VnmrJ User
Programming

VnmrJ 1.1D Software
No. 01-999253-00, Rev. A0O604
a4)
P, £
AN

VARIAN

vVnmrdJ User
Programming

VnmrJ 1.1D Software
b. No. 01-999253-00, Rev. A

d)
%
VARIAN

VnmrJ User Programming
VnmrJ 1.1D Software
Pub. No. 01-999253-00, Rev. A0604

Revision history
A0604 — Initid release for VnmrJ 1.1D

Applicability of manual:

UNITYINOVA, MERCURYplus, MERCURY VxWbrks Powered (shortened to
MERCURY-Vx throughout this manua), NMR spectrometer systems with VnmrJ 1.1D
software installed.

Technical contributors: Dan Iverson, Frits Vosman, Hung Lin, Debbie Mattiello
Technicd writers: Dan Steele, Mike Miller
Technicd editor: Dan Steele

Copyright ©2004 by Varian, Inc.

3120 Hansen Way, Palo Alto, California 94304
http://www.varianinc.com

1-800-356-4437

All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility isassumed for inaccuracies. Statementsin
this document are not intended to create any warranty, expressed or implied.
Specifications and performance characteristics of the software described in this manual
may be changed at any time without notice. Varian reserves the right to make changesin
any products herein to improve reliability, function, or design. Varian does not assume
any liability arising out of the application or use of any product or circuit described
herein; neither doesit convey any license under its patent rights nor the rights of others.
Inclusion in this document does not imply that any particular feature is standard on the
instrument.

MERCURYplus, "WTYINOVA, VNMR, VnmrJ, MAGICAL |1, AutoLock, AutoShim,
AutoPhase, imNET, ASM, and SM S areregistered trademarks or trademarks of Varian,
Inc. Sun, Solaris, CDE, Suninstall, Ultra, SPARC, SPARCstation, SunCD, and NFS are
registered trademarks or trademarks of Sun Microsystems, Inc. and SPARC
International. Oxford is aregistered trademark of Oxford Instruments LTD.

Ethernet is aregistered trademark of Xerox Corporation. VXWORKS and VXWORKS
POWERED are registered trademarks of WindRiver Inc. Other product namesin this
document are registered trademarks or trademarks of their respective holders.

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.

Overview of Contents

MAGICAL Il Programming.......ccuuveeiieiiiiiiiieeeee e 17
Pulse Sequence Programmingccccceeeeeeeniiiiiiirieeenseniiineieeeenens 45
Pulse Sequence Statement Reference............ccccoeeiiiei. 127
UNIX-Level Programming ... 257
Parameters and Dataccccooveiiiiiiiiiieeeiiiieeeee e 263
.. 297

01-999253-00 A0604 VnmrJ User Programming 3

VnmrJ User Programming 01-999253-00 A0604

Table of Contents

01-999253-00 A0604

Chapter 1. MAGICAL 11 ProgrammiNgeueeeeeoe ot eee e e 17
1.1 WOIKING WIth IMBEIOS ...ttt st e e b e e e e s 17
A AT T a0 = W1/ o TS 17
EXECULING @IMBCIO .ttt ettt sttt s e e e et st ae e et et e st e se e sbeebeesbeeabeea euseneeaean 18
Transferring Macro OULPUL ...cooveeiieeieeeieeeieie et ettt se s se b e e seeesbessseasssaeese e e ae s e e e eseen 20
Loading MaCrOS iNTO IMEIMIONY ...ciieeee et ee st sttt sttt s et e e ettt se e se e sb e s eesbeeabesasausannneaean 20
1.2 Programming With MAGICAL ...t e e e e e e e e 21
TOKENS .ottt ettt e et e e e e e e e R Rt e R R e e e re e enesrens 21
RV =T o LS Y/ 01 SR 24
AATTAYS ittt ettt et ee e et e et e s ee e e ea e e ee s ne e esee e eeeRe e Ee e aee SR Ee SR eeee e e Rt e e e eRReeareeeeeeeRe e neneeeaeeearean 26
EXPIESSIONS ..eeitieitietie ettt ettt ettt e st b e e ee et ea b saeeabe eae e be e et et e et e e aeeeheeheeeeeeebeeaeeareneeaean 28
INPUL ATQUIMENES <.t tee et s ee st esee e seeee e s e aeeesae e s ssee e e enneesseeaneesmsessseeneennseanneesunnssneanns 29
NAME REPIBCEMENT ...ttt r et e et e et e st e st e e seesbeebeesbesnbesaesaseneeaean 29
ConditioNal SEAEEIMENESc.veivireeiee ettt sr e e e e e e e e en e en e sre s 30
[00 oSO S ORI 31
Macro Length and TErMINGEION cooieeiieieriie ettt et et se e e s es e b snee e saseneeaean 31
Command anNd MaCIO TIBCING ..cvvvvererrerrereerreresreseeres e sesse e sres st e sresreseesnesrese et e ren s ses s enaenessnnesrens 32
1.3 Relevant VNMIrI COMMEBNGSc.ooueiiieriieiiieie ettt et et e et e e es e et sn e e e 32
SPECLral ANAIYSIS TOOIS ..uiiiiiieite sttt ettt ettt ettt e et eseesheesbesabeabesaeese e e ae s e e e eneens 32
dres Measure linewidth and digital reSolutionccoveeniincinicininens 32
dsn Measure SIgNal-t0-NOISEccccerirriiiiiee e e e 32
dsnmax Calculate maximum Signal-to-N0OISEcoovevirervirieeireciee et 33
getll Get line frequency and intensity from line listccccoeivviniininens 33
getreg Get frequency limits of a specified regionccccoevveineincinenens 33
integ Find largest integral in specified region ... 33
mark Determine intensity of the spectrum at apointcccoeeeerevereieeenn 33
nll Find line frequencies and iNteNSItieScoccoevveneceie e 33
numreg Return the number of regions in aSpectrumc.cocoovveeene e veenes 33
peak Find tallest peak in specified region ... 34
select Select a spectrum or 2D plane without displaying itcccccceeveeee 34

L8] o101 74 111 o 11 | A 0T TP 34
apa Plot parameters automatiCallyccocviereierinee e 34
banner Display message with large characters ... 34
clear Clear AWINOWoeiiiiiieie ettt e 34
confirm Confirm message using the MOUSE ..o 34
echo Display strings and parameter values in text Windowc.c..... 34
flip Flip between graphics and text Window ..o 34
format Format areal number or convert a string for outputccccceeeveeee 35
input Receive input from Keyboard ... 35
lookup Look up and return words and linesfrom text file ..o 35
nrecords Determine number of linesin afile ... 35
psgset Set up parameters for various pulse SEQUENCEScooveverveeerieeerineens 35
vomr confirmer Display aconfirmer window (UNIX) ... 35
write Write output to VariouS deVICESccveererrerne e e 36

VnmrJ User Programming 5

Table of Contents

VnmrJ User Programming

Regression and CUIVE FITHING ooccoieeeeeerce ettt ettt sr e ea e st e sae st e e an 36
analyze Generalized CUrVe fittiNgoooveveee e 36
autoscale Resume autoscaling after limits set by scalelimitsccccoeeveneieenene 36
expfit L east-squares fit to exponentia or polynomial curve (UNIX) 36
expl Display exponential or polynomial CUNVEScccoovviiinenine e 36
pexpl Plot exponential or polynomial CUNVEScccceeneinieiene e 36
poly0 Display mean of the datain the file regression.inpc.cccceeeerene 36
rinput Input data for aregression anNalySiSccouveverre i 37
scalelimits Set [imits for SCAlEeS N regreSSIONcoceveeririeirieeire e 37

MathematiCal FUNCLIONScceiiireee ettt e s et sr s 37
abs Find absolute value of anumber ... 37
acos Find arc cosine of anUMDBEr ..o 37
asin Find arc sine of aNUMDETcciiiiiii e 37
atan Find arc tangent of anUMBDEr ..o 37
atan?2 Find arc tangent of two NUMDENS ..o 37
averag Calculate average and standard deviation of inputccccceeeerienne 37
cos Find cosine value of an angle ... 37
exp Find exponentia value of anumber ... 38
1n Find natural logarithm of anumber ... 38
sin Find sinevalue of an anglecccoviiii i 38
tan Find tangent value of an angle ... 38

Creating, Modifying, and DiSplaying MaCIOSccceveerierieriereirie e eieeee et esse s see s e see e enes 38
crcom Create auser macro without using atext editorcccovevvceiienne 38
delcom DEl Bt @ USEN MACTO ... e e e e 38
hidecommand Execute macro instead of command with samenamecc..c..... 38
macrocat Display auser macro on the text Windowc.ccoovvevvinine e 38
macrocp Copy auser Macro file ... 39
macrodir LISt USEN MACTOSvivieciieeiieeeiiees et s s e e e 39
macroedit Edit a user macro with user-selectable editor ..o 39
macrold Load amacro iNtO MEMOIYc..oeeriiriiee e e 39
macrorm REMOVE @ USEN MACIOoviiiiiiiie e 39
macrosyscat Display a system macro on the text Windowccoceveveieierenienn 39
macrosyscp Copy a system macro to become a user MaCroccooeeerieeenieeerieeens 39
macrosysdir LiSt SYSLEM MECIOSvviiiiieiiee ettt e 39
macrosysrm Remove a SyStem MAaCIOccccoveiiiriiiice e 39
macrovi Edit auser macro with vi text editorccocooeviveiiieinicc e 39
mstat Display memory usage StatiStiCScvvvevereriieiee e 40
purge Remove amacro from MEMOIYcocovereieiereeeeeeece e 40
record Record keyboard entrieS aSamacroccceeeeeenevriesnie e 40

MiISCEIANEOUS TOOISvieieeeiesire ettt et e e e e e e n e e en e e ane 40
axis Provide axis|abels and scaling factors ... 40
beepoff TUN DEEPES OFf . s 40
beepon TUIMN DEEPES ON ot 40
bootup Macro executed automatically when VnmrJis startedc..c..... 40
exec Execute aVNmrd CoOmMmaNdcceeeiriirieiie e e 40
exists Determine if a parameter, file, or Macro existsScccoovveveneviieseennn 41
focus Send keyboard focusto VNMR input Windowc.ccovevneinienns 41
gap Find gap in the current SPECIIUMoovenicini i 41
getfile Get information about directories and filesccocoeeoeeiiiieiceienens 41
graphis Return the current graphics display Statusccoovvevrieviiencieniee 41
length Determine length of @Stringcooeviieiiiiece e 41
listenoff Disable receipt of messages from send2Vnmrccccoeeveieieicneenn 41
listenon Enable receipt of messages from send2VNnmrccccoeovveincinienens 42

01-999253-00 A0604

Table of Contents

login User macro executed automatically when VnmrJ activated 42

off Make aparameter INACHIVEccooveieieieneciireee e 42

on Make a parameter active or test itS Statecoovveveieieiiie e 42

readlk Read current [oCK 1eVElcooiiiiicecece e 42

rtv Retrieve individual parametersc.coooereeneene s 42

shell Start AUNIX SNEIL et 42

solppm Return ppm and peak width of solvent resonancesc.cocceevveeee. 43

substr Select a substring from astringccoooeereeineeincee e 43

textis Return the current text display Statuscccooveeeniiinieie e 43

unit Define CONVErSioN UNItScooviiiiieiieeiee e e 43

Chapter 2. Pulse Sequence Programming ...t ess s eee e 45
2.1 Application Type and EXecpars PrOgramMiNgcccoeereereeireemniesisesisesese s s 46
200111/ 01 TSSO PSP 46

EXECPAN PAIGIMELEISeieie et ee et er st e e et e e e e et e ea e e seesae e ssee e eesaeessee e meesmnessreeanneesneessrean 46

ProtoCOl PrOgraimiMINgcc.eceeeeeeeereeseesierstestessteseeesaeseeeasesaeeuessaeesse e aaees st e st esseessesseeseesssesassusenssanean 48

2.2 Overview of Pulse Sequence ProgrammMingcccoeeoeereeereeirsesesiesisiesesesese e s s ssese e seene s 49
SPECITOMELES DIffEIENCESei ettt et e ettt se et et e b e e seesneenes 49

Pulse Sequence Generation DITECIONY ccocevierrierreerieseieie et et et ee e re et se s seeseesseeseesssesaesuseneeaean 49
Compiling the New PUISE SEQUENCE ..ottt ettt sb e se b e see e 50
Troubleshooting the New PUISE SEQUENCEcooiiierii ittt e e s s s e 51
Creating a Parameter Table for Pulse Sequence ODbject COdeocoovuiieererierneenceereeriee e 52

C Framework fOr PUISE SEQUENCES ...ttt sttt s et et se et se et see e 52

IMPIICIT ACQUISITION ettt sttt ettt et e e eb e e e sa b e eas e e et e e et e s e e e e s eeseeseeenes 54
ACQUISITION SEBIUS COUES cveeeureeierereenier et st esesr s sre e e res e se e enaen e e sre s 54

2.3 SPECITOMELEr CONIOI oeeieieie ettt ettt bbb e b e er e en e e 54
Crealing @ TIME DEIAY ...oci ettt et s e et et re et e e et e e e seeenes 54

PulSing the ODSErVE TranSIMITIEN ..ot e et se e e ee e e et e st e e as 55

Pulsing the Decoupler TraNSMITIE cocieeerirere e e e e sr s 57

Pulsing Channels SIMUITANEOUSIY cciiiirieriirie ittt et ea e e e sae s e an 59

Setting Transmitter Quadrature Phase ShifScooeiiiiiiirie e s 60

Setting Small-Angle Phase SNIftS ..o et e 61
Controlling the OffSEt FIEQUENCY ..cueouiirerieeie ettt e e e e s sn e 63
Controlling Observe and Decoupler TransSmitter POWEScoccooveerereneneneeree e 64
Controlling StAEUS AN GELINGveeveeeeereereirerseerreeseesree e st sreesre e e e e e e st e s e s see st e s seesseeseeseeenes 66
Interfacing to EXternal USEr DEVICESocciceeeriireiie e s s s e e sr s 69

2.4 Pulse Sequence Statements: Phase and Sequence CONLIOlocvieireineinie e 70
Real-Time VariableS and CONSIANTScovcrveererrenieerie et s ese st se s see e s e st e e e snseseenean 70
Calculating in Real-Time Using Integer MathematiCSocoveeciiieeiiiecerecreenee e e 71
Controlling a Sequence Using Real-Time VariableScoevieie e e 72
Real-Time vs. Run-Time—When Do Things Happen?occoerernnesenesee e 73
Manipulating ACQUISITION VariablESco.ooieiee ettt st s e e st 74
Intertransient and INLENCrEMENt DEIGYSoovirireiie e e e s 75
Controlling Pulse Sequence GraphiCal DiSPlaycccoerrreereeersne e 75

2.5 REAIFTIME AP TADIES ...ttt e e e e e e e e 76
Loading AP Table Statements from UNIX TeXt FIlES ...coveirieieerree e e 76

Table Names and STALEMENES covvvirieeeieie ettt ste e e stesseessesaeese e e e s e eneeseens 77

LN S =o)L= N [o) o OSSR 77

01-999253-00 A0604 VnmrJ User Programming 7

Table of Contents

HanNdliNg AP TaDIES ...ttt e e e st e ettt e b e e sb e e e eneeaes 78
Examples of USING AP TADIES ..ottt ettt e ea e e et s e e 80
2.6 ACCESSING PAIGIMELEISo.eiiieiie ettt ettt bbb e e e bbbt b e n e e 81
Categories Of PAr@MELEISooi ittt sttt sttt et e e be e e e e et et seesb e e e e b ee e sneenes 82
LoOKING UP ParameELer VAIUESottt sttt ettt sr e ea e see et e eas e e an 88
Using Parameters in @ PUISE SEQUENCE ...ttt sttt st sttt s e se b seesne s 89
2.7 Using Interactive Parameter AQJUSIMENToiiiiiieie et e e e e 91
GENENAl ROULINES ...ttt sttt sr e s re e e sen e se e em e en e e sne e 91
GENENIC PUISE ROULINE veeeee ettt et s e et s e e em e en e sre e 92
Frequency OFfSEt SUDIOULINE ...ttt sttt ettt et s seees e sbe eeee e easeneeaean 93
GENENiC DEAY ROULINE ..ottt ettt sttt et e e e e e e e et e st se e b e e e e ebeeseesneenes 94
FiNE POWEN SUDIOULINGveeiieeierire ettt e st es s et s e s en st ene srens 96
2.8 Hardware Looping and EXPliCIt ACQUISITION ...c..ouiiieiieiieeeie ettt e e e 96
Controlling HardwWare LOOPINGceeveeeeereieie e aieeeiese et e ses st s seeseessesseesseestesssessssaeeses e ssnesaeeseeseens 97
Number of EVents in HardWar€ LOOPS coveevrireirie e s sre s 97
EXPIICIT ACQUISITION ..ttt e e e e e s e e e en e s 99
Receiver Phase For EXpliCit ACQUISITIONS ...coviiueieieieciee et s 100
MUItIPIE FID ACQUISITION .oveiiieiesereee et es s e e e e s e e s enesren 100
2.9 Pulse Sequence SYNCHIrONIZBLIONcoeoiiiieiieee ittt et bbb e 100
EXIErNal TIME BESE ..ouieiieseiieie sttt e st sr e e e st em e e enesren 101
Controlling ROtOr SYyNChroNiZatiONcceoueerireeerere e e s e 101
2.10 PUISE SNADING +euectieitiietiiet ittt b et b e st eb et b e b e h et eh s eh bbb e e et b et 101
File SPECITICALIONS ...veeiieiee et e e e s e e e enesrens 102
Performing Shaped PUISES ... e e e 104
Programmable Transmitter CONIOlccoceeeverine e s s s e eren 106
Setting Spin Lock Waveform CONEroloccoeeirirere e s e 107
Shaped PUISE CalibDIatiONcceevireiieie et s s s e en e sn s 108
2.11 Shaped PUlSES USING ATENUBLOIScviviriieieeeereeie et ettt ese bbb s et 108
AP BUSDElAY CONSLANESveveeeierererseeieres s s s e s snesr e sresr e e e e ses e emsenessesneens 109
Controlling Shaped PulSes USING ATEENUALOISccevererrerereenieie e s s e eeenesnenaes 109
COoNtrolliNg ATENUALTON eceie ettt ettt ee st st ee st e e ee e e e e e e e st e e neeseeensesseentesanennan 111
2.12 Internal HardWare€ DEIGYSc.coceiiiiiieieie ettt b ettt et et et e 111
Delays from Changing AtIENUALIONc.coceeeeereerreerseeseereeesiesree e seeeseeseesese e es e eseesseeseessesssesseeses 111
Delaysfrom Changing SLAIUScccceeceerereeereerreereerseeseeseeeseesseeseesseessesaeesssseessesseeseessesssessesssesseeses 112
Waveform Generator High-Speed Line THQOEN ..cuevieiereeeeeeereer e seertee st seee e s saeese e eseneens 114
2.13 Indirect Detection on Fixed-Frequency Channel ... e 115
Fixed-Frequency DECOUPIEY oooierieeerre et en s e e e e s s en e e e enesrens 115
2.14 MUItIAIMENSIONEI NIMIR .ottt bbb e ettt 115
HYPENCOMPIEX 2D ...ttt e et e s s es e r e e e e e s e se e e em e e e e enesren 116
Real Mode Phased 2D: TPPI ..ttt s s st s e e e 117
2.15 Gradient Control for PFG @and IMagiNgcccereieriiiieeireeiire ettt s s e 117
Setting the Gradient Current AMpPlIfier LEVEl ..o 118
Generating a Gradient PUISE ..ot s e s s e e 119
Controlling LOck COrreCtion CITCUITIY ccecveeerrereerereeree s e e sre e s een e s eeenesneaes 120
Programming Microimaging PUlSE SEQUENCESccceveereerreerreeneeriereresesreseesse e s seese e sesseenesrens 120

8 VnmrJ User Programming 01-999253-00 A0604

Table of Contents

2.16 Programming the Performa XY Z PFG MOTUIEccocuiiiiiiieiiciiet et e 120
Creating Gradient TADIESociiieee et e e ettt se b et e e st en e et saeeanas 120

Pulse SeqUENCE ProgramMiNg ccccceceeeiceeieesieeiieesseesseessesssessssessasssssesnnsesssesssessnsesssessnsesssnssseeans 121

2.17 Imaging-Related SEAIEMENTSciiiirieieie ettt e e e 122
Real-time Gradient SLALEMENES ...c.cevvrrireee e e e e e 122

Obligue Gradient SEAEEMENESciiceeeieceeere e rree e s s sr e e sre e s seesneesnae s s eesnneeseesnnes 124

Global List and POSItioN SLALEMENTSccoceeieririere st 124

[T0 o TE 0 S = = 11 £ USRS 124

Waveform [nitialization SEEEMENTScccveeiire e s e e 124

Other STAEEMENESecveee it e e e s r e sre e e e et e en e e e 124

2.18 User-Customized Pulse SEQUENCE GENETAtION ccoiviuiriciiieeireeti ettt e 125
Chapter 3. Pulse Sequence Statement REferenCeccoooivviiiieiiiiiiiiiiiiicc e 127
abort message Send and error to VnmrJ and abourt the PSG processc......... 127
acquire EXplicitly aCqQUIT@ datac.coeerveriieieieee e e 127
add Add INLEJEr VAIUBS ...t e 128
apovrride Override internal software AP bus delayoccoeveiieineincnnenenen 129
apshaped decpulse First decoupler pulse shaping Via AP BUScccoceiiiiiie i 129
apshaped dec2pulse Second decoupler pulse shaping VIa AP BUScccoiniiiiiiciieens 130
apshaped pulse Observe transmitter pulse shaping Via AP bUSccoeiiiincinienns 131
assign ASSIGN INLEJEN VAIUESeoeieieciiiee e e 132
blankingoff Unblank amplifier channels and turn amplifierson ..o 133
blankingon Blank amplifier channels and turn amplifiers off ... 133
blankoff Stop blanking observe or decoupler amplifier (obsolete) 133
blankon Start blanking observe or decoupler amplifier (obsolete) 133
clearapdatatable Zero dl datain acquisition processor MEMONYc.coeererereererierennes 133
create delay list Create table of delays ... 134
create freg list Create table of freqUENCIESccoociiiiiiic e 135
create offset list Create table of frequency OffSetS ..., 136
dbl Double an integer VAIUEcoooeiieniieie e 138
dcphase Set decoupler phase (0DSOIELE)cceieevereciiriiieeeeeee 139
dcplrphase Set small-angle phase of 1st decoupler, rf type Cor Dccovvvvevrieenne 139
dcplr2phase Set small-angle phase of 2nd decoupler, rf typeC or Dcccccvvveee 139
dcplr3phase Set small-angle phase of 3rd decoupler, rf type CorDccccevveeenee. 140
decblank Blank amplifier associated with first decouplerc.ccoeviiiniienn 140
dec2blank Blank amplifier associated with second decouplerccccoeeerienene 140
dec3blank Blank amplifier associated with third decouplerc.coovviriiinnnn 141
declvloff Return first decoupler back to “normal” powercccooeeevevenenn 141
declvlon Turn on first decoupler to full POWESrcoieiieiieicie e 141
decoff Turn Off first dECOUPIErocvieieieee e e 141
dec2off Turn off secoNd deCOUPIEScoeviiieieciiecec e 142
dec3off Turn off third deCOUPIEr ..o 142
decoffset Change offset frequency of first decouplerccoooevniineincinenens 142
dec2offset Change offset frequency of second decouplercocvevreiiciinenens 142
dec3offset Change offset frequency of third decouplerccoeoneiniiiciinienens 142
dec4offset Change offset frequency of fourth decouplerccooveiieiiciinnns 143
decon Turn on first dECOUPIEToviviiieiiceiee s 143
dec2on Turn on Second deCOUPIENoviviieiieceireee et 143
dec3on Turn oNn third dECOUPIENc.oviviieiiieiee e e 144
decphase Set quadrature phase of first decouplerocovveincincinciiccne 144
dec2phase Set quadrature phase of second decoUpIErccovveireiicincinieiens 144
dec3phase Set quadrature phase of third decouplercooevciniincinciieiens 144

01-999253-00 A0604

VnmrJ User Programming 9

Table of Contents

dec4phase
decpower
dec2power
dec3power
dec4power
decprgoff
dec2prgoff
dec3prgoff
decprgon
dec2prgon
dec3prgon
decpulse
decpwr
decpwrf
dec2pwrf
dec3pwrf
decr
decrgpulse
dec2rgpulse
dec3rgpulse
dec4rgpulse
decshaped pulse
dec2shaped pulse
dec3shaped pulse
decspinlock
dec2spinlock
dec3spinlock
decstepsize
dec2stepsize
dec3stepsize
decunblank
dec2unblank
dec3unblank
delay
dhpflag

divn

dps_ off
dps_on
dps_show
dps_skip
elsenz
endhardloop
endif
endloop
endmsloop
endpeloop
gate
getarray
getelem
getorientation
getstr
getval

G Delay

G Offset

10 VnmrJ User Programming

Set quadrature phase of fourth decouplercccovvveieiiiiieiieienenns 145
Changefirst decoupler power level, linear amp. systems 145
Change second decoupler power level, linear amp. systems 145
Change third decoupler power level, linear amp. systems 146
Change fourth decoupler power level, linear amp. systems 146
End programmable decoupling on first decouplercccvvvveeenne. 146
End programmable decoupling on second decouplerccceeneee. 146
End programmable decoupling on third decouplerccoceveueneene. 147
Start programmable decoupling on first decouplercccccoevecerieeee 147
Start programmable decoupling on second decouplerccouene.. 147
Start programmable decoupling on third decouplerccccooveerienee 148
Pulse first decoupler transmitter with amplifier gatingccc..... 148
Set first decoupler high-power level, class C amplifier 149
Set first decoupler fiNe POWEocvviiiriceiciee e 149
Set second decoupler fiNE POWESc.ccoerieiriciniineeeeeeeeae 149
Set third decoupler fiNE POWETc.ocoeiicericiiricireere e 150
Decrement an iNteger VAIUEccoeviieriienecie e 150
Pulse first decoupler with amplifier gatingccocoovvvvnienc e 150
Pulse second decoupler with amplifier gatingccocoeeveveierenienn 151
Pulse third decoupler with amplifier gatingccoooevvieveic i 152
Pulse fourth decoupler with amplifier gatingcccooenviniiniennn 152
Perform shaped pulse on first decoupler ... 153
Perform shaped pulse on second decouplerccceveveeinenenenne 154
Perform shaped pulse on third decouplercccoovveeeiennine i 155
Set spin lock waveform control on first decouplercoocvveenienne 156
Set spin lock waveform control on second decoupler ... 156
Set spin lock waveform control on third decouplercccceieiienee 157
Set step size for first deCOUPIErcooviiiiiiiiiccce e 158
Set step size for second deCOUPIErc.ovvceirieeiricirciee e 158
Set step size for third deCOUPIErcovieiiiiiic e 158
Unblank amplifier associated with first decouplerc.ccccooevenenne 158
Unblank amplifier associated with second decouplerccccoueue.. 159
Unblank amplifier associated with third decoupler ... 159
Delay for aspecified tiMe ..o 159
Switch decoupling from low-power to high-powercccoeenienene 159
DIVIde iNEJEr VAIUESocviiieiieieie ettt 160
Turn off graphical display of statementsccccoeeeeeeiveneee e, 160
Turn on graphical display of Stalementscccevevreinennernenene 160
Draw delay or pulsesin a sequence for graphical display 160
Skip graphical display of next statementccooeeeeiviiie e venecenn. 163
Execute succeeding statements if argument iS NONZEroccceveee 163
ENd hardWar€ 100Dcveviieiiieieeesecee et 164
End execution started by ifzero or €senz ..o 164
ENG TOOPD vttt e e 164
ENd MUItISHICET00P .ouviviieiiieeiieee e 164
End phase-encode 100Dcccveiiiiiiiieceie e 165
Device gating (0DSOIELE)ccovieiriiiciee e e 166
Get arrayed parameter ValUESc.ooeieievenecee e 166
Retrieve an element from an AP table ..o 166
Read image plane orientationc.cceoeneene e e 167
Look up value of String parametercoeveeneineeineseeceeeenns 168
Look up value of NUMEric parametercocooevvveirievnie s 168
Generic delay rOULINEccooveiiie e e 169
Frequency Off SEt FOULINEccoveiiiiiiie e 169

01-999253-00 A0604

G_Power

G Pulse
hdwshiminit

hlv

hsdelay
idecpulse
idecrgpulse
idelay

ifzero

incdelay
incgradient

incr

indirect

init rfpattern
init gradpattern
init vscan
initdelay
initparms_ sis
initval
iobspulse
ioffset

ipulse

ipwrf

ipwrm

irgpulse

1k hold

1k sample
loadtable

loop

loop check
magradient
magradpulse
mashapedgradient
mashapedgradpulse
mod2

mod4

modn

msloop

mult

obl gradient
oblique gradient
obl shapedgradient
oblique shapedgradient
obsblank
obsoffset
obspower
obsprgoff
obsprgon
obspulse

obspwrf
obsstepsize
obsunblank
offset

pe gradient

01-999253-00 A0604

Table of Contents

FiNE POWES TOULINE ...ttt 169
GENENIC PUISE TOULINE ...ttt e s 169
Initialize next delay for hardware shimming ..o 170
Find half the value of an integer ... 170
Delay specified time with possible homospoil pulsecccccceeuenee. 171
Pulse first decoupler transmitter with IPA ... 172
Pulse first decoupler with amplifier gating and IPAccovieiieeee 172
Delay for aspecified timeWith IPA ... 172
Execute succeeding statements if argument iSzeroccceeevrienene 173
Set real-time incremental delaycoooeeiiiniinc e 173
Generate dynamic variable gradient pulSeccooeineincincinieeens 174
Increment an iNtEEr VAIUEooveiiiiiee e 175
Set INAIreCt dEtECLIONeoeeeieeiee e 175
Create rf pattern file ... 175
Create gradient pattern file ..o 176
Initialize real-time variable for vscan statementc.ccoeeeveeeniennn 177
Initialize incremental delayccoveireni i 177
Initialize parameters for spectroscopy imaging Sequences 178
Initialize area-time variable to specified value ..o 178
Pulse observe transmitter with IPA ... 178
Change offset frequency With IPA ... 179
Pulse observe transmitter with ITPA ... 179
Change transmitter or decoupler fine power with IPAccceveie 180
Change transmitter or decoupler lin. mod. power with IPA 180
Pulse observe transmitter with IPA ... 180
Set lock correction circuitry to hold COrrectionc.ccoveeivinienne 181
Set lock correction circuitry to sample lock signalcccoccvveiiienene 181
Load AP table elements from table text file ... 182
AT TOOP vt 182
Check that number of FIDsis consitent with number of dlices, etc. ..183
Simultaneous gradient at themagic anglecccoevviniinviiccinnens 183
Gradient pulse at the Magic angleccooeirieincinicineeeseeeeens 184
Simultaneous shaped gradient at the magic angleccccevveriennne 184
Simultaneous shaped gradient pulse at the magic angle 185
Find integer value modulo 2 ..o 186
Find integer value Modulo 4 ..o 186
Find integer value Modulo N ..o 186
MUILISIICETO0P vttt e 187
MUItIPlY INEEJEr VAIUESoveieie ettt 187
Execute an oblique gradient ..o 188
Execute an oblique gradient ..o 188
Execute a shaped oblique gradientcccoceveeennieeie e 189
Execute a shaped oblique gradientcccocoveeeennieeie e 189
Blank amplifier associated with observe transmitterccccceuenee. 191
Change offset frequency of observe transmittercc.ccoceevieieneee 191
Change observe transmitter power level, lin. amp. systems 191
End programmable control of observe transmittercccccoceeeeene. 192
Start programmable control of observe transmittercc.coeceveee 192
Pulse observe transmitter with amplifier gatingcccccoeeviiienn 192
Set observe transmitter fine POWENccvveireireinene e 193
Set step size for observe transSmitteroocooeveeiiceee e 193
Unblank amplifier associated with observe transmitter 193
Change offset frequency of transmitter or decouplercc.cooeevuenee. 194
Oblique gradient with phase encode in 0N axisccceceveerererienene 195

