*sfrq,2.5*sfrq,0.1*sfrq)
See also: VnmrJ Liquids NMR

| Related: | Cz | Clear integral reset points (C) |
| :--- | :--- | :--- |
| | dlni | Display list of normalized integrals (C) |
| | ds | Display a spectrum (C) |
| | fn | Fourier number in directly detected dimension (P) |
| nli | Find integral values (C) | |

Description: Holds current setting of the $\mathrm{Z1C}$ axial shim gradient.
Values: If shimset is $1,2,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 5 or $9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

Description: Holds current setting of the Z 2 axial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

z2c

Z2C shim gradient (P)
Description: Holds current setting of the Z2C axial shim gradient.
Values: If shimset is $1,2,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 5 or $9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

$z 2 x 2 y 2 \quad$ Z2X2Y2 shim gradient (P)

Description: Holds current setting of the Z2X2Y2 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR

$z 2 x 3 \quad$ Z2X3 shim gradient (P)

Description: Holds current setting of the Z2X3 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z2xy Z2XY shim gradient (P)
Description: Holds current setting of the Z2XY radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
$z 2 y 3 \quad$ Z2Y3 shim gradient (P)
Description: Holds current setting of the Z2Y3 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z3
Description: Holds current setting of the Z 3 axial shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
z3c
Description: Holds current setting of the $\mathrm{Z3C}$ radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z3x Z3X shim gradient (P)
Description: Holds current setting of the Z3X radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.

$z 3 x 2 y 2 \quad$ Z3X2Y2 shim gradient (P)

Description: Holds current setting of the Z3X2Y2 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR

$z 3 x 3 \quad$ Z3X3 shim gradient (P)

Description: Holds current setting of the Z2X3 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z3xy Z3XY shim gradient (P)
Description: Holds current setting of the Z3XY radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z3y Z3Y shim gradient (P)
Description: Holds current setting of the Z3Y radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
$z 3 y 3 \quad$ Z3Y3 shim gradient (P)
Description: Holds current setting of the Z3Y3 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR

z4 Z4 shim gradient (P)

Description: Holds current setting of the Z 4 shim gradient.
Values: If shimset is $1,2,8,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
z4c
Description: Holds current setting of the Z4C shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z4x
Z4X shim gradient (P)
Description: Holds current setting of the Z4X shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR

$z 4 x 2 y 2 \quad$ Z4X2Y2 shim gradient (P)

Description: Holds current setting of the Z4X2Y2 radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
$z 4 x y \quad$ Z4XY shim gradient (P)
Description: Holds current setting of the Z4XY radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z4y Z4Y shim gradient (P)
Description: Holds current setting of the Z4Y shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z5
Description: Holds current setting of the Z 5 axial shim gradient.
Values: If shimset is $2,10:-2048$ to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
z5x Z5X shim gradient (P)
Description: Holds current setting of the Z5X radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z5y Z5Y shim gradient (P)
Description: Holds current setting of the Z5Y radial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z6 Z6 shim gradient (P)
Description: Holds current setting of the Z 6 axial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
z7

Z7 shim gradient (\mathbf{P})

Description: Holds current setting of the Z 7 axial shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
z 8
Z8 shim gradient (\mathbf{P})
Description: Holds current setting of the Z 8 shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
zap Set up for gradient refocused high-speed imaging sequences (M)
Applicability: Systems with imaging capabilities.
Description: Sets up a pulse sequence consisting of a slice-selective excitation pulse to generate transverse magnetization.

See also: VnmrJ Imaging NMR
Related: gss Slice selection gradient strength in DAC units (P)

zeroneg Set all negative intensities of 2D spectra to zero (C)

Description: Sets to zero all negative intensities of 2D-J spectra.
See also: VnmrJ Liquids NMR
Related: foldj Fold J-resolved 2D spectrum about $\mathrm{f}_{1}=0$ axis (C)
rotate Rotate 2D data (C)
zoom Adjust display to given width (M)
Syntax: zoom(width)
Description: Adjusts the display limits. It is useful in the display of powder patterns after split has been used. zoom both zooms in and out from the current display.
Arguments: width is the total display width, in Hz. Display limits are set to \pm width/2.
See also: VnmrJ Liquids NMR
Related: split Split the difference between two cursors (M)
$\mathrm{zx} 2 \mathrm{y} 2 \quad \mathrm{ZX} 2 \mathrm{Y} 2$ shim gradient (P)
Description: Holds current setting of the ZX2Y2 shim gradient.
Values: If shimset is 2, 8: -2048 to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)
zx3 ZX3 shim gradient (P)
Description: Holds current setting of the ZX3 shim gradient.
Values: -32768 to +32767 , steps of 1,0 is no current.
See also: VnmrJ Liquids NMR
zxy \quad ZXY shim gradient (P)
Description: Holds current setting of the ZXY shim gradient.

Values: If shimset is 2, 8: -2048 to +2047 , steps of 1,0 is no current. If shimset is 3 to $7,9:-32768$ to +32767 , steps of 1,0 is no current.

See also: VnmrJ Liquids NMR
Related: shimset Type of shim set (P)

ZY3 shim gradient (P)

Description: Holds current setting of the ZY3 shim gradient.
Values: -32768 to +32767 , steps of 1,0 as no current.
See also: VnmrJ Liquids NMR

Z
color intensity map, 143
combine arrayed FID matrices, 250, 254
control dconi display, 145
convert compressed data to standard format, 239
copy peak picking file to another file, 338
create experiment, 109
create new parameters, 533
create parameters, 411
create peak picking parameters, 415
cross-relaxation experiment, 615
data display, 144
display a spectrum, 193
display FIDs, 154
display resolution, 76
display spectra in whitewash mode, 193, 194
draw grid on 2D display, 286
exchange experiment, 388
f_{2} ridges, 244
find and integrate peaks, 336
first point multiplier, 110, 245
first-order phase set to zero, 106
fold J-resolved spectrum, 242
Fourier transform 2D data, 250
Fourier transform arrayed 2D FID data, 250
general setup, 533
gray scale image, 311
heteronuclear 2D-J, 299
heteronuclear chemical shift correlation, 299
homonuclear J-resolved 2D, 302
horizontal axis selection, 619
INADEQUATE pulse sequence, 315
incremented delay, 138
intensity of spectrum at a point, 366
interactive weighting, 663, 664
interleaving control, 310
J-correlation experiment, 615
LC-NMR acquisition parameters, 332
normalization, 387
number of increments of evolution time, 384
parameter creation, 50
peak integration threshold, 611
peak picking display control, 339
peak picking parameters, 50
phase selection, 432
plot 2D peak picking results, 447
plot grid over 2D plot, 443
plot heteronuclear J-resolved 2D spectra, 444
plot homonuclear J-resolved 2D spectra, 445
plot X,H-correlation 2D spectrum, 446
plotter units conversion, 306
processing mode for 2D data, 453
processing parameter group, 158
project 2D data onto axis, 465
pseudo-echo weighting parameters, 467
reverse detection heteronuclear multiple quantum, 300
rotate 2D data, 508
search data set for maximum intensity, 426
select for processing, 266
set scaling factor, 527
sinebell weighting, 564
spectra plotting, 437
spectra plotting in whitewash mode, 438
spectra processing, 463
spectral drift correction, 142
stacked spectra display, 202
start of chart in second direction, 526
submit to acquisition, 281
symmetrize INADEQUATE data, 242
t_{1} dimension, 354
type of data processing, 462
vertical offset of traces, 639
volume value, 316, 317
weight and Fourier transform, 654
weight and Fourier transform 2D data, 655
weight and Fourier transform phase-sensitive data, 655, 656
2D experiments setup, 533
2D phase encode image center position, 455
2D phasefiles
calculate, 312
format arguments, 313
2D spectra, plotting, 449
2D spectra, setting negative intensities of, 676
${ }^{2} \mathrm{H}$ chemical shift, 567
2nd evolution dimension
set spectral width, 554
2nd indirectly detected dimension
absolute value display mode, 91
additive weighting constant, 92
clear reference line, 129
cursor difference, 152
cursor position, 109, 126
data display mode, 173
first-order phase, 346
Fourier number, 242
Gaussian function, 274
Gaussian shift constant, 275
incremented delay, 139
line broadening, 332
number of increments of evolution time, 384
phased spectra display mode, 431
power mode processing, 475
reference line frequency, 503
reference line position, 502
right phase, 510
scale spectral width, 527
set frequency referencing, 553
set reference line, 506
sinebell constant, 524
sinebell shift constant, 525
spectral width, 595
start of plot, 569
user-defined weighting, 662
width of plot, 658
32-bit integer precision, 181
3D experiments
3D plane index selected, 315
3D plane projection selected, 315
3D plane type currently displayed, 440
axis labels, 93
create experiment, 109
create parameters, 411
display 2D color map of plane from 3D data, 183
display 2D projection plane from 3D data, 185
display 3D data file, 164
display group of parameters, 159
display next 3D plane, 384
display previous 3D plane, 458
display series of 3D planes, 201
extract planes from 3D spectral data, 270
$\mathrm{f}_{3 \text { ridges }}, 244$
find and integrate peaks on 2D plane, 336
first point multiplier, 245
Fourier transform 3D FID into 3D data, 254
Fourier transform arrayed 3D data sets, 250
horizontal axis selection, 619
incremented delay, 139
N-type display, 392
number of increments of evolution time, 384
parameter creation, 50
path to 2D planes, 417
phase cycling type, 433
plot peak picking on 2D plane, 447
plot series of 3D planes, 450
process f_{3} dimension, 656
processing coefficient file, 534
region selective 3D processing, 469
reset parameters after partial transform, 496
select 2D plane without displaying, 529
selective 2D processing, 253
selective transformation, 252
set 3D processing, 533
spectral dc correction, 570
t_{1} and t_{2} dimensions, 355
terminate 3D FT process, 325
time-domain dc correction, 231
transformed data file, 120
type of data processing, 462
weight and FT phase-sensitive data, 655, 656
3D, showing/hiding drawings in, 537
3rd indirectly detected dimension
incremented delay, 139
number of increments of evolution time, 385
spectral width, 596
3rd rf channel
create parameters, 238
display group of parameters, 159
display template for parameters, 412
parameter retrieval, 50
4D experiments
create acquisition parameters, 412
incremented delay, 139
number of increments of evolution time, 385
parameter creation, 50
phase cycling type, 433
4th rf channel
create parameters, 238
display group of parameters, 159
5th rf channel
create parameters, 239
90-degree pulse, 405
90 -degree pulse power calibration, 617
90 -degree pulse width, 473

A

aborting acquisition
with error, 38
with no error, 296
absolute intensity display mode, 53
absolute intensity group, 53
absolute magnet frame data, generating, 511
absolute-value 2D experiment, 432
absolute-value COSY pulse sequence, 495
absolute-value data display mode, 172, 173
absolute-value data file, 120
absolute-value display mode, 90
absolute-value MQF COSY parameter set, 281
absolute-value ROESY parameter set, 290
accounting program, 637
acq_errors file, 45
acqaddr parameter, 246
acqbin directory, 532
acqfil directory, 223, 602
Acqmeter window, 42, 43
acquisition
abort with error, 38
abort with no error, 296
acquire FID with no processing, 281
acquisition parameter arrays, 139
action when bs transients accumulate, 648
action when error occurs, 650
action when specified transients accumulate, 657
array of acquisition parameter, 534
automated proton and carbon, 296
automated proton and COSY, 298
automated proton, carbon, DEPT, 297
automated proton, carbon, HETCOR, 297
calculate pixel size, 495
carbon, 104
carbon and APT automatically, 106
carbon and DEPT automatically, 108
create 2D parameters, 411
create 3D acquisition parameters, 411
create 4 D acquisition parameters, 412
data points to acquire, 77
data points to be acquired, 390
date data is acquired, 140
delay before acquisition, 66
determine if active for experiment, 219
display status information, 563
DSP type, 200
estimate acquisition time, 612
fluorine, 226
hardware values, 544
interactive display, 41
LC-NMR 2D parameters, 332
loop control, 531
make equal to time requested, 612
number of echoes, 382
number of scans, 391
number of slices, 391
number of transients, 391
oversampling factor, 399
perform Autoshim experiment, 560
perform experiment, 79
phosphorus, 406
read hardware values, 487
recover from error, 485
resume paused queue, 497
resume stopped acquisition, 483
stop acquisition, 522
stopped by temperature interlock, 613
submit Autolock experiment, 341
submit change sample, Autoshim experiment, 522
submit setup experiment, 587
submit spin setup experiment, 571
time to acquire FID, 77
trigger pulses before acquisition, 612
trigger signals to wait, 392
acquisition bus trap, 47
acquisition computer
block size, 101
resetting, 39
Acquisition Controller board, 509
acquisition parameters group, 158
acquisition queue, resume after pause, 497
acquisition status, 45
acquisition status line, 41
Acquisition Status window, 44
activating current window activity, 323
activating/removing a mark, 548
active parameter, 396
active pulse length parameter list, 447
active pulse power level parameter list, 475
activity in current window, 323
ADC overflow warning, 45
add series of FIDs together, 48
add/subtract experiment, 575
add current FID, 47
add current spectrum, 569
clear experiment, 113
delete experiment, 113
interactive mode, 48
subtract FID, 588
subtract spectrum, 576
addAstack command, 48
adding a stack, 48
additive weighting constant, 91, 663
allocateWithId procedure, 378
alternateSlices(intmode) command, 67
alternating slices, 67
AM data conversion, 121
ampersand (\&) character, 43, 44
amplifier band in use, 498
amplifier mode control, 67
amplifier type, 68
AMX data conversion, 121
AnalogPlus digital filter, 149
analyze.inp file, $69,220,222$
analyze.list file, $70,119,601$
analyze.out file, $70,119,222,427$
AP Interface Type label, 116
application code dimension, 382
application mode, 72
APT acquisition, 296
APT experiment, changing parameters for, 73
APT pulse sequence, 73
APT spectra
plot automatically, 440
process automatically, 73
arc cosine calculation, 40, 74
arc sine calculation, 74
arc sine of number, 76
arc tangent calculation, 74, 77
arc tangent of two numbers (Y,X), 77
argument, type, return identifier for, 624
array index for transformed image, 213
array of an acquisition parameter, 534
arrayed 1D spectra, 583
processing, 463
processing and plotting, 89
arrayed 2D FID matrices, 655, 656
arrayed experiment
control interleaving, 310
arrayed imaging data
fit to T_{1} data, 601
fit to T_{2} data, 602
arrayed parameter, returning number of elements in an, 565
arrayed parameters enter as linearly spaced, 75 order and precedence, 75
arraying LP parameters, 350
assign sysgcoil, 541
asynchronous decoupler mode, 168
attached proton test, 73
attenuator
coarse type, 107
control, 187, 188, 618, 619
fine, 228
upper safety limit, 186
attributes of parameters, 164
audio filter board, 82
Audio Filter Type label, 82, 116
audio filters bandwidth, 228
auto lk gradient map generation, 83
auto.conf file, 213
auto_dir macro, 567
autocalibration, 40
getting with CH3I sample, 80
routines, 81,82
setting up with CH\#I sample, 80
with autotest sample, getting, 81
with autotest sample, setting up, 80
Autogain, see automatic gain
Autolock, see automatic lock
Automake Shimmap button, 279
automated
analysis of DEPT data, 85
carbon acquisition, 104
carbon and APT acquisition, 106
carbon and DEPT acquisition, 108
fluorine acquisition, 226
phosphorus acquisition, 406
proton acquisition, 294
proton and carbon acquisition, 296
proton and COSY acquisition, 298
proton, carbon, APT acquisition, 296
proton, carbon, DEPT acquisition, 297
proton, carbon, HETCOR acquisition, 297
automated gradient map generation macros, 82 automatic