VnmrJ User Programming 11

Table of Contents

pe2 gradient

pe3 gradient

pe shapedgradient
pe2 shapedgradient
pe3 shapedgradient
peloop

phase encode gradient
phase encode3 gradient
phase encode shapedgradient
phase encode3 shapedgradient
phaseshift

poffset

poffset list
position offset
position offset list
power

psg_abort

pulse

putCmd

pwrf

pwrm

rcvroff

rcvron

readuserap

recoff

recon

rgpulse

rgradient

rlpower

rlpwrf

rlpwrm

rotorperiod
rotorsync
setautoincrement
setdivnfactor
setreceiver
setstatus

settable

setuserap
shapedpulse

shaped pulse
shapedgradient
shaped2Dgradient
shapedincgradient
shapedvgradient
simpulse

sim3pulse
simd4pulse
simshaped pulse
sim3shaped pulse
sli

spHoff

sp#on

spinlock

12 VnmrJ User Programming

Oblique gradient with phase encode in two axescccceeceeeereenenen. 195
Oblique gradient with phase encode in three axescccccoeeeeveenne 196
Oblique shaped gradient with phase encode in one axisc......... 196
Oblique shaped gradient with phase encode in two axes 197
Oblique shaped gradient with phase encode in three axes 198
Phase-encode |00ocveiiiriiiiee e e 198
Oblique gradient with phase encode in 0N axisccceeeveererereenens 199
Oblique gradient with phase encode in three axesccccceeeeceveenee 200
Oblique shaped gradient with PE in ON€ aXiSccceevvvreeeienerennen. 200
Oblique shaped gradient with PE in three axesccccecvereeeienene 201
Set phase-pulse technique, rf typeA OF Bccocveeeevieeeeeiee e 202
Set frequency based 0N POSITIONccooiieriiiiiecieeee e 203
Set frequency from pPoSItIoN 1Stcccceeiiiiiincic e 203
Set frequency based 0N POSITIONcccoiieieiiri i 203
Set frequency from POSItIoN 1IStcccoeeiiiiiiinici e 204
Change power level, linear amplifier systemsccccoeveiicinieeens 204
ADOI the PSG PrOCESS ...cvevieeeiieiiieiiei e e 205
Pulse observe transmitter with amplifier gatingccccooevviniene 205
Send a command to VnmrJ form a pulse Sequenceccceeeeveene 206
Change transmitter or decoupler fine POWESccccvveiicincinicnens 207
Change transmitter or decoupler linear modulator power 207
Turn off receiver gate and amplifier blanking gateccccooevvenenne. 208
Turn on receiver gate and amplifier blanking gateccococevvenene. 208
Read input from user AP regiSterccooiereine e 209
Turn off recaiVer gate ONlYcooeiieireire e 209
TUIN ON FECEIVEN ALE ONIY ..oeieiieiice e e e 210
Pulse observe transmitter with amplifier gatingccccooeniinienn 210
Set gradient to specified [eVEl ... 211
Change power level, linear amplifier systemscccooeveiicinneens 211
Set transmitter or decoupler fine power (ObSOIELe)cccovevvivceiriennns 212
Set transmitter or decoupler linear modulator POWErcccceevrieeene 212
Obtain rotor period of MAS FOLOFccccvieiereeie e 213
Gated pulse sequence delay from MAS rotor positionc..cceeee.. 213
Set autoincrement attribute for an AP tableccoeiviiiciicinienne 214
Set divn-return attribute and divn-factor for AP tableccccccvnee 214
Associate the receiver phase cycle with an APtablecoceeeee 215
Set status of observe transmitter or decoupler transmitter 215
Store an array of integersinareal-time APtablec.ccoccoevvieienes 216
Set USEr AP FEJISLET ...ttt ettt 216
Perform shaped pulse on observe transmitterccccooeiieiceienens 217
Perform shaped pulse on observe transmitterccccoecvceieiceienens 217

Generate shaped gradient PUISEooeereircincince e 218
Generate arrayed shaped gradient pulSe ... 219
Generate dynamic variable gradient pulSeccooevnvincincinienens 220
Generate dynamic variable shaped gradient pulseccccceieirienne 222
Pulse observe and decouple channels simultaneously 223
Pulse simultaneously on 2 or 3 rf channelscccccoveveeiicienenne 224
Simultaneous pulse on four channelscooevencincnccs 225
Perform simultaneous two-pulse shaped pulse ... 225
Perform a simultaneous three-pulse shaped pulsecccooeveierienne 226
S S I I 1T =R 227
Turn off specified SPAre liNec.ooveiicircie e 229
Turn on specified SPAre liNe ... 229
Control spinlock on observe transmittercocooeoeevvcenieecesencnennn. 229

01-999253-00 A0604

Table of Contents

starthardloop Start hardwar€ 100Doooveriieieee e 230
status Change status of decoupler and homospoilccoeineineinicinienens 231
statusdelay Execute the status statement with agiven delay timec.cccceeeee. 232
stepsize Set small-angle phase step size, 1f type C or D ...ccoevvevvveveiiiceiniciiienns 232
sub SUBLraCt INtEJEr VAIUESoeieiieieceee ettt 233
text error Send atext error message to VNMIdccoecieevecicicinscciceeece 234
text message Send amessage to VM ... 234
tsadd Add an integer to AP table elements ..o 234
tsdiv Divide an integer into AP table elementscccoveinvinciicinees 234
tsmult Multiply an integer with AP table elementsccoooeviiine e 235
tssub Subtract an integer from AP table elementscccoeoveinciicinienens 235
ttadd Add an APtableto asecond tablecccoooiiiiiiiiicinic 235
ttdiv Divide an AP table into asecond tableccccooviiiiiiicinc i 236
ttmult Multiply an AP table by asecond table ..o 236
ttsub Subtract an AP table from asecond tableccocooeiiiiiiiiicines 237
txphase Set quadrature phase of observe transmitterccooovviieiiciineens 237
vagradient Variable angle gradient ..o e 238
vagradpulse Variable angle gradient PUISEcccoeereiierne s 239
var_active Checks if the parameter isbeing USed ... 239
vashapedgradient Variable angle shaped gradient ... 240
vashapedgradpulse Variable angle shaped gradient pulSecocoeverreinesece e 241
vdelay Set delay with fixed timebase and real-time countcccceiieeee 241
vdelay list Get delay value from delay list with real-timeindex ..o 242
vireq Select frequency from table ... 243
vgradient Set gradient to alevel determined by real-time mathc.ccceeveeie 243
voffset Select frequency offset from table ..., 245
vscan Provide dynamic variable SCanc.cocceneiiiinc v 245
vsetuserap Set user AP register using real-time variableccoooeoveiicininens 246
vsli Set SLI linesfrom real-time variable ... 246
warn message Send awarning message to VNMIJccooeireineineeineseneeeseieieeens 248
xgate Gate pulse sequence from an external eventccoccovvenciicinenens 248
xmtroff Turn off observe tranSMIttercvveireie e 248
xmtron Turn on ObSErVe tranNSMITLErooveiveeeire et 248
xmtrphase Set transmitter small-angle phase, rf type C, D ...covvevvveveinceiniciiniene 249
zero_all gradients Zero al gradients ... 249
zgradpulse Create agradient pulse onthe z channel ... 250
Chapter 4. UNIX-LeVel Programmingc it ee e e e s 257
A1 UNEX NG VIIMIET ot e et et s b b e e ee e e e 257

4.2 UNIX: A REFEIENCE GUILR ..ottt e e e e e e e 258
COMMANG ENLIY ettt ettt sttt se b e st et et e et e e e b e e sbeseeenseeasantesaeannan 258

FIIENGIMIES .o e et et es s et e e e e s e e e e en e e sen e enesrens 258

File HaNdIiNg COMMENTSooii ittt sttt sttt see e s s e e e e e ne e se e see e e s 258

DITECIONY NAIMES ..ieiiie ettt ettt ettt ettt e s aesheesee sateabesaeeabe et e et et e et e e e e aeeseenseenes 258

Directory Handling COMIMANGS ooeeuireerieriee et stertee e seee st et sae et e e e e e se s se e e see e snee s 258

TEXE COMIMANGS ...eeeieiriee ettt et e et et s e eresr e e ne e se et emren e st ens 259

Other COMMEBNGS ..eeeeeeeeerr et sr et e e e e en e se e e eneeneas 259

SPECI Al CREIACTENSeeieiieit ettt ettt et et ettt ettt eee b e b e e sbeesbesee eabeaaeeueene et e s e eens 259

4.3 UNIX Commands Accessible from VNMIT ..o e e 260
Opening a UNIX Text Editor from VIME ..ot e s e 260

Opening a UNIX Shell from VNMET .ottt s e e e 260

01-999253-00 A0604

VnmrJ User Programming 13

Table of Contents

4.4 BaCKgroUNd VINMR ...ttt bbb bbbt bbb s 260
Running VNMR Command as a UNIX Background Taskcccceeceeeeeiieeeenienseeneer e 260

Running VNMR Processing in the Background ..ot 261

TS 1= T = (T =001 1 1 o [T 261
Shell Variables and Control FOrMAELScccoieiiiriiniirie ettt sr e s s 262

SNEIL SCIIPLS ettt ettt ettt se e b e eb e see sabese eabenae st e ae st e s e e neensee s 262
Chapter 5. Parameters and Data@.........coooeiiioiiioi oot eenees 263
LIV a8 T = =TS 263
BiNary Dala FIIESoiiii ittt ettt sttt sh e s e et e e et e et ne et e see e eneees 263

Data Fil @ SITUCLUIES ...t ettt ettt st e e s s a e s ee et sae et et e et e e et e e e e seenneeees 264

VmrJ Use of Binary Data FilES ..ottt e et s 267

StOrNG MUITIPIE TIACES ...ttt ettt ettt sttt sttt e et et ettt re b e e e e b e ene e eeeeatesaeeanan 269

Header and Dala DiSPIay coeeieeeeiee ettt sttt st s st e st et se e e e e se e e nn e e 269

5.2 FDF (Flexible Data FOrmMat) FIlESccouiiiiiiiiiecie ettt e e e s 270
File Structures and Naming CONVENTIONSccoicerierierrierieerie e seeeisse s e e e e se s se e e see e ssee s 270

FIIE FOIMEL .. ettt e ettt et s e b e s e e b e e e ehteabe sae et eue e et et e et e e e e seesbenaeeeee 270

HEBOEr ParaIMELEIS ...t ettt ettt sttt e b e et e sae e s et e et e e e et e e e e e seeeseeees 271
TraNSTONMEIIONS ...ttt ettt ettt ettt se e st e e s eesbeea b sae eube eaeeabe e et e s e et e e aeeseeeneenes 274
Creating FDF FIlES ..ottt sttt et e s s e st e e sae e s neesane e sn e e e eesaeeeneeeanes 274
SPHTING FDF FIES ..ttt ettt sttt sttt e et st et e et re b e seeseeens e eneeatesaeeanan 275

5.3 Reformatting Data for PrOCESSINGcouueiiieieieieie ettt ettt et et et e e e 275
Standard and CompPressed FOIMMALScvverererrre et e s e 275
Compress or UNCOMPIESS DaLaAcccueieeiieiiiiici ettt s e 275

MOVE N0 REVEISE DAeiieieeie ettt ettt sttt sttt s e e et sae e st e et e e et e e neeseenseeees 276

TaDIE CONVEIT DAA ..c.ueiiieieieiet ettt et ettt ettt st st s sb s e sae et eaeebe e et et e e e e e e seenneeees 278
REFOrMAELLING SPECIIA ...veiveeiieie sttt et e e s e e e n e sren 278

5.4 Creating and Modifying Par@MELErScooiiiiiiiie ittt e e e e e 278
Parameter TYPES @NU TIEESucuirireeieerierere et e e e s e e e e srens 278

Tools for Working With Parameter TIEEScccccciiveiicireireenree sttt et s sn e e 279

Format Of @ SLOred ParaMeELEroccuoieieeceer ettt st e e e ettt en e e 281

5.5 Modifying Parameter DisplaySin VINMR ..o e e 284
DiSplay TEMPIAEeoeeieeceeee st s e et e e e see et em e s enesrens 284
Conditional and Arrayed PIOLSccoceiviriirierienie ettt s se st see e esse s eatesaeennan 285

OULPUL FOMMEE ...ttt e s s s st a e sr e en s sraenr e sae s 286

5.6 User-Written Weighting FUNCLIONSciiiiiiiiricie ittt et 287
Writing @Weighting FUNCIONcveieeeeee e s s e e e e e 287
Compiling the Weighting FUNCLIONcooeeieirie et s s 288

5.7 USE-WITEEN FID FIIES .neiiieeie ettt sttt e ettt es e se e e esaes e e e e st e e s e neenes 289
[aTe L= TP UPPTUPTRN 297

14 VnmrJ User Programming 01-999253-00 A0604

List of Figures

Flgure 1. AMPHTIEr GaING .oiveeeieee ittt beb e st 56
Figure 2. Pulse Observe and Decoupler Channels Simultan€ouslycccvveiiennennenienienee 59
Figure 3. Waveform Generator Offset Delay on UNTYINOVA SyStEMScevveeiieiiicirieieee 114
Figure 4. Magnet Coordinates as Related to User COOrdinates.oevveeireiieieinnceneeee 272
Figure 5. Single-String Display Template With OULPULccooieiniiiiiiicc e 284
Figure 6. Multiple-String Display TEMPIALEccooveiriiiieiie e 285

01-999253-00 A0604 vnmrJ User Programming 15

List of Tables

Table 1. Reserved WOrdsin MAGICAL. ..o e 22
Table 2. Order of Operator Precedence (Highest First) in MAGICAL ..o 23
Table 3. Variable TYPeS in PUISE SEQUENCESccoviiiiiiie et 53
Table 4. Delay-Related STEBEEMENESccviiiiiiieee et e e e 55
Table 5. Observe Transmitter Pulse-Related SEREMENLSccvveviriciirieiiieie e 56
Table 6. Decoupler Transmitter Pulse-Related StAemMENtSccoovvveeieinevieie e 58
Table 7. SIMUltaneous PUISES SEELEMENLSccoiiiiiieiee et 59
Table 8. Transmitter Quadrature Phase Control StatemMeNntSccecvveverieveveneeie e 60
Table 9. Phase Shift STBEEMENEScc.oiiiiie e e 61
Table 10. Frequency Control SEAEEMENTSc.ooveriieiiieeee s 63
Table 11. Power Control SEBEEMENLScviveririeiiie it 64
Table 12. Gating Control SEELEMENLSc.eviiiieieeieee s 67
Table 13. Interfacing to EXternal USEr DEVICEScoiieiiiiiiiene sttt 69
Table 14. Mapping Of USEr AP LINES ..o s 69
Table 15. Integer MathematiCs SEALEMENESooiiiiiiiie e 71
Table 16. Pulse Sequence Control SEAEEMENTSc..oiveriiieiere e 72
Table 17. Statements for Controlling Graphical Display Of a SeqUENCEccvvevrevneiiie i 76
Table 18. Statements for Handling AP TabIESoociiiii e 79
Table 19. Parameter Value LOOKUP SEBEEMENTSoccoveiiieieie e 81
Table 20. Global PSG Parameters (YMYINOWVA) ..c.voiiiiiee ettt s 82
Table 21. IMaging VariablES ... e 84
Table 22. Hardware Looping Related StatemeNtSccoiveiriciirierireeiieeisiee e 97
Table 23. Number of Eventsfor Statementsin aHardware LOOpcooeveveneiiinincnnicnice 98
Table 24. Rotor Synchronization Control SLateMENEScoveieiieiiirccrc e 101
Table 25. Shaped PUISE SEALEMENESc..ouciiiie e e 104
Table 26. Programmable Control SEEEMENLScoiiiiiii i 106
Table 27. Spin Lock CoNtrol SLALEMENESc.cierierieiie e e 107
Table 28. AP BUS Delay CONSLANESc.ciuevirieeirieriieresie st e 110
Table 29. Statements for Pulse Shaping Through the AP BUS ..o 111
Table 30. AP BUSOVErNEad DEGYScuiieiiieiieiee e e 113
Table 31. Example of AP Bus Overhead Delaysfor status Statementccccoceevveinciicnnne 114
Table 32. Multidimensional PSG VariabIes ..o e 116
Table 33. Gradient CONtrol SEALEMENESc.ieieeiee et e 118
Table 34. Delays for Obliquing and Shaped Gradient Stalementscoveevveevrieineneinene 119
Table 35. Performa XY Z PFG Module SEEEEMENESc.cveveieriieieee e e 121
Table 36. Imaging-Related STALEMENES ..o e 123
Table 37. Commands for RefOrmatting Datalccoooveerieiiniciine e 276
Table 38. Commands for Working with Parameter Treescoviiriiriinecnc e 279
Table 39. ACqUISITION SEAEUS COUESeveeiieeiiereie ettt 291
16 vnmrJ User Programming 01-999253-00 A0604

chapter 1. MAGICAL Il Programming

Sectionsin this chapter:
® 1.1"Working with Macros,” this page
® 1.2"Programming with MAGICAL,” page 21
® 1.3"Reevant VnmrJ Commands,” page 32

Many of the actions performed on an NMR spectrometer are performed many times, day
after day. To make these actions easier on the user, VnmrJ software provides macros and a
high-level programming language designed for NMR.

1.1 Working with Macros

A macro is a user-defined command that can duplicate a long series of commands and
parameter changes you would otherwise have to enter one by one. To plot a spectrum, a
scale under the spectrum, and parameters on the page would require a sequence of
commands such as

pl

pscale

hpa

page

It would be possible to define a macro, say, plot, that would be the equivalent of these
commands. Or, perhapsyou routinely plot 2D spectrausing certain parameters. Inthiscase,
you might defineamacroplot 2d asequivalent to the following:

wc=160

sc=20

wc2=160

sc2=20

pcon(10,1.4)

page

But macrosin the VnmrJ software are much morethan this. Macros are written in Varian's
special high-level “NMR” language, MAGICAL 1™ (MAGnetics I nstrument Control and
AnalysisLanguage, version |l—usually just called MAGICAL inthischapter). MAGICAL
provides an entire series of programming tools, such asif statements and loops, that can be
used as part of macros. In addition, MAGICAL provides other NMR-related tools that

allow macrosto accessNMR information like peak heights, integrals, and spectral regions.
Using these two sets of tools, “NMR algorithms’ are easily implemented with MAGICAL.

Writing a Macro

Consider the following problem: Find the largest peak in a spectrum in which the peaks
may be positive or negative (such asan APT spectrum) and adjust the vertical scale of the

01-999253-00 A0604 VnmrJ User Programming 17

Chapter 1. MAGICAL Il Programming

18

spectrum so that the tallest peak is 180 mm high. The following macro (or MAGICAL
program) that we call vsadj illustrates how the MAGICAL tools can be used to quickly
and simply find a solution:

“vsadj --- Adjust scale of spectrum"

peak:sheight, $frequency "Find largest peak"

if $height<0 then Sheight=- "If negative, make positive"
Sheight endif

vs=180*vs/Sheight "Adjust the vertical scale"

Aswritten, the macro vsadj hasfour lines:

® The material in double-quotation marks (the first line and parts of other lines) are
comments. MAGICAL permits comments, and as is good programming practice, this
exampleisfilled with comments to explain what is happening.

® The second line of the macro (“peak: $height, .. .") illustrates the ability of
MAGICAL to extract spectral information. The peak command |ooks through the
spectrum and returns to the user the height and frequency of the tallest peak in the
spectrum, which are then stored (in this example) in temporary variables named
S$height and $frequency.

® Thethirdline of themacro (“if $height<o0...")illustratesthat MAGICAL isa
high-level programming language, with conditional statements (e.g., if. . .
then. . .), loops, etc. This particular line ensures that the peak height we measureis
always a positive value, which is necessary for the calculation in the next line.

® Thelastline (“vs=180*vs. ..”) illustrates the use of NMR parameters (like vs,
which setsthe vertical scale) as simple variablesin our macro. This line accomplishes
the task of calculating a new value of vs that will make the height of the tallest peak
equa to 180 mm.

Part of the power of the MAGICAL macro language is its ability to build on itself. For
example, we can create first-level macros out of existing commands, second-level macros
out of first-level macrosand commands, and so on. Suppose we created amacroplot, for
example, we might also create amacro setuph, another macro acquireh, and yet
another macro processh. Now we might create a “higher-level” macro, H1, which is
equivalentto setuph acquireh processh plot. Perhapswe have created two more
similar macros, c13 and APT. Now we might create yet another higher-level macro
HCAPT, equivalent to H1 C13 APT. At every step of the way, the power of the macro
increases, but without increasing the complexity.

Many macros are part of the standard VnmrJ software. These macros are discussed in the
relevant chapters of the manual Getting Sarted—processing macros are discussed along
with processing commands, acquisition setup macros along with acquisition setup
commands, etc. Refer to the VhmrJ Command and Parameter Reference for a concise
description of standard macros. The examples used here are instructive examples and do
not necessarily represent standard Varian software.

Executing a Macro

When any program is executed, the command interpreter first checksto seeif itisa
standard VnmrJ command. If the program is not acommand, the command interpreter then
attemptsto find amacro with the program name. Unlike abuilt-in VnmrJ command, which
isabuilt-in procedure containing code that normally cannot be changed by users, the code
inside amacro istext that is accessible and can be changed by users as needed.

VnmrJ User Programming 01-999253-00 A0604

1.1 Working with Macros

If aVnmrJ command and a macro have the same name, the VnmrJ command always takes
precedence over amacro. For example, thereisabuilt-in VnmrJcommand named wtt. If
someone happensto write amacro also named wft t, the macrowf t will never get executed
because the VnmrJ command wf t takes precedence. To get around this restriction, the
hidecommand command can rename a command so that a macro with the same name as
acommand is executed instead of the built-in command. If the user who wrotethe wft
macroentershidecommand ('wft ') ,thecommandisrenamedtowst (first letter made
upper case) and the macro wf t isnow executable directly. The new wf t macro can access
the hidden wt t built-in command by calling it with the namew£ t. To go back to executing
the command wft first, enter hidecommand ('Wft').

Macro files can reside in four separate locations:
1. Intheuser'smaclib directory.

2. Inthedirectory pointed to by themaclibpath parameter (if maclibpathis
defined in the user's global parameter file).

3. Inthedirectory pointed to by the sysmaclibpath parameter (if defined).
4. Inthesystemmaclib directory.

When macros are executed, the four locations are searched in this order. The first location
found is the one that is used. For example, rt isastandard VNMR macro in the system
maclib. If auser putsamacro named rt intheuser’smaclib, theuser'srt macrotakes
precedence over the system rt macro.

The which macro can search these locations and display on line 3 theinformation it finds
about which location contains amacro. For example, enteringwhich ('rt ') determines
the location of the macro rt.

The system macro directory /vnmr /mac1ib can bechanged by the system operator only,
but changesto it are available to all users. Each user also has their own private macro
directory maclib inthe user’'s vnmrsys directory. These macros take precedence over
the system macros if a macro of the same name isin both directories. Thus, users can
modify a macro to their own needs without affecting the operation of other users. If the
command interpreter does not find the macro, it displays an error message to the user.

Macros are executed in exactly the same way as normal system commands, including the
possibility of accepting optional arguments (shown by angled brackets “<. . . >"):

macroname< (argumentl<,argument2, ...>) >

Arguments passed to commands and macros can be constants (examples are 5. 0 and
"apt '), parametersand variables (pw and $ht), or expressions (2 *pw+5 . 0). Recursive
calls to procedures are allowed. Single quotes must be used around constant strings.

Macros can also be executed three other ways:

® When the VnmrJ program isfirst run, a system macro bootup isrun. Thismacro in
turn runs a user macro named login intheuser’slocal maclib directory if such a
macro exists.

® When any parameter x is entered, if that parameter has a certain “ protection bit” set
(see “Format of a Stored Parameter,” page 281), amacro by thename _x (thatis, the
same name as the parameter with an underline as a prefix) is executed. For example,
changing the value of sw executesthe macro _sw.

® Whenever parameters are retrieved with the rt, rtp, or rtv commands, a macro
named fixpar isexecuted.

If the macro needs to know what macro invoked it, that information is stored by the string
parameter macro available in each experiment.

01-999253-00 A0604 vnmrJ User Programming 19

Chapter 1. MAGICAL Il Programming

20

Transferring Macro Output

Output from many commands and macros, in addition to being displayed on the screen or
placed in afile, can also be transferred into any parameter or variable of the same type. To
receive the output of a program of this type, the program name (and arguments, if any) are
followed by acolon (:) and one or more names of variables and parameters that are to take
the output:

macroname< (argl<,arg2,...>)>:variablel,variable2, ...

For example, the command peak (described on page 34) findsthe height and frequency of
the tallest peak. Entering the command:
peak:rl,r2

resultsin r1 containing the height of the tallest peak and r2 its frequency. Therefore,
entering the command
peak:sht,cr

would set sht equal to the height of thetallest peak and set the cursor (parameter cr) equal
to its frequency, and thus would be the equivalent of a“tallest line” command (similar to
but different than the command n1 to position the cursor at the nearest line).

It is not necessary to receive all of the information. For example, entering
peak:s$peakht

puts the height of the tallest peak into the variable $peakht, and does not save the
information about the peak frequency.

Thecommand that displaysalinelist, d11, aso produces one output—the number of lines.
Entering
dll:s$n

reads the number of linesinto variable $n. d11 aloneis perfectly acceptable although the
information about the number of linesis then “lost.”

Loading Macros into Memory

Every time amacro isused, it is “parsed” beforeit is executed. This parsing takestime. If
amacro isused many times or if faster execution speed is desirable, the parsed form of the
macro, user or system, can be loaded into memory by the macrold command. When that
macro isexecuted, it runs substantially faster. You can even “ pre-load” one or more macros
automatically when you start VnmrJ by inserting some macrold commands into your
login macro.

Macros are also loaded into memory when you use themacrovi or macroedit
commands to edit the macro. The only argument in each is the name of the macro file; for
example, enter macrovi ('pa') or macroedit ('pa') if the macro nameis pa.
Which command you use depends on the type of macro and the text editor you want:

® For auser macro from the UNIX vi editor, usemacrovi.
® For auser macro from an editor you select, use macroedit.

® To edit a system macro, copy the macro to your personal macro directory and edit it
therewithmacrovi or macroedit.

To select the editor for macroedit, set the UNIX variable vnmreditor toitsname
(vamreditor isset through the UNIX env command). You must have also a script for
the editor in the bin subdirectory of the VnmrJ system directory. For example, you can
select Emacs by setting vamreditor=emacs and having ascript viomr _emacs.

Several minor problems need to be considered in loading macros into memory:

VnmrJ User Programming 01-999253-00 A0604

1.2 Programming with MAGICAL

® These macros consume a small amount of memory. In memory-critical situations, you
might want to remove one or more macros from memory. This is done with the
purge< (file) > command, where f£1i1e isthe name of amacro file to be removed
from memory. Entering purge with no arguments removes all macros loaded into
memory.

CAUTION: The purge command with no arguments should never be called from
amacro, because it will remove all macros from memory, including the
macro containing purge. Furthermore, purge, where the argument is
the name of the macro containing the purge command, should never
be called.

® |f amacroisloaded in memory and you try to modify the macro from aseparate UNIX
window, the copy in memory isnot changed, so if you execute themacro again, VNMR
executesthe old copy. To avoid this, usemacrovi or macroedit to edit the macro,
or if you have already edited the macro from another window, usemacrold toreplace
the macro loaded in memory with the new version.

® |f youwish to create a personal macro with the same name as a system macro aready
in memory, you must use purge to clear the system macro from memory so the
version in your personal mac1ib directory will subsequently be executed.

If one macro calls another macro inside aloop, you might improve performance by having
the calling macro | oad the called macro before entering the loop, execute the loop, and then
remove the called macro from memory with the purge command.

1.2 Programming with MAGICAL

MAGICAL has many features, including tokens, variables, expressions, conditional
statements, and loops. To program in MAGICAL, you need to know about the main
features described in this section.

Tokens

In acomputer language, atoken is defined as a character or charactersthat is taken by the
language as a single “thing” or “unit.” There are five classes of tokensin MAGICAL:
identifiers, reserved words, constants, operators, and separators.

Identifiers

An identifier isthe name of a command, macro, parameter, or variable, and is a sequence
of letters, digits, and the characters _ $#. The underline _ counts as aletter. Upper and
lower case |etters are different. The first letter of identifiers, except temporary variable
identifiers, must be a letter. Temporary variable identifiers start with the dollar-sign

(%) character. Identifiers can be any length (but be reasonable). Examples of identifiers are
pcon, pw, of Sheight.

Reserved Words

Theidentifierslisted in Table 1 are reserved words and may not be used otherwise.
Reserved words are recogni zed in both upper and lower caseformats (e.g., do not use either
and or AND except as areserved word).

01-999253-00 A0604 VnmrJ User Programming 21

Chapter 1. MAGICAL Il Programming

Table 1. Reserved Wordsin MAGICAL.

abort else not trunc
abortoff elseif or typeof
aborton endif repeat then
and endwhile return until
break if size while
do mod sart

Constants

Constants can be either floating or string.

A floating constant consists of an integer part, a decimal point, a fractional part, the
letter E (or e) and, optionally, asigned integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part or the fraction part (but not
both) may be missing; similarly, either the decimal point, or the E (or) and the
exponent may be missing. Some examples are 1.37E-3, 4€5, .2E2, 1.4, 5.

A string constant is a sequence of characters surrounded by single-quote characters

('...") or by backward single-quote characters ("..."). 'This is a string' and
“This is a string™ areexamples of string constants.

To include a single-quote character in astring, place a backslash character (\) before
the single-quote character, for example:

'This string isn\'t permissible without the backslash'

To include a backslash character in the string, place another backslash before the
backslash, such as

'This string includes the backslash \\'
Alternatively, thetwo styles of single quote characters can be used. If backward single
quotes are used to delimit a string, then single quotes can be placed directly within the
string, for example:

“This isn't a problem"

Or the single-quote styles can be exchanged, for example:

'This isn"t a problem'

The single quote style that initiates the string must also terminate the string.

Operators

Table 2 liststhe operators availablein MAGICAL. Each operator is placed in agroup, and
groups are shown in order of precedence, with the highest group precedence first. Within
each group, operator precedence in expressions is from left to right, except for the logical
group, where the respective members are listed in order of precedence.

There are four “built-in" special operators:

sqrt returnsthe square root of areal number.
trunc truncates real numbers.

typeof returnsanidentifier (0, or 1) for the type (real, or string) of an argument. The
typeof operator will abort if the identifier does not exist.

s1ize returnsthe number of elementsin an arrayed parameter.

22 vnmrJ User Programming 01-999253-00 A0604

1.2 Programming with MAGICAL

Table 2. Order of Operator Precedence (Highest First) in MAGICAL

Group Operation Description Example
special sqrt () square root a = sqgrt(b)
trunc () truncation $3 = trunc(3.6)
typeof () return argument type if typeof ('$1') then...
size () return argument size rl = size('d2")
unary - negative a = -5
multiplicative * multiplication a=2%*c¢
/ division b=a/2
% remainder $1 = 4 % 3
mod modulo $3 = 7 mod 4
additive + addition a=x+ 4
- subtraction b=y - sw
relational < lessthan if a < b then...
> greater than if a > b then...
<= less than or equal to if a <= b then...
>= greater than or equal to if a >= b then...
equality = equal to if a = b then...
<> not equal to if a <> b then...
logical not negation if not (a=b) then...
and logica and if rl and r2 then...
or logical inclusive or if (rl=2) or (r2=4)
then. ..
assignment = equal a =3

The unary, multiplicative, and additive operators apply only to real variables. The +
(addition) operator can aso be used with string variables to concatenate two strings
together. The mathematical operators can not be used with mixed variable types.

If the variable is an array, the mathematical operatorstry to do simple matrix arithmetic. If
two matrices of the same size are equated, added, subtracted, multiplied, divided, or one
matrix is taken as a modulus, each element of the first matrix is operated on with the
corresponding element of the second. If two matrices of the same size are compared with
an and operator, the resulting Boolean is the AND of each individual element. If two
matrices of the same size are ORed together, the resulting Boolean isthe OR of each
individua element. If the two matrices have unequal sizes, an error results.

An arrayed variable cannot be operated on (added, multiplied, etc.) by a single-valued
constant or variable. For example, if pw is an array of five values, pw=2*pw does not
double the value of each element of the array.