2D normalization, 387
2D peak picking, 336
2D processing, 389
analysis of COSY data, 40, 41
APT spectra processing, 73
calibration, 40
COSY- and NOESY-type spectra plot, 442
generic processing, 464
heteronuclear J-resolved 2D spectra plot, 444
homonuclear J-resolved 2D spectra plot, 445
integral scale adjustment, 319, 320
macro execution, 551
plot APT-type spectra, 440
process FIDs, 464
spectra plotting, 448
vertical scale adjustment, 642

X,H-correlation 2D spectrum plot, 446
automatic gain
enable Autogain, 262, 263
errors, 46
automatic lock
errors, 46
status, 66
submit Autolock experiment to acquisition, 341
automatic phasing, 71
optimized, 72
zero-order term, 72
automatic sequence setup for gradients, 436
automatic shimming, 661
create shim method string, 383
method selection, 370
submit Autoshim experiment to acquisition, 522, 560
automatic stacking for arrays, 89
automatic vertical scale adjustment, 642, 643
automation data file prefix, 87
automation directory
absolute path, 85
check for enter queue, 85
preparation for run, 83
automation directory name, 277
automation mode, 85
check if active, 84, 219
automation parameter group, 161
automation run
controlling macro, 84
enter sample information, 213
prepare automation directory, 83
resume suspended run, 88
starting, 85
suspend current run, 89
autoscaling resumes, 89
Autoshim on Z button, 279
Autoshim, see automatic shimming
autoshimming, 584
gradient, 278
average value of input, 91
axes, showing/hiding, 538
axis gradients, 117
axis labels, 92
FID displays and plots, 73, 93
units, 92

B

background execution, 559
background VNMR processing, 633
backup current probe file, 40
balance gradients, 210
bandpass filter offset for downsampling, 198
bandwidth for shaped pulse, 471
bandwidth of audio filters, 228
bandwidth of digital filter, 196
baseline correction, 96, 613
linear, 142
sensitivity adjustment, 356
zero-order, 356
baseline flatness, 304
beeper sound, 97
beginning interactive image planning, 583
Bessel filters, 66
BINOM pulse sequence, 98
binomial water suppression, 98
blanked amplifiers, 508
block size action, 649
block size storage, 101
block size transients, 648
bore size of magnet, 98
boxes
draw on plotter or display, 98
selected by mark command, 99
BR24 pulse sequence, 100, 132
Brickwall digital filter, 149
broadband amplifier, 68
broadband channel tuning, 101
Bruker data files, 579
convert to VNMR, 120
read files from 9-track tape, 485
Bruker data, phasing, 72
bruker.par file, 579
Butterworth filter, 66, 82
button labels, 374
button values, reporting, 277

C

C13.par file, 556
Calculate Target button, 439, 565, 581, 640
calculated spectrum display, 199
calibration
decoupler pulse, 476
gradient strength, 465
gradients, 291
rf pulse identity, 501
shaped pulses, 95
calibration file, printing, 85
carbon
acquisition, 296, 297
automated acquisition, 104
plotting, 441, 451
process 1D carbon spectra, 105
vertical scale adjustment, 642
carbon decoupler calibration macros, 81
carbon gradient ratio calibration macros, 81
carbon observe calibration macros, 81
carbon-enriched molecules, 297
Carr-Purcell Meiboom-Gill T2, 125
cartridge tape, 604
center frequencies of nD experiments, 493, 494
center of screen display limits, 109
center sequence calibration, 535
chained acquisition, 86
chained experiments, 112
CHAN readout, 623
change sample experiment, 111
changing working directory, 107
channels
assign frequencies for probe tuning, 623
available for use, 393
rf frequencies, 570
rf generation on each channel, 504
set frequency of rf channels, 539
waveform generator on channel, 505
characters in a string, 334
chart
maximum width, 650
maximum width in second direction, 650
starting position, 526
starting position in second direction, 526
width, 649
width in second direction, 649
chart paper
preprinted paper for HP plotters, 304
chemical shift offset frequency, 549
chemical shifts list, storing, 178, 425
chemist-style parameters, 100
class C amplifiers, $68,107,117$
decoupler high-power control, 161
decoupler low-power control, 167
Clear Marks button, 439
clearing
experiment text, 130
integral reset points, 132
clearing all stacks, 112
clearStacks command, 112
cmd parameter, 406
Coarse Attenuator label, 107, 117
coarse attenuator type, 107
coef file, 534, 570
coefficient to construct interferogram, 227, 228
coefficients for digital filtering, 195, 580
coil calibration data, 470
Cold Probes, 130
COLOC sequence, 446
color intensity map, 311
display, 143
without screen erase, 146
color selection for drawing, 426
colors for plotting, 113, 549
combining arrayed 2D FID matrices, 250, 254
comm port for sample changer, 116
command execution, 217
commands
addAstack, 48
alternateSlices(intmode), 67
clearStacks, 112
dbsetup remove, 141
dbupdate, 141
display which command or macro is used, 657
edit online description, 365
loadPrescription(char* path), 340
online description, 365
removeAstack(int index), 495
rename, 299
comparing shim sets, 163
compiling
user PSG object library, 467
user pulse sequences, 532
user-written weighting functions, 663
compiling pulse sequence, 532
completed FIDs in experiment, 108
completed transients, 130
complex 3D transformed data file, 120
complex Fourier transform, 461, 462
complex points to left-shift ni interferogram, 354
complex points to left-shift ni2 interferogram, 355
complex points to left-shift np FID, 354
complex time-domain data points, 349,350
compressed 2D data conversion, 239
configuration information, 661
configuration parameters
display and possibly change, 114
Configure label, 116
conjugate gradient list, 581
conpar file, 115,127
console hardware status, 310
Console label, 115
console parameter, 119
contact time, 119
continuous wave (CW) modulation, 174
contour display
display control, 145
contour plot, 143, 424
display, 181
width of plotting area, 649
without screen erase, 146
contour plot display, 182
conversion units for parameters, 625
converting
32-bit data files to VNMR, 579
Bruker data, 120
compressed 2D data to standard format, 239
data in table order to linear order, 602
Hz or ppm to plotter units, 306
VXR-style data to VNMR, 125
VXR-style text files to UNIX, 644
coordinate information from image display, 341
copying
experiment data to subfile, 125
files, 123, 124
local file to remote host, 216
one parameter tree to another, 288
peak file to another file, 338
remote file to local host, 215
stored phasefile to current experiment, 512
system macro to become user macro, 361
user macro files, 358
CORBA client, 130
CORBA server, 130
corrected difference between successive spectra, 233
correlated spectroscopy, 124
cosine value, 123
cosine-squared window function, 577
cost accounting, 637
COSY
acquisition, 298
automatic analysis and plot, 408
automatic analysis of data, 40,41
phase-sensitive, 124
plotting, 442
pulse sequence, 124
COSY experiment, changing parameters for, 124
COSY-like correlation spectra, 242
cp command (UNIX), 123, 124
CP/MAS amplifier, 68
CPMGT2 pulse sequence, 125
creating
FID display parameters, 234
LC-NMR parameters, 415
parameters in a parameter tree, 127
UNIX directory, 374
creating/deleting a mark, 548
cross-polarization, 666
cross-relaxation, 615
crusher gradient level, 265
CryoBay Monitor software, 130
cubic curve fitting, 70, 221
curecc file, 541
curpar file, 127
current experiment
correct parameter characteristics, 238
determine if acquisition active, 219
current FID data block, 110
current gradient coil, 264
current window, 131
current working directory, 473
current-type parameter tree, 127
cursor
adjust tau2 to start of acquisition, 622
difference of two frequency cursors, 151, 152
difference of two time-domain cursors, 152
frequency offset calculation, 395
mode, 366
move cursor to center spectrum, 109
move cursor to nearest line, 385
move spectral window according to cursors, 376
reset integral to zero at cursor, 671
set decoupler frequency to cursor position, 527, 528
split difference of two cursors, 575
state in df, ds, or dconi programs, 129
cursor position, 126
time domain, 128
curve fitting, 69,220
cutoff point for VT regulation, 643
CW amplifier mode, 67
cycle phase, 124
cycled BR24 pulse sequence, 132
cycled MREV8 pulse sequence, 132
CYCLENOE sequence, 132

D

D2PUL pulse sequence, 138
DAC, converting gauss/cm value to, 234
data acquisition mode, 547
data conversion to linear order, 602
data display mode, 172, 173
data entry, updating, 267
data file display in current experiment, 146
data point, determining size of a, 72
data points to be acquired, 390
data processing type on FID, 461, 462
data set conversion from VXR-style to VNMR, 120, 125
data station system configuration, 596
data truncation limit, 131
data.fdf file, 255, 257
database for VnmrJ, 141
datadir directory, 657
date of data acquisition, 140
dbsetup remove command, 141
dbupdate command, 141
dc correction, 231
dc offsets removed from FIDs, 146
dconi.out file, 366
decay curves, 429
deconvolution, 231, 237
display numerical results, 562
plotting, 443
starting point, 628
decoupler
adjust tip-angle resolution time, 170
decoupling sequence, 195, 196
field strength, 169
field strength calculation, 295
fine power attenuator, 187
frequency, 155
frequency offset array, 528
frequency offset control, 177
high-power control, 161
homodecoupling control, 302
linear modulator power, 188
low-power mode, 167
mode during status periods, 167, 168
modulation frequency, 116, 169
modulation mode, 173, 174, 175
nucleus lookup, 175
power level with linear amplifier, 186
power to switchable probe caution, 186, 187
proton decoupler pulse calibration, 455
pulse calibration, 476
pulse length, 454
pulse sequence diagram, 185
set frequency to cursor position, 527
tip-angle resolution, 191
used as transmitter, 138
used for pulsing, 174
WALTZ decoupling present, 648
decoupler 2 parameter values
set from probe file, 536
decoupler modulation frequency, 169, 170
decoupler parameter values
set from probe file, 536
def file, 177
Default button, 149
default directory for Files menu system, 149
defaultdomain file, 539, 548
defaultrouter file, 539, 548
Define excitation band, 420, 530
Define excitation band for solvent suppression, 420 delay
first, 138
incremented delay for pulse sequence, 138,139
overhead delay between FIDs, 137
post-trigger, 302
preacquisition, 66, 409
pre-trigger, 484
wait for another trigger, 208
wait to acquire a spectrum, 208
delay-type parameter, 127
deleting
all stacks, 112
experiments, 151
file, parameter, or FID directory, 150
files, 507
selected slice, 151
selected stack/slice, 150
spectra from analysis, 151
user macro, 150
deleting/creating a mark, 548
DEPT
acquisition, 297
analysis and plot, 409
automated complete analysis, 85
automatic analysis and spectrum editing, 52
plotting data, 442
pulse sequence, 152
spectra array processing, 153
DEPT experiment, changing parameters for, 152
dept.out file, 52

DEPTGL pulse sequence, 152
destroying
parameters, 153
parameters of a group, 153
devicenames file, 550
devicetable file, 550
dg window, 606
Dgroup of a parameter, 538
diagonal parameter arrays, 75
diagonal peaks threshold during peak picking, 666
dialog box, 119
dialog box from a macro, 162
dialog, starting a, 177, 178, 214
dialoglib directory, 177
difference between cursors in $\mathrm{Hz}, 151$
difference between cursors in seconds, 152
difference NOE experiment, 132
diffusion analysis, 221
add to current display, 223
add to current plot, 427
display, 222
diffusion constant, 429 calculation, 430
diffusion experiment analysis, 70
diffusion gradient level, 266
Diffusion Ordered Spectroscopy (DOSY), 179
digital filter type, 149
digital filtering
bandwidth, 196, 580
bandwidth for oversampling, 397
coefficients for oversampling, 397
create downsampling parameters, 413
create parameters for oversampling, 416
downsampling factor, 180
file of FIR digital filter coefficients, 236
inline type, 200
number of coefficients, 195, 580
parameter creation, 50
digital lock display, 487
digital resolution measurement, 191
digitally filtered FIDs, 163, 581
dimension of application code, 382
dimension of experiment, 76, 105
dimensionality of experiment, 268
dimensions of voxel, 639
direct polarization, 667
directly detected dimension
absolute value display mode, 90
additive weighting constant, 91
data display mode, 172
first-order phase, 345
Fourier number, 241
Gaussian function, 273
Gaussian shift constant, 274
line broadening, 331
phase angle display mode, 407
phased spectra display mode, 430
power display mode, 474
reference line frequency, 502
reference line position, 502
scale spectral width, 526
set reference line, 505
sinebell constant, 524
sinebell shift constant, 525
spectral width, 594
start of plot, 569
user-defined weighting, 662
width of plot, 658
zero-order phase, 509
directories
change working directory, 107
create new UNIX directory, 374
default for Files menu system, 149
delete, 150
display current working directory, 473
get information about files, 268
list files, 163
list files in directory, 334, 353
move directory, 378, 495
path to current experiment, 131
remote VXR-style system, 213
remove empty directories, 507
remove from experiment, 112
rename directory, 378, 495
stored queue experiments, 85
user's macro directory path, 358
user's menu directory, 369
user's manual directory, 365
user's private VNMR files, 629
VNMR system, 597
disabling image planning, 388
disk file errors, 47
display
acquisition information, 44
lock level, 43
spinner speed, 43
temperature, 43
display limits
set for full screen, 258
set for full screen with room for traces, 258
set for left half of screen, 333
set for right half of screen, 505
display mode for plotter, 451
display parameters
create 3D display parameters, 411
full recall of set, 245
move between experiments, 368
recall set, 483
save as a set, 521
set to full spectrum, 226
display parameters group, 159
display style, setting to stripes/lines, 537
display templates for 3 rdrf channel parameters, 412
display templates for pulse sequence, 555
displaying
2D color map of 3D plane, 183
2D data interactively, 144
2D spectra in whitewash mode, 193
2D spectra in whitewash mode with no screen erase, 194
3D data file, 164
3D parameter group, 159
3D plane projection, 185
3D planes, 201
3rd/4th rf channel parameter group, 159
acquisition information, 44
acquisition parameter group, 158
acquisition status information, 563
acquisition time, 223
add another diffusion analysis, 223, 427
adjust display parameters, 237
arrayed acquisition parameters, 139
automation parameters, 161
color intensity map, 143
contour plot, 143
contour plot with screen erase, 182
contour plots, 181
create 2D parameters, 411
current working directory, 473
data file in current experiment, 146
dialog box from a macro, 162
display parameter group, 159
error messages, 216
Ethernet address, 210
experiment library, 223
experiment time, 223
exponential curves, 222
FID, 154, 155
FID as connected dots, 180
FID file in current experiment, 147
FIDs in whitewash mode, 158
FIDs of 2D experiment, 154
files in directory, 163
formatted text, 658
full window display, 664
grid on 2D display, 286
horizontal LC axis, 140
inset spectrum, 317
integral amplitudes, 182
integral with a spectrum, 192
integrals at reset points, 165
LC-NMR parameters, 161
limNET nodes, 176
line frequencies above threshold, 166
lock level, 43
log file for experiment, 223
menu for planning target scan, 439
message on acquisition status line, 41
multiple images, 173
next 3D plane, 384
noninteractive gray scale image, 311
normalized integral amplitudes, 183
normalized integrals, 167
overlay as center lines/stripes, 163
overlay as stripes, 165
parameter screen menu, 161
parameter value, 479
parameters and their attributes, 164
peak frequencies, 182
phase file in current experiment, 147
plot is same as display, 664
plotted contours, 181
polynomial curves, 222
previous 3D plane, 458
processing parameter group, 158
pulse calibration data file, 470
pulse sequence diagram, 185
pulse sequence generation errors, 467
recalculated simulated spectrum, 199
remote VXR-style directory, 213
scale under spectrum or FID, 194
set for center of screen, 109
set full screen with room for traces, 258
set limits for full screen, 258
shim method string, 197
shim parameter group, 161
spectra in whitewash mode, 207
spectrum, 192
spin simulation parameter arrays, 165
spin simulation parameter group, 160
spinner speed, 43
stacked FIDs, 156, 157, 158
stacked spectra, 202
stacked spectra automatically, 203
stacked spectra automatically with no screen erase, 204
stacked spectra horizontally, 204
stacked spectra horizontally with no screen erase, 206
stacked spectra with no screen erase, 206
strings in text window, 211
stripes/lines, 537
system macro file, 360
target slices, 190
target voxels, 190
temperature, 43
text file for current experiment, 609
text file in graphics window, 208
text files, 107
time of acquisition, 223
user macro files, 358
which command or macro is used, 657
width adjustment, 676
Distortionless Enhancement by Polarization Transfer, 152
done codes, 45
DOSY (Diffusion Ordered Spectroscopy) experiment, 179
dosyfit program, 179
double-precision data acquisition, 181
double-precision VNMR FID data, 114
double-quantum filtered COSY pulse sequence, 189
downsampling
bandpass filter offset, 198
bandwidth of digital filtering, 196
creating parameters, 413
digital filter coefficients, 195
factor, 180
inline type, 200
parameter creation, 50
setting parameters, 375
DPFGSE-noe experiment, changing parameters for, 389, 616
DQCOSY experiment, 189
DQCOSY experiment, changing parameters for, 189
drawing a line between points, 189
drawings
showing/hiding in 3D, 537
showing/hiding order of, 538
drift correction
2D spectra traces, 142
activity flag, 142
calculation, 142
cancel, 107
group, 142
ds, 145
ds.out file, 366
DSP parameter creation, 50
DSP type (see digital filtering), 200
dummy scans, 579
Dynamic Angle Spinning (DAS), 140
dynamic binding, 533

E

ecc file, 210
ecctabl reference table, 210, 269
eccTool window display, 210
echo command (UNIX), 211
echo planar imaging, See EPI experiments
echo position, determine, 283
echo time, 606
echoes
index for transformed image, 211
number to be acquired, 382
eddy current
compensation data, 210
compensation data analysis, 211
compensation file, 131
settings, 211
testing, 286
eddylib directory, 210, 269
editing
files, 212
macros, 359
menu file, 369
parameter file with user-selected editor, 412
parameter file with vi editor, 412
UNIX text files, 634
user macro, 361
ejection of sample, 210, 212
elements, returning number of, 565
elliptical filters, 66, 82
enter.conf file, 213
enterexp file, 214
enumerated values, 127
remove from a variable, 538
EPI experiments
acquisition delay time, 608
apply phase correction map, 423
calculate slice gradient, 582
calculate slice selection parameters, 582
centering echoes, 608
close phase correction map, 423
collect EPI data, 215
control phase encoding gradient, 311
display EPI data, 215
display image, 214
effective echo position, 212
generate phase correction map, 423
generate phase file, 214
number of EPI images to collect, 311
open phase correction map, 424
process EPI data, 215
process image, 214
readout dephasing gradient adjuster, 288
readout gradient adjuster, 287
readout gradient dephaser, 212
reverse spectral data, 214
save images in FDF for ImageBrowser, 215
set up parameters, 215
Ernst angle pulse calculation, 216
errmsg file, 663
error codes, 45
error conditions recovery, 485
error during acquisition, 45,650
error handling control, 314
error message display, 216
errors in pulse sequence generation, 467
Ethernet
address display, 210
disconnect host computer, 548
host computer connection, 539
Euler angle from magnet frame, 435, 468, 611
evolution dimension
set spectral width, 554
evolution time increments, 384, 385
excitation pulse, 406
excitation pulse power, 617
executing VNMR command, 217
exiting from VNMR, 219, 638
$\exp 5$ (add/subtract experiment), 49, 113
experiment data retrieval, 513
experiment directory path, 131
experiment numbers list, 365
experiment parameters, restoring, 322
experiment text file
append string, 79
clear text, 130
experiment time display, 223
experimental frequency of transition, 113
experimental lines, assigning transitions, 76 experiments
abort acquisition with no error, 296
acquire and Fourier transform, 261
acquisition time estimate, 612
action when bs transients accumulate, 648
action when error occurs, 650
action when experiment completes, 652, 653
action when nt transients accumulate, 657
add parameters, 49
add parameters for FID display, 234
append string to text file, 79
calculate dimension, 105
clear text file, 130
completed transients, 130
correct parameter characteristics, 238
correct parameter limits and step sizes, 414
create workspace, 109
delete an experiment, 151
determine if acquisition active, 219
dimension, 76
dimensionality, 268
display acquisition time, 223
display data file, 146
display FID file, 147
display log file, 223
display phase file, 147
edit text file, 610
experiment library display, 223
fit data to lineshapes, 237
get text from data file, 272
join existing experiment, 321, 322
make FID element using numeric text input, 363
move display parameters between experiments, 368
move FIDs between experiments, 370
move parameters between experiments, 376
nucleus selection, 556
number of completed FIDs, 108
parameters for basic experiment, 555
pulse sequence setup, 282
recalculate number of transients, 612
remove inactive lock and join experiment, 626
remove old files and directories, 112
replace text file, 609
resume a stopped acquisition, 483
retrieve FIDs from a file, 511
retrieve parameters from file, 512
retrieve shim coil settings, 512
save FIDs, 590
save parameters, 591
save text to a data file, 472
select 1D experiment for processing, 266
select 2D experiment for processing, 266
set up $T_{1 \text { experiment }}, 180$
setup macro, 629
setup macros, 239
shim values to use, 340
shimming conditions, 661
solvent selection, 556
stop acquisition, 522
string parameters for storage, 382
submit Autolock experiment to acquisition, 341
submit Autoshim experiment to acquisition, 560
submit change sample, Autoshim to acquisition, 522
submit setup experiment to acquisition, 587
submit to acquisition, 79, 281
text file display, 609
expfit.out file, 427
exponential analysis, $600,601,602$
exponential curve, 220
exponential curve fitting, 70, 119, 221
exponential curves display, 222
exponential curves plot, 427
exponential T_{1} or T_{2} data fitting, 313
exponential value of number, 219
exponential weighting, 331, 332
external time base, 666
extract entries in VXR-style directory, 149
extrapolated dispersion mode, 232