Comments

MAGICAL programming provides three ways to enter comments:

® Createacomment by putting characters between double quotation marks ("..."), except
when the double quotation marks arein aliteral string, e.g.,

'The word “and” is a reserved word'

01-999253-00 A0604 vnmrJ User Programming 23

Chapter 1. MAGICAL Il Programming

24

Comments based on double quotation marks can appear anywhere—at the beginning,
middle, or end of aline—but cannot span multiple lines. At the end of a comment,
place a second double quotation mark; otherwise, the comment is automatically
terminated when the end of aline occurs.

® Create asingle-line comment with two slash marks (//). The comment starts with the
/I and ends on the line, e.g.,

// This is a comment

Aswith the double quotation marks, // in aliteral string does not signify a comment.
Thistype of comment is often used for a brief description of the preceding command,
eg.

cde // clear drift correction

® Create asingle-line or multiple-lines comment with a slash and asterisk (/*), which
begins the comment, and an asterisk and a slash (*/), which ends the comment, e.g.,
/* The comment
can span
multiple lines
*/
Thistype of comment is useful for longer descriptions. It isalso useful for
“commenting out” sections of a macro for debugging purposes.
Again, if the/* or */ arein aliteral string, they do not serve as comment delimiters.
These comments do not nest; that is, the following construct will fail,
/*
/* Comment does not nest
This will cause an error
*/
*/
In this example, the first /* starts the comment. The second /* isignored becauseit is
part of the comment. The first */ terminates the comment, which causes the second
*/ to generate an error.

Separators

Blanks, tabs, new lines, and comments serve to separate tokens and are otherwise ignored.

Variable Types

Aswith many programming languages, MAGICAL provides two classes of variables:

® Global variables (also called external) that retain their values on a permanent or semi-
permanent basis.

® Local variables (also caled temporary and automatic) that are created for the time it
takes to execute the macro in question, after which the variables no longer exist.

Global and local variables can be of two types: real and string. Global real variables are
stored as double-precision (64-bit) floating point numbers. The real (variable)
command creates area variable without avalue, where variable isthe name of the
variable to be created.

Although global real variables have potential limitsfrom 1e308 to 1e-308, when such
variables are created, they are given default maximum and minimum values of 1e18 and
-1e18; these can subsequently be changed with the set1imit command. For example,
setlimit('rl',1e99,-1e99,0) setsvariablerl tolimitsof 1e99 and -1e99.

VnmrJ User Programming 01-999253-00 A0604

1.2 Programming with MAGICAL

Locd real variables have limits slightly lessthan 1e18 (9.999999843067e17, to be
precise) and cannot be changed.

String variables can have any number of characters, including a null string that has no
characters. The command string (variable), where variable isthe nameof the
variable to be created, creates a string variable without a value.

Both real and string variables can have either asingle value or aseries of values (also called
an array).

Global and local variables have the following set of attributes associated with them:

name group array size

basi ctype display group enumeration
subtype max./min. values protection status
active step size

The variabl€'s attributes are used by programs when manipulating variables.

Global Variables

The most important global variables used in macros are the VnmrJ parameters themsel ves.
Thus parameterslike vs (vertical scale), nt (number of transients), at (acquisition time),
etc., can beused inaMAGICAL macro. Likeany variable, they can beused on theleft side
of an equation (and hence their value changed) or they can be used on the right side of an
equation (as part of a calculation, perhaps to set another parameter).

Thereal-value parameters r1, r2, r3, r4, r5, r6, and r7, and the string parameter n1,
n2, and n3 are not NMR variables but can be used by macros. In using these parameters,
it isimportant to remember that they are experiment-based parameters. If you arein expl
and a macro changes experiments by using the command jexp3, for example, anew set
of such parameters appears. Similarly, recalling parameters or data with the rt or rtp
commands overwritesthe current values of these parameters, just asit overwritestheva ues
of al other parameters.

Within a single experiment, and assuming that the rt and rtp commands are not used,
however, these parameters do act like global parametersin that all macros can read or write
information into these parameters, and hence information can be passed from one macro to
another in thisway. They thus provide a useful place to store information that must be
retained for some time or must be accessed by more than one macro—be sure that some
other macro does not change the value of this variable in the meantime!

Local Variables

Any number of local variables can be created within a macro. These temporary variables
begin with the dollar-sign ($) character, such as $number and $peakht. The type of
variable (real or string) is decided by thefirst usage—there isno variable declaration, asin
many languages. Therefore, setting, $number=5 and $select="all"' establishes
$number asareal variableand $select asastring variable.

A special initializationisrequired in one situation. When thefirst use of astring variableis
as the return argument from a procedure, it must be initialized first by setting it to anull
string. For example, aline such as

input ('Input Your Name: ') :Sname

produces an error. Use instead
Sname=' ' input ('Input Your Name: ') :S$name.

01-999253-00 A0604 vnmrJ User Programming 25

Chapter 1. MAGICAL Il Programming

26

By definition, local variables are lost upon completion of the macro. Furthermore, they are
completely local, which means that each macro, even a macro that is being run by another
macro, has its own set of variables. If one macro sets $number=5 and then runs another
macro that sets Snumber=10, when the second macro completes operation and the
execution of commands returnsto the first macro, $number equals 5, not 10. If the first
macro isrun again at alater time, $number startswith an undefined value. It is good
practice to use local variables whenever possible.

Loca variables can also be created on the command input line. These variables are
automatically created but are not del eted, and hencethisisnot arecommended practice; use
rl, r2, etc., instead.

Accessing a variable that does not exist displays the error message:

Variable “variable name” doesn’t exist.

Arrays

Both global and local variables, whether real or string, can be arrayed. Array elements are
referred to by square brackets ([...]), such aspw [1] . Indices for the array can be fixed
numbers (pw [31), global variables (pw [r1]1), or local variables (pw [$i1). Of course,
theindex must not exceed the size of the array. You can usethe s i ze operator to determine
the array size. For example, the statement ri=size ('d2"') setsr1l to number of
elementsin variable d2. If the variable hasonly asingle value, size returnsal,; if the
variable doesn't exist, it returns a 0.

Some arrays, such as a pulse width array, are user-created by keyboard entry. Other arrays,
suchas11frqgand 11lamp, are created by the software (in this case when alinelistis
performed). In both these cases, a macro can refer to any existing element of the array,
pw([4] orllfrqg[5], for example.

A MAGICAL macro can aso create loca variables containing arrayed information by
itself. No dimensioning statement is required; the variable just expands as necessary. The
only constraint is that the array must be created in order: element 1 isfirst, element 2
second, and so on. The following example shows how an array might be created and all
valuesinitialized to O:
$i=1
repeat

Snewarray [$i] =0

$i=$i+1
until $1>10

Arrays of String Variables

Arrays of string variables are identical in every way to arrays of real variables, except that
the values are strings. If, for example, a user has entered dm="'nny', 'yyy', the
following macro plots each spectrum with the proper label:
$i=1
repeat
select ($1)
pl
write ('plotter', 0,wc2max-10, 'Decoupler mode: %s',dm[$i])
page
$i=$i+1
until Sis>size('dm')

VnmrJ User Programming 01-999253-00 A0604

1.2 Programming with MAGICAL

Arrays of Listed Elements

Arrays can be constructed by simply listing the elements, separated by commas. For
example,
pw=1l,2,3,4

creates apw array with four elements. You can select theinitial array element when using
thislist mechanism by providing the index in square brackets. For example,
pw[3]=5,6

resultsin pw having elements 1,2,5,6. You can also extend arraysasin
pw[5]=7,8,9

whichyields apw array or 1,2,5,6,7,8,9. You can change existing values and extend the

array, asin
pwl[6]=6,7,8,9,10

which yields apw array of 1,2,5,6,7,6,7,8,9,10

Comma separated lists can aso include expressions. For example,
d2=0,1/swl,2/swl, 3/swl

The square brackets can also be used on the right hand side of the equal sign in order to
construct arrays. The[] can enclose a single value or expression or an array of values or
expressions. Any mathematicsappliedtothe[] element will be applied individually to each
element within the [].

Some examples.

Enter Result

nt=[1] nt=1
nt=[1,2,3] nt=1,2,3
nt=[1,2,3]1*10 nt=10,20,30

nt=22*[2*3,r2+6,trunc (r3)]+2 nt=22*2%*3+2,22% (r2+6) +2,22*trunc (r3) +2
d2=[0,1,2,3]/swl d2=0/swl,1/swl,2/swl,3/swl

You can aso use [] to give precedence to expressions, just like ().

Enter Result

nt=[2*[3+4]] nt=14

There are acouple of limitations if the [] element is used as part of a mathematical

expression. When used in expressions, only asingle[] elementisallowed. Also, when used

in expressions, the [] element cannot be mixed with the standard comma (,) arraying

element. For example, nt=[1,2] * [3, 4] isnot allowed. You will get the error message
"No more than one [--.--1"

nt=1, [2,3,4]*10isnot alowed. You will get the error message
"Cannot combine , with [--.--]1"

01-999253-00 A0604 VnmrJ User Programming 27

Chapter 1. MAGICAL Il Programming

28

These restrictions only occur if mathematical operators are used and the [] element itself
containsacomma. Simply listing multiple[] elements, or combining them with the comma
element is okay.

Enter Result
nt=[1,2],3 nt=1,2,3
nt=[1,2], [3,4] nt=1,2,3,4

Array Error Messages

Accessing an array element that does not exist displays the error message:
variable name["index"] index out of bounds

Using a string as an index, rather than an integer, displays the error message:
Index for variable name['index'] must be numeric

or

Index must be numeric

Finally, using an array as an index displays the error message:
Index for variable name must be numeric scalar

or

Index must be numeric scalar.

Expressions

An expression is a combination of variables, constants, and operators. Parentheses can be
used to group together a combination of expressions. Multiple nesting of parenthesesis
allowed. In making expressions, combine only variables and constants of the sametype:

® Real variables and constants only with other real variables and constants.
® String variables and constants only with other string variables and constants.

The type of alocal variable (a variable whose name begins with a $) is determined by the
context inwhich it isfirst used. The only ambiguity iswhen alocal variableisfirst used as
areturn argument of acommand such as input, as discussed in the previous section on
local variables.

If anillegal combination is attempted, an error message is displayed:
Can't assign STRING value "value" to REAL variable \
"variable name"

or
Can't assign REAL value (value) to STRING variable \
"variable name"

Mathematical Expressions

Expressions can be classified as mathematical or Boolean. Mathematical expressions can
be used in place of simple numbers or parameters. Expressions can be used in parameter
assignments, such asinpw=0.6*pw90, Or asinput arguments to commands or macros,
suchasinpa (-5+sc, 50+vp).

When parameters are changed as a result of expressions, the normal checks and limits on
the entry of that particular parameter are followed. For example, if nt=7, the statement
nt=0.5*nt will endwithnt=3, just asdirectly entering nt=3 . 5 would have resulted

VnmrJ User Programming 01-999253-00 A0604

1.2 Programming with MAGICAL

in nt=3. Other examples of this include the round-off of £n entriesto powers of two,
limitation of various parameters to be positive only, etc.

Boolean Expressions

Boolean expressions have a value of either TRUE or FALSE. Booleans are represented
internally as 0.0 for FALSE and 1.0 for TRUE, although in a Boolean expression any
number other than zero is interpreted as TRUE. Boolean expressions can only compare
guantities of the same type—real numbers with real numbers, or stringswith strings. Some
examples of Boolean expressions include pw=10, sw>=10000,at/2<0.05, and
(pw<5) or (pw>10).

The explicit use of the words “TRUE” and “FALSE” is not allowed. All Boolean
expressions are implicit—they are evaluated when used and given avaue of TRUE or
FALSE for the purpose of some decision.

Input Arguments

Arguments passed to a macro are referenced by $n, where n is the argument number. An
unlimited number of arguments ($1, $2, and so on) can be passed. The name of the macro
itself may be accessed using the special name $0. For example, if themacro test1is
running, $0 isgiventhevalue test1. A second special variable $# contains the number
of arguments passed and can be used for routines having avariable number of arguments.
$## isthe number of return values reguested by the calling macro. Arguments can be either
real or string types, as with all parameters.

An example of using an input argumentssuch as $1:

"vsmult (multiplier) "

"Multiply vertical scale (vs) by input argument"
vs=$1*vs

Another example, which uses two input arguments:

"offset (argl,arg2)"

"Increment vertical position (vp) and horizontal position (sc)"
vp=51+vp

sc=$2+sc

The typeof operator returnsaO if the variableisrea. Itreturnsalif thevariableisa
string. It will abort if the variable does not exist. For example, in the conditional statement
if typeof ('$1') then ..., thethen partisexecuted only if $1 isastring.

Name Replacement

An identifier surrounded by curly braces ({...}) resultsin the identifier being replaced by
its value before the full expression is evaluated. If the name replacement is on the left side
of theequal sign, the new nameisassigned avalue. If the name replacement is on theright
side of the equal sign, the value of the new name is used. The following are examples of
name replacement:

Sa = 'pw!' "variable $a is set to string 'pw'"
{sa} = 10.3 "pw is set to 10.3"

pw = 20.5 "pw is set to 20.5"

$b = {%a} "variable $b is set to 20.5"
{sa}[2]=5 "pw[2] is set to 5.0"

$b = {sa}[2] "variable $b is set to 5.0"

01-999253-00 A0604 vnmrJ User Programming 29

Chapter 1. MAGICAL Il Programming

30

Scmd="'wft"' "Scmd is set to the string 'wft'"

{$cmd} "execute wft command"

The use of curly braces for command execution is subject to a number of constraints. In
general, using the VNMR command exec for the purpose of executing an arbitrary
command string is recommended. In thislast example, thiswould be exec ($cmd) .

Conditional Statements

The following forms of conditional statements are allowed:

if booleanexpression then ... endif

if booleanexpression then ... else ... endif

if booleanexpression then ... {elseif boolianexpression then...
}lelse...]lendif

The elseif subexpression in braces can be repeated any number of times. Theelse
subexpression in bracketsis optional.)

Any number of statements (including none) can be inserted in place of the ellipses (...). If
booleanexpression iSTRUE, the then statements are executed; if
booleanexpression iSFALSE, theelse statements (if any) are executed instead.
Notethat endi £ isrequired for both formsand that no other delimiters (such asBEGIN or
END) are used, even when multiple statements are inserted. Nesting of i f statements (the
use of i f statement as part of another if statement) isallowed, but besureeach i £ has
acorrespondingendif.Nestedif . . . endit statementstendto resultinlong, confusing
listsof endif keywords. Often, this can be avoided by usingtheelsei £ keyword. Any
number of elseif statementscanbeincludedinan if. . .endif expression. Only one
of theif, elseif, or else clauseswill be executed.

The following example usesasimple i £ ... then conditional statement:

"error --- Check for error conditions"
if (pw>100) or (d1>30) or ((tn='H1') and (dhp='y'))

then write('line3', 'Problem with acquisition parameters')
endif

This example adds an e1 se conditional statement:

"checkpw --- Check pulse width against predefined limits"
if pw<l
then pw=1 write('line3', 'pw too small')
else if pw>100
then pw=100 write('line3', 'pw too large')
endif

endif
Thisexampleillustrates the use of elseif conditional statements:

if ($1='mon') then
echo ('Monday')

elseif ($1 = 'tue') then
echo ('Tuesday')

elseif ($1 = 'wed') then
echo ('Wednesday')

elseif ($1 = 'thu') then

echo (' Thursday')

elseif ($1 = 'fri') then
echo ('Friday"')

VnmrJ User Programming 01-999253-00 A0604

1.2 Programming with MAGICAL

else
echo ('Weekend')
enndif

Loops

Two types of loops are available. The while loop has the form:
while booleanexpression do ... endwhile

Thistype of loop repeats the statements between do and endwhile, aslong as
booleanexpressionisTRUE (if booleanexpression isFALSE from the start,
the statements are not executed).

The other type of loop isthe repeat loop, which has the form:
repeat ... until booleanexpression

Thisloop repeats statementsbetween repeat anduntil, until booleanexpression
becomes TRUE (if booleanexpression is TRUE at the start, the statements are
executed once).

The essential difference between repeat andwhile loopsisthat the repeat type
always performsthe statementsat least once, while thewhi1e type may never performthe
statements. The following macro is an example of using the repeat loop:
"maxpk (first,last) -- Find tallest peak in a series of spectra"
Sfirst=s1
repeat
select ($1) peak:S$ht
if $1=$first
then Smaxht=S$ht
else if sht>Smaxht then S$Smaxht=S$ht endif
endif
$1=$1+1
until $1>$2

Both types of loops are often preceded by $n=1, then have a statement like $n=3n+1
inside the loop to increment some looping condition. Beware of endless |oops!

Macro Length and Termination

Macros have no restriction on length. Execution of a macro is terminated when the
command return is encountered. Thisis usualy inserted into the macro after testing
some condition, as shown in the example bel ow:

"plotif--Plot a spectrum if tallest peak less than 200 mm"
peak:sht

if $ht>200 then return else pl endif

The syntax return (expressionl, expression2, ...) alowsthe macro to return
values to another calling macro, just as do commands. Thisinformation is captured by the
calling macro using the format : argument1, argument?2, ... Hereisan example of
returning a value to the calling macro:

"abs (input) :output -- Take absolute value of input"

if $1>0 then return($l) else return(-$1) endif

In nested macros, re turn terminatesthe currently operating macro, but not the macro that
called the current macro.

01-999253-00 A0604 vnmrJ User Programming 31

Chapter 1. MAGICAL Il Programming

To terminate the action of the calling macro (and all higher levels of nesting), the abort
command is provided. abort can be madeto act like return at any particular level by
using the abortof £ command. Consider the following sequence:

abortoff macrol macro2

If macrol containsan abort command and it is executed, abort terminatesmacrol;
however, macro2 still will be executed. If the macro sequence did not contain the
abortof f statement, however, execution of an abort command inmacrol would have
prevented the operation of macro2. The aborton command nullifies the operation of
abortof £ and restores the normal functioning of abort.

Command and Macro Tracing

InVnmrJwe send the output to any terminal window. In theterminal window type'tty';
reply is /dev/pts/xx, where xx isanumber. Use this on the VnhmrJ command line
jFunc (55, ' /dev/pts/xx") . Replace xx with the correct number.

The commands debug ('c') and debug ('C') turn on and off, respectively, VnmrJ
command and macro tracing. When tracing is on, alist of each executed command and
macroisdisplayed inthe Terminal (in CDE) or Command Tool (in OpenWindows) window
from which VnmrJ was started. Nesting of the cals is shown by indentation of the output.
A return status of “returned” or “aborted” can help track down which macro or command
failed.

If VnmrJis started when the user logsin, or if it started from adrop-down menu or the CDE
tool, the output goesto aConsole window. If no Consolewindow is present, the output goes
into afilein the /var/tmp directory. Thislast option is not recommended.

1.3 Relevant VnmrJ Commands

dres

Many VnmrJ commands are particularly well-suited for use with MAGICAL
programming. This section lists some of those commands with their syntax (if the
command uses arguments) and a short summary taken from the VnmrJ Command and
Parameter Reference. Refer to that publication for more information. (Remember that
string arguments must be enclosed in single quotes.)

Spectral Analysis Tools

Measure linewidth and digital resolution

Syntax: dres< (<frequency<, fractional height>>)> \
:linewidth, resolution

Description: Analyzesline defined by current cursor position (cr) for linewidth and digital

dsn

resolution. frequency overrides cr asthe line frequency.
fractional height specifiesthe height at which linewidth is measured.

Measure signal-to-noise
Syntax: dsn<(low field,high field)s>:signal to noise,noise

Description: Measures signal-to-noise of a spectrum. Noise region can be specified by

32

supplying low fieldandhigh field frequencies, in Hz.

VnmrJ User Programming 01-999253-00 A0604

dsnmax

Syntax:

Description:

getll

Syntax:

Description:

getreg

Syntax:

Description:

integ

Syntax:

Description:

mark

Syntax:

Description:

nll

Syntax:

Description:

numreg

Syntax:

Description:

01-999253-00 A0604

1.3 Relevant VnmrJ Commands

Calculate maximum signal-to-noise
dsnmax< (noise region) >

Finds best signal-to-noisein aregion. noise region,inHz, can be
specified, or the cursor difference (delta) can be used by default.

Get line frequency and intensity from line list
getll (line number) <:height, frequency>
Returns the height and frequency of the specified line number.

Get frequency limits of a specified region
getreg(region number) <:minimum, maximums>

Returns the minimum and maximum freguencies, in Hz, of the specified region
number.

Find largest integral in specified region
integ< (highfield, lowfield) ><:size,value>

Finds the largest absolute-value integral in the specified region or the total
integral if no reset points are present between the specified limits. The default
valuesfor highfield and lowfield are parameters sp and sp+wp,
respectively.

Determine intensity of the spectrum at a point

mark< (f1_position) >

mark< (left edge,region width) >

mark< (f1 position, f2 position) >

mark< (f1_start,fl end, f2 start,f2 end)>
mark< ('trace', <options>) >

mark ('reset')

Functions similarly to the MARK button of ds and dconi. 1D or 2D operations
can be performed in the cursor or box modefor atotal of four separate functions.
In the cursor mode, theintensity at a particular point isfound. In the box mode,
theintegral over aregionis calculated. For 2D operations, thisisavolume
integral. In addition, the mark command in the box mode finds the maximum
intensity and the coordinate(s) of the maximum intensity.

Find line frequencies and intensities
nll<('pos'<,noise mult))><:number lines>

Returnsthe number of lines using the current threshold, but does not display or
print the line list.

Return the number of regions in a spectrum

numreg:number regions

Finds the number of regionsin a previously divided spectrum.

VnmrJ User Programming 33

Chapter 1. MAGICAL Il Programming

peak

Syntax:

Description:

select

Syntax:

Description:

Find tallest peak in specified region
peak< (min frequency,max frequency) ><:height, freg>

Finds the height and frequency of the tallest peak in the selected region.
min frequency and max_fregquency arethefrequency limits, in Hz, of
the region to be searched; default values are the parameters sp and sp+wp.

Select a spectrum or 2D plane without displaying it
select< (<'£1£3'|'£2£3"|'£1f2'><, 'proj'> \
<'next'|'prev'|planes>)><:index>

Setsfuture actionsto apply to aparticular spectrumin an array or to aparticular
2D plane of a3D data set. index istheindex number of spectrum or 2D plane.

Input/Output Tools

apa

Description:

banner

Syntax:

Description:

clear

Syntax:

Description:

confirm

Syntax:

Description:

echo

Syntax:

Description:

flip

Syntax:

34 VnmrJ User Programming

Plot parameters automatically
Selects the appropriate command on different devices to plot the parameter list.

Display message with large characters
banner (message<, color><, font>)

Displaysthe text given by message aslarge-size characters on the VNMR
graphics windows.

Clear a window
clear< (window_number) >

Clears window given by window number on the Sun or GraphOn terminal.
With no argument, clears the text screen.

Confirm message using the mouse
confirm(message) : Sresponse

Displays dialog box with me ssage and two buttons: Confirm and Cancel.
response is1if the user clicksthe mouse on Confirm; response isQif the
user clicks the mouse on Cancel.

Display strings and parameter values in text window
echo<(<'-n',>stringl, string2,....)>

Functionally similar tothe UNIX echo command. Argumentsto VNMR echo
can be strings or parameter values, such aspw. The '-n' option suppresses
advancing to the next line.

Flip between graphics and text window

flip<('graphics'|'text' \
<,'off'|'on'| ' 'autooff' | 'autoon's>) >

01-999253-00 A0604

Description:

format

Syntax:

Description:

input

Syntax:

Description:

lookup

Syntax:

Description:

nrecords

Syntax:

Description:

psgset

Syntax:

Description:

vnmr confirmer

Syntax:

Description:

01-999253-00 A0604

1.3 Relevant VnmrJ Commands

Brings the graphics or text window to the top of the screen. It also controls
whether parameter changes or commands that write to awindow cause a
window to appear.

Format a real number or convert a string for output

format (real number,length,precision) :string var
format (string, 'upper'|'lower'|'isreal') :return var

Using first syntax, takesareal number and formatsit into astring with the given
length and precision. Using second syntax, converts a string variable into a
string of characters, all upper case or all lowercase, or teststhefirst argument to
verify that it satisfiesthe rules for areal number (1 isreturned if the first
argument isarea number, otherwise a zero is returned).

Receive input from keyboard
input< (<prompt><,delimiter>) >:varl,var2, ...

Receives characters from the keyboard and stores them into one or more string
variables. prompt isastring that is displayed on the command line. The
default delimiter isacomma

Look up and return words and lines from text file
lookup (options) :returnl, return2, ..., number returned

Searches atext file for aword and returns to the user subsegquent words or lines.
options isoneor morekeywords ('file",

'seek', 'skip', 'read', 'readline’', 'count', and
'"delimiter') and other arguments.

Determine number of lines in a file
nrecords (file) : Snumber lines

Returns the number of “records,” or lines, in the given file.

Set up parameters for various pulse sequences
psgset (file,paraml,param2, ..., paramN)

Sets up parametersfor various pulse sequences using information in afile from
the user or system parlib.

Display a confirmer window (UNIX)

vamr confirmer message <label values>...\
<"-x"posx> <"-y"posy> <"-fn"name>
Displays a confirmer window consisting of a message (asingle-line

multicharacter string) and one or more buttons. The default window location
and font can be changed by the argumentsposx, posy, andname. Each button
has aunique label (a short string) and value (anumber or string) that are set by
arguments 1abel and value. When the user clicks on one of the buttons,
vnmr_confirmer returnsavalue. BecauseitisaUNIX command,
vnmr_confirmer cannot becalleddirectly fromVNMR; it must be accessed

35

VnmrJ User Programming

Chapter 1. MAGICAL Il Programming

write

Syntax:

Description:

using the VNMR shell command (e.g., shell ('vamr confirmer
"This is a test" "Label 1" 1 "Label 2" 2 "Label 3"
3') :$ret displaysthemessage “This is a test” and makesthree
buttons available, returning 1, 2, or 3, respectively).

Write output to various devices
write ('graphics'|'plotter'<,color|pen> \
<, 'reverse's>,X,y<,template>)<:height>
write ('alpha'|'printer'|'line3'|'error', template)
write('reset'|'file',file<,template>)

Displays strings and parameter values on various output devices.

Regression and Curve Fitting

analyze

Syntax:

Description:

autoscale

Description:

expfit

Syntax:

Description:

expl

Syntax:

Description:

pexpl
Syntax:

Description:

polyO
Description:

36

VnmrJ User Programming

Generalized curve fitting

(Curvefitting) analyze ('expfit', xarray<,options>)
(Regression) analyze ('expfit', 'regression'<,options>)

Provides an interface to the UNIX curvefitting program expfit, supplying
input datain the form of thetext fileanalyze . inp inthe current experiment.

Resume autoscaling after limits set by scalelimits

Returnsto autoscaling in which the scale limits are determined by the expl
command such that al the datain the expl input file is displayed.

Least-squares fit to exponential or polynomial curve (UNIX)
expfit options <analyze.inp >analyze.list

A UNIX command that takes a least-squares curve fitting to the data supplied
inthefile analyze. inp.

Display exponential or polynomial curves
expl< (<options,>linel,line2,...)>

Displays exponentia curves resulting from T4, Ty, or kinetic analyses. Also
displays polynomial curves from diffusion or other types of analysis.

Plot exponential or polynomial curves
pexpl< (<options><,linel,line2,...)>

Plotsexponential curvesfrom T4, T,, or kineticsanalysis. Also plots polynomia
curves from diffusion or other types of analysis.

Display mean of the data in the file regression.inp
Calculates and displays the mean of datainthefile regression. inp.

01-999253-00 A0604

rinput

Description:

scalelimits

Syntax:

Description:

1.3 Relevant VnmrJ Commands

Input data for a regression analysis

Formats data for regression analysis and placesit into the file
regression.inp.

Set limits for scales in regression
Scalelimits (x_start,x end,y start,y end)

Causes the command exp1 to use typed-in scale limits.

Mathematical Functions

abs

Syntax:

Description:

acos

Syntax:

Description:

asin

Syntax:

Description:

atan

Syntax:

Description:

atan2

Syntax:

Description:

averag

Syntax:

Description:

cos

Syntax:

Description:

01-999253-00 A0604

Find absolute value of a number
abs (number) <:value>

Finds absolute value of a number.

Find arc cosine of a number
acos (number) <:value>

Finds arc cosine of a number. The optional return value isin radians.

Find arc sine of a number
asin (number) <:value>

Finds arc sine of anumber. The optional return value isinradians.

Find arc tangent of a number
atan (number) <:value>

Finds arc tangent of a number. The optiona return value isin radians.

Find arc tangent of two numbers
atan2 (y,x)<:value>

Finds arc tangent of v /x. The optional return argument value isin radians.

Calculate average and standard deviation of input

averag (numl,num2, ...) \
:average, sd, arguments, sum, sum_squares

Finds average, standard deviation, and other characteristics of a series of
numbers.

Find cosine value of an angle

cos (angle) <:value>

Finds cosine of an angle given in radians.

VnmrJ User Programming 37

Chapter 1. MAGICAL Il Programming

exp

Syntax:

Description:

1n

Syntax:

Description:

sin

Syntax:

Description:

tan

Syntax:

Description:

Find exponential value of a number
exp (number) <:value>

Finds exponential value (base e) of a number.

Find natural logarithm of a number
1n (number) <:values>

Finds natural logarithm of a number. To convert to base 10, use
logigx = 0.43429 *1n(x).

Find sine value of an angle
sin (angle) <:value>

Finds sine an angle given in radians.

Find tangent value of an angle
tan (angle) <:value>

Finds tangent of an angle given in radians.

Creating, Modifying, and Displaying Macros

crcom

Syntax:

Description:

delcom

Syntax:

Description:

hidecommand

Syntax:

Description:

macrocat

Syntax:

Description:

38 VnmrJ User Programming

Create a user macro without using a text editor
crcom(file,actions)

Creates a user macro filein the user's macro directory. The actions string is
the contents of the new macro.

Delete a user macro
delcom(file)

Deletes a user macro filein the user's macro directory. The actions stringis
the contents of the new macro.

Execute macro instead of command with same name

hidecommand (command name) <:$new name>
hidecommand('?")

Renames abuilt-in VNMR command so that amacro with the same name asthe
built-in command is executed instead of the built-in command.
command_name is the name of the command to be renamed. ' ? ' displaysa
list of renamed built-in commands.

Display a user macro on the text window
macrocat (filel<, file2><, ...>)

Displays one or more user macro files, wherefilel, file2, ... arenames

of macros in the user macro directory.

01-999253-00 A0604

macrocp

Syntax:

Description:

macrodir

Description:

macroedit

Syntax:

Description:

macrold

Syntax:

Description:

macrorm

Syntax:

Description:

macrosyscat

Syntax:

Description:

macrosyscp

Syntax:

Description:

macrosysdir

Description:

macrosysrm

Syntax:

Description:

macrovi

Syntax:

01-999253-00 A0604

1.3 Relevant VnmrJ Commands

Copy a user macro file
macrocp (from file,to file)

Makes a copy of an existing user macro.

List user macros
Lists names of user macros.

Edit a user macro with user-selectable editor

macroedit (file)

M odifiesan existing user macro or createsanew macro. To edit asystem macro,

copy it to a persona macro directory first.

Load a macro into memory

macrold(file) <:dummy>

L oadsamacro, user or system, into memory. If macro already existsin memory,

it is overwritten by the new macro. Including areturn value suppresses the

message on line 3 that the macro is loaded.

Remove a user macro
macrorm(file)

Removes a user macro from the user macro directory.

Display a system macro on the text window
macrosyscat (filel<,file2><,...>)

Displays one or more system macro files, where filel,
names of macros in the system macro directory.

Copy a system macro to become a user macro
macrosyscp (from file,to file)

Makes a copy of an existing system macro.

List system macros
Lists names of system macros.

Remove a system macro
macrosysrm(file)

Removes a system macro from the macro directory.

Edit a user macro with vi text editor

macrovi (file)

VnmrJ User Programming

file2,..a

39

Chapter 1. MAGICAL Il Programming

Description:

mstat

Syntax:

Description:

purge
Syntax:

Description:

record

Syntax:

Description:

M odifies an existing user macro or createsanew macro using thevi text editor.
To edit a system macro, copy it to a personal macro directory first.

Display memory usage statistics
mstat< (program id) >

Displays memory usage statistics on macros loaded into memory.

Remove a macro from memory
purge< (file) >

Removes a macro from memory, freeing extra memory space. With no
argument, removes all macros loaded into memory by macrold.