F

F1 linear prediction parameters, setting, 548
f_{1} scaling factor for 2 D multipulse sequences, 527
$\mathrm{f}_{1}, \mathrm{f}_{2}$ display, 392
f_{2} ridges, 110
f_{3} processing of 3D data, 656
FDF files, 164, 229, 230, 255, 257, 590, 591, 593
FDM program, running, 230
FID block, move, 370
FID block, reverse, 498
FID button, 281
FID data, move, 371
FID data, reverse, 501
fid file, 602
FID file, memory map open, 372
FID trace, move, 373
FID trace, reverse, 503
FID, memory map close, 371
fid.orig file, 602
FIDs
absolute-value mode data display, 173
acquisition time, 77
action after FID finishes, 658
action after last FID, 653
add series of FIDs together, 48
add to add/subtract experiment, 47
arrayed 2D FID matrices, 655, 656
automatic processing, 464
axis label units, 93
combine arrayed 2D FID matrices, 250, 254
complex points to left-shift np FID, 354
compress double-precision FID data, 114
copy FIDs into exp5 as array, 278
create display parameters, 50, 234
current data block, 110
cursor difference, 152
delete FID directory, 150
digitally filtered FID, 581
display as connected dots, 180
display FID files in current experiment, 147
display FID of 2D experiment, 154
display scale, 194
display single FID, 154, 155
display stacked FIDs, 156, 157, 158
display whitewashed FIDs, 158
file name prefix, 87
filtered, 580
first point multiplier, 244
Fourier transform 1D FIDs, 247
Fourier transform 2D data, 250
Fourier transform 3D FID into 3D data, 254
hypercomplex 2D Fourier transform, 253
imaginary part display, 155
interactive display, 41
interleave FIDs during processing, 310
left-shift FID to time-domain cursor, 614
make FID element using numeric text input, 363
move FIDs between experiments, 370
noise level measurement, 389
number acquired, 384
number of completed FIDs, 108
overhead delay between, 137
plot a scale under a FID, 466
plot in whitewash mode, 428
plot one or more FIDs, 443
prepare parameters for acqi display, 273
pulse breakthrough effects, 508
remove dc offsets, 146
retrieve from a file, 511
retrieve from experiment subfile, 513
save FID data in FDF format, 590
save in current experiment, 590
solvent subtraction, 414
start of FID display, 558
subtract FID from add/subtract experiment, 588
TPPI 2D Fourier transformation, 253
type of data processing, 461
vertical position, 640
vertical position of imaginary FID, 640
vertical scale, 633
weight and Fourier transform 1D FIDs, 654
weighting interactively, 663
width of FID display, 653
write numeric text file using a FID element, 660
zero-order phasing constant, 433
field of view for 2nd phase-encode axis, 348
field of view for phase-encode axis, 347
field of view for readout, 353
field position, 672
field-of-view
getting default, 267
setting to default size, 536
FIFO loop size, 234
Fifo Loop Size label, 116, 234
FIFO underflow error, 47
file, saving image planning to a, 524
files
append data to file, 660
automation data file name prefix, 87
Bruker data files for conversion, 579
check for existence, 218
clear a file, 659
delete, 150
delete one or more files, 507
display experiment library, 223
display in text window, 107
edit with user-selectable editor, 212
file name extension information, 268
find number of files in directory, 268
find words and lines in text file, 344
get text from data file, 272
handle interactively, 235
lines or records in file, 391
links to files, 334
list files in directory, 163, 334, 353
load parameters from file into a tree, 246
make a copy, 123
make FID files using numeric text input, 363
making a copy, 124
move a file, 495
move file, 378
plot files, 638
plot text file, 451
print or plot to a file, 459
print text files, 469, 638
put text file into another file, 472
read 32-bit data files into VNMR, 579
read Bruker data files from tape, 485
remove old files from experiment, 112
rename a file, 495
rename file, 378
retrieve FIDs from file, 511
retrieve parameters from file, 512
retrieve shim coil settings from file, 512
return information from files display, 235
save FIDs in experiment, 590
save parameters from experiment, 591
save parameters from tree to a file, 246
save shim coil settings to a file, 592
text files display in graphics window, 208
transfer file from remote source, 215
transfer files to remote destination, 216
write formatted text to a file, 659
Files menu system
default directory, 149
filter bandwidth, 228
filter delays, 66
filter diagonalization method (FDM), 230
filtlib directory, 236
Find gzlvl1/gzwin button, 292
Find gzwin button, 292
fine attenuator, 618
fine attenuator configuration, 228
fine attenuator control, 187, 188, 618, 619
Fine Attenuator label, 117, 188, 228, 618
fine power attenuator, 187, 188
fine tuning readout gradient compensation, 288
finite impulse response (FIR) coefficients, 236
first delay in pulse sequence, 138
first point multiplier, 244, 245
first pulse width, 405
first-order baseline correction, 613
first-order phase, 345, 346
make zero, 105
first-order phase correction, 140
first-point multiplier, 110
fitspec.data file, 237
fitspec.inpar file, 237, 540
fitspec.outpar file, 237, 540, 562
fitting arrayed imaging data, 313, 601, 602
fixing/unfixing slice gap, 540
flag-type parameter, 127
flashc command, 239
Flexible Data Format (FDF), 229, 593
flip angle
list, 240
set rf power levels, 539
flip time, 405, 473
FLIPFLOP pulse sequence, 240
flow encoding gradient level, 274
fluorine
automated acquisition, 226
process 1D spectra, 227
$\mathrm{fm}-\mathrm{fm}$ mode decoupling, 169
fm -fm modulation (swept-square wave), 174
folding-in problem, 228
foreground processing, 633
formatted text writing to a device, 658
formatting real number as a string, 243
four nucleus amplifier, 68
Fourier number, 241, 242
Fourier number scaled value of an integral, 316
Fourier number scaled volume of a peak, 317
Fourier transform
1D data, 247, 654
2D data, 248, 250, 654
3D FID into 3D data, 254
phase-sensitive data, 249, 253
processing mode for 2D data, 453
fourth decoupler
adjust tip angle resolution time, 171
decoupler mode, 168
decoupling sequence, 196
frequency, 156
frequency offset control, 178
homodecoupling control, 303
modulation frequency, 170
modulation mode, 175
nucleus lookup, 176
power level with linear amplifier, 187
tip angle resolution, 192
fp.out file, 119, 151, 244, 600, 601
frequency limits of region, 271
frequency of a line, 269
frequency of decoupler, 155, 156
frequency of lock, 342
frequency of NMR resonance offset, 497
frequency of rf channels, 539
frequency offset array for decoupler, 528, 529
frequency offset for decoupler, 177, 178
frequency offset for observe transmitter, 616
frequency offset of cursor, 395
Frequency Overrange label, 117, 399
frequency referencing
2nd evolution dimension, 553
evolution dimension, 552
proton spectra, 552
frequency referencing, see reference line
frequency scale dimension adjustment, 526
frequency shift of fn spectrum, 355
frequency shift of fn1 spectrum, 355
frequency shift of fn2 spectrum, 356
frequency synthesizer latching, 331
frequency synthesizer overrange, 398
frequency synthesizer value, 470
frequency-independent phase, 432
frequency-independent term, 72
frequency-shifted quadrature detection, 200, 247
frequency-type parameter, 127
ftr3d call name, 325
full display, 664
full screen display limits, 258
full-band amplifier, 68
full-width at half-height (FWHH), 336

G

gain of receiver, 262
gap between lines in spectrum, 263
gap mode, getting, 269
gap, fixing/unfixing slice, 540
GARP decoupling sequence, 169, 170, 174
gating time for receiver, 130,508
gauss/cm, converting to DAC value, 234
Gaussian apodization constant, 663
Gaussian fraction, 199
Gaussian fraction for lineshape, 540
Gaussian function, 273, 274
Gaussian function shift, 663
Gaussian lineshape, 237
Gaussian low-pass filter, 235
Gaussian shift constant, 274, 275
Gaussian time constant, see Gaussian function
Gaussian window function, 263
gcoil parameter, 264
gCOSY experiment, changing parameters for, 265
GCU (gradient compensation unit), 285
Gemini systems
convert data to VNMR, 120
convert files to UNIX format, 644
decompose files to UNIX files, 149
list contents of directory, 213
read tape, 603
general setup for 2D experiments, 533
generalized curve fitting to data, 220
generic automatic processing, 464
getting
a coronal overlay, 267
a sagittal overlay, 271
an active overlay, 267
an overlay based on scout image, 267
an overlay from saved parameters, 269
default field-of-view, 267
gap mode, 269
slice thickness, 267
slices, 267
transverse overlay, 272
gHMBC experiment, changing parameters for, 275
gHMQC experiment, setting up parameters for, 275
gHMQCTOXY experiment, changing parameters for, 276
gHSQC experiment, changing parameters for, 276
gHSQCTOXY experiment, changing parameters for, 276
Gilson Liquid Handler window, 277
gilson.conf file, 213
global file, 127, 129
update after VNMR install, 628
global parameter tree
save parameters, 523
global-type parameter tree, 127
gmapz pulse sequence, 279, 280
gmapz.par file, 280
grad_cw_coef parameter, 429
grad_p_coef parameter, 429
grad_p1 array, 430
gradient
2nd phase encode increment, 283
3rd phase encode increment, 283
coil, 264
phase encode dephasing, 283
gradient amplifier installation tests, 606
gradient autoshimming, 278
gradient axis, 284
gradient calibration constant, 264, 291, 540
gradient calibration constant retrieval, 269
gradient calibration parameters boresize, 98
gradient calibration pulse sequence, 465
gradient calibration value, 210
gradient coil configuration, 596
gradient coil configuration file, 117
gradient coil updating, 628
gradient COSY pulse sequence, 265
gradient evaluation pulse sequence, 261
gradient level trim, 290
gradient levels, 541
gradient list, 581
gradient map generation, 82, 83
gradient map generation, automatic, 82
gradient phase encoding increment, 282
gradient refocused high-speed imaging sequences, 676
gradient rise rate, 287, 621
gradient set
internal usable diameter, 98
gradient shape, 282
gradient shimming
display menu, 278
map shims, 278
pulsed field gradient strength, 292
set parameters, 278
spectral width percentage, 292
start acquisition, 278
start gradient autoshimming, 278
z-axis shims number, 292
Gradient Shimming System menu, 279
gradient spoiling time, 622
gradient step size, 285
gradient strength, 287
maximum value, 280
voxel selection, 291
X, Y, Z gradients, 291
gradient strength for each axis, 291
gradient strengths calibration for PGE, 429
gradient table generation, 128
gradient total limit, 290
gradients for X, Y, and Z axes, 285
Gradients label, 116
gradtables directory, 128, 541, 622
graphics window
display message with large characters, 96
display status, 285
display text file, 208
draw box, 98
write formatted text to screen, 659
Graphics Window colors, 535
graphics window, dividing into rows and columns, 542
GraphOn terminal window clearing, 112
gray scale contrast adjustment, 286
gray scale display adjustment, 286
gray scale image display, 311
gray scale image plot, 311
grid lines over 2D plot, 443
grid on a 2D display, 286
gripper abort, 46
Group A parameters, 160
group of parameters in tree, 543

H

H1.par file, 556
hardware Ethernet address display, 210
hardware shimming
list of shims, 298
hardware shims, 485, 534
hardware status of console, 310
hardware values in acquisition system, 544
hardware Z1 shimming, 298
HCCHTOCSY sequence, 297
height of peak, 244
HET2DJ pulse sequence, 299
HETCOR acquisition, 297
HETCOR experiment, changing parameters for, 299
HETCOR pulse sequence, 299, 446
HETCORCP1 pulse sequence, 299
HETCORPS pulse sequence, 299
heteronuclear 2D-J experiment, 299
heteronuclear chemical shift correlation, 299
heteronuclear J-resolved 2D spectra, 444
heteronuclear multiple-quantum coherence, 300, 301
heteronuclear Overbodenhausen experiment, 304
Hewlett-Packard plotter pens, 549
Hewlett-Packard plotters, 304, 665, 669
hiding a command, 300
hiding/showing
axes, 538
drawings in 3D, 537
filled polygon, 539
order of drawings, 538
high signal handling, 458
high-power pulse widths, calibrating, 81
Hilbert transform algorithm, 232
HMBC experiment, changing parameters for, 300
HMBC sequence, 446
HMQC experiment, changing parameters for, 300
HMQC phase-sensitive PFG pulse sequence, 276
HMQC pulse sequence, 275, 300, 446
HMQCR pulse sequence, 301

HMQC-TOCSY 3D pulse sequence, 301
HMQCTOCSY sequence, 301
HMQCTOXY experiment, changing parameters for, 301
HOHAHA experiment, 615
HOM2DJ pulse sequence, 302
HOMODEC experiment, changing parameters for, 302
Homodecoupler label, 118
homodecoupling control, 302, 303
homonuclear correlation, 124, 614
homonuclear decoupler present, 302
Homonuclear Hartmann-Hahn experiment, 615
homonuclear J-resolved 2D experiment, 302
homonuclear J-resolved 2D spectra, 445
homospoil, 304
pulse length, 306
pulses, 304
horizontal LC axis, 140, 418
horizontal offset, 302
horizontal projection of trace, 144
horizontally stacked spectra, 204
host computer
serial port connection to changer, 567
host computer connection to Ethernet, 539
host computer disconnect from Ethernet, 548
host disk errors, 47
hostname.le0 file, 539
hosts.3D file, 255
Hoult setting for final pulse times, 303
HSQC experiment, changing parameters for, 305
HSQC pulse sequence, 276, 304
HSQC-TOCSY 3D pulse sequence, 305
hypercomplex points to left-shift interferogram, 354

I

I1 and I2 values, 215
identifier, return for argument type, 624
idle mode for amplifiers, 67
IF Frequency label, 116
imag.c file, 291
image
annotate display, 311
center on the readout axis, 460
coordinate display information, 341
field of view size for readout, 353
position on 2D phase encode axis, 455
image planning
disabling, 388
saving as a milestone prescription, 523
starting/restarting, 583
ImageBrowser application, 100
ImageBrowser FDF files, 591
ImageBrowser program, 594
images
calculate 2D phasefiles, 312
display multiple images, 173
generate as ImageBrowser files, 591
save as ImageBrowser files, 591
imaginary part of FID, 155
imaging
application mode, 73
attenuator, 107
echo time, 606
intensity of excitation pulse, 617
macros and menus, 73
readout position, 375
imaging experiments
repetition time, 619
Imaging Gradient Coil label, 117
imaging gradients setup, 314
imconi macro, 313
inactive parameter, 395
INADEQUATE data about 2-quantum axis, 242
INADEQUATE pulse sequence, 315
Incredible Natural Abundance Double-Quantum Transfer Experiment, 315
incremented delay for pulse sequence, 138,139
index of experimental frequency of transition, 113
indirectly detected axis, 93
INEPT pulse sequence, 315
info directory, 534
info \# file, 429
inline DSP, 200
Input board spectral width, 368
Insensitive Nuclei Enhanced by Polarization Transfer, 315
inserting a sample, 309, 317
inset spectrum, 317
integer-type parameter, 127
integral
display, 192
display mode, 318
integral value, 316
largest value in region, 317
normalization scale, 316
offset, 319
regions, 304
reset points, 671
scale, 319
set value, 545
integral amplitudes display, 182
integral amplitudes plot, 437
integral scale adjustment, 319, 320
integrals
clear reset points, 132
data truncation limit, 131
display in normalized format, 167
display list, 165
find integral values, 385
reset point amplitudes, 334
reset point frequencies, 335
integration, 1D spectrum, 318
intensity of spectrum at a point, 365
intensity threshold, 585
interactive acquisition display, 41
interactive phasing, 192
interactive probe tuning, 623
interactive UNIX shell, 560
Interactive View button, 439
interferogram coefficients, 227, 228
interferograms
first-point multiplier, 245
start of display, 558
type of data processing, 462
weighting interactively, 663
width of display, 653
zero-order phasing constant, 434
interlock to control lock level and spin speed, 314
Internet address, 43, 44
inverse cosine calculation, 40
inverse Fourier transform, 247, 248
inverse sine, 76
inverse tangent, 78
inversion prepulse recovery time, 612
inversion pulse intensity, 618
inversion pulse length, 435
inversion pulse shape, 436
inversion recovery experiments, 612
inversion recovery mode, 319
invert image, 312
ISIS, 639
iterated parameters list, 320
iterations in an iterative simulation, 385

J

J-correlation experiment, 615
joining
an existing experiment, 321,322
joint arrays, 76
J-resolved 2D spectrum, 242
jump-and-return sequence, 323
JUMPRET sequence, 323

K

keyboard entries record, 491
keyboard focus to input window, 242
keyboard input into variables, 316
kinetics analysis, 70, 221, 326, 327, 427

L

label a stacked spectra display, 206
labeling an image display, 311
laboratory frame Overhauser experiment, 388
lastlk file, 330
latching capabilities of frequency synthesizer, 331
Latching label, 117, 331
LC axis, 140, 418
LC-NMR
2D acquisition parameters, 332
add series of FIDs, 48
create parameters, 415
create pseudo-2D dataset, 278
delay for trigger, 208
display horizontal LC axis, 140
display LC-NMR parameters, 161
general 2D experiment setup, 333
set up parameters for LC-NMR sequences, 333
set up pulse sequence for LC-NMR run, 332
set up scout run, 553
TOCSY sequence, 333
least-squares curve fitting, 69, 220
left half of screen display limits, 333
left-shift FID to time-domain cursor, 614
left-shift ni interferogram, 354
left-shift ni2 interferogram, 355
left-shift np FID, 354
leg relay control, 334
lfs (low-frequency suppression) option, 413
limits for scales in regression, 526
limits of parameter in a tree, 546
limNET nodes database, 176
line amplitudes list, 339
line assignments for spin simulation, 111, 165
line broadening, 331, 332
line broadening factor, 664
line drawing between points, 189
line drawing capability, 374, 426
line frequencies, 339, 565
line frequencies and intensities
display list, 166
find values, 386
line in a text file, 344
line list plotting, 447
line listing intensity and frequency, 269
line narrowing sequence, 377
linear amplifiers, 68,117
decoupler power level, 186, 187
power level, 617
linear curve fitting, 70
linear fitting to data, 221
linear modulator power, 188, 189, 619
linear monotonic order data, 602
linear prediction
algorithm, 346, 347
algorithm data extension, 350, 351
arraying parameters, 350
calculation start point, 586, 587
coefficients to calculate, 349
create parameters, 415
data extension, 348
data extension start point, 585, 586
multiple operations, 350
number of data points, 349, 350
output spectrum, 352,353
parameter creation, 50
print output, 351, 352
printout, 350
type of data processing, 461, 462, 463
linear scaling of image intensity, 311
linearly spaced array values, 75
line-narrowing multiple-pulse, 100
lines of text, look up from a text file, 344
lines, showing, 537
lineshape modification, 540
linewidth for spin simulation, 566
linewidth measurement, 191
load time counter, 666
loadPrescription(char*path) command, 340
local file transfer to remote host, 216
local host name display, 210
local oscillator (L.O.), 344
localized spectroscopy, 639
localized spectroscopy experiments
repetition time, 619
location of sample in tray, 341
location to start a line, 374
lock
acquisition time constant, 342
automatic control, 66
automatic phase adjustment, 341
capture, 66
digital lock display, 487
frequency, 547
gain value, 343
interactive, 41
lock frequency adjustment, 342
lock parameters setup, 546
loop time constant, 343
phase value, 343
power value, 343
read current lock level, 487
remove inactive lock, 626
solvent selection, 567
solvent used, 330
time constant, 343
lock file, 633
lock frequency
track changes, 335
Lock Frequency label, 116, 118, 342
lock level display, 43
lock level interlock, 314
log file, 223
log file for experiment, 223
logarithm of a number, 339
login macro, 98
loop size of fifo, 234
looping control for real-time arrays, 547
looping processes control, 531
Lorentzian lineshape, 237, 540
low signal handling, 458
low-band amplifier, 68
lowercase format of string, 243
low-pass digital filter, 414
low-pass Gaussian filter, 235
lpanalyz.out.\# file, 350, 351, 352

M

maclib directory, $98,127,150,218,360,491$
macros
activated by VNMR bootup, 98
automatic execution, 551
before experiment starts, 262
change action of abort command, 39
check for existence, 218
copy system macro to become user macro, 361
copy user macro file, 358
create without text editor, 126
delete user macro, 150
display dialog box, 162
display system macro, 360
display user macro in text window, 358
display which macro is used, 657
edit online description, 365
edit user macro with vi editor, 361
edit with macro editor, 359
hide command with same name, 299
keyboard entries, 491
list system macros, 361
list user macro file names, 359
load macro into memory, 360
name of invoking macro, 358
name storage for macros, 382
online description, 365
real-value storage parameters, 483
remove macro from memory, 472
remove system macro, 361
remove user macro from directory, 360
restore normal abort function, 39
return values to calling macro, 497
terminate calling macro, 39
terminate execution, 497
user's macro directory, 358
magic angle spinning, see MAS

Magnet Leg Driver Board Configuration ID, 458
magnet leg relay control, 334
magnetization recovery, 138
main magnetic field strength, 95
Make Shimmap button, 279
makeuser command, 628
manual directory, 365
map shims, 278
MARK button, 366, 367
Mark button, 439
mark output, 628
mark, removing/activating, 548
mark1d.out file, 77, 366, 572, 628
mark2d.out file, 99, 366, 439
MAS cross-polarization spin-lock contact time, 119
MAS spinning speed, 578
Max. Decoupler label, 118
Max. Narrowband Width label, 116, 181, 368
Max. Spectral Width label, 116
Maximum DMF label, 116
maximum frequency of any transition, 566
Maximum gradient DAC value, 285
maximum gradient strength for each axis, 291
maximum limits on a parameter, 546
maximum of two spectra, 575
maximum parameter value array, 416
maximum transients accumulated, 379
mean of the data in regression.inp file, 454
measured line frequencies, 565
measured line frequencies array, 572
memory buffers, write to disk, 241
memory increased by removing macros, 472
memory map FID file, close, 371
memory map open FID file, 372
memory usage statistics, 378
Menu On button, 369
menulib directory, 235, 369
menus
button command string, 378
change status of menu system, 369
edit menu with vi editor, 369
label for button, 374
menu displayed by Return button, 331
path to user's menu directory, 369
return currently active menu, 383
select menu without activation, 382
MERCURY
broadband channel tuning, 101
console type, 119
probe tuning mode, 624
MERCURY series
broadband channel tuning, 101
MERCURY-VX
probe tuning mode, 624
message
confirm using mouse, 119
display with large characters, 96
messages from send $2 \mathrm{Vnmr}, 335$
method string, 584
microimaging
center sequence calibration, 535
ECC tool window, 210
eddy current compensation analysis, 211
eddy current compensation data, 210
field of view for phase encode, 347
generate transverse magnetization, 676
gradient amplifier installation tests, 606
gradient calibration constant, 540
intensity of an inversion pulse, 618
inversion pulse shape, 436
move data into reference table, 210
orientation of slice plane, 397
phase encoding, 283
phase encoding gradient increment, 282
refocusing pulse shape, 474
shape of excitation pulse, 406
shaped gradient tests, 289
update eddy current settings, 211

milestone

parameters, get overlay from, 269
prescription, saving current planning as a, 523
minimum frequency of any transition, 566
minimum intensity threshold, 585
minimum limits on a parameter, 546
minimum of two spectra, 575
minimum parameter value array, 416
MLEV-16 decoupling sequence, $169,170,174$
mode for n-dimensional data display, 619
modulation frequency of decoupler, 169, 170
modulation mode for decoupler, $173,174,175$
mopos parameter, 620
mouse
confirming a message, 119
mouse position, reporting, 277
moving
files, 378, 495
parameters between experiments, 376
spectral window according to cursors, 376
transmitter offset, 376
MQCOSY pulse sequence, 377
MREV8 pulse sequence, 132, 377
multidimensional data display mode, 619
multiecho sequences, 382
multihost processing, 256, 257
multiple image display, 173
multiple receivers
add transformed data files with weighting, 507
combine data, 52
number currently active, 382
number of receivers, 392
set filter bandwidth, 377
set gain, 377
weighting for different receivers, 484
which receivers to use, 484
multiple-pulse line narrowing, 100, 377
multiple-quantum filtered COSY, 377, 615
multipulse experiments
f_{1} scaling factor, 527
scaling factor, 526
multislice experiments, 591
spin-echo imaging sequence, 531

N

name of pulse sequence, 532
name storage for macros, 382
natural logarithm of number, 339
negative intensities, setting 2D, 676
ni interferogram
number of complex point to left shift, 354
type of data processing, 462
ni2 interferogram
type of data processing, 462
zero-order phasing constant, 434
NMR resonance offset frequency, 497
node files, 215, 216
nodes file, 215, 217
NOE difference experiment, 388
NOE experiment, 132
NOESY
parameter set, 281
plotting spectra, 442
pulse sequence, 388
NOESY experiment, changing parameters for, 388
NOESY1D experiment, changing parameters for, 389
noise level estimate, 271
noise level in spectrum, 390
noise level of FID, 389
noise modulation, 174
noise multiplier, 389
normalized integral amplitudes, 183
normalized integral amplitudes plot, 437
normalized integrals display list, 167
normalized intensity mode, 387
nt array, 430
N-type display, 392
nucleus for decoupler, 175, 176
nucleus for observe transmitter, 614
nucleus selection, 556
nucleus to add to probe file, 49
nuctables directory, 175
number of increments of evolution time, 384, 385
Number of RF Channels label, 116, 393
Nyquist frequency, 310

0

object library for PSG, 467
oblique imaging capability, 531
observe nucleus transmitter frequency, 558
offset
horizontal, 302
integral, 319
vertical, 639
offset frequency
calculate for nucleus and ppm, 549
online description of command or macro, 365
edit description, 365
open reel tape, 604
oph real-time variable, 124
order of parameter array, 75
orientation of slice plane, 397
out.c file, 122
overhead delay between FIDs, 137
overlay
getting a coronal, 267
getting an active, 267
getting based on scout image, 267
getting from saved parameters, 269
getting sagittal, 271
getting transverse, 272
redrawing, refreshing an, 492
redrawing/refreshing an, 492
showing as center lines/stripes, 163
showing as stripes, 165
overrange of frequency synthesizer, 398
oversampling
bandwidth, 397
factor for acquisition, 399
filter type, 398
number of coefficients, 397
parameter creation, 50, 416
setting parameters, 375
Oxford shim supply, 560
Oxford VT controller, 367
Oxford-Sorenson VT controller, 367