Record keyboard entries as a macro
record< (file| 'off"') >

Records keyboard entries and stores the entries as a macro file in the user’s
maclib directory.

Miscellaneous Tools

axis

Syntax:

Description:

beepoff
Description:

beepon

Description:

bootup

Syntax:

Description:

exec

Syntax:

40

VnmrJ User Programming

Provide axis labels and scaling factors

axis('fn'|'fnl'|'fn2')<:%axis label, \
Sfrequency scaling, $factor>

Returnsaxislabels, the divisor to convert from Hz to unitsdefined by the axi s
parameter with any scaling, and a second scaling factor determined by any
scalesw typeof parameter. Theparameter '£n' | 'fnl' | ' £n2' describes
the Fourier number for the axis.

Turn beeper off
Turns beeper sound off. The default is beeper sound on.

Turn beeper on
Turns beeper sound on. The default is beeper sound on.

Macro executed automatically when VnmrJ is started
bootup< (foreground) >

Displaysamessage, runsauser Login macro (if it exists), startsAcgstat and
acqi (spectrometer only), and displaysthe menu system. bootup and login
can be customized for each user (Login ispreferred because bootup is
overridden when anew VNMR releaseisinstalled). foreground isO if
VNMR is being run in foreground; non-zero otherwise.

Execute a VnmrJ command

exec (command string)

01-999253-00 A0604

Description:

exists

Syntax:

Description:

focus

Description:

gap

Syntax:

Description:

getfile

Syntax:

Description:

graphis

Syntax:

Description:

length

Syntax:

Description:

listenoff

Description:

01-999253-00 A0604

1.3 Relevant VnmrJ Commands

Takes as an argument a character string constructed from amacro and executes
the VNMR command given by command string.

Determine if a parameter, file, or macro exists
exists (name, type) : Sexists

Checksfor the existence of a parameter, file, or macro with the given name.
type is 'parameter', 'file', 'maclib', 'ascii', or
'directory'.

Send keyboard focus to VNMR input window
Sends keyboard focus to the VNMR input window.

Find gap in the current spectrum
gap (gap, height) : found, position,width

L ooks for agap between lines of the currently displayed spectrum, where gap
isthe width of the desired gap and height isthe starting height. found is1
issearch issuccessful, or 0 if unsuccessful.

Get information about directories and files

getfile(directory, file index) :$file,$file extension
getfile (directory) : $number files

If £ile indexisspecified, thefirst return argument isthe name of thefilein
the directory with theindex £ile index, excluding any extension, and the
second return argument is the extension. If £ile index isnot specified, the
return argument contains the number of filesin the directory (dot files are not
included in the count).

Return the current graphics display status

graphis (command) : $yes_no
graphis:$display command

Determines what command currently controls the graphics window. If no
argument is supplied, the name of the currently controlling command is
returned.

Determine length of a string
length(string) : $string length
Determines the length in characters of the given string.

Disable receipt of messages from send2Vnmr

Deletesfile $Svnmruser/ . talk, disdlowing UNIX command send2Vnmr
to send commands to VNMR.

VnmrJ User Programming 41

Chapter 1. MAGICAL Il Programming

listenon

Description:

login

Description:

off

Syntax:

Description:

on

Syntax:

Description:

readlk

Syntax:

Description:

rtv

Syntax:

Description:

shell

Syntax:

Enable receipt of messages from send2Vnmr

Writesfileswith VNMR port number that UNIX command send2Vnmr needs
to tak to VNMR. The command then to send commandsto VNMR is
/vnmr/bin/send2Vnmr $vnmruser/.talk command

where command is any character string (commands, macros, or if statements)
normally typed into the VNMR input window.

User macro executed automatically when VnmrJ activated

When VNMR starts, the bootup macro executes, and then, if the login
macro exists, bootup executes the 1ogin macro. By creating and
customizing the 1ogin macro, aVNMR session can be tailored for an
individual user. The 1ogin macro does not exist by default.

Make a parameter inactive
off (parameter|'n'<, tree>)

Makes a parameter inactive. tree is ' current ', 'global",
'processed',0r 'systemglobal'.

Make a parameter active or test its state
on(parameter|'y'<,tree>)<:Sactives>

Makes a parameter active or tests the active flag of a parameter. tree is
'current', 'global', 'processed',Or 'systemglobal'.

Read current lock level
readlk<:lock level>

Returns the same information aswould be displayed on the digital lock display
using the manual shimming window. It cannot be used during acquisition or
manua shimming, but can be used to develop automatic shimming methods
such as shimming viagrid searching.

Retrieve individual parameters
rtv<(file,parl<, indexl<,par2,index2...>>)><:val>

Retrieves one or more parameters from a parameter file to the experiment’s
current tree. If areturn argument isadded, rtv instead returns values to macro
variables, which avoids creating additional parametersin the current tree. For
arrayed parameters, array index arguments can specify which elementsto return
to the macro. The default is the first element.

Start a UNIX shell
shell< (command) >:s$filel, $file2, ...

If no argument is given, opens anormal UNIX shell. If aUNIX command is
entered as an argument, shell executes the command. Text lines usually
displayed as aresult of the UNIX command given in the argument can be
returnedto $filel, $file2, etc. shell callsinvolving pipes or input
redirection (<) require either an extra pair of parentheses or the addition of

42 vnmrJ User Programming 01-999253-00 A0604

solppm

Syntax:

Description:

substr

Syntax:

Description:

textis

Syntax:

Description:

unit

Syntax:

Description:

01-999253-00 A0604

1.3 Relevant VnmrJ Commands

; cat tothe shell command string, such as:
shell('ls -t|grep May; cat')

or
shell (' (ls -t|grep May))

Return ppm and peak width of solvent resonances
solppm:chemical shift,peak width

Returnsinformation about the chemical shift in ppm and peak spread of solvent
resonances in various solvents for either 'H or 1°C, depending on the observe
nucleus tn and the solvent parameter solvent. This macrois used
“internally” by other macros only.

Select a substring from a string

substr (string, word number) :substring
substr (string, index, length) : substring

Picks a substring out of a string. If two arguments are given, substring
returnsthe word number word in string. If three arguments, it returns a
substring from st ring where index isthe number of the character at which
to begin and 1ength isthelength of the substring.

Return the current text display status

textis (command) : $yes no
textis:$display command

Determines what command currently controls the text window. If no argument
is supplied, the name of the currently controlling command is returned.

Define conversion units

unit<(suffix,label,m<,tree><,'mult'|'div'>, \
b<,tree><,'add'|'sub'>) >

Definesalinear relationship that can be used to enter parameterswith units. The
unitis applied as a suffix to the numerical value (e.g., 10k, 100p). suffix
identifies the name for the unit (e.g., 'k '). 1abel isthe nameto be displayed
when the axis parameter is set to the value of the suffix (e.g., 'kHz '). m and
b are the slope and intercept, respectively, of thelinear relationship. A
convenient place to put unit commandsfor all usersisin the bootup macro.
Put private unit commandsin auser's login macro.

VnmrJ User Programming 43

Chapter 1. MAGICAL Il Programming

44 VnmrJ User Programming 01-999253-00 A0604

chapter 2. Pulse Sequence Programming

Sectionsin this chapter:
® 2.1"Application Type and Execpars Programming,” page 46
® 2.2"Overview of Pulse Sequence Programming,” page 49
® 2.3"Spectrometer Control,” page 54
® 2.4 "Pulse Sequence Statements: Phase and Sequence Control,” page 70
® 25"Rea-Time AP Tables,” page 76
® 2.6 "Accessing Parameters,” page 81
® 2.7"Using Interactive Parameter Adjustment,” page 91
® 2.8"Hardware Looping and Explicit Acquisition,” page 96
® 2.9 "Pulse Sequence Synchronization,” page 100
® 2.10“Pulse Shaping,” page 101
® 2.11 “Shaped Pulses Using Attenuators,” page 108
® 2.12“Internal Hardware Delays,” page 111
® 2.13"“Indirect Detection on Fixed-Frequency Channel,” page 115
® 2.14“Multidimensional NMR,” page 115
® 2.15“Gradient Control for PFG and Imaging,” page 117
® 2.16 “Programming the Performa XY Z PFG Module,” page 120
® 2.17 “Imaging-Related Statements,” page 122
® 2.18 “User-Customized Pulse Sequence Generation,” page 125

AnNMR protocol isaspecific set of parameters and methods used to acquire, process, plot,
and store NMR data. The parameters al so specify the pulse sequence used to acquire the
data. NMR protocols can be grouped into classes or types of applications, which often share
many of the parameters and methods needed by individual protocols.

VnmrJuses protocol s and application types (apptype) to systematize the devel opment of
new NMR protocols. The next section describes how protocols and application types are
programmed. The remainder of this chapter describes how to program pulse sequences
using the traditional C language. To use the SpinCAD interface for creating pulse
sequences, refer to the oinCAD manual.

01-999253-00 A0604 vnmrJ User Programming 45

Chapter 2. Pulse Sequence Programming

2.1 Application Type and Execpars Programming

46

The application type concept provides preparation, prescan, processing, and plotting
customization based on the type of NMR data.

apptypes

Each apptype has a corresponding macro, which has the same name as the apptype. These
macros handle the customization required for that apptype.

Liquids apptypes

apptype representative protocols

std1d Proton, Carbon, Phosphorus, Presat, Apt, Dept

homo2d Cosy, Dgcosy, Geosy, Gdgcosy, Noesy

hetero2d Cigar, Cigar2j3j, Ghmbc, Ghmac, Ghmgctoxy, Ghsgc, Ghsgctoxy, Hmbe, Hmqc,

Hmqctoxy, Hsgc, Hsgctoxy

Imaging apptypes

apptype representative protocols
imi1D pressisissteam

im1Dcsi presscsi steamcsi
im1Dglobal spuls

im2D angio gems mems sems semsdw
im2Dcsi csi2d

im2Dfse fsems

im3D ct3d, ge3d, ge3dangio, se3d
im3Dfse fse3d

imEPI epidw epimss epimssn
imFM fastestmap

execpar Parameters

Five execpar parameters control the execution of the apptype macros. execsetup,
execprep, execprescan, execprocess, and execplot. Thefollowing two
examples show how the execpar parameters are set for st1d and im2D apptypes.

std1d apptype im2D apptype

execsetup = “std1d('setup’)’ execsetup = “im2D('prep')’
execprep = execprep = 'im2D('prep’)’
execprescan = execprescan = “im2D(‘'prescan’)’
execprocess = “std1d('process’)’ execprocess = 'im2D(‘proc’)’
execplot = “std1d('plot’) execplot =

These parameters should not be set to specific actions, such as'ni=256" or '‘pcon
page'. They should only call the apptype macro with appropriate arguments, which
avoids problemsif someone wants to change the behavior. Instead of fixing all the old
parameter sets, you only need to update one macro.

VnmrJ User Programming 01-999253-00 A0604

2.1 Application Type and Execpars Programming

Files containing these execpar parameters are saved inthe /vnmr /execpars directory.
You can have private execpar parametersina /userdir/execpars directory. The
Configure EXEC parameters window (under the Utilities menu) allows you to create and
update these parameters. Behind the scenes, the execpars macro handles these
parameter files. It can read the execparsinto the current parameter set, save execpars, create
default execpars, or delete execpars.

Standard macros execute the execpar strings. The rules for executing these strings, based
on the execpar parameters, are as follows. If the parameter does not exist, or is set to
inactive, the execpar string is not executed. Otherwise, the execpar string isexecuted. Some
macros include default behavior. In these cases, if the execpar is set to inactive, the default
behavior will occur. If the execpar isset to active and thevalueis", no action, including no
default action will occur. An example might clarify this. The process macro provides
default NMR processing tools. At the beginning of this macro is the execpars handling.
on ('execprocess') :Se
if (Se > 0.5) then

exec (execprocess)

return
endif

The on command tests whether the execprocess exists and is active. If it does not exist or
isinactive, the $e will be lessthan 0.5 and the exec command and return command
will not be executed. The rest of the process macro will be executed, giving default
behavior. If the parameter is active, the exec command will be executed. Now, if
execprocess="'", the exec command will return without executing anything. Thisis
followed by return, which exits the process macro, avoiding any default processing.

When aprotocol is brought into awork space or study queue, the cgexp (for liquids) or
sgexp (for imaging) macro is called. These check if the execsetup parameter exists.
If it does not, it runs execpars to read the execpars for that apptype. Using the rules
above, it might execute the execsetup string.

The execpars parameters are executed by severa other standard macros:

Macro execpar string executed, using above rules
acquire execprep

prep execprep

settime execprep

prescan gain execprescan

process execprocess

plot execplot

As aconsequence of the execpars scheme, the usergo and go_segf il macros are no
longer used. This customization should behhandledinthe ' setup' or 'prep' section of
the apptype macros.

The apptype macros should use the template shown in Listing 1. If thereisafirst argument,
itshould beprep, proc, prescan, orplot. Additiona argumentscanbeused (setup,
process, plot).

01-999253-00 A0604 VnmrJ User Programming 47

Chapter 2. Pulse Sequence Programming

Listing 1. apptype Macro Template

// *kkkkkkk Parse input *kkkkkkk
Saction = 'prep'
Sdo = '!
if ($# > 0) then

Saction = $1

if ($# > 1) then

Ssdo = $2

endif

endif

isvnmrj:S$v]j

// * ok ok ok ok kk ok Setup * ok kk ok kk ok
if (Saction = 'prep') then
// apptype preparatory customization
execseq('prep') // Execute any sequence specific preparation
// additional apptype preparatory customization

// * ok ok ok ok kk ok processing & Display * ok kk ok kk ok
elseif (Saction = 'proc') then
// apptype processing customization
execseq('proc') // Execute any sequence specific processing
// additional apptype processing customization

// * ok ok ok ok kk ok Prescan * ok ok ok okkk ok
elseif (Saction = 'prescan') then
// apptype prescan customization
execseq('prescan') // Execute any sequence specific prescan
// additional apptype prescan customization

// * ok ok ok ok kk ok Plot * ok ok kokokkok
elseif (Saction = 'plot') then
// apptype plot customization
execseq('plot') // Execute any sequence specific plot
// additional plot prescan customization
endif

The execseq macro constructs a macro name as
Smacro = seqgfil + ' ' + $1

and will execute it if it exists. If no argument isgiven, it defaultsto 'prep'. Thisalows
for sequence specific behavior.

Protocol Programming

A protocol ismade by defining its parametersand specifying itsapptype. The New Protocol
window (Utilities->Make a New Protocol) will save the current parameters for that
protocol, construct the necessary file so that the protocol is available from the L ocator and
the Experiment selector, and create a macro which can be used to setup that protocol. For
liquids, the macro calls the cqexp macro with the protocol name and apptype as the two
arguments. For example, the macro for the Proton protocol is

cgexp ('Proton', 'stdld')

48 vnmrJ User Programming 01-999253-00 A0604

2.2 Overview of Pulse Sequence Programming

With thisinformation, the cqexp macro readsin the execparsfor the std1d apptype. It then
executes macro defined by the execsetup parameter. In this case,
execsetup="stdld('setup') ~.

The std1d macro gets called with the ' setup' argument. Before calling the command
specified by the execsetup parameter, the cgexp macro set the parameter macro toits
first argument.

The first argument is the name of the specific protocol, so that, in this case,
macro="'Proton'. The apptype macros, (e.g., std1d) typically usethemacro
parameter in order to decide which parameter set should be used.

2.2 Overview of Pulse Sequence Programming

Pulse sequences are written in C, a high-level programming language that allows
considerable sophistication in the way pulse sequences are created and executed. New
pulse sequences are added to the software by writing and compiling a short C procedure.
This processis greatly simplified, however, and need not be thought of as programming if
you prefer not to.

Spectrometer Differences

Thismanual contains information on how to write pulse sequences for YT INOVA and
MERCURYplus/-Vx spectrometers. Each spectrometer has different capabilities, so not all
statements may be executed on all platforms.

For example, because MERCURYplug/-Vx hardware differs significantly from YTYINOVA
hardware, sections in this manual covering waveform generators and imaging are not
applicable to the MERCURYplus/-Vx even though the pul se sequence programming
language is the same. Pay careful attention to comments in the text regarding the system
applicability of the pulse sequence statement or technique.

Pulse Sequence Generation Directory

Pulse sequence generation (PSG) text files (like hom2d7j . c in Listing 2) are stored in a
directory namedpsglib. Thereare many such psglib directories, including the system
/vnmr/psglib directory and apsglib directory that belongsto each user.

The user psglib isstoredinthe user’s private directory system (e.g., for user vnmr1, in
/export/home/vnmrl/vnmrsys/psglib) . Some systems use /space and Linux
uses/home. All pulse sequence files stored in these directories are given the extension . ¢
to indicate that the file contains C language source code. For instance, the homonuclear-
2D-J sequence that you may have written as an example was automatically stored in your
private pulse sequence directory and thus has aname like /export /home /vnmrl /
vnmrsys/psglib/hom2dj.c

You may find that a pul se sequence you need is already available. Numerous sequences are
inthe standard Varian-supplied directory /vnmr /psglib andintheuser library directory
/vnmr/userlib/psglib, Or you can program a sequence using any of the standard
text editorssuch asvi or textedit. Once a pulse sequence exists, it can subsequently
be modified as desired, again using one of a number of text editors.

01-999253-00 A0604 vnmrJ User Programming 49

Chapter 2. Pulse Sequence Programming

50

Listing 2. Simplified Text File for hom2dj.c Pulse Sequence Listing

#include <standard.h>
pulsesequence ()

{
initval (4.0,v9); divn(ct,v9,v8);
status (32) ;
hsdelay (dl) ;
status (B) ;
add(zero,v8,vl); pulse(pw,vl) ;
delay(d2/2.0) ;
mod4 (ct,vl); add(vl,v8,vl); pulse(pl,vl);
delay(d2/2.0) ;
status (C) ;
mod2 (ct,oph) ; dbl (oph, oph); add(oph,v8,oph) ;

Compiling the New Pulse Sequence

After a pulse sequence is written, the source code is compiled by one of these methods:
® By entering seggen (file<.c>) ontheVnmrd command line.
® By entering seggen file<.c> fromaUNIX shell.

For example, entering seqggen ('hom2dj ') compilesthe hom2d7 . ¢ sequencein
VnmrJand entering seqgen hom2dj doesthe samein UNIX. Notethat afull path, such
as (' /export/home/vnmrl/vnmrsys/psglib/hom2dj.c') oreven
seqggen ('hom2dj.c') isnot necessary or possible—the seggen command knows
where to look to find the source code file and knows that it will have a . ¢ extension.

During compilation, the system performs the following steps:

1. If theprogram dps_ps genispresentin /vamr/bin, extensions are added to
the pulse sequence to allow agraphical display of the sequence by entering the dps
command. Statements dps_off, dps_on, dps_skip, and dps_show can be
inserted in the pulse sequence to control the dps display.

2. Thesource code is passed through the UNIX program 1int to check for variable
consistency, correct usage of functions, and other program details.

3. Thesource code is converted into object code.

4. If the conversion is successful, the object code is combined with the necessary
system psg object libraries (1 ibparam.so and 1ibpsglib.so),ina
procedure called link loading, to produce the executabl e pul se sequence code. This
isactually done at run-time. If compilation of the pulse sequence with the dps
extensions fails, the pulse sequence is recompiled without the dps extensions.

If the executable pul se sequence code is successfully produced, it is stored in the user
seqglib directory (e.g., /export/home/vnmrl/vnmrsys/seqlib). If theuser
does not have aseglib directory, it is automatically created.

Likepsglib, different seglib directoriesexist, including the system directory and each
user’s directory. The user’'s vnmrsys directory should have directories psglib and

VnmrJ User Programming 01-999253-00 A0604

2.2 Overview of Pulse Sequence Programming

seglib. Whenever auser attemptsto run apulse sequence, the software looksfirst in the
user's personal directory for a pulse sequence by that name, then in the system directory.

A number of sequences are supplied in /vnmr/seglib, compiled and ready to use. The
source code for each of these sequencesisfound in /vnmr/psglib. To compile one of
these sequences, or to modify asequencein /vnmr/psglib, copy the sequenceintothe
user'spsglib, make any desired modifications, then compile the sequence using
seqggen. (seggen will not compile sequencesdirectly in /vnmr/psglib). All
sequencesin /vnmr/psglib have an appropriate macro to use them.

Troubleshooting the New Pulse Sequence

During the process of pulse sequence generation (PSG) with the seggen command, the
user-written C procedureis passed through a utility to identify incorrect C syntax or to hint
at potentia coding problems. If an error occurs, a number of messages usually are
displayed. Somewhere among them are these statements:

Pulse Sequence did not compile.

The following errors can also be found in the

file /home/vnmrl/vnmrsys/psglib/errmsg:

Asarule of thumb, focus on thelinesinthe errmsg text file that begin with the name of
the pulse sequence enclosed in double quotes followed by the line number and those that
begin with aline number in parentheses. In both cases, a brief description of the problem
is also displayed. If the line of code looks correct, often the preceding line of codeis the
culprit. Note that alarge number of error messages can be generated from the same coding
error.

If awarning occurs, the following message appears:

Pulse Sequence did compile but may not function properly.
The following comments can also be found in the

file /home/vnmrl/vnmrsys/psglib/errmsg:

This message means that although the pulse sequence has some inconsistent C code that
may produce run-time errors, the pul se sequence did compile. Three warningsto watch for
are the following:

warning: conversion from long may lose accuracy

warning: parameter name may be used before set

warning: parameter name redefinition hides earlier one

The first warning may be generated by less than optimum usage of the ix variable:

conversion from long may lose accuracy

An example can be found in afew of the earlier pulse sequencesimplementing TPPI. The
following construct, which was taken from an older version of hmgc . ¢, generates the
warning:

if (iphase == 3)

{
tl counter = ((int) (ix - 1)) / (arraydim / ni);
initval ((double) (tl counter), vl14);

}

Changing these lines to

if (iphase == 3)
initval ((double) ((int) ((ix - 1) / (arraydim / ni) \
+le-6)), v14);

avoids the warning and a so provides for roundoff of the floating point expression to give
proper TPPI phase increments.

01-999253-00 A0604 vnmrJ User Programming 51

Chapter 2. Pulse Sequence Programming

52

Even the above expression can fail under some circumstances. That construction will not
work for 3D and 4D experiments. With the availability of increment counterssuchasidz2,
id3, and 1d4, and the predefined phasel variable, this example can be rewritten as
if (phasel == 3)

assign(id2,vl4) ;

The second warning generally suggests an uninitialized variable:
parameter name may be used before set

This should be corrected; otherwise, unpredictable execution of the pulse sequenceis
likely. A common cause is the use of a user variable without first using agetval or
getstr statement on the variable.

The third warning generally suggests that a variable is defined within the pul se sequence
that has the same name as one of the standard PSG variables.

parameter name redefinition hides earlier one

Thiswarning is normally avoided by renaming the variable in the pulse sequence or, if the
variable corresponds to a standard PSG variable, by removing the variable definition and
initialization from the pulse sequence and just using the standard PSG variable. A list of the
standard PSG variable namesis given in “ Accessing Parameters,” page 81.

Finally, if the pulse sequence program is syntactically correct, the following message is
displayed:

Done! Pulse sequence now ready to use.

Creating a Parameter Table for Pulse Sequence Object Code

The ability to modify or customize acquisition parameters to fit a given user-created pulse
sequenceis provided by a small number of commands. These commands make it possible
to perform the following operations on an existing parameter table:

® Create new parameters

® Control the display and enterability of parameters

® Control the limits of the parameter

® Create a parameter table for two-dimensional experiments

The commands that enable the creation and modification of parameters are discussed in
Chapter 5 of this manual.

C Framework for Pulse Sequences

Each pulse sequence is built onto a framework written in the C programming language.
Look again at thehom2dj sequencein Listing 2. The absolutely essential elements of this
framework are these:

#include <standard.h>

pulsesequence ()

{
}

Thisframework must beincluded exactly as shown. Between the two curly braces ({ }) are
placed pulse sequence statements, each statement ending with a semicolon.

The majority of pulse sequence statements allow the user to control pulses, delays,
frequencies, and all functions necessary to generate pulse sequences. Most arein the
general form statement (argumentl, argument2, ...), where statement isthe

VnmrJ User Programming 01-999253-00 A0604

2.2 Overview of Pulse Sequence Programming

name of the particular pulse sequence statement, and argument 1, argument?2,... isthe
information needed by that statement in order to function.

Many of these arguments are listed as real number. Because of the flexibility of C, areal-
number argument can take three different forms: variable (e.g., d1), constant (e.g., 3 . 4,
20.0e-6),0r expression (e.g., 2. 0*pw, 1.0-d2).

Times, whether delays or pul ses, are determined by the type of acquisition controller board
used on the system:

® On DataAcquisition Controller boards, times can be specified in increments as small
as 12.5 ns with a minimum of 100 ns.

® On Output boards and the MERCURYplus/-Vx, times can be specified inincrements as
small as 0.1 us. The smallest possible timeinterval in al other casesis 0.2 us, or 0.

Any pulsewidths or delayslessthan the minimum generate awarning message and are then
eliminated internally from the sequence. (Note that time constants within a pulse sequence
are always expressed in seconds.)

A series of internal, real-time variables named v1, v2, ..., v14 are provided to perform
calculationsin real-time (by the acquisition computer) while the pulse sequence is
executing. Real-time variables are discussed in detail later in this chapter. For now, note
that all of the phases, and asmall number of the other arguments to the pulse sequence
statements discussed here, must be real-time variables. A real -time variable must appear as
asimpleargument (e.g., v1), and cannot bereplaced by anything else, including an integer,
areal number, a“regular” variable such as d1, or an expression such asvi+v2.

Any variables you choose to use in writing a pul se sequence must be declared. Most
variableswill be of type double, while integers will be of type int, and strings, such as
dmm, are of type char with dimension MAXSTR. Table 3 lists the length of these basic
types on the Sun computer. Many variables that refer to parameters used in an experiment
are already declared (see “Accessing Parameters,” page 81).

Table 3. Variable Typesin Pulse Sequences

Type Description Length (bits)
char character 8
short short integer 16
int integer 32
long long integer 32
float floating point 32
double double-precision floating point 64

Real-time variables are of type codeint (int on MERCURYplus, MERCURY-Vx, and
UNITYINOVA, 32 bits), whose size is 16 bits—you will probably not be declaring new
variablesof thistype. A framework including variable declarations of the main types might
look like this:

#include <standard.h>

pulsesequence ()

{
double delta; /* declare delta as double */
char xpolar [MAXSTR] ; /* declare xpolar as char */

01-999253-00 A0604 vnmrJ User Programming 53

Chapter 2. Pulse Sequence Programming

Implicit Acquisition

Thehom2dj . ¢ pulse sequencelisting in Listing 2 on page 50 has one notable omission—
data acquisition. In most pul se sequences, the sequence of events consists of a series of
pulses and delays, followed at the very end by the acquisition of an FID; the entire process
is then repeated for the desired number of transients, and then again (for arrayed and nD
experiments) for subsequent elements of the arrayed or nD experiment.

In all these cases, pulse sequences use implicit acquisition, that is, following the pulse
sequence as written by the user, an FID is automatically (implicitly) acquired. This
acquisition is preceded by adelay that combinesthe parameter a1 f£a with adelay based on
the type of filter and the filter bandwidth. In addition, the phase of al channels of the
spectrometer (except the receiver) is set to zero at thistime.

Some pulse sequences are not described by this simple model; many solidsNM R sequences
arein this category, for example. These sequences use explicit acquisition, in which the
preacquisition and acquisition steps must be explicitly programmed by the user. This
method is described further in “Hardware Looping and Explicit Acquisition,” page 96.

Acquisition Status Codes

Whenever wbs, wnt, wexp, Of werr processing occurs, the acquisition condition that
initiated that processing is available from the parameter acgstatus. Thisacquisition
condition isrepresented by two numbers, a“done” codeand an “ error” code. The done code
issetinacgstatus [1] andtheerror codeissetin acgstatus [2]. Macros can take
different actions depending on the acquisition condition.

The done codes and error codes are listed in Table 39 and in thefileacq _errorsin
/vnmr /manual. For example, awerr command could specify special processing if the
maximum number of transients is accumulated. The appropriate test would be the

following:

if (acgstatus[2] = 200) then

“do special processing, e.g. dp='y' au”
endif

2.3 Spectrometer Control

54

More than 200 pulse sequence statements are available for pulse sequence generation
(PSG). Thissection startsthe discussion of each statement by covering statementsintended
primarily for spectrometer control. For discussion purposes, the statements in this section
are divided into categories: delay-related, observe transmitter pul se-related, decoupler
transmitter pul se-related, simultaneous pulses, transmitter phase control, small-angle phase
shift, frequency control, power control, and gating control.

Creating a Time Delay

The statementsrelated to time delays are delay, hsdelay, idelay, vdelay,
initdelay, and incdelay. Table 4 summarizes these statements.

The main statement to create a delay in a pulse sequence for a specified time isthe
statement delay (time), where time isareal number (e.g., delay (d1)). The
hsdelay and idelay Statementsarevariationsof delay:

VnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

Table 4. Delay-Related Statements

delay (time) Delay specified time

hsdelay (time) Delay specified time with possible hs pulse
idelay (time, string) Delay specified time with IPA

incdelay (count, index) Set real-time incremental delay
initdelay(time increment, index) Initialize incremental delay

vdelay (timebase, count) Set delay with fixed timebase and real-time count

® To add a possible homospoil pulseto the delay, use hsdelay (time) . If the
homospoil parameter hs issetto 'y ', then at the beginning of the delay, hsdelay
inserts a homospoil pulse of length hst seconds.

® To causeinteractive parameter adjustment (1PA) information to be generated when g £
orgo('acqgi') isentered, use idelay (time, string), where string isthe
label used in acqi. If goisentered, idelay isthesameasdelay. See “Using
Interactive Parameter Adjustment,” page 91, for detailson IPA. IPA and idelay are
not available on the MERCURYplus/-Vx.

To set adelay to the product of afixed timebase and a real-time count, use

vdelay (timebase, count), where timebase isNSEC (defined below), USEC
(microseconds), MSEC (milliseconds), or SEC (seconds) and count isoneof thereal-time
variables (v1 tov14). For predictable acquisition, the real-time variable should have a
value of 2 or more. If timebase is set to NSEC, the delay depends on the type of
acquisition controller board in the system:

On systems with aData Acquisition Controller board, the minimum delay isacount of 0
(100 ns), and a count of n corresponds to a delay of (100 + (12.5*n)) ns.

The vdelay statement is not available on the MERCURYplus/-Vx.

Use initdelay (time increment, index) or incdelay (count, index) to
enable areal-time incremental delay. A maximum of five incremental delays (set by
index) can be defined in one pulse sequence. The following steps are required to set up
anincremental delay (initdelay and incdelay are not available on the
MERCURYplus/-Vx):

1. Enterinitdelay(time increment, index) toinitiaizethetimeincrement
and delay.

Theargument t ime increment isthetimeincrement that will be multiplied by
the count (areal-timevariable) for thedelay time, and i ndex isone of theindices
DELAY1, DELAY2, ..., DELAYS (e.9.,, initdelay (1.0/sw,DELAY1) Or
initdelay(1.0/swl,DELAY2)).

2. Settheincrement delay by specifying its index and the multiplier count using
incdelay (count, index) (e.g.,forincdelay (v3,DELAY2),whenv3=0,
thedelay is0* (1/swl)).

Pulsing the Observe Transmitter

Statements related to pulsing the observe transmitter are rgpulse, irgpulse, pulse,
ipulse, obspulse, and iobspulse. Table 5 summarizes these statements.

Usergpulse (width, phase,RG1,RG2) asthemain statement to pulse the observe
transmitter in a sequence, where width isthe pulse width, phase (areal-time variable)
is the pulse phase, and RG1 and RG2 are defined according to system type:

01-999253-00 A0604 vnmrJ User Programming 55

Chapter 2. Pulse Sequence Programming

Table 5. Observe Transmitter Pulse-Related Statements

iobspulse (string) Pulse observe transmitter with |PA
ipulse (width, phase, string) Pulse observe transmitter with [PA
irgpulse (width, phase,RG1,RG2,string) Pulse observe transmitter with IPA
obspulse () Pulse observe transmitter with amp. gating
pulse (width, phase) . Pulse observe transmitter with amp. gating
rgpulse (width, phase,RG1,RG2) Pulse observe transmitter with amp. gating

® OntheYNTYINOVA, RG1 isthe delay during which the linear amplifier isgated on and
then allowed to stabilize prior to executing the rf pulse, and RG2 isthe delay after the
pulse after gating off the amplifier. Thus, receiver gating isamisnomer: RG1 and RG2
set amplifier gating, as shown in Figure 1. The receiver is off during execution of the
pulses and is only gated on immediately before acquisition.