P

page change on plotter, 410
par directory, 556
parameter array, 534
parameter directory
delete, 150
parameter list
parameter names and values, 410
plotting, 455
power level parameters, 475
pulse length parameters, 447
pulse template parameters, 418
parameter screens display menu, 161
parameter set, converting to APT experiment, 73
parameter sets
correct saved parameter sets, 627
file name of retrieved set, 234
update all sets in directory, 627
parameter tree
copy parameters of group, 288
create new parameter, 127
destroy parameters of a group, 153
display parameters with attributes, 164
limits of parameter, 546
load parameters from file into a tree, 246
make parameter active, 396
make parameter inactive, 395
prune extra parameters, 466
remove a parameter, 153
set Dgroup of a parameter, 538
set group of parameter, 543
set values of string parameter, 538
systemglobal-type tree, 115
types of trees, 127
value of parameter, 556
write parameters to file, 246
parameter values, setting, 557
parameters
3rd rf/3D parameter group, 159
4th rf channel parameter display group, 159
acquisition/processing group, 158
add for FID display, 234
add parameter to probe file, 51
add to current experiment, 49
adjust values from setup macros, 239
adjusting, 322
adjusting plot, 322
arrayed for acquisition, 139
arraying order and precedence, 75
automation parameter group, 161
basic experiment setup, 555
boxed for plotting, 100
center sequence calibration, 535
change type, 555
check existence, 218
chemist-style, 100
convert to PGE, 428
copy between trees, 288
correct limits and step sizes, 414
correct parameter characteristics, 238
create 2D parameters, 411
create 3D parameters, 411
create 4D acquisition parameters, 412
create for fourth channel, 238, 239
create for linear prediction, 415
create for third rf channel, 238
create LC-NMR parameters, 415
create new parameter in tree, 127
create oversampling parameters, 416
create parameters for 2D peak picking, 415
create solvent subtractions parameters, 413
customize parameter sets, 629
destroy a parameter, 153
destroy parameters of a group, 153
display control, 71
display from tree with attributes, 164
display parameters group, 159
display templates for third rf channel, 412
display values in text window, 211
displaying value, 479
downsampling, 413
edit parameter and its attributes, 412
full recall of display parameters, 245
full spectrum display, 226
get value, 273
gradient shimming, 278
limits of parameter in tree, 546
linearly spaced steps, 75
list to be iterated, 320
lock parameters setup, 546
make parameter active, 396
maximum values, 416
minimum values, 416
move between experiments, 376
move display parameters between experiments, 368
move parameters to target experiment, 619
plot list automatically, 71
plot on special chart paper, 304
prepare for acqi, 273
print all, 70
protection mode, 550
prune parameters from tree, 466
pseudo-echo weighting, 467
pss0, 469
radialAngles, 484
read from file and load into tree, 246
recall display parameter set, 483
reset after partial 3D FT, 496
resolution enhancement, 496
restoring current experiment, 322
retrieve from experiment subfile, 513
retrieve from file, 512
retrieve individual parameters from file, 513
retrieve parameter from probe file, 269
save display parameters as set, 521
save from experiment, 591
save from tree to file, 246
save parameters from global tree, 523
set group of parameter in tree, 543
set up for pulse sequences, 467
set up standard two-pulse sequence, 522
set voxel parameters, 640
shaped gradients testing, 289
shims parameter group, 161
sine window function, 563
sinebell weighting, 564
sine-squared window function parameter values, 564
spin simulation parameter arrays, 165
spin simulation parameter group, 160
spin system parameters to iterate, 315
step size values, 417
system configuration, 114
test state of parameter, 396
turn off active parameter, 395
types of values, 127
unit conversion, 625
update after new VNMR install, 628
value of parameter in tree, 556
VAST experiment parameter setup, 631
version of parameter set, 417
parlib file, 467
paths
2D planes from a 3D data set, 417
current working directory, 473
user's macro directory, 358
user's menu directory, 369
user's shim settings directory, 562
VNMR system directory, 597
VNMR user directory, 629
Pbox
add parameter definition to pbox.inp file, 422
assign Pbox calibration data, 476
convert to Pbox default units, 423
converts to default units, 423
create Pbox shape file, 125
create shape definition, 478
define excitation band, 420, 530
define excitation band for solvent suppression, 420
display interactive modulation pattern, 197
display interactive pulse shape, 197
display last generated pulse shape, 197
display modulation pattern, 196
display pulse shape, 196
extract dmf value, 420
extract dres value, 420
extract fine power level, 421, 422
extract name of last shape, 421
extract power level, 421
extract pulse length, 421
generate a single-band shapefile, 477
open shape definition file, 396
plot modulation pattern, 468
plot pulse excitation profile, 457
plot pulse shape, 468
plot the last created pulse shape, 468
print pulse header, 456
reset temporary pbox/Vnmr variables, 423
simulate Bloch profile for a shaped pulse, 477
write a wave into file, 472
write wave definition string, 557
pbox
write wave definition string, 557, 559
pbox shape file, 125
pcss.outpar storage file, 178, 425
peak frequencies display, 182
peak frequencies plot, 455
peak frequencies threshold, 610
peak height or phase measurement, 244
peak heights comparison, 53
peak noise, 271
peak number, 333
peak picking, 336
diagonal peak threshold, 666
parameters creation, 415
plot results, 447
peak printout threshold, 611
peak search range of data points, 391
peak truncation in spectra plot, 437
peak width of solvent resonances, 567
peak, selecting, 589
peaks.bin file, 338
peak-to-peak noise, 390
pens
maximum number to use, 368
on HP plotter, 549
selection for drawing, 426
Performa I, II, III, 117
Performa modules, 285
PFG
absolute-value MQF COSY pulse sequence, 281
absolute-value ROESY pulse sequence, 290
amplifiers on/off control, 428
eddy current testing, 286
gradient calibration constant, 540
HMQC phase-sensitive pulse sequence, 276
HMQC pulse sequence, 275
HSQC pulse sequence, 276
NOESY parameter set, 281
selective excitation pulse sequence, 531
sequence for PFG testing, 406
TNNOESY pulse sequence, 290
pge file, 429
PGE pulse sequence
calibrate gradient strengths, 429, 430
extract data, 429
parameter conversion, 428
plot results, 429
print results, 429
processing of data, 429
phantom for gradient calibration, 540
phase angle display mode, 172, 407
phase correction applied to interferogram, 140
phase cycling type, 432, 433
phase encode
gradient levels, 541
image center position, 455
pulse length, 616
phase encode dephasing gradient, EPI sequence, 283
phase encode gradient increment multiplier, 284
phase encoding, 283
phase encoding gradient increment, 282
phase encoding gradient pulse length, 616
phase file
display in experiment, 147
phase of first pulse, 433
phase of peaks, 244, 432
phase parameters
automatic calculation of, 71
phase-correction angles, 345, 509, 510
phased data display mode, 172
phased spectra display mode, 408, 430, 431
phase-encode axis, 347, 348
phasefiles, 312, 313, 314, 592
calculate 2D phasefiles, 312
copy stored phasefile, 512
transform and save images, 364
phase-sensitive 2D transformation, 346
phase-sensitive COSY pulse sequence, 124
phase-sensitive data, $249,253,655,656$
phasing
automatic, 71
control update region, 433
phosphorus
acquisition, 406
processing, 407
spectrum plotting, 451
$\mathrm{pi} / 3$ shifted sinebell squared window function, 435
pi/4 shifted sinebell squared window function, 436
pixel size calculation, 495
pl2dj macro, 448
planes
extract from 3D spectral data, 270
planes directory, 313, 512, 592
planlock parameter, 439, 581
planner lock, 440
planning a target scan, 439
Plot Design, joining, 321, 322
plot parameters
adjusting, 322
plot queue
show jobs in queue, 562
stop jobs and remove from queue, 325
plots, 429
plotter
characteristics, 550
device setup, 449
display mode, 451
Hewlett-Packard, 665
maximum number of pens, 368,549
maximum width of plotting area, 650
plot contours, 424
reinitializing, 325
resolution of points drawn, 457
show plot queue, 562
stopping plot jobs, 325
submit plot and change plotter page, 410
write formatted text to plotter, 659
plotter units
converted from Hz or $\mathrm{ppm}, 306$
Plotters color, 535
plotting
2D contour plots for 3D planes, 450
2D displayed resolution, 76
2D peak picking results, 447
2D spectra in whitewash mode, 438
adjust plot parameters, 237
arrayed 1D spectra, 441
ATP-type spectra, 440
axis label units, 92
boxed parameters, 100
carbon spectrum, 441
color assignments, 113, 549
contour plot with colors, 424
contours display, 181, 182
COSY data set automatically, 408

COSY spectra, 442
deconvolution analysis, 443
DEPT analysis, 409
DEPT data, 442
display same as plot, 664
draw box, 98
exponential curves, 427
FIDs, 443
FIDs in whitewash mode, 428
files, 638
formatted text, 658
grid on 2D plot, 443
heteronuclear J-resolved 2D spectra, 444
homonuclear J-resolved 2D spectra, 445
horizontal LC axis, 418
limit to center of page, 109
line list, 447
NOESY spectra, 442
non-arrayed 1D spectra, 448
noninteractive gray scale image, 311
parameter list, 410, 455
parameter list on special paper, 304
parameters automatically, 71
peak frequencies over spectrum, 455
PGE calculated results, 429
phosphorus spectrum, 450
plot a title, 613
plotter characteristics, 550
polynomial curves, 427
proton spectrum, 444
pulse sequence, 457
scale below spectrum or FID, 466
set full page plot with room for traces, 258
set limits for full page plot, 258
spectra, 437
spectra automatically, 448
spectra in whitewash mode, 452
spectral expansion, 52
start of plotting position, 526
start of plotting position in second direction, 526
text file, 451
X,H-correlation 2D spectrum, 446
plotting area, see chart
plotting scaling factor, 306
point-by-point, 575
pointer position, locating, 277
polarization transfer experiments, 152
polygon, showing/hiding filled, 539
polynomial curve, 220
polynomial curves display, 222
polynomial curves plot, 427
polynomial fitting of baseline, 96
Postscript printer, 665
post-trigger delay, 302
powder pattern
finding the center, 575
power data display mode, 172
power level calibration, 617
power level for decoupler with deuterium decoupler, 187
power level for decoupler with linear amplifier, 186, 187
power level of transmitter, 617
power spectra display mode, 474,475
power, setting, 550
powers of 2 vertical scale adjustment, 642
ppm calculations, 492
ppm of solvent resonances, 567
preacquisition delay, 409
preamplifier signal level selection, 458
precedence of parameter array, 75
PRESAT sequence, 458
pre-trigger delay, 484
print queue
show jobs in queue, 563
stop print jobs and remove from queue, 326
printcap entry, 638
printer
device setup, 459
linewidth resolution, 457
maximum width of chart, 650
resolution in dots $/ \mathrm{mm}, 457$
send text to printer, 459
start print operation, 459
stopping print jobs, 326
type, 638
write formatted text on printer, 660
printing
color assignments, 113, 549
parameters, 70
PGE calculated results, 429
probe file after autocalibration, 40
starting, 459
text file, 469
text files, 638
printing area, see chart
probe
phase glitch removal, 240
tuning, 479, 623
tuning frequencies, 623
tuning mode on MERCURY, 624
type, 460
probe directory, create new, 51
probe file, 40,49 , 549
add parameter, 51
retrieve parameter, 269
set decoupler parameter values, 536
update, 627
probe file, copying, 85
probe file, create new, 51
probe file, make copy, 85
probe gcal calibration macros, 82
probe protection control, 461
probe, copying, 85
probe, editing, 460, 461
procdat file, 533, 534
processed-type parameter tree, 127
processing
1D carbon spectra, 105
2D spectra, 463
3D data processing information, 533
arrayed 1D spectra, 463, 583
create 2D parameters, 411
create 3D processing parameters, 411
DEPT spectra array, 153
FIDs automatically, 464
fluorine 1D, 227
generic automatic, 464
interleave FIDs, 310
phosphorus 1D spectra, 407
proton 1D, 295
select 1D experiment for processing, 266
selected 2D experiment, 266
simple 1D spectra, 462
solvent subtraction events, 414
processing mode for 2D data, 453
processing on FID, 461
processing on the interferogram, 462
processing parameters group, 158
procpar file, $114,127,627$
procpar3d file, 534
procpar3d parameter set, 384, 533
programmable pulse modulation, 174
project 2 D data onto axis, 465
projection plane, 185
protection mode of parameter, 550
proton
acquisition, 296, 297
automatic acquisition, 294
pulse power level, 456
spectra processing, 295
spectra vertical scale adjustment, 643
spectrum plotting, 444, 451
proton acquisition, 296, 298
proton chemical shifts spectrum
calculating, 178
calculating and showing, 425
reducing to a list, 178
proton decoupler
pulse calibration, 455
proton decoupler calibrations, 83
proton frequency configuration, 295
Proton Frequency label, 116, 117, 295
proton gradient ratio calibration macros, 81
proton observe calibration macros, 83
proton parameter set, getting, 80, 81
pseudo-2D, 632
pseudo-2D dataset, 278
pseudo-echo weighting, 467
psg directory, 532
PSG errors, 467
PSG message, 38
PSG object library compilation, 467
psg.error file, 467
psglib directory, 532
pss0 parameter, 469
PTS frequency synthesizer, 117, 470
P-type diagonal, 242
P-type double-quantum axis, 242
pulse amplifier
mode, 67
phase glitch removal, 240
pulse breakthrough effects, 508
pulse calibration data file
update and display, 470
pulse interval time, 476
pulse length of decoupler, 454
pulse power for shaped pulse, 471
pulse power level, 456
parameter list, 475
pulse sequence
compiling, 532
display diagram, 185
initiate compilation, 532
label for screen, 469
name to be used, 532
phase-sensitive COSY, 124
plotting a picture of a sequence, 457
set up parameters, 467 setup macro, 282
Pulse Sequence Controller board, 509
pulse sequence generation, see PSG
pulse sequences
display templates, 555
pulse template parameter list, 418
pulse width in degrees, 405, 473
pulse width length, 473
pulse width of first pulse, 405
pulse width optimum value, 216
pulsecal file, 470, 539
pulsed field gradient strength, 292
Pulsed Field Gradients label, 118
pulse-type parameter, 127
pulsewidth, setting, 550
pure absorptive display, 253
pwwet pulse width, 652
pwx1 parameter, 476

Q

quadratic fitting to data, 70, 221
quadrature detection
frequency shifted, 247
quadrupole echo pulse sequence, 579
question mark (?) notation, 479

R

radial slice fan angle parameter, 484
radialAngles parameter, 484
ratio parameter, 508
readout compensation gradient, 288
readout field of view, 353
readout gradient compensation, fine tuning, 288
readout gradient setting, 542
readout gradient strength, 287
readout image center position, 460
readout position, 375
real Fourier transform, 461, 462
real number formatted into string, 243
real number, returning square root of a, 578
real numbers, truncating, 622
real scan repetition, 391
real variable
create real variable without value, 489
format as string, 243
real-time digital filter, 398
real-time DSP (digital filtering), 200
real-type parameter, 127
real-value storage for macros, 483
receiver
channel imbalance, 125
gain, 262, 623
gating time, 130, 508
overflow warning, 45
receiver option, $200-\mathrm{kHz}, 181$
recording current window activity, 323
recording keyboard entries, 491
REDOR1 pulse sequence, 491
redrawing an overlay, 492
redrawing overlays, 492
reference deconvolution, 231
reference frequency
position, 493
reference line
clear referencing, 129
frequency, 502, 503
position, 502
reference frequency, 492
set line, 505, 506
reference peak, see reference line
reference spectrum to TMS, 614
refocus pulse width, 406
refocusing gradient for slice selection, 290
refocusing pulse shape, 474
refresh command, 492
refreshing an overlay, 492
refreshing overlays, 492
regions
divide spectrum into regions, 494
find tallest peak, 425
frequency limits of specified region, 271
in spectrum, 392
plot expansions, 52
selection, 304
region-selective 3D processing, 469
regression analysis data input, 505
regression mode, 69
regression mode curve fitting, 220
regression scale limits, 526
regression.inp file, 222, 454, 505
RELAY-COSY pulse sequence, 495
RELAYH pulse sequence, 495
release procedure, 378
remote file transfer to local host, 215
remote machine name, 43, 44
removeAstack(int index) command, 495
removing
a stack, 495
all stacks, 112
dc offsets, 146
directories, 507
files, 507
selected slice, 151
selected stack/slice, 150
user macro, 360
removing/activating a mark, 548
renaming a command, 300
renaming files, 378 , 495
reset points for integrals, 132
resetting acquisition computer, 39
resolution enhancement function, 331, 332
resolution enhancement parameters, 496
resolution equalization, 76
resolution on printers and plotters, 457
resonance offset frequency, 497
restarting/starting image planning, 583
restoreStack() command, 497
restoring
a stack, 497
restoring a stack, 497
retrieving
active overlays, 267
default field-of-view, 267
FIDs, 511
gap mode, 269
parameters, 512
slice thickness, 267
slices, 267
Return button selection of menu, 331
reverse INEPT, 304
rf band in use, 498
rf channel selection, 499
rf channel type, 500
rf channels available, 393
rf channels frequencies, 539, 570
rf generation type, 504
rf power for desired flip angle, 539
rf pulse calibration identity, 501
rf pulse shape analysis, 471
rf pulses setup, 314
rf waveform generator, 505
ridges in FID display, 244
right half of screen display limits, 505
right phase parameter, 509
right phase-correction angles, 509
ROESY experiment, changing parameters for, 508
ROESY parameter set, 290
ROESY pulse sequence, 508
root-mean-square noise, 271, 390
rotating 2D data, 508
rotating frame NOE experiment, 615
rotating frame Overhauser experiment, 508
rotational echo double-resonance, 491
rotor speed display, 305
rotor synchronization, 305
configuration parameter, 509
spinning rate, 579
Rotor Synchronization label, 116, 306, 509
RS-232 cable, 45
running FDM program, 230

S

s2pul3rf parameter set, 412
sample
change for acquisition, 111
ejection from probe, 210, 212
insert in probe, 309, 317
location of samples in tray, 341
spin rate, 571
submit change sample experiment to
acquisition, 522
temperature, 409, 607
sample changer
automation data file prefix, 87
automation mode active, 84, 85
automation run preparation, 83
change sample experiment, 111
comm port, 116
controlling, 84
controlling macro for automation, 84
errors, 46
last lock solvent used, 330
resume suspended automation run, 88
serial port, 118
serial port connection, 567
starting automation run, 85
status window, 583
suspend automation run, 89
tray size, 620
Sample Changer label, 116, 118, 620
Sample Changer Serial Port label, 567
sample information for automation run, 213

Sample Management System serial port connection, 567
sample tray size, 116, 118
sampleinfo file, 84,87
saving
current planning as milestone, 523
current planning to a file, 524
data, 589
digitally filtered FIDs, 163
display parameters, 521
experiment data to subfile, 594
FID data in FDF format, 590
FIDs in current experiment, 590
files using a base name, 523
images as FDF files, 593
images as ImageBrowser files, 591
images as phasefiles, 364
parameters from current experiment, 591
parameters to file, 246
phasefile in current experiment, 592
shim coil settings, 592
text file into another file, 472
scale below spectrum or FID, 194, 466
scale limits in regression, 526
scale spectral width, 526,527
scaling constant, 379
scaling factor for multipulse experiments, 526
scaling factor for plots, 306
scaling factors, 92
scan in progress, 131
scout experiment, 620
scout run, 553
scout scan repetitions, 391
scpos parameter, 620
screen coordinates, translating, 621
screen display set for center, 109
screen distance, translating, 621
SCSI errors, 47
second decoupler
acquisition parameters, 159
adjust tip-angle resolution time, 171
decoupler mode, 168
decoupling sequence, 195
fine power attenuator, 188
frequency, 155
frequency offset array, 528
frequency offset control, 177
homodecoupling control, 303
linear modulator power, 189
modulation frequency, 169
modulation mode, 174
nucleus lookup, 175
power level with linear amplifier, 186
pulse sequence diagram, 185
set frequency to cursor position, 528
tip-angle resolution, 191
second delay, 138
seeing
drawings in 3D, 537
overlay as center lines/stripes, 163
overlay as stripes, 165
stripes/lines, 537
selected widths, setting, 554
selective excitation experiment, continuing, 589
selective excitation pulse sequence, 531
selective frequencies, setting, 554
selective inversion, setting up, 555
send command to VNMR, 531
Seq label on screen, 469, 532
seqfil file, 185
seqgenmake file, 532
seqlib directory, 224, 532
serial port connection, 567
serial port for sample changer, 118
Set colors for Graphics Window, 535
set colors for Plotter, 535
Set Default button, 149
Set Params button, 566
setting
default number of slices, 536
default slice thickness, 537
default type, 537
field-of-view to default size, 536
parameter values, 557
setup experiment, 587
setup macros, 239
sf wf button, 558, 653
shape of an excitation pulse, 406
shape of refocusing pulse, 474
shaped gradients tests, 289
shaped observe excitation sequence, 559
shaped pulse analysis, 471
shaped pulse calibration, 95, 471
shapeinfo file, 95, 471
shapelib directory, 95, 195, 196, 471, 476
shared amplifier type, 68
shell on UNIX, 559, 560
shift of stack center, 469
Shifted Laminar Pulses (SLP), 332, 566
shifted sinebell squared window function, 435, 436
shim coil settings, 488
retrieve from file, 512
save to file, 592
shim gradient, $665,666,667,669,670,672,673$, 674, 675, 676, 677
shim method string creation, 383
shim method string display, 197
shim parameters group, 161
shim set type, 560
shim settings directory, 562
shim supply, 560
shim values comparison, 163
shim values used, 340
shimmap calculations, 292
shimmethods directory, 197, 370
shimming
automatic shimming conditions, 661
Autoshim method, 370
errors, 46
interactive, 41
Z1 hardware, 298
shims
list of, for hardware shimming, 298
read all shims, 485
set all shims, 534
shims directory, 513, 562, 592
Shimset label, 116, 560
Show Target button, 190, 439
showing
overlay as center lines/stripes, 163
overlay as stripes, 165
stripes/lines, 537
showing/hiding
axes, 538
filled polygon, 539
intersection, 537
order of drawings, 538
sidechain assignments, 297
signal-to-noise ratio, 567, 608
estimate, 271
improvement, 236
maximum, 199
measurement, 198
sine value of angle, 563
sine window function values, 563
sinebell constant, 524
sinebell shift, 664
sinebell shift constant, 525
sinebell squared window function, 435, 436
sinebell time period, 664
sinebell weighting parameters selection, 564
sinebell-squared window function, 578
sine-squared window function, 564
single-voxel spectroscopy experiments, 639
SIS (12 bit) gradients, 117
SISCO Imager console type, 119
skyline projection, 465
Slice button, 439
slice gap, fixing/unfixing, 540
slice gradient levels, 543
slice parameters, 581
slice parameters set for target slice, 565
slice plane orientation, 397
slice position, 469
slice selection fractional refocusing, 289
slice selection gradient level, 290
slice selection gradient strength, 289
slice selection refocusing gradient, 290
slice thickness, 612
getting, 267
setting default, 537
slices
alternating, 67
deleting selected, 150,151
getting, 267
setting default number of, 536
slices to be acquired, 391
slice-selective excitation pulse, 676
software preparation date, 498
software revision level, 497
solids
adjust tau 2 to current cursor position, 622
cross polarization spin-lock experiments, 70
cross-polarization spin-lock analysis, 221
echo pulse sequence, 579
f_{1} spectral width scaling factor, 527
first pulse phase, 433
MREV8 multiple-pulse experiment, 377
multiple-pulse line narrowing, 132
rotor speed display, 305
rotor synchronization module, 509
scaling factor for multipulse experiments, 526
solid-state echo pulse sequence, 579
solid-state HETCOR sequence, 299
spinning speed for MAS, 578
VT controller in use, 367
solvent resonances ppm and peak width, 567
solvent selection, 556
solvent subtraction
create parameters, 413
filter bandwidth for filtered FID, 580
order of polynomial to fit digital filtered FID, 581
parameter creation, 50
solvent suppression, 251
solvent table information, 568
solvents file, $556,567,568$
solvent-suppressed region, 580
sparse FID data points, 180
spatial resolution calculation, 495
spectra
3D dc correction, 570
absolute value display mode, 90
add spectrum to add/subtract experiment, 569
APT plotting, 440
automatic 1D integrate, 318
automatic phase, 71
automatic phase adjustment, 71
center cursor, 109
data truncation limit, 131
deconvolution, 237
delete spectra from $T_{1 \text { or } T 2 \text { analysis, }, 151}$
display calculated spectrum, 199
display scale, 194
display single spectrum, 192
divide spectrum into regions, 494
drift correction calculation, 142
drift correction parameters, 107
extract planes from 3D spectral data, 270
find gap in spectrum, 263
find peak heights or phases, 244
find tallest peak in region, 425
fold COSY-like correlation spectra, 242
fold J-resolved 2D spectrum, 242
frequency shift of spectrum, 355,356
frequency-independent phase, 432
full display, 226
horizontal offset of each spectrum, 302
inset spectrum display, 317
integral amplitudes display, 182
integral amplitudes plot, 437
integral regions, 304
intensity of a spectrum at a point, 365
interactive display, 41
move cursor to center, 109
move spectral window according to cursors, 376
noise limit, 390
normalized integral amplitudes display, 183
normalized integral amplitudes plot, 437
normalized intensity mode, 387
number of regions, 392
offset of integral, 319
peak frequencies display, 182
peak height comparison, 53
peak search range of data points, 391
phase adjustment, 71
phase angle display mode, 408
phased display mode, 407, 430, 431
phosphorus processing, 407
phosphorus spectrum plot, 450
plot a scale under a spectrum, 466
plot arrayed 1D, 441
plot COSY automatically, 442
plot NOESY automatically, 442
plot one or more spectra, 437
plot peak frequencies, 455
plot spectra in whitewash mode, 452
power spectra display mode, 474,475
processing simple 1D, 462
proton spectrum plotting, 444
reduce spectral width to minimum, 374
reference line frequency, 502
reference line position, 502
reference to TMS, 614
rotate 2D spectrum, 508
select spectrum without displaying, 529
signal-to-noise estimate, 271
signal-to-noise test, 608
solvent-suppressed region, 580
spectral integral display and plot, 318
stacked spectra display, 202, 203, 204, 206
subtract spectrum from add/subtract experiment, 576
threshold for integrating 2D peaks, 611
total width to be acquired, 594
update region during phasing, 433
vertical offset in stacked display, 639
vertical position, 640
vertical scale, 641
whitewash mode display, 207
spectra in 2D data set, rearrange, 605
spectra in a 2D data set, rearrange, 605
spectra, taking maximum of two, 575
spectral expansion automatic plot, 52
spectral subtraction, 576
spectral width, 594, 595, 596
Input board, 368
percentage for gradient shimming, 292
reduce to minimum, 374
set for given spectral window, 553
set in 2nd evolution dimension, 554
set in evolution dimension, 554
spectrometer proton frequency, 295
spectrometer system configuration, 596
spectrum, plotting on side, 449
spectrum, plotting on top, 449
spectrum, plotting on top and side, 450
spin automation hardware, 573
spin rate of sample, 571
spin setup experiment, 571
spin simulation
clear line assignments, 111
deconvolution start point, 628
display group of parameters, 160
index of experimental frequency, 113
intensity threshold, 585
linewidth, 566
maximum frequency of any transition, 566
measured line frequencies, 565
measured line frequencies array, 572
minimum frequency of any transition, 566
number of iterations, 385
parameter arrays, 165
parameters to be iterated, 320
perform spin simulation, 574
set parameters to iterate, 315
spin system entry, 576
transition amplitude, 111
transition frequency, 113
transition number, 111
using deconvolution as input, 237
vertical scale, 593
spin speed interlock, 314
spin system
enter values for spin simulation, 576
restoring to before last run, 625
spin-echo diffusion imaging sequence, 529
spini.inpar file, 625
spini.la file, 165
spini.savela file, 625
spin-lock contact time, 119
Spinner Control window, 573
spinner errors, 45
spinner speed display, 43
spinning speed for MAS, 578
spins.list file, 574
spins.outdata file, 199
Spinsight data, 511
spinsys directory, 315
spline fitting of baseline, 96
split difference between two cursors, 575
spoiler gradient level, 289
spoiling time for gradient, 622
square root image, 312
square root, returning, 578
square wave mode decoupling, 169, 174
SSECHO pulse sequence, 579
SSECHO1 pulse sequence, 579
stack
removing a, 495
restoring a, 497
stack center shift, 469
along z axis, 469
stacked display width, 649
stacked FIDs, 156, 157, 158
stacked plot of 2D spectra, 193, 438
stacked spectra display, 202, 203, 204, 206
stacked spectra horizontal offset, 302
stacking control, 583
stacking mode, 582
stacks
adding a, 48
deleting all, 112
deleting selected, 150
removing, 495
restoring, 497
standard 2-pulse sequence, 405, 522
standard application mode, 73
standard deviation of input, 91
standard flip angle list, 240
start of FID display, 558
start of interferogram, 558
start of plot, 569
starting
image planning, 267
image planning with previous stacks, 271
interactive image planning, 267, 269, 271, 272
VNMR directly, 636
VNMR from UNIX, 636
starting Plot Designer, 321
starting/restarting interactive image planning, 583
startup macro, 101
static binding, 533
static magnet field value, 95
stdpar directory, 556
steady state pulses, 579
STEAM, 639
Step Size label, 117, 616
step size parameter value array, 417
stimulated echo technique, 584
stopping acquisition, 522
stored data, style, 120
stored queue, 85
streaming tape, 604
strength of pulsed field gradient, 292
string
format for output, 243
length in characters, 334
select substring, 588
text window display, 211
string parameter values, 538
string variable creation, 585
string-type parameter, 127
stripes, showing, 537
subfile, 125
substring selected from a string, 588
subtracting zero-frequency components, 413
sum of input, 91
sum of squares of input, 91
sum/difference spectrum, 49
summing projection, 465
sum-to-memory error, 47
Sun display, clear window, 112
swept-tune graphical tool, 479
switchable probe caution, 161, 186, 187
synchronous decoupler mode, 168
Synthesizer label, 117, 470
synthesizer value, 470
syshelppath global parameter, 72
sysmaclibpath global parameter, 72
sysmaclibpath parameter, 218
sysmenulipath global parameter, 72
system configuration parameters, 114
system console type, 119
system macros
copy system macro to become user macro, 361
display in text window, 360
edit online description, 365
list system macro names, 361
online description, 365
remove system macro, 361
system type configuration, 596
System Type label, 115, 117, 119, 504, 596
systemglobal directory, 127
systemglobal parameter tree, 115
systemglobal-type parameter tree, 127