On

Transmitter <

gating Width
Off

Amplifier o

gating —>» RGl1 ¢— —» RG2 4¢—
off |

Figurel. Amplifier Gating

® Onthe MERCURYplus/-Vx, thereceiver and amplifiersaretied together such that when
the amplifier ison, thereceiver isautomatically turned off and when thereceiverison,
the amplifier is off.

Some further information about RG1 and RG2:

* Typically, RG1 is5usfor 1H/A9F and 5 s for other nuclei. A typical value for RG2 is
S5us.

® The phase of the pulseis set at the beginning of RG1. The phase requires about 0.2 us
to settle on YNTYINOVA and on MERCURYplug/-VX.

® A transmitter gate is also switched during RG1. The switching time for this gateis
100 ns for YNTYINOVA systems.

For systemswith linear amplifiers, an rf pulse can be unexpectedly curtailedif theamplifier
goesinto thermal shutdown. Thermal shutdown can be brought about if the amplifier duty
cycle becomestoo large for the average power output. The 1 mslimit for MERCURYplus/
-Vx systems was eliminated with VnmrJ 1.1D.

The remaining statements for pulsing the observe transmitter are variations of rgpulse:

® To pulse the observe transmitter the same as rgpulse but with RG1 and RG2 set to
the parameters rof 1 and rof 2, respectively, usepulse (width, phase) . Thus,
pulse (width,phase) and rgpulse (width, phase, rofl,rof2) are
exactly equivalent.

® To pulse the observe transmitter the same as pul se but withwidth preset to pw and
phase preset to oph, useobspulse (). Thus, obspulse () isexactly equivalent
to rgpulse (pw, oph, rofl, rof2).

56 vnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

® To pulsethe observetransmitter with rgpulse, pulse, or obspulse, but generate
interactive parameter adjustment (IPA) information when gf or go ('acgi') is
entered, use irgpulse (width, phase,RG1,RG2, string),
ipulse (width, phase, string), or iobspulse (string), respectively.
The string argument isused asalabel in acqi. If go isentered, the IPA
information is not generated. For details on IPA, see “ Using Interactive Parameter
Adjustment,” page 91. IPA is not available on MERCURYplus/-Vx systems.

OnUNTYINOVA systems, the ampmode parameter givesoverride capability over the default
selection of amplifier modes. Unless overridden, the observe channel is set to the pulse
mode, other used channels are set to the CW (continuous wave) mode, and any unused
channels are set to the idle mode. By using values of 4, p, ¢, and i for the default, pulse,
CW, and idle modes, respectively, ampmode can override the default modes. For example,
ampmode="'ddp' selectsdefault behavior for thefirst two amplifiersand forces thethird
channel amplifier into the pulse mode.

The selection of rf channels on YWTYINOVA systems a so can be independently controlled
with the rf channel parameter. You do not need rfchannel if you have asingle-
channel broadband system and you set up anormal HMQC experiment (tn="H1",
dn="'C13"). The software recognizes that you cannot do this experiment and swaps the
two channels automatically to make the experiment possible.

The rfchannel parameter becomes important if, for example, you have athree-channel
spectrometer and you want to do an HM QC experiment with the decoupler running through
channel 3. Instead of rewriting the pulse sequence, you can create rfchannel (by
entering create ('rfchannel', 'flag')), and then set, for example,
rfchannel="'132". Now channels 2 and 3 are effectively swapped, without any
changes in the sequence.

Similarly, if you want simply to observe on channel 2, you just run S2PUL with
rfchannel='21".

The rfchannel mechanism only works for pulse sequencesthat eliminate all references
to the constants TODEV, DODEV, DO2DEV, and DO3DEV. To take advantage of
rfchannel, you must remove statements, such as power and of £ set, that use these
constants and replace them with the corresponding statements, such as obspower and
decoffset, that do not contain the constants.

On UNTYINOVA, all standard pul se sequences have been edited to take advantage of the rf
channel independence afforded by the rfchannel parameter. This parameter makesit a
simple matter to redirect, for example, the dn nucleus to use the third or fourth rf channel.

On MERCURYplus/-Vx, there are only two channels. The software automatically
determines which channel is observe or decouple based on tn and dn.

Pulsing the Decoupler Transmitter

Statements related to decoupler pulsing are decpulse, decrgpulse, idecpulse,
idecrgpulse, dec2rgpulse, and dec3rgpulse. Table 6 summarizesthese
statements.

Usedecpulse (width, phase) to pulse the decoupler in the pulse sequence at its
current power level. width isthetime of the pulse, in seconds, and phase isareal-time
variable for the phase of the pulse (e.g., decpulse (pp, v3)).

The amplifier is gated on during decoupler pulses asit isduring observe pulses. The
amplifier gating times (see RG1 and RG2 for decrgpulse below) areinternally set to

01-999253-00 A0604 vnmrJ User Programming 57

Chapter 2. Pulse Sequence Programming

Table 6. Decoupler Transmitter Pulse-Related Statements

decpulse (width, phase) Pulse decoupler transmitter with amp. gating
decrgpulse (width, phase,RG1,RG2) Pulse first decoupler with amplifier gating

dec2rgpulse (width, phase,RG1,RG2) Pulse second decoupler with amplifier gating
dec3rgpulse (width, phase,RG1,RG2) Pulsethird decoupler with amplifier gating
dec4rgpulse (width, phase,RG1,RG2) Pulsedeuterium decoupler with amplifier gating
idecpulse (width, phase, string) Pulse first decoupler transmitter with |PA
idecrgpulse* Pulse first decoupler with amplifier gating and 1PA
* idecrgpulse (width, phase,RG1l,RG2, string)

58

zero. The decoupler modulation mode parameter dmm should be ' ¢ ' during any period of
time in which decoupler pulses occur.

To pulse the decoupler at its current power level and have user-settable amplifier gating
times, usedecrgpulse (width, phase,RG1,RG2),wherewidth and phase are
the same as used with decpulse, and RG1 and RG2 are the same as used with the
rgpul se statement for observe transmitter pulses. In fact, decrgpulse issyntacticaly
equivalent to rgpulse and functionally equivaent with two exceptions:

® The decoupler is pulsed at its current power level (instead of the transmitter).

® |f homo="n", theslow gate (100 ns switching time on "NTYINOVA, on the decoupler
board is always open and therefore need not be switched open during RG1. In contrast,
if homo="vy ', the slow gate on the decoupler board is normally closed and must
therefore be allowed sufficient time during RG1 to switch open (homo is not used on
the MERCURYplus/-Vx).

For systemswith linear amplifiers, RG1 for a decoupler pulse isimportant from the
standpoint of amplifier stabilization under either of the following conditions:

® When tn and dn both equal 3H, 1H, or 19F (high-band nuclei).
® When tn and dn are less than or equal to 31P (low-band nuclei).

For these conditions, the “decoupler” amplifier module is placed in the pulse mode, in
which it remains blanked between pulses. In this mode, RG1 must be sufficiently long to
alow the amplifier to stabilize after blanking isremoved: 5 usistypicaly right.

If the tn nucleusand the dn nucleusarein different bands, such as tn is 1H and dn is13C,
the “decoupler” amplifier module is placed in the continuous wave (CW) mode, in which
it is always unblanked regardless of the state of the receiver. In this mode, RG1 is
unimportant with respect to amplifier stabilization prior to the decoupler pulse, but with
respect to phase setting, it must be set.

The remaining decoupler transmitter pulse-related statements are variationsof decpulse
and decrgpulse:

® To pulse the decoupler the same asdecpulse or decrgpulse, but generate
interactive parameter adjustment (IPA) information when gf or go ('acgi') is
entered, use idecpulse (width, phase, string) or
idecrgpulse (width, phase, RG1,RG2, string), respectively, where
stringisusedasalabel inacqgi. If goisenteredinstead, the IPA informationis not
generated. For detailson IPA, see“Using Interactive Parameter Adjustment,” page 91.
IPA is not available on MERCURYplus/-Vx systems.

® To pulse the second decoupler, use dec2rgpulse (width, phase,RG1,RG2).
To pulse the third decoupler, use dec3rgpulse (width,phase,RG1,RG2).TO
pulse UNTYINOVA systems with a deuterium decoupler installed as the fifth channel,

VnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

usedec4rgpulse (width, phase,RG1,RG2). Thewidth, phase, RG1, and
RG2 arguments have the same meaning as used with decrgpulse and rgpulse.
The homo parameter has no effect on the gating on the second decoupler board. On
UNITYINOVA systems only, homo2 controls the homodecoupler gating of the second
decoupler, homo3 doesthe same on the third decoupler, and homo4 does the same on
the fourth decoupler when it is used as a deuterium channel (on the MERCURYplus/-
VX, dec2rgpulse, dec3rgpulse, and dec4rgpulse have no meaning and
homo isnot used).

Pulsing Channels Simultaneously

Statementsfor controlling simultaneous, non-shaped pulsesare simpulse, sim3pulse,

and
usin

simd4pulse. Table 7 summarizes these statements. Simultaneous pul ses statements
g shaped pulses are covered in alater section.

Table 7. Simultaneous Pulses Statements

simpulse* Pulse observe and decoupler channels simultaneously
sim3pulse* Pulse simultaneously on two or three rf channels
sim4pulse* Simultaneous pulse on four channels

* gim3pulse (pwl,pw2,pw3,phasel,phase2, phase3,RG1l,RG2)

sim3pulse (pwl, pw2,pw3,phasel,phase2, phase3,RG1l,RG2)
sim4pulse (pwl,pw2,pw3,pwéd,phasel,phase2, phase3, phase4,RG1l,RG2)

Use simpulse (obswidth, decwidth, obsphase, decphase,RG1,RG2) t0
simultaneously pulsethe observe and first decoupler rf channelswith amplifier gating (e.g.,
simpulse (pw,pp,vl,v2,0.0,rof2))

Figure 2 illustrates the action of simpulse

Observe pulse > Decoupler pulse Decoupler pulse > Observe pulse
Transmitter obswidth Decoupler |, decwidth 4
gating gating
decwidth obswidth
Decoypler < > Transmitter g
gating gating
RG1 RG2 - RG1 RG2
Amplifier > > n;;:i;]ler < >
gating gating

Figure 2. Pulse Observe and Decoupler Channels Simultaneously

The shorter of the two pulses is centered on the longer pulse, while the amplifier gating
occurs before the start of the longer pulse (even if it isthe decoupler pulse) and after the
end of thelonger pulse. The absolute differencein the two pulse widths must be greater than
or equal t0 0.2 us (0.4 uson the MERCURYplug/-Vx); otherwise, atimed event of lessthan

01-999253-00 A0604 vnmrJ User Programming 59

Chapter 2. Pulse Sequence Programming

60

the minimum value (0.1 us on YNTYINOVA, 0.2 us on MERCURYplus/-Vx systems) would

be produced. In such cases, a short time (0.2 s on YWTYINOVA, 0.4 us on MERCURYplus/
-Vx systems) is added to the longer of the two pulse widths to remedy the problem, or the
pulses are made the same if the difference isless than half the minimum (less than 0.1 us

on YITYINOVA, less than 0.2 us on MERCURYplusg/-Vx systems).

sim3pulse (pwl,pw2,pw3,phasel, phase2,phase3,RG1,RG2) performsa
simultaneous, three-pul se pul se on three independent rf channels, where pw1, pw2, and
pw3 arethe pulse durations on the observe transmitter, first decoupler, and second
decoupler, respectively. phasel, phase2, and phase3 arereal-time variables for the
phases of the corresponding pulses, for example, sim3pulse (pw, pl, p2, oph,
v10,vl,rofl,rof2).

A simultaneous, two-pulse pulse on the observe transmitter and the second decoupler can
be achieved by setting the pulse length for the first decoupler to 0.0; for example,
sim3pulse (pw,0.0,p2,0ph,v10,vl, rofl, rof2).(sim3pulse hasno
meaning on MERCURYplus/-Vx).

Use sim4pulse (pwl, pw2,pw3,pwé,phasel, phase2,phase3,phase4,
RG1,RG2) to perform simultaneous pulses on as many as four different rf channels.
Except for the added arguments pw4 and phase4 for athird decoupler, the argumentsin
sim4pulse aredefined the sameas sim3pulse. If any pulseis set to 0.0, no pulse is
executed on that channel (sim4pulse hasno meaning on MERCURYplus/-Vx).

Setting Transmitter Quadrature Phase Shifts

The statements txphase, decphase, dec2phase, dec3phase, dec4phase
control transmitter quadrature phase (multiple of 90°). Table 8 summarizes these
Statements.

Table 8. Transmitter Quadrature Phase Control Statements

decphase (phase) Set quadrature phase of first decoupler
dec2phase (phase) Set quadrature phase of second decoupler
dec3phase (phase) Set quadrature phase of third decoupler
dec4phase (phase) Set quadrature phase of fourth decoupler
txphase (phase) Set quadrature phase of observe transmitter

To set the transmitter phase, use txphase (phase) ,wherephase isareal-timevariable
(v1itovl4, etc.) or areal-time constant (zero, one, etc.) that references the desired
phase. This enables changing the transmitter phase independently from a pul se.

For example, knowing that the transmitter phase takes a finite time to shift (about 1 s on
aMERCURYplus/-Vx, less than 200 nsfor Inova, you may wish to “ preset” the transmitter
phase at the beginning of a delay that precedes a particular pulse. The “normal” pulse
sequences usean rof 1 time preceding the pulseto change the transmitter phase and do not
need to “preset” the phase. The phase change will occur at the start of the next event in the
pulse sequence.

The other phase control statements are variations of txphase:

® To set the decoupler phase, use decphase (phase) . The decphase statement is
syntactically and functionally equivalent to txphase. decphase isuseful for a
decoupler pulsein al cases where t xphase isuseful for atransmitter pulse.

® To set the quadrature phase of the second decoupler rf or third decoupler rf, use
dec2phase (phase) or dec3phase (phase), respectively.

VnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

The hardware WALTZ decoupling lines are X ORed with the decoupler phase control. The
performance of the WALTZ decoupling should not be affected by the decoupler phase
Setting.

When using pulse sequences with implicit acquisition, the decoupler phaseissetto 0
automatically (within the test4acq procedurein the module hwlooping.cin/
vamr/psg), SO under most circumstances no problems are seen. But if you are using
explicit acquisition or if you aretrying to perform WA LT Z decoupling during aperiod other
than acquisition, you must use adecphase (zero) statement in the pulse sequence
before the relevant time period.

Setting Small-Angle Phase Shifts

Setting the small-angle phase of rf pulsesisimplemented by three different methods:
® Fixed 90° settings
® Direct synthesis hardware control
® Phase-pulse phase shifting

The statements related to these methods are summarized in Table 9.

Table 9. Phase Shift Statements

dcplrphase (multiplier) Set small-angle phase of first decoupler, rf type C or D
deplr2phase (multiplier) Set smal-angle phase of second decoupler, rf type C or D
deplr3phase (multiplier) Set smal-angle phase of third decoupler, rf type C or D
decstepsize (base) Set step size of first decoupler

dec2stepsize (base) Set step size of second decoupler

dec3stepsize (base) Set step size of third decoupler

obsstepsize (base) Set step size of observe transmitter

phaseshift* Set phase-pul se technique, rf type A or B

stepsize (base,device) Set small-angle phase step size, rf type C or D
xmtrphase (multiplier) Set small-angle phase of observe transmitter, rf type C
* phaseshift (base,multiplier,device)

Fixed 90° Settings

The first method is the hardwired 90° (or quadrature) phase setting. For both the observe
and the decoupler transmitters, phases of 0°, 90°, 180°, and 270° are invoked
instantaneously using the obspulse, pulse, rgpulse, simpulse, decpulse,
decrgpulse, dec2rgpulse, dec3rgpulse, dec4drgpulse, txphase,
decphase, dec2phase, dec3phase, and dec4phase Statements.

The receiver phase is actually fixed but is “shifted” by setting the oph variable, which
changes the “mode” of the receiver. A 180° receiver “phase’ sets the system to subtract
instead of add the data—a 90° receiver phase swaps the two channels of the receiver.

Hardware Control

A second method of small-angle phase selection isimplemented only on spectrometers
with direct synthesis. This method uses hardware that sets transmitter phase in 0.25°
increments on YNTYINOVA systems, or 1.41° on MERCURYplus/-Vx systems, independently
of the phase of the receiver. This method is an absolute technique (e.g., if aphase of 60° is
invoked twice, the second phase selection does nothing).

01-999253-00 A0604 vnmrJ User Programming 61

Chapter 2. Pulse Sequence Programming

62

Theobsstepsize (base) statement sets the step size of the small-angle phase
increment to base for the observe transmitter. Similarly, decstepsize (base),
dec2stepsize (base),and dec3stepsize (base) setthe step size of the
small-angle phase increment to base for the first decoupler, second decoupler, and third
decoupler, respectively (assuming that system is equipped with appropriate hardware). The
base argument isarea number or variable.

The base phase shift selected is active only for the xmt rphase statement if the
transmitter is the requested device, only for the dcplrphase statement if the decoupler
is the requested device, only for the dcplr2phase statement if the second decoupler is
the requested device, or only for the dcplr3phase if thethird decoupler isthe required
device, that is, every transmitter hasits own “base” phase shift. Phase information into
pulse, rgpulse, decpulse, decrgpulse, dec2rgpulse, dec3rgpulse, and
simpulse isstill expressed in units of 90°.

The statements xmt rphase (multiplier), dcplrphase (multiplier),
dcplr2phase (multiplier),anddcplr3phase (multiplier) setthephase of
transmitter, first decoupler, second decoupler, or third decoupler, respectively, in units set
by stepsize.If stepsize hasnot been used, the default step sizeis90°. Theargument
multiplier isasmall-angle phaseshift multiplier. The small-angle phaseshiftisa
product of the multiplier and the preset stepsize for the rf device (observe transmitter,
first decoupler, second decoupler, or third decoupler). multiplier must beanrea-time
variable.

Thedecstepsize, dec2stepsize,dec3stepsize, and obsstepsize
statements are similar to the stepsize statement but have the channel selection fixed.
Each of the following pairs of statements are functionally the same:

® obsstepsize (base) and stepsize (base, OBSch).
® decstepsize (base) and stepsize (base,DECch).
® dec2stepsize (base) and stepsize (base,DEC2ch).
® dec3stepsize (base) and stepsize (base,DEC3ch).

On systems with Output boards only, if the product of thebase and multiplieris
greater than 90°, the sub-90° part is set by the xmt rphase, dcplrphase,
dcplr2phase, of dcplr3phase statements. Carryovers that are multiples of 90° are
automatically saved and added in at the time of the next 90° phase selection (e.g., at the
time of thenext pul se or decpulse). Thisistrueevenif stepsize hasnot been used
and base isat itsdefault value of 90°. The following example may help you to understand
this question of “carryovers’:

obsstepsize (60.0) ; /* set 60° step size for obs. xmtr*/
initval(6.0,v1l); modn(ct,vl,v2); /* v2=012345012345 */
xmtrphase (v2) ; /* phase=0,60,120,180,240,300 */

/* small-angle part=0,60,30,0,60,30 */
/* carry-over=0,0,90,180,180,270 */

mod4 (ct,v3) ;pulse (pw,v3); /* specified phase=0,90,180,270 */
/* 90°phase shift actually used */
/* = 0,90,270,450,180,360 */
/* = specified + carry-over */

If xmtrphase, dcplrphase, dcplr2phase, of dcplr3phase isused to set the
phase for some pulses in a pulse sequence, it is often necessary to use

xmtrphase (zero), dcplrphase (zero), dcplr2phase (zero), Or
dcplr3phase (zero) preceding other pulsesto ensure that the phase specified by a

VnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

previous xmt rphase, dcplrphase, dcplr2phase, of dcplr3phase does not
carry-over into an unwanted pulse or decpulse Statement.

Phases specified in txphase, pulse, rgpulse, decphase, decpulse,
decrgpulse, dec2phase, dec2rgpulse, dec3rgpulse, and dec4rgpulse
statements change the 90° portion of the phase shift only. Thisfeature providesa separation
between the small-angle phase shift and the 90° phase shifts, and facilitates programming
phase cycles or additional coherence transfer selective phase cycling “on top of” small-
angle phase shifts.

Be sure to distinguish xmt rphase from txphase. txphase isoptiona and rarely
needed; xmt rphase isneeded any time the transmitter phase shift is to be set to avalue
not a multiple of 90°. The same distinction can be made between dcplrphase and
decphase, dcplr2phase and dec2phase, and dcplr3phase and dec3phase.

Controlling the Offset Frequency

Statements for frequency control are decof fset, dec2offset,dec3offset,
decd4offset, obsoffset,offset,and ioffset. Table 10 summarizes these
statements.

Table 10. Frequency Control Statements

decoffset (frequency) Change offset frequency of first decoupler
dec2offset (frequency) Change offset frequency of second decoupler
dec3offset (frequency) Change offset frequency of third decoupler
dec4offset (frequency) Change offset frequency of fourth decoupler
obsoffset (frequency) Change offset frequency of observe transmitter

of fset (frequency, device) Change offset frequency of transmitter or decoupler
ioffset (frequency,device, string) Change offset frequency with IPA

The main statement to set the offset frequency of the observe transmitter (parameter tof),
first decoupler (dof), second decoupler (dof2), or third decoupler (do £ 3) isthe statement
offset (frequency, device), where frequency isthe new vaue of the
appropriate parameter and device isOBSch (observe transmitter), DECch (first
decoupler), DEC2ch (second decoupler), or DEC3ch (third decoupler). For example, use
offset (to2,0BSch) to set the observe transmitter offset frequency. DEC2ch can be
used only on systems with threerf channels. Likewise, DEC3ch is used only on systems
with four rf channels.

® For systemswith rf type D, the frequency shift timeis 14.95 us (latching with or
without over-range). No 100-us delay is inserted into the sequence by theof fset
statement. Offset frequencies are not returned automatically to their “normal” values
before acquisition; this must be done explicitly, asin the example below.

® For UNTYINOVA systems, the frequency shift timeis 4 us.
® For MERCURYplus/-Vx systems, the setup time is 86.4 us and the shift timeis 1 us.
Other frequency control statements are variationsof of fset:

® To setthe offset frequency of the observetransmitter the sameasof £ set but generate
interactive parameter adjustment (IPA) information when gf or go ('acgi') is
entered, use ioffset (frequency,device, string), where stringisused
asalabel for theslider in acqi. If go is entered instead, the IPA information is not
generated. For detailson IPA, see“Using Interactive Parameter Adjustment,” page 91.
IPA is not available on MERCURYplus/-Vx systems.

01-999253-00 A0604 vnmrJ User Programming 63

Chapter 2. Pulse Sequence Programming

64

® To set the offset frequency of the observe transmitter (parameter tof), use
obsoffset (frequency), which functions the same as
offset (frequency, OBSch).

® To set the offset frequency of the first decoupler (parameter dof), use
decoffset (frequency), which functions the same as
offset (frequency, DECch).

® To set the offset frequency of the second decoupler (parameter dof2), use
dec2offset (frequency), which functions the same as
offset (frequency,DEC2ch).

® To set the offset frequency of the third decoupler (parameter dof3), use
dec3offset (frequency), which functions the same as
offset (frequency, DEC3ch).

® To set the offset frequency of the deuterium decoupler used as the fifth channel
(parameter dof4), use dec4offset (frequency), which functionsthe sameas
offset (frequency, DEC4ch)

Controlling Observe and Decoupler Transmitter Power

Statementsto control power by adjusting the coarse attenuators on linear amplifier systems
arepower, obspower, decpower, dec2power, dec3power, and dec4power.
Statements to control fine power are pwrf, pwrm, r1pwrm, obspwrf, decpwrf,
dec2pwrf, and dec3pwrf. Statementsto control decoupler power level switching are
declvlon,declvloff,anddecpwr. Theapovrride statement overridesan AP bus
delay (the delay before AP bus access). Table 11 summarizes these statements.

Table 11. Power Control Statements

apovrride () Override internal software AP bus delay
declvloff () Return first decoupler back to “normal” power
declvlon() Turn on first decoupler to full power

decpower (value) Change first decoupler power, linear amplifier
dec2power (value) Change second decoupler power, linear amplifier
dec3power (value) Change third decoupler power, linear amplifier
dec4power (value) Change deuterium decoupler power, linear amplifier
decpwr (level) Set decoupler high-power level, class C amplifier
decpwrf (value) Set first decoupler fine power

dec2pwrf (value) Set second decoupler fine power

dec3pwrf (value) Set third decoupler fine power

ipwrf (value,device, string) Change transmitter or decoupler fine power with [PA
ipwrm(value,device, string) Change transmitter or decoupler linear mod. with 1PA
obspower (value) Change observe transmitter power, linear amplifier
obspwrf (value) Set observe transmitter fine power

power (value,device) Change transmitter or decoupler power, linear amplifier
pwrf (value,device) Change transmitter or decoupler fine power
pwrm(value, device) Change transmitter or decoupler linear mod. power
rlpwrm(rlvalue,device) Set transmitter or decoupler linear mod. power

Coarse Attenuator Control

On UNITYINOVA systems with linear amplifiers, the statement power (value, device)
changes transmitter or decoupler power by adjusting the coarse attenuators from 0
(minimum power) to 63 (maximum power) on channels with a 63-dB attenuator, or from —
16 (minimum power) to 63 (maximum power) on channels with a 79-dB attenuator.

VnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

® value must be stored in area-time variable such as v2; the actual value cannot be
placed directly in the power statement. This allows the attenuators to be changed in
real-time or from pulse to pulse.

® device isOBSch to change the transmitter power, DECch to change the first
decoupler power, DEC2ch to change the second decoupler power, or DEC3ch to
change the third decoupler power (e.g., power (v2,0BSch)).

To avoid using areal-time variable, the fixed-channel statements obspower (value),
decpower (value),dec2power (value), and dec3power (value) can beused
in place of the power statement, for example, obspower (63 .0) . For all of these
statements, value iseither areal number or avariable.

The power and associated fixed-channel statements allow configurations such as the use
of the transmitter at alow power level for presaturation followed by a higher power for
uniform excitation. The phase of the transmitter is specified as being constant to within 5°
over the whole range of transmitter power. Therefore, if you pulse at low power with a
certain phase and later at high power with the same phase, the two phases are the “same”
to within 5° (at any one power level, the phase is constant to considerably better than 0.5°).
The time of the power change is specified in Table 30.

On systems with an Output board only, the power and associated statements are preceded
internally by a 0.2 us delay by default (see the apovrride pulse statement for more
details).

CAUTION: On systems with linear amplifiers, be careful when using values of
power, obspower, decpower, dec2poser, and dec3power greater than
49 (about 2 watts). Performing continuous decoupling or long pulses
at power levels greater than this can result in damage to the probe.
Use config to set a safety maximum for the tpwr, dpwr, dpwr2, and
dpwr3 parameters.

Fine-Power Control

To change thefine power of atransmitter or decoupler by adjusting the optional linear fine
attenuators, use pwrf (value,device) of pwrm(value,device).Thevalue
argument is real-time variable, which means it cannot be placed directly in the pwrf or
pwrm statement, and can range from 0 to 4095 (60 dB on YN'TYINOVA, about 6 dB on other
systems). device isOBSch (for the observe transmitter) or DECch (first decoupler). On
UNIYINOVA only, device can aso be DEC2ch (second decoupler) or DEC3ch (third
decoupler). MERCURYplus/-Vx systems do not support pwrf and pwrm with rea-time
parameters but support all other parameters.

You can use the fixed-channel statement obspwrf (value), decpwrf (value),
dec2pwrf (value),and dec3pwrf, of rlpwrm(value,device) toavoid
arguments using real -time variables. These statements change transmitter or decoupler
power on systems with linear amplifiers, but value iseither area number or avariable
and is stored in a C variable of type double.

The ipwrf (value,device, string) and ipwrm(value,device, string)
statement changes interactively the transmitter or decoupler fine power or linear
modulators by adjusting the optional fine attenuators. The value and device arguments
arethesameaspwrf. string canbeany string; thefirst six lettersareused in acqi.
Thisstatement will generateinteractive parameter adjustment (IPA) information only when
the command gf or go ('acgi') istyped. When the command go istyped, this
statement isignored by the pulse sequence. Usethe pwr £ pulse statement for this purpose.

01-999253-00 A0604 vnmrJ User Programming 65

Chapter 2. Pulse Sequence Programming

66

Do not execute pwr £ and ipwr £ in the same pulse sequence, as they cancel each other's
effect.

On systems with an Output board only, a0.2 us delay internally precedes the AP (analog
port) bus statements power, obspower, decpower, and dec2power. The
apovrride () statement preventsthis 0.2 usdelay from being inserted prior to the next
(and only the next) occurrence of one of the these AP bus statements.

Decoupler Power-Level Switching

On UNTYINOVA systems with class C or linear amplifiers, declvlon () and
declvloff () switchthe decoupler power level between the power level set by the high-
power parameter(s) to the full output of the decoupler. The statement declvlon () gives
full power on the decoupler channel; declvlof £ switchesthe decoupler to the power
level set by the appropriate parameters defined by the amplifier type: dhp for class C
amplifiersor dpwr for alinear amplifiers. If dhp="n", these statements do not have any
effect on systems with class C amplifiers, but till function for systemswith linear
amplifiers.

If declvlon isused, make suredeclvloff isused prior to time periodsin which
normal, controllable power levels are desired, for example, prior to acquisition. Full
decoupler power should only be used for decoupler pulses or for solids applications.

MERCURYplus/-Vx systems do not use declvlon or declvloff.

Controlling Status and Gating

Statements to control decoupler and homospoil statusare status and setstatus.
Explicit transmitter and receiver gating control statements are xmtrof £, xmt ron,
decoff, decon, dec20off, dec2on, dec3off, dec3on, rcvroff, and rcvron.
Statements for amplifier blanking and unblanking are obsblank, obsunblank,
decblank, decunblank, dec2blank, dec2unblank, dec3blank,
dec3unblank, blankingoff, and blankingon. Finally, statementsfor user-
dedicated lines are sp#of £ and sp#on. Table 12 summarizes these statements.

Gating States

Usestatus (state) tocontrol decoupler and homaospoil gating in a pulse sequence,
where state iSAt0 Z (eg., status (A) or status (B)). Parameters controlled by
status are dm (first decoupler mode), dmm (first decoupler modulation mode), and hs
(homospoil). For systemswith athird or fourth rf channel, dm2 and dm3 (second and third
decoupler modes) and dmm2 and dmm3 (second and third decoupler modulation mode) are
also under status control. For systemswith adeuterium decoupler channel asthe fourth
decoupler, dm4 and dmm4 are under status control.

Each of these parameters can have multiple states: status (A) setseach parameter to the
state described by the first letter of itsvalue, status (B) usesthe second letter, etc. If a
pulse sequence has more status statements than there are status modes for a particular
parameter, control reverts to the last letter of the parameter value. Thus, if dm="'ny ',
status (C) will look for the third letter, find none, and then use the second letter (y) and
turn the decoupler on.