T

T_{1} analysis, 221
delete spectra, 151
plot curves, 427
set up parameters, 180
T_{1} analysis, 70
T_{1} analysis, 600
t_{1} dimension, 354
T_{2} analysis, 221
delete spectra, 151
plot curves, 427
T_{2} analysis, 70
T_{2} analysis, 601
t_{2} dimension in, 355
table conversion file, 605, 606 read, sort, store, 606
table conversion reformatting, 605
table convert file read, sort, and store, 606
tablib directory, 602
tangent value of angle, 603
tapes
device selection, 604
display contents, 603
rewind tape, 604
taps in digital filter, 580
target experiment
move parameters, 619
target scan planning, 439
target slice parameters, 581
target slices, 190
set slice parameters, 565
target voxels, 190
tau2 adjustment, 622
Tcl script, 606
tcrush parameter, 265
tdelta parameter, 266
tdiff parameter, 266
temperature calculation curve, 607
Temperature Control window, 607
temperature display, 43
temperature interlock, 613
temperature of sample, 607
temperature regulation, 644
terminating
abort function in macro, 39
calling macro, 39
testing signal-to-noise of spectrum, 608
text file
display for current experiment, 609
edit file, 610
edit with vi text editor, 634
editor, 212, 634
graphics window display, 208
plotting, 451
print text files, 469, 638
put into another file, 472
search for words and lines, 344
write file using a FID element, 660
text output sent to printer, 459
text window
display files, 107
display status, 610
display strings and parameter values, 211
display user macro, 358
list files, 163
tflow parameter, 274
third decoupler
adjust tip-angle resolution time, 171
decoupler mode, 168
decoupling sequence, 196
fine power attenuator, 188
frequency, 156
frequency offset array, 529
frequency offset control, 177
homodecoupling control, 303
linear modulator power, 189
modulation frequency, 169
modulation mode, 174
nucleus lookup, 176
power level with linear amplifier, 187
set frequency to cursor position, 528
tip-angle resolution, 192
three-axis gradients, 128
threshold for integrating peaks in 2D spectra, 611
threshold for peak printout, 611
threshold for printout of peak frequencies, 610
tilted box, drawing a, 604
time constant for lock, 343
time constant for lock acquisition, 342
time counter, 666
time-domain cursor position, 128,622
time-domain cursors, 152, 614
time-domain dc correction, 231
time-domain solvent subtraction, 413
time-shared decoupling, 302
tip-angle resolution for decoupler, 191, 192
tip-angle resolution time for decoupler, 170, 171
TMS reference, 614
TNCOSYPS sequence, 614
TNDQCOSY sequence, 614
TNMQCOSY sequence, 615
TNNOESY parameter set, 290
TNNOESY sequence, 615
TNROESY sequence, 615
TNTOCSY sequence, 615
TOCSY experiment, changing parameters for, 615
TOCSY pulse sequence, $250,254,615,655,656$
TOCSY1D experiment, changing parameters for, 616
tof parameter, 335
total correlation (TOCSY) experiment, 615
traces
find maximum intensity, 426
select trace without displaying, 529
TRANSFER.par file, 620
transform images into phasefiles, 364
transformed image array index, 213
transformed image echo index, 211
transients completed, 130
transients setpoint action, 657, 658
transients to be acquired, 391
transition amplitude, 111
transition calculation, 76
transition frequency, 113, 566
transition number calculation, 111
transitions frequency, 566
transmitter
fine power, 618
frequency of observe nucleus, 558
frequency offset for observe transmitter, 280, 616
linear modulator power, 619
local oscillator (L.O.) gate, 344
move transmitter offset, 376
nucleus of observe transmitter, 614
positioning, 616
power level with linear amps, 617
pulse sequence diagram, 185
transmitter frequency, 155, 156
transmitter frequency, 155
transverse magnetization generation, 676
tray size on sample changer, 620
trigger pulses, 612
trigger signals to wait before acquisition, 392
trim gradient level, 290
triple-quantum filtered 2D MAS experiment, 140
TROESY pulse sequence, 622
truncating real numbers, 622
truncation limit, 131
TUNE INTERFACE unit, 623
tuning
broadband channel on MERCURY, 101
mode, 624
tuning the probe, 623
Type of Amplifier label, 68, 117, 118
type of parameter, 555
Type of RF label, 116, 500, 504
type, setting default, 537

U

U+ H1 Only decouplers, 499
Ultra•nmr shim system, 488, 561
unfixing/fixing slice gap, 540
unit conversion for parameters, 625
UNITY INOVA console type, 119
UNIX shell startup, 559, 560
unload imaging data, 54
unlocked experiment, 627
unshifted cosine-squared window function, 577
unshifted Gaussian window function, 263
unshifted sinebell-squared window function, 578
update VnmrJ database, 141
updating
data entry, 267
gradient coil, 628
updating revision global file and parameters, 628
upper case format of string, 243
Upper Limit label, 117, 617
Use Console Data button, 115
user macros
copy file, 358
copy system macro to become user macro, 361
create without text editor, 126
delete, 150
display in text window, 358
edit with vi text editor, 361
library, 127
list user macro file names, 359
path to user macro directory, 358
remove user macro from directory, 360
user-defined weighting, 662
users currently on the system, 648
user-selectable editor, 359
user-supplied modulation, 174
user-written weighting functions, 663
usrwt.o file, 663

V

value of parameter in a tree, 273
values, setting parameter, 557
variable temperature, see VT
Varian shim supply, 560
VAST accessory, 632
VAST data analysis, 113
VAST experiments, setting up initial parameters for, 631
VAST microtiter plate, 113
version of parameter set, 417
vertical offset, 639
vertical position
FID, 640
imaginary FID, 640
spectrum, 640
vertical projection of trace, 144
vertical scale adjustment, 642, 643
vertical scale for 2D displays, 641
vertical scale for projections and traces, 643
vertical scale for simulated spectrum, 593
vertical scale for spectrum, 641
vertical scale of FID, 633
vi command (UNIX), 212, 634
vi text editor, 361, 369, 634, 636
viewing
drawings in 3D, 537
overlay as center lines/stripes, 163
overlay as stripes, 165
stripes/lines, 537
VNMR
background processing, 633
exiting, 219
exiting from system, 638
start in windowing system, 636
start VNMR application directly, 636
style of stored data, 125
system directory, 597
updating parameters and global file after install, 628
user directory, 629
vnmr_textedit file, 412
vnmr_-vi file, 412
vnmraddr parameter, 246
vnmreditor variable, 212, 412
VnmrJ
software preparation date, 498
software revision level, 497
VnmrJ database, 141, 142
VnmrJ database, updating, 141
vnmrsystem variable, 597
vnmruser variable, 629
volume localized spectroscopy sequence, 584
voxel
dimensions, 639
parameters, 640
planning menu, 439, 640
selection, 291
Voxel button, 439
voxel orientation, 639
voxel selection gradient levels, 543
voxel selection gradients setup, 314
VT Controller label, 116, 117, 644
VT controller type, 644
VT cutoff point, 643
VT errors, 45
VT FAILURE message, 644
VT regulation light, 613
VT system in use, 367
VT wait time, 644
VXR-style directory
decompose to UNIX files, 149
VXR-style systems
convert data to VNMR, 120, 125
decompose files to UNIX files, 149
read tapes, 603
remote directory display, 213
VXR-style text files
conversion to UNIX format, 644

W

w command (UNIX), 648
walkup automation, 648
WALTZ decoupling present, 648
WALTZ decoupling sequence, 169
WALTZ-16 modulation, 174
warning error codes, 45
water suppression, $98,323,458,614,615$
waveform generator, 505, 559
decoupling, 191
pulse interval time, 476
test, 654
waveform generator decoupling, 192
Waveform Generator label, 117, 505
weight and Fourier transform
1D data, 654
2D data, 655
along f_{2} for 2D data,, 654
phase-sensitive data, 655, 656
weight.h file, 663
weighting
constant, 91
interactive weighting, 663
interactive weighting for 2D absorptive data, 664
user defined, 662
weighting function compilation, 663
WET1D pulse sequence, 651
WETDQCOSY pulse sequence, 651
WETGCOSY pulse sequence, 651
WETGHMQCPS pulse sequence, 651
WETGHSQC pulse sequence, 651, 652
WETNOESY pulse sequence, 652
WETPWXCAL pulse sequence, 652
WETTNTOCSY pulse sequence, 652
WFG (waveform generator), 285
WFG + GCU gradients, 117
what you see is what you get, 664
whitespace in text file, 344
whitewash mode, 428, 438, 452
whitewash mode display, 158, 193, 194, 207
who is using system, 648
wideline systems data precision, 181
width of chart, 649
maximum width, 650
maximum width in second direction, 650
second direction, 649
width of FID, 653
width of interferogram, 653
width of plot, 658
wildcard characters, 507
window
current, 131
window activity, 323
windowing system, 636
windows
clearing a window, 112
word in text file, 344
word lookup in text file, 344
workspace for VNMR experiment, 109
write out memory buffers, 241
wtlib directory, 663

X

X Axis, Y Axis, Z Axis label, 117, 285
X gradient strength, 291
X,H-correlation 2D spectrum, 446
X 1 shim gradient, 665
X2Y2 shim gradient, 665
X3 shim gradient, 665
X4 shim gradient, 666
XL systems
convert data to VNMR, 120
convert files to UNIX format, 644
decompose files to UNIX files, 149
list contents of directory, 213
read tape, 603
XPOLAR1 pulse sequence, 667
XY shim gradient, 667
XY32 decoupling sequence, 169, 174
XZ shim gradient, 667
XZ2 shim gradient, 667
x-zero position of Hewlett-Packard plotter, 665

Y

Y gradient strength, 291
Y1 shim gradient, 669
Y3 shim gradient, 669
Y4 shim gradient, 669
YZ shim gradient, 669
YZ2 shim gradient, 670
y-zero position of Hewlett-Packard plotter, 669

Z

Z gradient strength, 291
z0 calibration, automatic, 81, 82
Z0 field position, 672
Z0, automatic adjustment, 82
Z1 shim gradient, 672
Z1C shim gradient, 672
Z2 shim gradient, 672
Z2C shim gradient, 673
Z2X2Y2 shim gradient, 673, 674
Z2X3 shim gradient, 673
Z2XY shim gradient, 673
Z3 shim gradient, 673
Z3C shim gradient, 673
Z3X shim gradient, 673
Z3X3 shim gradient, 674
Z3XY shim gradient, 674
Z3Y shim gradient, 674
Z3Y3 shim gradient, 674
Z4 shim gradient, 674
Z4C shim gradient, 674
Z4X shim gradient, 674
Z4X2Y2 shim gradient, 675
Z4XY shim gradient, 675
Z4Y shim gradient, 675
Z5 shim gradient, 675
Z5X shim gradient, 675
Z5Y shim gradient, 675
Z6 shim gradient, 675
Z7 shim gradient, 675

Index

Z8 shim gradient, 676
z-axis shims used for gradient shimming, 292
zero-filling, 241, 496
zeroing phase, 130
zero-order baseline correction, 356
zero-order phase, 509, 510
zero-order phasing constant, 433, 434, 510
zero-order term automatic phase, 72
zfs (zero-frequency suppression) option, 413
ZX2Y2 shim gradient, 676
ZX3 shim gradient, 676
ZXY shim gradient, 676
ZY3 shim gradient, 677