Use setstatus (channel, on, mode, sync,mod_freq) to control decoupler
gating as well as decoupler modulation modes (GARP, CW, WALTZ, etc.). channel is
0BSch, DECch, DEC2ch, or DEC3ch, on iSTRUE or FALSE, mode isadecoupler mode
("c','g", 'p', €lc), sync iISTRUE Or FALSE, and mod_ freq isthe modulation

VnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

Table 12. Gating Control Statements

blankingoff ()
blankingon ()

decblank ()
dec2blank ()
dec3blank ()
decoff ()
dec20ff ()
dec3off ()
decon ()
dec2on ()
dec3on ()
decunblank ()
dec2unblank ()
dec3unblank ()
dhpflag=TRUE | FALSE
initparms sis ()
obsblank ()
obsunblank ()
rcevroff ()
rcvron ()
recoff ()
recon ()
setstatus*
status (state)

statusdelay (state, time)

xmtroff ()

xmtron ()

Unblank amplifier channels and turn amplifierson
Blank amplifier channels and turn amplifiers off

Blank amplifier associated with the 1st decoupler

Blank amplifier associated with the 2nd decoupler
Blank amplifier associated with the 3rd decoupler

Turn off first decoupler

Turn off second decoupler

Turn off third decoupler

Turn on first decoupler

Turn on second decoupler

Turn on third decoupler

Unblank amplifier associated with the 1st decoupl er
Unblank amplifier associated with the 2nd decoupler
Unblank amplifier associated with the 3rd decoupler
Switch decoupling between high- and low-power levels
Initialize parameters for spectroscopy imaging sequences
Blank amplifier associated with observe transmitter
Explicitly enables the amplifier for the observe transmitter
Turn off receiver gate and amplifier blanking gate

Turn on receiver gate and amplifier blanking gate

Turn off receiver gate only

Turn on receiver gate only

Set status of observe transmitter or decoupler transmitter
Change status of decoupler and homospoil

Execute status statement with given delay time

Turn off observe transmitter

Turn on observe transmitter

* setstatus (channel, on,mode, sync, mod freq)

frequency (e.g., setstatus (DECch, TRUE, 'w',FALSE, dmf).(Thesetstatus
statement is not available on the MERCURYplus/-Vx.)

setstatus providesaway to set transmittersindependent of the parameters, one channel
at atime. For example, setstatus (OBSch, TRUE, 'g', TRUE, obs_mf), turnsthe
observe transmitter (OBSch) on (TRUE), using GARP modulation (' g ') in synchronized
mode (TRUE) with amodul ation frequency of obs mf. (Theobs mf parameter will need
to be calculated from a parameter set with an appropriate getval statement.)

Note: Besureto set the power to asafe level before calling setstatus.

Timing for setstatus isthe sameasfor the status statement except that only one
channel needsto be taken into account. To ensure that the timing is constant for the status,
usethe statusdelay statement (e.g., statusdelay (A,2.0e-5)).

Homospoil gating is treated somewhat differently than decoupler gating. If a particular
homospoail code letteris 'y ', delays coded as hsdelay that occur when the status
corresponds to that code letter will begin with a homospoil pulse, the duration of whichis
determined by the parameter hst. Thusif hs="ny', all hsdelay delaysthat occur
during status (B) will begin with ahomospoail pulse. The final status aways occurs
during acquisition, at which time a homospoil pulse isnot permitted. Thus, if a particular
pulse sequence uses status (A), status (B),and status (C), dm and other
decoupler parameters may have up to three letters, but hs will only have two, since
hs="'y"' during status (C) would be meaningless and is ignored.

01-999253-00 A0604 vnmrJ User Programming 67

Chapter 2. Pulse Sequence Programming

Transmitter Gating

On all systems, transmitter gating is handled as follows:

® Explicit transmitter gating in the pulse sequence is provided by xmtrof f () and
xmtron (). Transmitter gating is handled automatically by obspulse, pulse,
rgpulse, simpulse, sim3pulse, shaped pulse, simshaped pulse,
sim3shaped pulse, and spinlock. The obsprgon statement should
generally be enabled with an explicit xmt ron statement, followed by xmtrof £.

® Explicit gating of thefirst decoupler in the pulse sequenceis provided by decoff ()
and decon () . First decoupler gating is handled automatically by decpulse,
decrgpulse,declvlon,declvloff, simpulse, sim3pulse,
decshaped pulse, simshaped pulse, sim3shaped pulse, and
decspinlock. Thedecprgon function should generally be enabled with explicit
decon statement and followed by adecof £ cal.

® Explicit gating of the second decoupler inthe pulse sequenceisprovided by dec2of £
and dec2on. Second decoupler gating is handled automatically by dec2pulse,
dec2rgpulse, sim3pulse, dec2shaped pulse, sim3shaped pulse,
and dec2spinlock. The dec2prgon function should generally be enabled with
an explicit d2con statement, followed by dec2off.

® Likewise, explicit gating of the third decoupler in the pulse sequence is provided by
dec3off and dec3on. Third decoupler gating is handled automatically by
dec3pulse, dec3rgpulse, dec3shaped pulse,anddec3spinlock. The
dec3prgon function should generally be enabled with an explicit dec3con
statement, followed by dec3of f.

Receiver Gating

Explicit receiver gating in the pulse sequence is provided by the rcvrof £ (),

rcvron (), recoff (),andrecon () statements. These statementscontrol the receiver
gates except when pulsing the observe channel (in which casethereceiver is off) or during
acquisition (in which case the receiver ison). The recof £ and recon statements
(available only on YWITYINOVA systems) affect the receiver gate only and do not affect the
amplifier blanking gate, which istherole of rcvroff and rcvron.

® On UYNTYINOVA, the receiver is on only during acquisition except for certain imaging
pul se sequencesthat have explicit acquires (such as SEMS, MEMS, and FLASH), and
fortheinitparms sis () statement that defaultsthe receiver gate to on.

® On MERCURYplus/-Vx, receiver gating istied to the amplifier blanking and is
normally controlled automatically by the pulse statements rgpulse, pulse,
obspulse, decrgpulse, decpulse, and dec2rgpulse.

Amplifier Channel Blanking and Unblanking

Amplifier channel blanking and unblanking methods depend on the system.

® On UNTYINOVA, the receiver and amplifiers are not linked. To explicitly blank and
unblank amplifiers, the following statements are provided:

For the amplifier associated with the observe transmitter:
obsblank () and obsunblank ().

For the amplifiers associated with the first, second, and third decouplers:
decblank () and decunblank (), dec2blank ()and dec2unblank (),
and dec3blank ()and dec3unblank (), respectively.

These statementsreplace blankon and blankof £, no longer in VnmrJ.

68 vnmrJ User Programming 01-999253-00 A0604

2.3 Spectrometer Control

® On MERCURYplus/-Vx, the receiver and amplifier arelinked. At the end of each pulse
statement, the receiver is automatically turned back on and the amplifier blanked.
Immediately prior to data acquisition, the receiver isimplicitly turned back on.

Interfacing to External User Devices

All Inova consoles provide some means of interfacing to external user devices. Table 13
lists the statements available for this feature.

Table 13. Interfacing to External User Devices

readuserap (rtvalue) Read input from user AP register
setuserap (value,nreg) Set user AP register

sp#off (), sp#on () Turn off and on specified spare line
vsetuserap (rtvalue,nreg) Set user AP register using real-time variable

User-Dedicated Spare Lines

One or more user-dedicated spare lines are available for high-speed device control:

® UNITYINOVA consoles have five spare linesin the Breakout panel on therear of the left
cabinet. Each spare lineis a BNC connector. The sp#on () and sp#off ()
statements control specified SPARE lines.

User AP (Analog Port) Lines

UNITYINOVA consoles have two 24-pin user AP connectors, J8212 and J8213, in the
Breakout panel on the rear of theleft cabinet. Each connector has 16 user-controllable lines
coinciding with two 8-bit AP busregisters. All four of the AP bus registers are writeable
but only oneregister is readable.

Table 14 showsthe mapping of the Table 14. Mapping of User AP Lines
user APlines. On both connectors,

lines 17 to 25 are ground lines. Register ~ Connector ~ Lines Function
User AP lines allow the 0 18213 9t016 output

synchronous access by usersto

. . . 1 J8213 1t08 output
external services while running a
pulse sequence. The statements 2 J68212 91016 output
setuserap (value, reg), 3 J8212 1t08 input/output

vsetuserap (rtvar, reg),
and readuserap (rtvar) provide access to these lines.

Thesetuserap and vsetuserap statements enablewriting 8-bit information to one of
four registers. Each write takes one AP bus cycle, whichis 0.5 usfor the WTINOVA. The
only difference between setuserap and vsetuserap isthat vsetuserap usesa
real-time variable to set the value.

The readuserap statement lets you read 8-bit information from the register into areal-
time variable. You can then act on this information using real-time math and real-time
control statementswhile the pul se sequence is running; however, because the system hasto
wait for the data to be read before it can continue parsing and stuffing the FIFO, a
significant amount of overhead isinvolvedin servicing theread and refilling the FIFO. The
readuserap statement takes 500 [1s to execute. The readuserap statement putsin a
500 usdelay immediately after reading the user AP linesin order for the parser to parse and
stuff more words into the FIFO before it underflows. However, this time may not be long

01-999253-00 A0604 vnmrJ User Programming 69

Chapter 2. Pulse Sequence Programming

enough and you may want to pad this time with adelay immediately following the
readuserap statement to avoid FIFO underflow. Depending on the actionsin the pulse
sequence, your delay may need to be a number of milliseconds. If thereisan error in the
read, a warning message is sent to the host and a—1 is returned to the real-time variable.

2.4 Pulse Sequence Statements: Phase and Sequence Control

70

Asexplained previously, aseriesof internal variables, named v1,v2, ..., v14, areprovided
to perform calculations during “ real-time” (whilethe pul se sequenceisexecuting). All real-
time variables are pointers to particular memory locationsin the acquisition computer. You
do not change areal-time variable, rather you change the value in the memory location to
which that real-time variable points.

For example, when we speak of v1 being set equal to 1, what we really meansis that the

value in the memory location pointed to by the real-time variable v1 is 1. The actual value
of v1, apointer, isnot changed. Thetwo ideas are interchangeable aslong as we recognize
exactly what is happening at the level of the acquisition computer.

These internal, real-time variables can be used for a number of purposes, but the two most
important are control of the pulse sequence execution (for looping and conditional
execution, for example) and cal cul ation of phases. For each pul sein the sequence, the phase
is calculated dynamically (at the start of each transient) rather than entirely at the start of
this experiment. This allows phase cycles to attain essentially unlimited length, because
only one number must be calculated for each phase during each transient. By contrast,
attempting to calculate in advance a phase cycle with acycle of 256 transients and different
phasesfor each of 5 different pulseswould require storing 256 x 5 or 1280 different phases.

Real-Time Variables and Constants

The following variables and constants can be used for real-time calculations:

vitovi4d Real-time variables, used for calculations of loops, phases, etc. They
are at the complete disposal of the user. The variables point to 16-bit
integers, which can hold values of —32768 to +32767.

ct Completed transient counter, pointsto a 32-bit integer that is
incremented after each transient, starting with avalue of O prior to the
first experiment. This pattern (0,1,2,3,4, ...) isthe basis for most
calculations. Steady-state transients, invoked by the ss parameter, do
not change ct.

bsctr Block size counter, pointsto a 16-bit integer that is decremented from
bs to 1 during each block of transients. After completing the last
transient in the block, bsctr is set back to avalue of bs. Thusif
bs=8, bsctr has successive vaues of 8,7,6,5,4,3,2,1,8,7,

oph Real-time variable that control s the phase of the receiver in 90°
increments (0=0°, 1=90°, 2=180°, and 3=270°). Prior to the execution
of the pulse sequence itself, oph isset to O if parameter cp isset to
'n', or to the successivevaues0,1,2,3,0,1,2,3,...if cpisset
to 'y'. Thevalue of oph can be changed explicitly in the pulse
sequence by any of thereal -time math statements described in the next
section (assign, add, etc.) and is aso changed by the
setreceiver statement.

VnmrJ User Programming 01-999253-00 A0604

2.4 Pulse Sequence Statements: Phase and Sequence Control

zero, one, Pointers to constants set to select constant phases of 0°, 90°, 180°, and
two, three 270°. They cannot be replaced by numbers 0, 1, 2, and 3.

ssval, Real-time variables described in “ Manipulating Acquisition

ssctr, Variables,” page 74.

bsval

id2,id3,id4 Pointers (or indexes) to constants identifying the current increment in
multidimensional experiments. 1d2 isthe current d2 increment. Its
valueranges from 0 to the size of the d2 array minus 1, which is
typically 0 to (ni-1). 1d3 corresponds to current index of the d3
array in a3D experiment. Itsrange isO to
(ni2-1). id4 correspondsto the current index of the d4 array. Its
rangeis0to (ni3-1). Only MERCURYplus/-Vx support id2.

Calculating in Real-Time Using Integer Mathematics

A series of special integer mathematical statements are provided that are fast enough to
executeinreal-time: add, assign,dbl,decr,divn, hlv, incr,mod2, mod4, modn,
mult, and sub. These statements are summarized in Table 15.

Table 15. Integer Mathematics Statements

add (vi,vj,vk) Add integer values: set vk equd to vi + vj
assign(vi,vj) Assign integer values: set vj equa tovi

dbl (vi,vj) Double an integer value: set vj equal to 2evi

decr (vi) Decrement an integer value: set vi equal to vi —1

divn (vi,vj,vk) Divide integer values: set vk equal to vi div v
hlv(vi,vj) Find half the value of an integer: set vj to integer part of 0.5evi
incr (vi) Increment an integer value: set vi equal tovi +1

mod2 (vi, vj) Find integer value modulo 2: set vj equa to vi modulo 2
mod4 (vi, vj) Find integer value modulo 4: set v equal to vi modulo 4
modn (vi, vj, vk) Find integer value modulo n: set vk equa to vi modulo vj
mult (vi,vj, vk) Multiply integer values: set vk equal to vievj

sub (vi,vj,vk) Subtract integer values: set vk equal to vi —vj

Remember that integer mathematics does not include fractions. If afraction appearsin a
result, the value is truncated; thus, one-half of 3is1, not 1.5.

Integer statements also use the modulo, which isthe number that remains after the modulo
number is divided into the origina number. For example, the value of 8 modulo 2 (often
abbreviated “8 mod 2”) isfound by dividing 2 into 8, giving an answer of 4 with a
remainder of 0, so 8 mod 2is0. Similarly, 9 mod 2is1, since 2into 9 gives 4 with a
remainder of 1. The modulus of a negative number is not defined in VnmrJ software and
should not be used.

Each statement performs one calculation at atime. For example, hlv (ct, v1) takeshalf
the current value of ct and places it in the variable v1. Before each transient, ct hasa
given value (e.g., 7), and after this calculation, v1 hasacertain value (e.g., 3if ct was7).

To visualize the action of a statement over the course of a number of transients, pulse
sequences typically document this action explicitly as part of their comments. The
commentvi=0,0,1,1, .. (orvli=001122...) meansthat v1 assumesavalue of O
during the first transient, O during the second, 1 during the third, etc.

01-999253-00 A0604 VnmrJ User Programming 71

Chapter 2. Pulse Sequence Programming

72

The following series of examplesillustrates the action of integer mathematics statements
and how comments are typically used:

hlv(ct,vl); /* v1=0011223344... */
dbl (vl,vl); /* v1=0022446688... */
mod4 (v1,vl) ; /* v1=0022002200... */
mod2 (ct,v2) ; /* v2=010101... */
dbl (v2,v3); /* v3=020202... */
/* v1=00112233... */
hlv(vl,v2); /* v2=00001111.... */
dbl (vl,vl); /* v1=00224466.... */
add(vl,v2,v3) ; /* v3=00225577.... */
mod4 (v3,oph) ; /* oph=00221133...,receiver phase cycle */

Note that the same variable can be used as the input and output of a particular statement
(eg.,dbl (v1,v1) isfinesoitisnot necessary tousedbl (v1,v2)). Notealso that
although themod4 statement is used in several cases, it is never necessary to includeit,
evenif appropriate, because an implicit modulo 4 isaways performed onall phases (except
when setting small-angl e phase shifts).

The division provided by the divn statement is integer division, thus remainders are
ignored. vj in each case must be a real-time variable and not a real number (like 6.0) or
even aninteger constant (like 6). To perform, for example, amodulo 6 operation, something
like the following is required:

initval(6.0,v1) ;

modn (v2,vl,v7) ; /* v7 is v2 modulo 6 */

Controlling a Sequence Using Real-Time Variables

In addition to being used for phase cal culations, real-time variables can a so be used for
pulse sequence control. Table 16 lists pulse sequence control statements.

Table 16. Pulse Sequence Control Statements

elsenz (vi) Execute succeeding statements if argument is nonzero
endif (vi) End ifzero statement

endloop (index) End loop

ifzero(vi) Execute succeeding statements if argument is zero
initval (realnumber,vi) Initialize area-time variable to specified value

loop (count, index) Start loop

By placing pulse sequence statements between a loop (count, index) statement and
an endloop (index) statement, the enclosed statements can be executed repeatedly.
The count argument used with 1oop isareal-time variable that specifies the number of
times to execute the enclosed statements. count can be any positive number, including
zero. index isareal-time variable used asatemporary counter to keep track of the number
of times through the enclosed statements, and must not be altered by any of the statements.
An example of using 1oop and end1oop is the following:

mod4 (ct, v5) ; /* times through loop: v5=01230123... */

loop (v5,v3 /* v3 is a dummy to keep track of count */

)
delay (d3) ; /* variable delay depending on the ct */
)

7

endloop (v3

VnmrJ User Programming 01-999253-00 A0604

2.4 Pulse Sequence Statements: Phase and Sequence Control

Statements within the pul se sequence can be executed conditionally by being enclosed
withinifzero(vi),elsenz(vi),and endif (vi) statements. vi isareal-time
variable used as atest variable, to be tested for either being zero or non-zero. Theelsenz
statement may be omitted if it is not desired. It is aso not necessary for any statements to
appear betweenthe i fzero andtheelsenz ortheelsenz andthe endif statements.
The following code is an example of a conditional construction:

mod2 (ct,vl) ; /* v1=010101... */

ifzero(vl); /* test if v1 is zero */
pulse (pw,v2) ; /* execute these statements */
delay (d3) ; /* if vl is zero */

elsenz (vl) ; /* test if v1 is non-zero */
pulse (2.0*pw,Vv2) ; /* execute these statements */
delay(d3/2.0) ; /* if vl is non-zero */

endif (v1) ;

If numbers other than those easily accessiblein integer math (suchasct, oph, three) are
needed, any variable can be initidized to avalue withthe initval (number, vi)
statement (e.g., initval (4.0, v9). Therea number inputisrounded off and placed in
the variable vi. This statement, unlike the statements such as add and sub described
above, is executed once and only once at the start of anon-arrayed 1D experiment or at the
start of each increment in a2D experiment or an arrayed 1D experiment, not at the start of
each transient.

Real-Time vs. Run-Time—When Do Things Happen?

It may help to explain the pulse sequence execution processin more detail. When you enter
go, the go program is executed. This program looks up the various parameters, examines
the name of the current pulse sequence, and looksin seglib for afile of that name. The
filein seglibisacompiled C program, which wascompiled with the segqgen command.
This program, which is run by the go program, combines the parameters supplied to it by
go together with a series of instructions that form the pulse sequence.

The output of the pulse sequence program in seqgl ib isatable of numbers, known asthe
code table (generaly referred to as Acodes or Acquisition codes), which contains
instructions for executing a pulse sequence in a special language. The pulse sequence
program sends a message to the acquisition computer to begin operation, informing it
wherethe codetableis stored. Thiscode table is downloaded into the acquisition computer
and processed by an interpreter, which is executing in the acquisition computer and which
controls operation during acquisition. If after entering go or su, etc., the message that PSG
aborted abnormally appears, run the psg macro to help identify the problem.

A pulse sequence can intermix statementsinvolving C, suchasd2=1.0/ (2.0%*J), with
special statements, such ashlv (ct,v2). These two statements are fundamentally
different kinds of operations. When you enter go, all higher-level expressions are
evaluated, once for each increment. Thusind2=1.0/ (2.0*J), thevaueof Jislooked
up, d2 iscaculated asonedivided by 2*J, and the value of d2 isfixed. Statementsin this
category are caled run-time, since they are executed when go isrun. The h1lv statement,
however, is executed every transient. Before each transient, the system examines the
current value of ct, performstheinteger h1v operation, and setsthe variable v2 (used for
phases, etc.) to that value. On successive transients, v2 has vaues of 0,0,1,1,2,2, etc.
Statements like these are called real-time, because they execute during the real-time
operation of the pulse sequence.

Run-time statements, then, are statements that are evaluated and executed in the host
computer by the pulse sequence program in seqglib when you enter go. Real-time

01-999253-00 A0604 vnmrJ User Programming 73

Chapter 2. Pulse Sequence Programming

74

statements are statements that are repeatedly (every transient) executed by the code
program run in the acquisition computer. Therefore, it is not possible to include a statement
liked2=1.0+0.33*ct. Thevariable ct isareal-time variable (it isactualy an integer
pointer variable), while “C-type” mathematics are a run-time operation. Only the special
real-time statements included in this section can be executed on a transient-by-transient
basis.

Manipulating Acquisition Variables

Certain acquisition parameters, such as s s (steady-state pulses) and bs (block size), cannot
be changed in a pulse sequence with asimple C statement. The reason is that by the time
thepulsesequence functionisexecuted, the values of thesevariablesare already stored
inaregion of the host computer memory that will subsequently form the“low-core” portion
of the acquisition code in the acquisition computer. These memory locations can be
accessed and modified, however, by using real-time math functions with the appropriate
real-time variables.

Thevaue of ss inlow coreis associated with real-time variables ssval and ssctr:

® ssval isnever modified by the acquisition computer unless specifically instructed by
statements within the pulse sequence.

® ssctrisautomaticaly initialized to ssval.

For the first increment only, if ssval isgreater than zero, or else before every increment
inaarrayed 1D or 2D experiment, ssctr isdecremented after each steady-state transient
until it reaches 0. When ssctr is0, all subsequent transients are collected as data.

Thevaue of bs inlow coreis associated with real-time variablesbsval and bsctr:

® bsval isnever modified by the acquisition computer unless specifically instructed by
statements within the pulse sequence.

® bsctrisautomaticaly initialized to bsval after each block of transients has been
compl eted.

During the acquisition of ablock of transients, bsctr is decremented after each transient.
If bsval isnon-zero, azero value for bsctr signalsthat the block of transientsis
compl ete.

The ability within a pulse sequence to modify the values of these low core acquisition
variables can be used to add various capabilities to pulse sequences. As an example, the
following pulse sequence illustrates the cycling of pulse and receiver phases during steady-
state pul ses:
#include <standard.h>
pulsesequence ()
{

/* Implement steady-state phase cycling */

sub (ct,ssctr,v10) ;

initval (16.0,v9) ;

add (v10,v9,v10) ;

/* Phase calculation statements follow,

using v10 in place of ct as the starting point */
/* Actual pulse sequence goes here */

VnmrJ User Programming 01-999253-00 A0604

2.4 Pulse Sequence Statements: Phase and Sequence Control

Intertransient and Interincrement Delays

When running arrayed or multidimensional experiments (using ni, ni2, etc.), certain
operations are done preceding and following the pulse sequence for every array element,
the same as there are operations preceding and following the pulse sequence for every
transient. These overhead operations take up time that may need to be accounted for when
running a pulse sequence. This might be especially important if the repetition time of a
pul se sequence hasto be maintained across every element and every scan during an arrayed
or multidimensional experiment.

These overhead times between increments (array elements) and transientsare deterministic
(i.e., both known and constant); however, the time between increments, which we will call
x, islonger than the time between transients, which we will call y. Also, the time between
increments will change depending on the number of rf channels.

To maintain a constant repetition time for YNTINOVA systems, a parameter called do (for
d-zero) can be created so that x=y+d0. Because the interincrement overhead time will
differ with different system configurations—and to keep the Ao delay consistent across
systems—if 40 isset greater than the overhead delay, the inter-FID delay x is padded such
that y+d0=x+ (d0- (x-y)) . In other words, 40 is used to set a standard delay so the
interincrement delay and the intertransient delay are the same when executing transient
scanswithin an array element. The delay isinserted at the beginning of each scan of aFID
after thefirst scan has completed. The do delay can be set by the user or computed by PSG
(if doissetto 'n'). When do does not exist, no delay isinserted.

Another factor to consider when keeping a consistent timing in the pulse sequence is the
status statement. The timing of this statement varies depending on the number of
channels and thetype of decoupler modulation. To keep thistiming constant, UvyINOVA has
the pulse sequence statement statusdelay that allows the user to set a constant delay
time for changing the status. For thisto work, the delay time hasto be longer than thetime
it takes to set the status. For timing and more information, see the description of
statusdelay in Chapter 3.

The overhead operations preceding every transient are resetting the DTM (data-to-
memory) control information. The overhead operations following every transient are error
detection for number of points and data overflow; detection for blocksize, end of scan, and
stop acquisition; and resetting the decoupler status. do does not take these delays into
account.

The overhead operations preceding every array element are initializing the rf channel
settings (frequency, power, etc.), initializing the high-speed (HS) lines, initializing the
DTM, and if arrayed, setting the receiver gain. dO does not take into account arraying of
decoupler status shims, VT, or spinning speed.

Controlling Pulse Sequence Graphical Display

Thedps off,dps on,dps skip, anddps_show statements, summarized in Table
17, can be inserted into a pul se sequence to control the graphical display of the pulse
sequence statements by the dps command:

® Toturnoff dps display of statements, insert dps_of £ () intothe sequence. All pulse
sequences following dps_ of £ will not be shown.

® Toturnon dps display of statements, insert dps_on () into the sequence. All pulse
sequences following dps_on will be shown.

® Toskip dps display of thenext statement, insert dps_skip () intothesequence. The
next pulse sequence statement will not be displayed.

01-999253-00 A0604 vnmrJ User Programming 75

Chapter 2. Pulse Sequence Programming

® Todraw pulsesfor dps display, insert dps_show (options) statementsinto the
pulse sequence. The pulses will appear in the graphical display of the sequence.
Many optionsto dps_show are available. These options enable drawing aline to
represent a delay, drawing a pulse picture and displaying the channel name below the
picture, drawing shaped pulses with labels, drawing observe and decoupler pulses at
the same time, and much more. Refer to Chapter 3, “Pulse Sequence Statement
Reference,” for afull description of dps show, including examples.

Table 17. Statementsfor Controlling Graphical Display of a Sequence

dps off ()
dps_on ()

dps skip ()

dps show(options) *

Turn off graphical display of statements
Turn on graphica display of statements

Draw delay or pulsesin a sequence for graphical display
Skip graphical display of next statement
* dps_show has many options. See Chapter 3, “ Pulse Sequence Statement Reference,”

for the syntax and examples of use.

2.5 Real-Time AP Tables

76

Real-time acquisition phase (AP) tables can be created under pulse sequence control on all
unityl nova and MERCURYplus/-Vx systems. These tables can store phase cycles, an array of
attenuator values, etc. In the pulse sequence, the tables are associated with variables t 1,
t2,..t60.

The following pulse sequence statements accept the table variables t 1 to t 6 0 at any place
where asimple AP variable, such asv1, can be used:

pulse
decrgpulse
simpulse
dec2phase
dcplrphase
phaseshift
dec2spinlock
decshaped pulse
simshaped pulse

pwrf

rgpulse
dec2rgpulse
txphase
dec3phase
dcplr2phase
spinlock
dec3spinlock
dec2shaped pulse

sim3shaped pulse

decpulse
dec3rgpulse
decphase
xmtrphase
dcplr3phase
decspinlock
shaped pulse
dec3shaped pulse

power

For example, the statement rgpulse (pw, t1, rofl, rof2) performsan observe
transmitter pulse whose phase is specified by a particular statement in the real-time AP
table t 1, whereas rgpulse (pw,vl,rofl, rof2) performsthe same pulse whose
phase is specified by the real-time variable v1. The rea-time math functions add () ,
assign (), etc. listed in Table 15 cannot be used with tables t 1 -t 60. The appropriate
functionsto use are given in Table 18.

Statements using a table can occur anywhere in a pulse sequence except in the statements
enclosed by an i fzero-endif par.

Loading AP Table Statements from UNIX Text Files

Table statements can be loaded from an external UNIX text file with the loadtable
statement or can be set directly within the pulse sequence with the settable statement.

VnmrJ User Programming

01-999253-00 A0604

2.5 Real-Time AP Tables

The values stored must be integral and must lie within the 16-bit integer range of —32768
to 32767.

The AP table file must be placed in the user’s private directory tablib, which might be,
for example, /home /vnmrl/vnmrsys/tablib, or in the system directory for table
files, /vnmr/tablib. The software looksfirst in the user's personal tablib directory
for atable of the specified name, then in the system directory. The format for the table file
is quite flexible, comments are allowed, and several special notations are available.

Table Names and Statements

Entriesinthetablefile are referred to as table names. Each table name must come from the
sett1tote60 (e.g., t14 isatable name). A table name may be used only once within the
tablefile. If atable name is used twice within the table file, an error message is displayed
and pulse sequence generation (PSG) aborts.

Each table statement must be written as an integer number and separated from the next
statement by someform of “white” space, such asablank space, tab, or carriage return. The
maximum number of statements per table is 8192. For the average pul se sequence, the
maximum number of table statements per experiment is approximately 10,000.

The table name is separated from the table statements by an = or a +=sign (the +=sign is
explained on page 78), and there must be a space between the table name and either of these
two signs. For example, if atablefile contains the table name t 1 with statements 0, 1, 2,
3,2,3,0,1,itwould bewrittenastl = 0 1 2 3 2 3 0 1.

Theindex into atable can range from 0 to 1 less than the number of statementsin the table.
Note that an index of O will accessthefirst statement in thetable. Unless the autoincrement
attribute (described on page 78) isimparted to the table, the index into the tableis given by
ct, the completed transient counter.

If the number of transients exceeds the length of the table, access to the table begins again
at the beginning of the table. Thus, given atable of length n with statements numbered

0 through n—1 (this numbering is strictly away to think about the numbering and does not
imply the statements are actually numbered), then when the transient number is ct, the
number of the statement of the tablethat will be usedis ct modn (remember that ct starts
at 0 on thefirst transient, since ct represents the number of completed transients).

AP Table Notation

Special notation is available within the table file to simplify entering the table statements
and to impart specific attributes to any table within that file:

(... # Indicates the table segment within the parenthesesisto bereplicated in its
entirety # times (where # ranges from 1 to 64) before preceding to any
succeeding statements or segments. Do not include any space after) ”.

For example,
tl=(0 1 2)3 /* tl table=012012012 */.

[...1# Indicates each statement in the table segment within square bracketsisto
be replicated # times (where # ranges from 1 to 64) before going to the
next statement in that segment. Do not include any space after “1”. For
example,

tl=[0 1 2]3 /* tl table=000111222 */.

01-999253-00 A0604 VnmrJ User Programming 77

Chapter 2. Pulse Sequence Programming

78

{...1# Impartsthe“divn-return” attribute to thetable and indicatesthat the actual
index into the table isto be the index divided by the number # (where #
rangesfrom 1 to 64). # is called the divn factor and can be explicitly set
within a sequence for any table (see setdivnfactor). Thisattribute
provides a #-fold level of table compaction to the acquisition processor.
The { } notation must enclose all of the table statementsfor agiven table.
This notation should not be used if this table will be subject to table
operationssuch as t tadd (see page 80)—inthiscaseuse [1#,whichis
equivalent except for table compression. In entering the { } # notation,
do not include any space after “ }”.

+= Indicates that the index into the table starts at O for each new FID in an
array or 2D experiment, isincremented after each access of the table and
istherefore independent of ct. Thisisthe autoincrement attribute, which
can delimit the table name from the table statements. It can be explicitly
set within a pulse sequence for any table (see setautoincrement).
Tables using the autoincrement feature cannot be accessed within a

hardware loop.
The (...)#and [...]# notationsare expanded by PSG at run-timeand, therefore, offer
no degree of table compaction to the acquisition processor. Nestingof (...) and [...]
expressionsis not allowed. The autoincrement += attribute can be used in conjunction with
the divn-return attribute and withthe (. ..) and [...] notations.
Multiple { . . . } expressions within one table are not allowed, but (...) and [...]

expressions can be placed withina { . . . } expression.

The following examples illustrate combining the notation:
t2 = [0 1 23]4 (002 2)4
/* t2 table = 00001111222233330022002200220022 */

t3 = {01 (0 2)2 02 [3 1]4}4
/* t3 table = 0102020233331111 with divn-factor = 4;
i.e., 00001111000022220000222200002222 ... */

t4 += {0 1 2 3}8
/* t4 table with autoincrement and divn-factor = 8

i.e., 00000000111111112222222233333333 with index
incremented at each reference to table, not at each ct */

Handling AP Tables

Table 18 lists statements for handling AP tables. None of these statements apply to
GEMINI 2000 systems.

The loadtable (file) statement |oads AP table statements from tabletext file. file
specifies the name of the table file (a UNIX text file) in the user's personal tablib
directory or in the VnmrJ system tablib directory. loadtable can be called multiple
times within a pulse sequence. Care should be taken to ensure that the same table name is
not used more than once by the pul se sequence.

Thesettable (tablename, numelements, intarray) statement storesan array
of integersin areal-time AP table. tablename specifiesthe name of thetable (t1 to
t60).numelements specifiesthesizeof thetable. intarray isaCarray that contains
the table elements. These elements can range from —32768 to 32767. The user must
predefine and predimension this array in the pulse sequence using C language statements
prior to calling settable.

VnmrJ User Programming 01-999253-00 A0604

2.5 Real-Time AP Tables

Table 18. Statements for Handling AP Tables

getelem(tablename,APindes, APdest) Retrieve an element from an AP table
loadtable (file) Load AP table elements from table text file
setautoincrement (tablename) Set autoincrement attribute for an AP table
setdivnfactor (tablename, divnfactor) Set divn-return attribute and divn-factor
setreceiver (tablename) Associate revr. phase cycle with AP table
settable* Store array of integersin real-time AP table
tsadd (tablename, scalarval, moduloval) Add an integer to AP table elements
tsdiv (tablename, scalarval, moduloval) Divide an AP table into a second table
tsmult (tablename, scalarval,moduloval) Multiply aninteger with AP table elements
tssub (tablename, scalarval, moduloval) Subtract an integer from AP table elements
ttadd* Add an AP table to a second table
ttdiv* Divide an AP table into a second table
ttmult* Multiply an AP table by a second table
ttsub* Subtract an AP table from a second table

* gettable (tablename,numelements, intarray)

ttadd (tablenamedest, tablenamemod, moduloval)
ttdiv (tablenamedest, tablenamemod, moduloval)
ttmult (tablenamedest, tablenamemod, moduloval)
ttdiv (tablenamedest, tablenamemod, moduloval)

Thegetelem(tablename, APindex, APdest) statement retrievesan element from
an APtable. tablename specifiesthe name of the Table (t1 to t60). APindex isan
APvariable(v1tov14,oph, ct,bsctr, or ssctr) that containstheindex of thedesired
table element. Note that the first element of an AP table has an index of 0. APdest isalso
an AP variable (v1 tov14 and oph) into which theretrieved table element is placed. For
tables for which the autoincrement featureis set, APindex, the second argument to
getelem, isignored and can be set to any AP variable name; each element in such atable
is by definition always accessed sequentially.

Thesetautoincrement (tablename) statement setsthe autoincrement attribute for
an APtable. tablename specifiesthe name of the table (t 1 to t60). The index into the
tableisset to 0 at the start of an FID acquisition and isincremented after each access into
the table. Tables using the autoincrement feature cannot be accessed within a hardware
loop.

Thesetdivnfactor (tablename,divnfactor) staement setsthe divn-return
attribute and the divn-factor for an AP table. tablename specifies the name of the table
(t1tote0). Theactual index into thetableisnow set to (index/divnfactor). {0 1}2
is therefore translated by the acquisition processor, not by pulse sequence generation
(PSG),intoo 0 1 1. Thedivn-return attribute results in a divn-factor-fold compression
of the AP table at the level of the acquisition processor.

The setreceiver (tablename) statement assigns the ctth element of the AP table
tablename tothereceiver variable oph. If multiple set receiver statementsare used
in apulse sequence, or if thevalue of oph ischanged by real-time math statements such as
assign, add, etc., the last value of oph prior to the acquisition of data determinesthe
value of the receiver phase.

To perform run-time scalar operations of an integer with AP table elements, use the
following statements:

tsadd (tablename, scalarval,moduloval)

tssub (tablename, scalarval,moduloval)

tsmult (tablename, scalarval,moduloval)

01-999253-00 A0604 vnmrJ User Programming 79

Chapter 2. Pulse Sequence Programming

80

tsdiv (tablename, scalarval,moduloval)

where tablename specifiesthe name of thetable(t1tot60) and scalarval isadded
to, subtracted from, multiplied with, or divided into each element of thetable. The result of
the operation is taken modulo moduloval (if moduloval isgreater than 0). tsdiv
requiresthat scalarval isnot equal to O; otherwise, an error is displayed and PSG
aborts.

To perform run-time vector operations of one AP table with a second table, use the
following table-to-table statements:

ttadd (tablenamedest, tablenamemod, moduloval)

ttsub (tablenamedest, tablenamemod, moduloval)

ttmult (tablenamedest, tablenamemod, moduloval)

ttdiv (tablenamedest, tablenamemod,moduloval)

wheretablenamedest and tablenamemod arethe namesof tables(t 1 to t 6 0). Each
element in tablenamedest ismodified by the corresponding element in
tablenamemod. Theresult, stored in tablenamedest, istaken modulo moduloval
(if moduloval isgreater than 0). The number of elementsin tablenamedest must be
greater than or equal to the number of elementsin tablenamemod. ttdiv requiresthat
no element in tablenamemod equal 0.

Examples of Using AP Tables

This section contains a two-pulse sequence and a homonuclear J-resolved experiment as
examples of using AP tables.

Two-Pulse Sequence

Listing 3isthe contentsof thefiles /home /vnmrl/vnmrsys/psglib/t2pul.c and
/home/vnmrl/vamrsys/tablib/t2pul associated with a hypothetical two-pulse
sequence T2PUL.

Listing 3. Two-Pulse Sequence t2pul.c with Phase Tables

#include <standard.h> tl = 0
/* 0000 */
pulsesequence () t2 =021 3
{ /* 0213 */
loadtable ("t2pul") ; t3 =021 3
status (2) ; /* 0213 */
hsdelay (dl) ;
status (B) ;
pulse(pl,tl) ;
hsdelay (d2) ;
status (C) ;
pulse (pw, t2) ;
setreceiver (t3) ;
}

Noticethat t 2 and t 3 areidentical. The pulse sequence could have used just one phase for
both the observe pulse and the receiver, but using two separate phasesin thisway provides
more flexibility for allowing run-time modification of al phasesindependently (e.g., a
cancellation experiment can be run by changing line2inthe tablib filetot2 = 0 or by
changing line3to t3 = 0).

VnmrJ User Programming 01-999253-00 A0604

2.6 Accessing Parameters

Homonuclear J-Resolved Experiment

Listing 4 listsfiles /export/ home /vnmrl /vnmrsys/psglib/hom2djt.c and/
export/home /vnmrl/vnmrsys/tablib/hom2djt associated with a hypothetical
homonuclear J-resolved sequence HOM2DJT.

Listing 4. Homonuclear J-Resolved Sequence hom2djt.c with Phase Tables

#include <standard.h> tl1 = [0]16
pulsesequence () /*0000000000000000 */
{ t2 = (1 2 3 0)4
loadtable ("hom2djt") ; /*1230123012301230 */
ttadd (tl,t4,4); t3 = (0 2)8
ttadd(t2,t4,4); /*0202020202020202 */
ttadd (t3,t4,4); ta = [0 2 1 3]4
status (A) ; /* 0000222211113333 */
hsdelay (dl) ;
status (B) ;
pulse (pw, tl) ;
delay(d2/2) ;
pulse(pl,t2) ;
delay(d2/2) ;
status (C) ;

setreceiver (t3) ;

This sequence uses “ conventiona” phase cycling, completely different than the pulse
cycling in the standard HOM 2DJ sequence found in psgl ib. The phase cycling,
contained herein t 4, is added to the phases by the pulse sequence itself with the series of
three t tadd statements. Thiscan also be donein thetableitself, for example, by replacing
thet2 lineinthetablib filewitht2 = 1 2 3 03 01223 01012 3,
which isthe completely “spelled out” phase cycle for the second pul se.

When using a table to be referenced with a t tadd statement, you cannot compress the
tableby usingt4 = {0 2 1 3}4.Youmust use square brackets, which are exactly
equivalent to the curly brackets but without achieving table compression at the level of the
acquisition processor.

2.6 Accessing Parameters

Thegetval and getstr statement look up the value of parameters, providing accessto
parameters. Table 19 summarizes these statements.

Table 19. Parameter Value Lookup Statements

getstr (parametername, internalname) Look up vaue of string parameter
internalname=getval (parametername) Look up value of numeric parameter

Parameters are defined by the user in particular experiment files (exp1, exp2, €tc.) in
which the operation is occurring. These parameters are not the same as the parameters that
are accessible to the pulse sequence during its execution, although they are at least
potentially the same.

01-999253-00 A0604 vnmrJ User Programming 81

Chapter 2. Pulse Sequence Programming

Categories of Parameters

Parameters can be divided into three categories:

® Parametersused in apulse sequence exactly asin the parameter set; in other words, the
name of the parameter (d1, for example) isthe same in both places. Thus, a statement
likedelay (d1);islegitimate. Table 20 lists VnmrJ parameter names and
corresponding pul se sequence generation (PSG) variable names and types.Table 20 is
for quick reference only. For the most current listing, go to /vnmr/psg/
acgparms.h (“"YINOVA) or /vnmr/pss/acgparms?2 . h (Mercuryplusg/Vx).
Table 21 summarizes VnmrJ parameter names used primarily for imaging.

Table 20. Globa PSG Parameters (U"vINOVA)

Acquisition

extern char il [MAXSTR] interleaved acquisition parameter,'y', 'n', o
extern double inc2D t1 dwell time in a3D/4D experiment
extern double ine3D t2 dwell time in a3D/4D experiment
extern double sw Sweep width

extern double nf Number of FIDsin pulse sequence /
extern double np Number of data points to acquire

extern double nt Number of transients

extern double sfrg Transmitter frequency mix

extern double dfrg Decoupler frequency MHz

extern double dfrg2 2nd decoupler frequency MHz

extern double dfrg3 3rd decoupler frequency MHz

extern double dfrg4 4th decoupler frequency MHz

extern double fb Filter bandwidth

extern double bs Block size

extern double tof Transmitter offset

extern double dof Decoupler offset

extern double dof2 2nd decoupl er offset

extern double dof3 3rd decoupler offset

extern double dof4 4th decoupler offset

extern double gain Receiver gainvalue, or 'n' for autogain
extern double dlp Decoupler low power value

extern double dhp Decoupler low power value

extern double tpwr Transmitter pulse power

extern double tpwrf Transmitter fine linear attenuator for pulse
extern double dpwr Decoupler pulse power

extern double dpwrf Decoupler finelinear attenuator for pulse
extern double dpwrf2 2nd decoupler fine linear attenuator
extern double dpwrf3 3rd decoupler fine linear attenuator
extern double dpwrf4 4th decoupler fine linear attenuator
extern double dpwr2 2nd decoupler pul se power

extern double dpwr3 3rd decoupler pulse power

extern double dpwr4 4th decoupler pulse power

extern double filter Pulse amp filter setting

extern double xmf Transmitter modulation frequency

82 vnmrJ User Programming 01-999253-00 A0604

2.6 Accessing Parameters

Table 20. Global PSG Parameters (U"vINOVA) (continued)

extern double dmf Decoupler modul ation frequency

extern double dmf2 Decoupler modul ation frequency

extern double fb Filter bandwidth

extern double vttemp VT temperature setting

extern double vtwait VT temperature time-out setting

extern double vte VT temperature cooling gas setting

extern double cpflag Phase cycling; 1=no cycling, O=quad detect
extern double dhpflag Decoupler high power flag

Pulse Widths

extern double pw Transmitter modulation frequency

extern double pl A pulse width

extern double pw90 90° pulse width

extern double hst Time homospoil is active

Delays

extern double alfa Time after receiver is turned on that acquisition begins
extern double beta Audio filter time constant

extern double di Delay

extern double a2 A delay, used in 2D experiments

extern double as A delay, used in 3D experiments

extern double d4 A delay, used in 4D experiments

extern double pad Preacquisition delay

extern double padactive Preacquisition delay active parameter flag
extern double rofl Time receiver isturned off before pulse
extern double rof2 Time receiver isturned on before receiver isturned on

Total Time of Experiment

extern double totaltime Total timer events for an experiment duration estimate
extern int phasel 2D acquisition mode

extern int phase? 3D acquisition mode

extern int phase3 4D acquisition mode

extern int d2_ index d2 increment (from 0 toni-1)

extern int d3_index d3increment (from 0 toni2-1)

extern int d4 index d4 increment (from 0 toni3—1)

Programmable Decoupling Sequences

extern char xseq [MAXSTR]

extern char dseq [MAXSTR]

extern char dseqg2 [MAXSTR]

extern char dseqg3 [MAXSTR]

extern char dseqg4 [MAXSTR]

extern double xres Digit resolution prg dec
extern double dres Digit resolution prg dec
extern double dres2 Digit resolution prg dec

01-999253-00 A0604 vnmrJ User Programming 83

Chapter 2. Pulse Sequence Programming

Table 20. Global PSG Parameters (U"vINOVA) (continued)

extern double dres3 Digit resolution prg dec

extern double dres4 Digit resolution prg dec

Status Control

extern char xm [MAXSTR] Transmitter status control

extern char xmm [MAXSTR] Transmitter modulation type control

extern char dm [MAXSTR] 1st decoupler status control

extern char dmm [MAXSTR] 1st decoupler modulation type control

extern char dm2 [MAXSTR] 2nd decoupler status control

extern char dmm2 [MAXSTR] 2nd decoupler modul ation type control

extern char dm3 [MAXSTR] 3rd decoupler status control

extern char dmm3 [MAXSTR] 3rd decoupler modulation type control

extern char dm4 [MAXSTR] 4th decoupler status control

extern char dmm4 [MAXSTR] 4th decoupler modulation type control

extern char homo [MAXSTR] 1st decoupler homo mode control

extern char homo2 [MAXSTR] 2nd decoupler homo mode control

extern char homo3 [MAXSTR] 3rd decoupler homo mode control

extern char homo4 [MAXSTR] 4th decoupler homo mode control

extern int xmsize Number of charactersin xm

extern int xmmsize Number of characters in xmm

extern int dmsize Number of charactersin dm

extern int dmmsize Number of charactersin dmm

extern int dm2size Number of charactersin dm2

extern int dmm2size Number of charactersin dmm2

extern int dm3msize Number of charactersin dm3

extern int dmm3msize Number of charactersin dmm3

extern int dm4size Number of charactersin dm4

extern int dmm4msize Number of characters in dmm4

extern int homosize Number of charactersin homo

extern int homo2size Number of charactersin homo2

extern int homo3size Number of charactersin homo3

extern int homo4size Number of charactersin homo4

extern int hssize Number of charactersin hs

Table 21. Imaging Variables

RF Pulses

extern double p2 Pulse length

extern double p3 Pulse length

extern double p4 Pulse length

extern double p5 Pulse length

extern double pi Inversion pulse length

extern double psat Saturation pulse length

extern double pmt M agnetization transfer pulse length
84 vnmrJ User Programming 01-999253-00 A0604

2.6 Accessing Parameters

Table 21. Imaging Variables (continued)

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

double
double
double
char
char
char
char
char
char
char
char
char
char
double
double
double
double
double
double
double
double
double
double
double

pwx
pwx2

psl

pwpat [MAXSTR]
pwlpat [MAXSTR]
pw2pat [MAXSTR]
pw3pat [MAXSTR]
pwédpat [MAXSTR]
pwSpat [MAXSTR]
pipat [MAXSTR]
satpat [MAXSTR]
mtpat [MAXSTR]
pslpat [MAXSTR]
tpwrl

tpwr2

tpwr3

tpwr4

tpwr5

tpwri

satpwr

mtpwr

pwxlvl
pwxlvl12
tpwrsl

X-nucleus pulse length
X-nucleus pulse length
Spin-lock pulse length
Pattern for pw, tpwr
Pattern for p1, tpwrl
Pattern for p2, tpwr2
Pattern for pw3, tpwr3
Pattern for pw4, tpwr4
Pattern for pw5s, tpwrs
Pattern for pi, tpwri
Pattern for pw, tpwr
Pattern for psat, satpat
Pattern for spin-lock
Transmitter pulse power
Transmitter pulse power
Transmitter pulse power
Transmitter pulse power
Transmitter pulse power
Inversion pulse power
Saturation pulse power
M agnetization transfer pul se power
pwx pulselevel

pwx2 power level
Spin-lock power level

RF Decoupler Pulses

extern char decpat [MAXSTR] Pattern for decoupler pulse
extern char decpatl [MAXSTR] Pattern for decoupler pulse
extern char decpat2 [MAXSTR] Pattern for decoupler pulse
extern char decpat3 [MAXSTR] Pattern for decoupler pulse
extern char decpat4 [MAXSTR] Pattern for decoupler pulse
extern char decpat5 [MAXSTR] Pattern for decoupler pulse
extern char dpwrl Decoupler pulse power
extern char dpwr4 Decoupler pulse power
extern char dpwr5 Decoupler pulse power
Gradients

extern double gro, gro2, gro3 Readout gradient strength
extern double gpe, gpe2, gpe3 Phase encode for 2D, 3D, and 4D
extern double gss,gss2,gss3 Slice-select gradients
extern double gror Readout focus

extern double gssr Slice-select refocus

extern double grof Readout refocus fraction
extern double gssf Slice-select refocus fraction
extern double g0,g91,..99 Numbered levels

01-999253-00 A0604

VnmrJ User Programming

85

Chapter 2. Pulse Sequence Programming

Table 21. Imaging Variables (continued)

extern double gx, gy, gz X,Y,and Z levels
extern double gvox1, gvox2, gvox3 Voxel selection
extern double gdiff Diffusion encode
extern double gflow Flow encode
extern double gspoil, gspoil2 Spoiler gradient levels
extern double gcrush, gcrush? Crusher gradient levels
extern double gtrim,gtrim2 Trim gradient levels
extern double gramp, gramp2 Ramp gradient levels
extern double gpemult Shaped phase encode multiplier
extern double gradstepsz Positive stepsin the gradient DAC
extern double gradunit Dimensional conversion factor
extern double gmax Maximum gradient value (G/cm)
extern double gxmax X maximum gradient value (G/cm)
extern double gymax Y maximum gradient value (G/cm)
extern double gzmax Z maximum gradient value (G/cm)
extern double gtotlimit Limit combined gradient values (G/cm)
extern double gxlimit Safety limit for X gradient (G/cm)
extern double gylimit Safety limit for Y gradient (G/cm)
extern double gzlimit Safety limit for Z gradient (G/cm)
extern double gxscale X scaling factor for gmax
extern double gyscale Y scaling factor for gmax
extern double gzscale Z scaling factor for gmax
extern char gpatup [MAXSTR] Gradient ramp-up pattern
extern char gpatdown [MAXSTR] Gradient ramp-down pattern
extern char gropat [MAXSTR] Readout gradient pattern
extern char gpepat [MAXSTR] Phase encode gradient pattern
extern char gsspat [MAXSTR] Slice gradient pattern
extern char gpat [MAXSTR] General gradient pattern
extern char gpatl [MAXSTR] Genera gradient pattern
extern char gpat2 [MAXSTR] Genera gradient pattern
extern char gpat3 [MAXSTR] Genera gradient pattern
extern char gpat4 [MAXSTR] Genera gradient pattern
extern char gpat5 [MAXSTR] Genera gradient pattern
Delays
extern double tr Repetition time per scan
extern double te Primary echo time
extern double ti Inversion time
extern double tm Mid-delay for STE
extern double at Acquisition time
extern double tpe, tpe2, tpe3 Phase encode durations for 2D to 4D
extern double tcrush Crusher gradient duration
extern double tdiff Diffusion encode duration
extern double tdelta Diffusion encode duration
extern double tDELTA Diffusion gradient separation

86 vnmrJ User Programming 01-999253-00 A0604

2.6 Accessing Parameters

Table 21. Imaging Variables (continued)

extern double tflow Flow encode duration

extern double tspoil Spoiler duration

extern double hold Physiological trigger hold off
extern double trise Gradient coil risetime: sec
extern double satdly Saturation time

extern double tau Genera use delay

extern double runtime User variable for total experiment time
Frequencies

extern double resto Reference frequency offset
extern double wsfrg Water suppression offset
extern double chessfrg Chemical shift selection offset
extern double satfrg Saturation offset

extern double mtfrg M agnetization transfer offset

Physical Szesand Positions (for slices, voxels,

and FOV)

extern double
extern double
extern double
extern double
extern double
extern double
extern double
extern double
extern double
extern double
extern double
extern double

pro
ppe, ppe2, ppe3

posl, pos2, pos3
pss [MAXSLICE]

lro

lpe, 1pe2, 1pe3

lss

vox1l, vox2, vox3
thk

lpe, 1pe2, 1pe3

fovunit

thkunit

FOV position in readout

FOV position in phase encode
Voxel position

Slice position array

Readout FOV

Phase encode FOV

Dimension of multislice range
Voxel size

Slice or slab thickness

Phase encode FOV
Dimensional conversion factor
Dimensiona conversion factor

Bandwidths

extern double

swl, sw2, sw3

Phase encode bandwidths

Countsand Flags

extern double
extern double
extern double
extern double
extern double
extern double
extern double
extern char
extern char
extern char
extern char
extern char

nD

ns

ne

ni

nv, nvz, nv3
ssc

ticks

ir [MAXSTR]

ws [MAXSTR]

mt [MAXSTR]
pilot [MAXSTR]
seqgcon [MAXSTR]

01-999253-00 A0604

Experiment dimensionality
Number of slices

Number of echoes

Number of standard increments
Number phase encode views
Compressed ss transients
External trigger counter
Inversion recovery flag
Water suppression flag
Magnetization flag

Auto gradient balance flag
Acquisition loop control flag

VnmrJ User Programming

87

Chapter 2. Pulse Sequence Programming

Table 21. Imaging Variables (continued)

extern char petable [MAXSTR] Name for phase encode table

extern char acgtype [MAXSTR] Example: “full” or “half” echo

extern char exptype [MAXSTR] Example: “se” or “fid” in CSI

extern char apptype [MAXSTR] Keyword for parameter init, e.g, “imaging”
extern char segfile [MAXSTR] Pulse sequence name

extern char rfspoil [MAXSTR] rf spoiling flag

extern char satmode [MAXSTR] Presentation mode

extern char verbose [MAXSTR] Verbose mode for sequences and psg

Miscellaneous

extern double rfphase rf phase shift

extern double BO Static magnetic field level
extern double slcto Slice selection offset
extern double delto Slice spacing frequency
extern double tox Transmitter offset

extern double toy Transmitter offset

extern double toz Transmitter offset

extern double griserate Gradient riserate

® Parameters used in the pulse sequence derived from those in the parameter set.

® Parameters unknown to the pulse sequence. This includes parameters created by the
user for a particular pulse sequence (such as J or mix) aswell asafew surprises, such
as at, the acquisition time (the pul se sequence does not know this). The statements
getval and getstr are provided for this category.

Looking Up Parameter Values

The statement internalname=getval (parametername) alowsthe pulse
sequence to look up the value of any numeric parameter that it otherwise does not know
(parametername) and introduce it into the pulse sequencein the variable
internalname. internalname can be any legitimate C variable name that has been
defined astype double at the beginning of the pulse sequence (evenif it iscreated astype
integer). If parametername isnot found in the current experiment parameter list,
internalname isset to zero, and PSG produces a warning message. For example,
double j;

j=getval ("j") ;

Thegetstr (parametername, internalname) statement isused to look up the
value of the string parameter parametername in the current experiment parameter list
and introduce it into the pulse sequence in the variable internalname.
internalname can be any legitimate C variable name that has been defined as array of
type char with dimension MAXSTR at the beginning of the pulse sequence. If the string
parameter parametername isnot found in the current experiment parameter list,
internalname isset to the null string, and PSG produces a warning message. For
example:

char coil [MAXSTR] ;

88 vnmrJ User Programming 01-999253-00 A0604

2.6 Accessing Parameters

getstr ("sysgcoil",coil) ;

Using Parameters in a Pulse Sequence

Asan example of using parametersin a pul se sequence, suppose you wish to create a new
pul se sequence with new variable names and haveit fully functional from VnmrJ. Usually,
the best way to compose anew pulse sequenceisto start from aknown good pul se sequence
and from a known good parameter set. For many pulse sequences, s2pul . c in /vnmr/
psgliband s2pul.parin /vnmr/parlib areagood place to start.

To create a new pulse sequence similar to s2pul but with new variable names and using
a shaped pulse, do the following steps:

1.
2.

In ashell window, enter cd ~/vnmrsys/psglib.

Use atext editor such as vi to create the file newpul . ¢ shownin Listing 5.

Listing 5. File newpul . ¢ for aNew Pulse Sequence

/* newpul.c - new pulse sequence */
#include <standard.h>

static int ph2[4] = {0,1,2,3};

pulsesequence ()

{

double dlnew, d2new, plnew, pwnew;
char patnew[MAXSTR] ;

dlnew = getval ("dlnew") ;

d2new = getval ("d2new") ;

plnew = getval ("plnew") ;

pwnew= getval ("pwnew") ;

getstr ("patnew",patnew) ;
assign(zero,vl) ;

settable (t2,4,ph2);
getelem(t2,ct,v2) ;

/* equilibrium period */
status (A) ;
hsdelay (dlnew) ;

/* --- tau delay --- */
status (B) ;

pulse (plnew,vl) ;
hsdelay (d2new) ;

/* --- observe period --- */
status (C) ;
shaped pulse (patnew, pwnew,v2,rofl, rof2) ;
/* If you don’t have a waveform generator, */
/* use the following line: */
/* apshaped pulse (patnew,pwnew,v2,t4,t5,rofl, rof2); */

3. After newpul . c iscreated, in ashell window, enter seqgen newpul.

Thefollowing lines are displayed during pul se sequence generation:

01-999253-00 A0604 VnmrJ User Programming

89

Chapter 2. Pulse Sequence Programming

Beginning Pulse Sequence Generation Process...
Adding DPS extensions to Pulse Sequence...
Lint Check of Sequence...

Compiling Sequence...

Link Loading...

Done! Pulse sequence newpul now ready to use.

4. To use the pulse sequence in VnmrJ, add new parameters starting from a known
good parameter set (e.g. s2pul . par) by entering from the VnmrJ command line:
s2pul
seqfil="newpul'
create('dlnew', 'delay') dlnew=1
create('d2new', 'delay') d2new=.001
create('plnew', 'pulse') plnew=0
create('pwnew', 'pulse') pwnew=40
create('patnew', 'string') patnew='square'

5. The parameters need to be saved asnewpul . par inparlib soyou can easily
retrieve them the next time you run the pul se sequence. Enter:
cd
cd('vnmrsys/parlib')
svp ('newpul')

6. To access the new parameters and pul se sequence, create a macro by entering, for
example:
editmac ('newpul')

7. Inthe pop-up editor window, type editmac ('newpul') to enter theinsert mode
and add the line:

psgset('newpul', 'array', 'dg', 'dlnew', 'd2new', 'plnew', 'pwnew', 'patnew')

Save the macro and exit. This macro requiresthefilenewpul . par tobepresentin
parlib.

You can now enter newpul intheVnmrJcommand line any timeyou wish to use your new
pulse sequence. Most of the pulse sequencesin /vnmr/psglib areset up inasimilar
fashion, and so are easily accessible.

Thenewpul . ¢ pulse sequence a so contains examples of phase cycling. There are two
basic ways to perform arbitrary user-defined phase cycling:

® Usethereal-timevariablesv1-v14, oph, zero, one, two, and three, and
perform math integer operations on them using functionsin Table 15.

® Usetherea-time APtables t1-t 60, which may be assigned either by static variable
declarationsand using settable (), or by loading in atable from tablib using
loadtable () (see Table 18).

Anexampleof using thereal-timevariable v1 isgiveninnewpul . c used by assign ()
and pulse (). Anexample of using rea-time AP tablesis given using ph2 and t2. We
could also replace v2 with t 2 inthe shaped pulse () statementinthisparticular pulse
sequence. In some cases, however, it is necessary to perform further integer math
operations on the phase cycle, which is easier to perform on real-time variables than on AP
tables, so we give the example using getelem () to assign thetable t 2 to variable v2.
For other examples of phase cycling calculations, see the pulse sequencesin /vnmr/
psglib.

To add 2D parametersto the newpul . ¢ pulse sequence, make the following changes:
® |nstep 2, change d2new to d2.

90 vnmrJ User Programming 01-999253-00 A0604

2.7 Using Interactive Parameter Adjustment

® Instep 4, enter par2d set2d('newpul') plnew=40.

® |nstep7,addpar2d set2d('newpul') tothenewpul macro afterthepsgset
line.

Also, seethe cosyps . c pulse sequence in /vnmr/psglib, section 2.14
“Multidimensional NMR,” page 115, and the chapter on Multidimensional NMR in the
VnmrJ Liquids NMR manual.

2.7 Using Interactive Parameter Adjustment

The section “ Spectrometer Control,” page 54 included statementsfor interactive parameter
adjustment (1PA). Such routines start with the letter i (e.g., idelay, irgpulse). For
users who need added flexibility in programming, this section explains IPA and these
routinesin more detail. IPA isavailable on all systems except MERCURYplus/-Vx.

General Routines

In addition to the statements previously described, PSG has four general routines:
® G Ppulse for generic pulse control
® G Offset for adjustment of the offset frequency
® G Delay for generic delay control
® G power for fine power control.

Each of these routinesis called with an argument list (see page 92) specified with
attribute-value pairs, terminated by a mandatory zero. The terminating zero is mandatory.
If the zero is left out, the results are unpredictable and can include a core dump of PSG.

Each attribute has adefault value—a pulse can be specified simply asG_Pulse (0),
which would produce a transmitter pulse of size pw with rof1 and rof2 set the same as
the experiment parameters and phase cycled with the parameter oph.

Theattribute SLIDER LABEL determines whether output isgenerated for the Acquisition
window (opened by the acgi command). If no label is specified, no IPA information is
generated by the subroutine. The use of the SLIDER LABEL with the same value for
delays or pulses allows multiple delays or pulses to be controlled viaone slider. Thisis
covered later in this section.

Asan example of a pulse sequence using the general routines, Listing 6 shows the source
code of i2pul.c, which can be compiled and run like S2PUL, but whengo ('acqgi ')
istyped, IPA information isgenerated in /vnmr/acqqueue/acqi . IPA.

The command acgi can be used to adjust the pulses and delays in the sequence. Note that
G_Pulse coversthe statements obspulse, pulse, decpulse, €c.

Macro definitions have been written to cover these:

#define obspulse() G Pulse(0)
#define decpulse (decpulse,phaseptr) \
G _Pulse (PULSE DEVICE, DODEV, \
PULSE WIDTH, decpulse, \
PULSE_ PHASE, phaseptr, \
PULSE_PRE ROFF, 0.0, \
PULSE POST ROFF, 0.0, \

0)

01-999253-00 A0604 vnmrJ User Programming 91

Chapter 2. Pulse Sequence Programming

92

Listing 6. Pulse Sequence Listing of File i12pul.c

/* I2PUL - interactive two-pulse sequence */
#include <standard.h>
static int phasecycle([4]={0,2,1,3};
pulsesequence ()
{
/* equilibrium period */
settable (tl,4,phasecycle) ;
status (A) ;
hsdelay (dl) ;
/* --- tau delay --- */
status (B) ;
ipulse (pl, zero, "pl") ;
/*

* This ipulse statement is equivalent to

* the following general pulse statement.

* G_Pulse (PULSE_WIDTH, pl,

* PULSE PHASE, zero,

* SLIDER_LABEL, "pl",

3 0);

./

G _Delay (DELAY TIME, dz,
SLIDER LABEL, gl T
SLIDER MAX, 10,

0);
/* --- observe period --- */
status (C) ;

ipulse (pw, tl, "pw") ;
setreceiver (tl) ;

Seethefile /vnmr/psg/macros.h for acompletelist. Thisfile is automatically
included when thefile standard. h isincluded in a pulse sequence. Note also that the
same pul se sequence can be used to execute go aswell asgo ('acgi ') ; however, IPA
information is only generated when go ('acgi ') isused.

Interactive adjustment of simultaneous pulsesis not supported. A limit of 10 has been set
on the number of calls with alabel. Thislimits the number of parameters that can be
adjusted within one pulse sequence. Note that a subroutine call within a hardware loop is
still only one label.

Parameters are adjusted at the end of a sweep. Since this takes a finite amount of time,
steady state may be affected. Of course, changing any parameter val ue also affects the
steady state, so this should be of little or no consequence.

Generic Pulse Routine

The G_Pulse generic pulse routine has the following syntax:

G Pulse(PULSE WIDTH, pw,
PULSE PRE_ROFF, rofl,
PULSE POST ROFF, rof2,
PULSE DEVICE, TODEV,
SLIDER LABEL, NULL,

VnmrJ User Programming 01-999253-00 A0604

SLIDER_SCALE,
SLIDER MAX,
SLIDER_MIN,
SLIDER_UNITS,
PULSE PHASE,

0);

2.7 Using Interactive Parameter Adjustment

1,
1000,
0,
le-6,
oph,

The following table describes the attributes used with G_Pulse:

0);

Attribute Type Default Description
PULSE WIDTH double pw As specified in parameter set
PULSE_PRE_ROFF double rofl As specified in parameter se.
PULSE_POST_ ROFF double rof2 As specified in parameter set
PULSE _DEVICE int TODEV TODEV for observe channel or DODEV
for 1st decoupler. Also DO2DEV or
DO3DEV for 2nd/3rd decoupler
SLIDER LABEL char * NULL Label (1- 6 characters) for acgi or
NULL for no output to acqgi.
SLIDER_SCALE int 1 Decimal places (0 to 3) on dlider
SLIDER MAX int 100 Maximum value on the slider
SLIDER MIN int 0 Minimum value on the slider
SLIDER UNITS double 1le-6 Pulses arein us, scale factor
PULSE_PHASE int oph Real-time variable
Examples of using G_Pulse:
G _Pulse(0); /* equals obspulse(); */
G Pulse (PULSE WIDTH, Pw, /* equals pulse(pw,vl); */
PULSE_PHASE, v,

/* required terminating zero */

Frequency Offset Subroutine

TheG_Offset routine adjusts the offset frequency. It has the following syntax:

G Offset (OFFSET DEVICE,

OFFSET FREQ,
SLIDER LABEL,
SLIDER SCALE,
SLIDER MAX,

SLIDER_MIN,

SLIDER_UNITS,

0);

01-999253-00 A0604

TODEV,

tof,
NULL,
0,
1000,

-1000,

0,

93

VnmrJ User Programming

Chapter 2. Pulse Sequence Programming

The following table describes the attributes used with G Offset:

Attribute Type Default Description

OFFSET DEVICE int none Device (or rf channel) to receive frequency
offset. Thisisrequired! Thus,
G _Offset (0) not allowed. ToDEV for
transmitter channel or DODEV for first
decoupler channel. On UNITYplus, DO2DEV
for 2nd decoupler channel, or DO3DEV for 3rd
decoupler channel.

OFFSET FREQ double * Offset frequency for selected channel. Default
is offset frequency parameter (tof, dof,
dof2, dof3) of associated channel.

SLIDER LABEL char * NULL If no slider label selected, offset cannot be
changed in acgi. Otherwise, becomes the
label (1-6 characters) inacqgi.

SLIDER SCALE int 0 Number of decimal places displayed in acqi.
Default is0 because default range is 2000 Hz,
so aresolution finer than 1 Hz is not necessary.

SLIDER MAX int * Maximum value on the slider. Default is 1000
Hz more than the offset frequency.
SLIDER MIN int * Minimum value on the slider. Default is 1000

Hz less than the offset frequency.
SLIDER_UNITS double 1.0 Frequencies arein Hz.

* Default value is described in the description column for this attribute.

Examplesof using G Offset:

G _Offset (OFFSET DEVICE, TODEV, /* eqguivalent to */
OFFSET FREQ, tof, /* offset (tof, TODEV) ; */
0); /* required terminating zero */

G Offset (OFFSET DEVICE, TODEV, /* basic interactive */
OFFSET FREQ, tof, /* offset statement */
SLIDER LABEL, “TOF”,/* for fine adjustment of */
0); /* transmitter frequency */

Generic Delay Routine

The G_Delay generic delay routine has the following syntax:

G Delay (DELAY TIME, di,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 60,
SLIDER MIN, 0,
SLIDER UNITS, 1.0,
0);

94 vnmrJ User Programming 01-999253-00 A0604

2.7 Using Interactive Parameter Adjustment

The following table describes the attributes used with G_Delay:

Attribute Type Default Description
DELAY TIME double di As specified in parameter set.
SLIDER LABEL char * NULL Label (1 to 6 characters) for acqi or
NULL for no output to acqgi.
SLIDER SCALE int 1 Decimal places (0 to 3) displayed.
SLIDER MAX int 60 Maximum value on the slider.
SLIDER MIN int 0 Minimum value on the slider.
SLIDER UNITS double 1.0 Delays are in seconds.

Examples of using G_Delay:

G_Delay (0) ; /* equals delay(d1l); */
G _Delay (DELAY TIME, dz, /* equals delay(d2); */
0); /* required terminating zero */

IPA allows one dlider to control more than one delay or pulse. The maximum number of
delays or pulsesaslider can control is 32. This multiple control is obtained whenever
multiple callsto G_Pulse or G_Delay have the same value for the SLIDER LABEL
attribute.

Thefirst call to G_Pulse inapulse sequence sets theinitia value, the maximum and
minimum of the slider, and the scale. Later callsto G_Pulse within that pulse sequence
do not alter these. The SLIDER UNITS attribute are uniqueto each call toG_Pulse.
Thisallows changing the value seen by aparticul ar event by some multiplication factor. For
example, the following two statements create a single slider in the Acquisition window
(opened by the acgi command) labeled PW that will control two separate pul ses.

G Pulse (PULSE DEVICE, TODEV,

PULSE WIDTH, pw,
SLIDER LABEL, "PW",
SLIDER SCALE, 1,
SLIDER MAX, 1000,
SLIDER MIN, 0,
SLIDER UNITS, 1.0e-6,
0);
G_Pulse(PULSE_DEVICE, TODEV,
PULSE WIDTH, pw*2.0,
SLIDER LABEL, "PW",
SLIDER UNITS, 2.0e-6,

0);

The width of the first pulse will initially be pw, as set by the PULSE_WIDTH attribute for
thefirst G_Pulse call. Thewidth of the second pulse will initially be pw*2 . 0, as set by
the PULSE_WIDTH attribute for the second G_Pulse cal.

When the slider is changed in acqgi, the amount that the actual pulse width changesis
determined by the product of the slider change and the respective multiplicative factors
specified by the attribute SLIDER UNITS. For example, if the slider increased by 3 units,
thefirst pulse width would by increased by 3 * 1.0e-6 seconds and the second pulse would
beincreased by 3* 2.0e-6 seconds. In thisway, the initial 1to 2 ratio in pulse widths is
maintained while the slider is changed.

01-999253-00 A0604 vnmrJ User Programming 95

Chapter 2. Pulse Sequence Programming

Fine Power Subroutine

TheG _Power subroutineisused on systemswith the optional linear fine attenuators. It
has the following syntax:

G _Power (POWER_VALUE, tpwrf,
POWER _DEVICE, TODEV,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER_MAX, 4095,
SLIDER MIN, 0,
SLIDER UNITS, 1.0,

0);

The following table describes the attributes used with G_Power:

Attribute Type Default Description
POWER_VALUE double tpwrf As specified in parameter set.
POWER_DEVICE int TODEV TODEV for transmitter channel or

DODEV for decoupler channel. On
UNITYplusalso DO2DEV and DO3DEV
for 2nd and 3rd decoupler channels.

SLIDER LABEL char * NULL Label (1to 6 characters) for acgi or
NULL for no output to acqi.
SLIDER_SCALE int 1 Decimal places (0 to 3) on slider.
SLIDER_ MAX int 4095 Maximum value on the slider.
SLIDER MIN int 0 Minimum value on the slider.
SLIDER_UNITS double 1.0 Power in arbitrary units.

Examples of using G_Power:
G _Power (0) ;

G _Power (POWER_VALUE, dpwrf,
POWER _DEVICE, DODEV,
0); /* required terminating zero */

2.8 Hardware Looping and Explicit Acquisition

The 1oop and endloop statements described previously generate a soft loop, which
means that they force the acquisition computer to repeatedly place the information
contained within the loop into the pulse program buffer (a FIFO). If thisloop must run
extremely fast, a condition may arise in which the acquisition computer is not able to
provideinput to the pulse program buffer asfast as the sequenceisrequired to operate, and
this technique does not work.

Because of this problem, a different mode of looping known as hardware looping is
supported in certain YNTYINOVA and MERCURYplug/-Vx systems. In this mode, the pulse
program buffer provides its own looping, and the speed can be at the maximum possible
rate, with the only limitation being the number of eventsthat can occur during each
repetition of the loop. Table 22 lists statements related to hardware looping.

96 vnmrJ User Programming 01-999253-00 A0604

2.8 Hardware Looping and Explicit Acquisition

Table 22. Hardware Looping Related Statements

acquire (num _points, sampling interval Explicitly acquire data
clearapdatatable () Zero data in acquisition processor memory
endhardloop () End hardware loop

starthardloop (num_ repetitions) Start hardware loop

Controlling Hardware Looping

Usethe starthardloop (numrepetitions) and endhardloop () Statements
start and end a hardware loop. The numrepetitions argument to starthardloop
must be a real-time integer variable, such asv2, and not aregular integer, a real number,
or avariable. The number of repetitions of the hardware loop must be two or more. If the
number of repetitionsis 1, the hardware looping feature itself is not activated. A hardware
loop with a count equal to 0 is not permitted and will generate an error. Depending on the
pul se sequence, additional code may be needed to trap for this condition and skip the
starthardloop and endhardloop statementsif the count isO.

Only instructions that require no further intervention by the acquisition computer (pulses,
delays, acquires, and other scattered instructions) are allowed in ahard loop. M ost notably,
no real-time math statements are allowed, thereby precluding any phase cycle cal culations.
Also, no AP table with the autoincrement feature set can be used within ahard loop.
The number of eventsincluded in the hard loop, including the total number of data points
if acquisition is performed, must be as follows:

2048 or less for the MERCURYplus/-Vx STM/Output board, or Data A cquisition

Controller board.

In all cases, the number of events must be greater than 1. No nesting of hard loopsis
allowed.

Note: Jut 1 isnot enough.

For MERCURYplus/-Vx STM/Output boards, Data Acquisition Controller boards, There
are no timing restrictions between multiple, back-to-back hard loops. Thereis one subtle
restriction placed on the actua duration of a hard loop if back-to-back hard loops are
encountered: the duration of theith hard loop must be N(i+1) * 0.4 ms, where N(i+1) isthe
number of events occurring in the (i+1)th hard loop.

Number of Events in Hardware Loops

Asindicated above, alimit of 2048 eventsfor the MERCURYplus/-Vx STM/Output and the
Data Acquisition Controller with arequirement in all cases that the number of events be
greater than 1. But what is meant by “an event”?

An event isasingle activation of the timing circuitry. Pulses, delays, phase shifts, etc., set
or reset various gate lines to turn on and off pulses, phase shift lines, etc. but activate the
timing circuitry in the same way. Timing is accomplished asfollows:

® The Data Acquisition Controller board uses one time base of 12.5 ns.

® MERCURYplus/-Vx systems use two time bases: 0.1 usand 1 ms. As many events as
needed are used. Delays greater than 96 seconds use a hard loop.

Therefore, larger timer words may produce multiple events. The final point to understand
is that some things that |ook like one event may actually be more. Consider, for example,
the statement rgpulse (pw,vl, rofl, rof2). Doesthisgenerate asingle event? No,

01-999253-00 A0604 vnmrJ User Programming 97

Chapter 2. Pulse Sequence Programming

Table 23. Number of Events for Statementsin a Hardware Loop

Satement UNITYINOVA MERCURYplus/-Vx

acquire (DataAcq. Controller board) 1to0 2048 —
acquire (Pulse Seq. Controller board) — —

acquire (Acg. — —
Controller board)

acquire (Output board) — —

dcplrphase, 1 6
dcplr2phase, dcplr3phase
declvlon, 1 —
declvloff
decphase, 0 0
dec2phase, dec3phase
decpulse 0 lor2
decrgpulse, 0 3to6
dec2rgpulse, dec3rgpulse
delay 1 1to5
hsdelay 1 1to5
1k_hold, 1 3
1k _sample
obspulse 3 3to6
offset 9 72
power, obspower, 1 3
decpower,
dec2power,
dec3power
pwrf, obspwrf, 1 —
decpwrf, dec2pwrf, dec3pwrf
pulse, rgpulse 3 3to6
simpulse 3to5 3to15
sim3pulse 3to7 —
status Oto5times 0to12
number of
channels
txphase 0 0
xmtrphase 1 6

it generates at least three (or more depending on the length of the events). That is because
we generate first atime of rof 1 with the amplifier unblanked but transmitter off, then a
time of pw with the transmitter on, and then atime rof 2 with the transmitter off but the
amplifier unblanked. Times that are zero generate no events, however. For example,
rgpulse (5.0e-6,v1,0.0,0.0) generatesonly asingle event.

Although pulses, delays, and data point acquisitions are the most common thingsto beina
hardware loop, other choices are possible. Table 23 lists the number of events that may be
generated by each statement.

On MERCURYplus/-Vx systems, any delay (pulse, delay, decrgpulse, €tC.) is
limited to 96 seconds within a hardware loop. In practice, thisis not arestriction.

98 vnmrJ User Programming 01-999253-00 A0604

2.8 Hardware Looping and Explicit Acquisition

Explicit Acquisition

Closely related to hardware looping is the explicit acquisition feature—the acquisition of
one or more pairs of data points explicitly by the pulse sequence. This feature lets you
intersperse pulses and data acquisition, and allows coding pul se sequences that acquire
multiple FIDs during the course of a pulse sequence (such as COCONOSY). It also alows
pul se sequencesthat acquire asingle FID one or more pointsat atime (such as MREV-type
sequences).

Theacquire (number points, sampling interval) statement explicitly
acquires data points at the specified sampling interval, where the sequence of eventsis
acquire apair of pointsfor 200 ns, delay for sampling interval less 200 ns, then
repeat number points/2 times. For example, acquiring an FID would use
acquire (np,1.0/sw).

Both argumentsto the acquire statement must be real numbers or variables. If an
acquire statement occurs outside a hardware [oop, the number of complex pointsto be
acquired must be amultiple of 2 for Data Acquisition Controller, and STM/Output boards.
Inside a hardware loop, Data Acquisition Controller and STM/Output boards can accept a
maximum of 2048 complex points, number points must beamultiple of 2, because
only pairs of points can be acquired.

UNITYNOVA and MERCURYplus/-Vx systems include small overhead delays before and
after the acquire statement. The pre-acquire delay takes into account setting the
receiver phase (oph) and enabling data overflow detection. Disabling data overflow
detection creates a post-acquire delay. These overhead delays and associated functions
are placed outside the hardware loop when acquire statements are within a hardware
loop, and before the first acquire and after thelast acquire, when more than one
acquire statement isused to acquire a FID.

Once an explicit acquisition is invoked, even if for one pair of data points, the standard
“implicit” acquisition isturned off, and the user isresponsiblefor acquiring the full number
of data points. Failure to acquire the correct number of data points before the end of the
pul se sequence generates an error. The total number of data points acquired before the end
of the sequence must equal the specified number (np). An example of the programming
necessary to program a simple explicit acquisition, analogous to the normal implicit
acquisition, would look like this:

rcvron () ;

txphase (zero) ;

decphase (zero) ;

delay(alfa+(1.0/ (beta*fb))) ;

acquire (np,1.0/sw) ;

Although generally not needed, the clearapdatatable () statementisavailableto
zero the acquired data table at times other than at the start of the execution of a pulse
sequence, when the data table is automatically zeroed.

Thelimitation that multiple hardloops cannot be nested has consequencesfor the use of the
acquire statement inside ahardloop. Depending on its argumentsand how it isbuilt into
apulse sequence, the acquire statement may internally be done as a hardloop by itself.
However, aconstruct like the following does not work:
initval (np/2.0, v14);
starthardloop (v14) ;

acquire (2.0, 1.0/sw);
endhardloop () ;

A hardloop that consists of asingle acquire cal are not permitted, but such constructs
are not needed because a single statement can be used instead:

01-999253-00 A0604 vnmrJ User Programming 99

Chapter 2. Pulse Sequence Programming

acquire (np,1.0/sw) ;

This statement is not equivalent to the first construct becausethe acquire statement will
sample more than just two paints (i.e., acomplex data point) per loop cycle, thusallowing
for np greater than 2.0 x (maximum number of hardloop cycles). Note that the hardloop
uses a 16-hit loop counter. Therefore, the maximum number of cyclesis 32767 (the largest
possible 16-bit number).

On the other hand, a hardloop that contains acquire together with other pulse sequence
events works fine as long as the number of complex points to be acquired plus the number
of extra FIFO words per loop cycle does not exceed the total number of words in the loop
FIFO:
initval (np/2.0, v14);
starthardloop (v14) ;

acquire (2.0, 1.0/sw - (rofl + pw + rof2));

rgpulse (pw, v1, rofl, rofr2);
endhardloop;

Explicit hardloops with acquire cdls are astandard feature in multipul se solids
seguences.

Receiver Phase For Explicit Acquisitions

Receiver phase can be changed for explicit acquisitions, the same as for implicit
acquisitions, by changing oph or by using the setreceiver statement. The value of
oph at the time of the acquisition of the first data point is the value that determines the
receiver phase setting for the duration of that particular “ scan”—the receiver cannot be
changed after acquiring some data points and before acquiring the rest.

Multiple FID Acquisition

Explicit acquisition of data can also be used to acquire more than one FID per pulse
sequence (simultaneous COSY-NOESY for example). This can be done for 1D or 2D
experiments. The parameter nf, for number of FIDs, controlsthisif it is created and set.
To perform such an experiment, enter create ('nf', 'integer') tocreatenf and
then set nf equal to an integer such as 2.

Once the data have been acquired, a second new parameter c£ (current FID), which must
also be created, isused toidentify the FID to manipul ate. Setting ¢ £ =2, for example, would
recognize the second FID in the COSY-NOESY experiment (and hence would produce a
NOESY spectrum after Fourier transformation). Note that thisis distinct from the standard
array capability and is, in fact, compatible with the standard arrays. Thus, you can acquire
an array of ten experiments, with each consisting of three FIDs that are generated during
each pulse sequence. To display the second FID of the seventh experiment, for example,
you would type cf=2 dfid (7).

2.9 Pulse Sequence Synchronization

100

If broken down to its fundamental elements, a pulse sequence isjust a set of accurately
timed delays in which the appropriate hardware is turned on or off.

VnmrJ User Programming 01-999253-00 A0604

2.10 Pulse Shaping

External Time Base

For purposes of synchronization, an external timebase halts the pul se sequence until the
number of external eventsin the count field have occurred. The source of events or ticks of
this external timebase is up to the user. See your system technical reference for specifics.
Thisfeature is not available on MERCURYplug/-Vx systems.

Controlling Rotor Synchronization

Statementsfor rotor control on Inova systems with solids rotor synchronization hardware
arerotorperiod, rotorsync, and xgate. Table 24 summarizes these statements.

Table 24. Rotor Synchronization Control Statements

rotorperiod (period) Obtain rotor period of high-speed rotor
rotorsync (rotations) Gated pulse sequence delay from MAS rotor position
xgate (events) Gate pulse sequence from an externa event

® To obtain therotor period, use rotorperiod (period), whereperiod isareal-
timevariableinto whichistherotor period isplaced (e.g., rotorperiod (v5)). The
period is placed into the referenced variable as an integer in units of 100 ns.

® Toinsert avariable-length delay, use rotorsync (rotations), where
rotations isareal-timevariablethat pointsto the number of rotationsto delay, for
example, rotorsync (vé6). The delay allows synchronizing the execution of the
pulse sequence with a particular orientation of the sample rotor. When the
rotorsync statement isencountered, the pul se sequenceis stopped until the number
of rotor rotations has occurred as referenced by the real-time variable given.

® To halt the pulse sequence from an external event, use xgate (events), where
events isadoublevariable (e.g., xgate (2.0)). When the number of external
events has occurred, the pul se sequence continues.

Both rotorsync and xgate can be used, but there is a very important distinction
between the two—rotorsync synchronizes to the exact position of the rotor, whereas
xgate synchronizesto the zero degree position of rotation. For example, if the rotor is at
90°, then for xgate (1.0), the pulse sequence will begin when therotor is at zero
degrees, arotation of 270°; however, for the equivalent rotorsynec, the pulse sequence
will begin when the rotor is at 90°, or 360° rotation.

2.10 Pulse Shaping

Waveform generators are optional on YWTYINOVA for controlling rf pulse shapes on one or
more rf channels, programmed decoupling patterns, and gradient shapes for imaging
applications. For MERCURYplus/-Vx, the shapes are Dante style pul ses. Shaped decupling
is not possible on MERCURYplug/-Vx systems. For pulse shaping programming using
Pbox, see the manua VnmrJ Liquids NMR.

Pulse control of the waveform generators consists of two separate parts:
® A text file describing the shape of a waveform.
® A pulse sequence statement applying that waveform in an appropriate manner.

The power of rf shape or decoupler pattern is controlled by the standard power and fine
power control statementsfor that rf channel. For example, obspower and obspwrf will

01-999253-00 A0604 vnmrJ User Programming 101

Chapter 2. Pulse Sequence Programming

102

scale the overal power of a shape on the observe channel. For MERCURYplus/-Vx only
coarse power is used.

File Specifications

The macro sh2pul sets up a shaped two-pulse (SH2PUL) experiment. This sequence
behaves like the standard two-pul se sequence S2PUL except that the normal hard pulses
are changed into shaped pulses from the waveform generator.

To find pulse shape definitions, the pulse sequence generation (PSG) software looksin a
user's vnmrsys/shapelib directory and then in the system's shapelib. Each
shapelib directory containsfilesspecifying the defined shapesfor rf pulses, decoupling,
and gradient waveforms. To differentiatethefilesinashapelib directory, each type uses
adifferent suffix:

Pattern Type Suffix Example

rf pulses .RF gauss.RF
decoupling .DEC mlev16.DEC
gradient .GRD hard.GRD

Each pattern fileis a set of element specifications with one element per line. Therefore, a
67 element pattern contains 67 lines. Any blank lines and comments (characters after a #
sign on aline) in a specification are ignored.

Shapes can be created by macro, by programs, or by hand. The Y"vInova specificationsfor
each kind of pattern are listed in the following table (if afield is not specified, the default
given is used). As an example, an slightly modified excerpt from afile in the system
directory shapelib isalso shown.

RF Patterns

Column Description Limits Default

1 Phase angle (in degrees) 0.5° resolution Required
Phase limits No limit on magnitude

2 Amplitude 0 to scalable max max
Relative duration 0, or 1t0 255 1
Transmitter gate 0,1 1 (gate on)

For example, the first 8 elements (after the comment lines) of thefile sinc . RF:

0.000 0.000 1.000000
0.000 8.000 1.000000
0.000 16.000 1.000000
0.000 24.000 1.000000
0.000 32.000 1.000000
0.000 40.000 1.000000
0.000 48.000 1.000000
0.000 56.000 1.000000

Inusingthe . RF patterns, the actual valuesfor the amplitude are treated asrelative val ues,
not as absolute values. All of the amplitudesin the rf shape file are divided by the largest
amplitude in the shape file and then multiplied by 1023 . 0. The net result is that shapes

VnmrJ User Programming 01-999253-00 A0604

2.10 Pulse Shaping

with values of the amplitudes between 0 t0 10 . 0, or between 0 t0 1023 . 0, or between 0

t0100000. 0, are effectively all the same shape.

To implement . RF patterns with absolute values for amplitudes, you can use a shape
element with O duration to fix the scaling factor for the shape. Here is a simple example:

A shape with elements
0.00 10.0 1.0
0.00 100.0 1.0
0.00 20.0 1.0

will result in an actua shape of

0.00 1023.0%10.0/100.0 1.0 0.00 102.30 1.0
0.00 1023.0%100.0/100.0 1.0 or 0.00 1023.0 1.0
0.00 1023.0%20.0/100.0 1.0 0.00 204.60 1.0
A shape with elements
0.00 1023.0 0.0
0.00 10.0 1.0
0.00 100.0 1.0
0.00 20.0 1.0
will result in an actua shape of
0.00 1023.0%10.0/1023.0 1.0 0.00 10.0 1.0
0.00 1023.0%100.0/1023.0 1.0 or 0.00 100.0 1.0
0.00 1023.0%20.0/1023.0 1.0 0.00 20.0 1.0
Decoupler Patterns (v"vINOVA Only)
Column Description Limits Default
1 Tip angle per element (in degrees) 0° to 500°, 1° resolution Required
Phase limits No limit on magnitude
RF phase (in degrees) 0.5° resolution Required
Amplitude 0 to scalable max max
Transmitter gate 0,1 0 (gate off)

For example, the first 8 elements (after the comment lines) of thefilewaltz16 .DEC:

270.0 180.0
360.0 0.0
180.0 180.0
270.0 0.0
90.0 180.0
180.0 0.0
360.0 180.0
180.0 0.0

In using the gate field in . DEC patterns, note the following:

® Thewaveform generator gateis OR’ ed with the output board gate. This meansthat any
time the output board gate is on, the transmitter ison, irrespective of any waveform

generator gate.

® |f adecoupler pattern is activated under status control (using dmm='p '), an implicit
output board gate statement is added. In this situation, any Os or 1sin the gate field of
the .DEC pattern areirrelevant because they are overridden (as indicated above).

01-999253-00 A0604

VnmrJ User Programming 103

Chapter 2. Pulse Sequence Programming

104

® |f adecoupler pattern is activated by the decprgon statement, the waveform
generator gate isthe controlling factor. If this gate is specified asOs or 1sinthe .DEC
file, that gating will occur. If thereis no gate field in the . DEC file, the default
occurs—the gate is set to 0 and the decoupler is off. An aternate is to follow the
decprgon statement with some kind of gate statement (e.g., decon) to turn on the
output board gate (overriding the default of the gate set to O from the waveform
generator) and to proceed thedecprgof £ statement with astatement to turn the gate
off (for example, decof).

Gradient Patterns

Column Description Limits Default
1 Output amplitude —32767 to 32767, 1 unit resolution Required
Relative duration 1to 255 1

For example, the first 8 elements (after the comment lines) of thefile trap . GRD:
1024 1

2048
3072
4096
5120
6144
7168
8192

[e e O L

Performing Shaped Pulses

Statementsto perform shaped pulses on MERCURYplug/-Vx and UN'TINOVA systems with
optional waveform generators are decshaped pulse, dec2shaped pulse,
dec3shaped pulse, shaped pulse.Y"W|NOVAalso has simshaped pulse,
and sim3shaped pulse. Table 25 provides a summary of these statements.

Table 25. Shaped Pulse Statements

decshaped pulse* Perform shaped pulse on first decoupler
dec2shaped pulse* Perform shaped pul se on second decoupler
dec3shaped pulse* Perform shaped pulse on third decoupler
shaped pulse* Perform shaped pul se on observe transmitter
simshaped pulse* Perform simultaneous two-pulse shaped pulse
sim3shaped pulse* Perform a simultaneous three-pul se shaped pulse

* decshaped pulse (shape,width, phase, RG1,RG2)
dec2shaped pulse (shape,width,phase,RG1,RG2
dec3shaped pulse (shape,width,phase,RG1,RG2)
simshaped pulse (obsshape,decshape, obswidth, decwidth,
obsphase, decphase,RG1,RG2)
sim3shaped pulse (obsshape, decshape,dec2shape, obswidth,
decwidth, dec2width, obsphase, decphase, dec2phase,RG1, RG2)

Shaped Pulse on Observe Transmitter or Decouplers

To perform a shaped pulse on the observe transmitter, use
shaped pulse (shape,width, phase,RG1,RG2),whereshape isthenameof a
text filein shapelib that storesthe rf pattern (leave off the . RF file extension), width

VnmrJ User Programming 01-999253-00 A0604

2.10 Pulse Shaping

is the duration of the pulse; phase isthe phase of the pulse (it must be areal-time
variable); RG1 isthe delay between unblanking the amplifier and gating on the transmitter
(the phase shift occurs at the beginning of thisdelay); and RG2 isthe delay between gating
off the transmitter and blanking the amplifier (e.g.,

shaped pulse ("gauss",pw,vl,rofl,rof2)).

If arf channel does not have a waveform generator, the statements shaped pulse,
decshaped pulse,and dec2shaped pulse provide pulse shaping through the
linear attenuator and the small-angl e phase shifter on the AP bus. Thistype of pul se shaping
isavailableonly on YWTYINOVA systems. AP tablesfor the attenuation and phase values are
created on the fly, and the real-time variables v12 and v13 are used to control the
execution of the shape. On previous versions of VNMR, this pul se shaping through the AP
bus was exclusively controlled by the statements apshaped pulse,

apshaped decpulse, and apshaped dec2pulse.

For shaped pulses under waveform generator control, the minimum pulselength is0.2 us.
The overhead at the beginning and end of the shaped pulse varies with the system and the
type of acquisition controller board:

® OnUNTYINOVA: 0.95 us at start, O at end.
® On systemswith an Acquisition Controller board: 10.75 us at start, 4.3 us at end.
® On systemswith an Output board: 10.95 usat start, 4.5 usat end.

If the length isless than 0.2 us, the pulse is not executed and there is no overhead.

The decshaped pulse, dec2shaped pulse, anddec3shaped pulse
statements allow a shaped pulse to be performed on the first, second, and third decoupler,
respectively. The arguments and overhead used for each isthe same as shaped pulse,
except they apply to the decoupler controlled by the statement.

Simultaneous Two-Pulse Shaped Pulse

OnY"y]NOVA, simshaped pulse (obsshape, decshape, obswidth,
decwidth, obsphase, decphase,RG1,RG2) performsasimultaneous, two-pulse
shaped pulse on the observe transmitter and the first decoupler under waveform generator
control. obsshape isthe name of the text file that contains the rf pattern to be executed
on the observe transmitter; decshape isthe name of the text file that contains the rf
pattern to be executed on thefirst decoupler; obswidth isthe duration of the pulse onthe
observe transmitter; decwidth isthe duration of the pulse on the first decoupler;
obsphase isthe phase of the pulse on the observe transmitter (it must be area-time
variable); decphase isthe phase of the pulse on the first decoupler (it must be areal-time
variable); RG1 isthe delay between unblanking the amplifier and gating on the first rf
transmitter (all phase shifts occur at the beginning of this delay); and RG2 is the delay
between gating off the final rf transmitter and blanking the amplifier; for example:
simshaped pulse ("gauss", "hrml80",pw,pl,v2,v5,rofl,rof2)

The overhead at the beginning and end of the simultaneous two-pul se shaped pulse varies
with the system and acquisition controller board:

® OnUNTYINOVA: 1.45 usat start, O at end.
® On systemswith an Acquisition Controller board: 21.5 ps at start, 8.6 ps at end.
® On systemswith an Output board: 21.7 usat start, 8.8 usat end.

These values hold regardless of the valuesfor obswidth and decwidth.

If either obswidth or decwidth is0.0, no pulse occurs on the corresponding channel.
If both obswidth and decwidth are non-zero and either obsshape or decshape is

01-999253-00 A0604 vnmrJ User Programming 105

Chapter 2. Pulse Sequence Programming

settothenull string (' '), then ahard pulse occurs on the channel with the null shape name.
If either the pulse width is zero or the shape name is the null string, then a waveform
generator is not required on that channel.

Simultaneous Three-Pulse Shaped Pulse

The sim3shaped pulse statement performs asimultaneous, three-pulse shaped pulse
under waveform generator control on three independent rf channels. The arguments to
sim3shaped are the same as defined previously for simshaped pulse, except that
dec2shape isthe name of the text file that contains the rf pattern to be executed on the
second decoupler, dec2width isthe duration of the pulse on the second decoupler, and
dec2phase isthe phase (areal-time variable) of the pulse on the second decoupler (e.g.,
sim3shaped pulse("gauss", "hrml80", "sinc",pw,pl,v2,Vv5,v6,
rofl,rof2)).

The overhead at the beginning and end of the simultaneous three-pul se shaped pulse varies
with the system and acquisition controller board:

® OnUNTYINOVA: 1.95 us at start, 0 at end.

® On systemswith an Acquisition Controller board: 32.25 pusat start, 12.9 usat end.

® On systemswith an Output board: 32.45 usat start, 13.1 us at end.

Thesevaluesholdregardless of thevaluesfor obswidth, decwidth, anddec2width.

By setting one of the pulse lengths to the value 0.0, sim3shaped pulse canaso
perform a simultaneous two-pul se shaped pulse on any combination of three rf channels.
(e.g., to perform simultaneous shaped pulses on the first decoupler and second decoupler,
but not the observe transmitter, set the obswidth argument to 0.0).

If any of the shape names are set to the null string (' '), ahard pulse occurs on the channel
with the null shape name. If either the pulse width is zero or the shape name is the null
string, a waveform generator is not required on that channel.

Programmable Transmitter Control

Statements related to programmable transmitter control on UNTYINOVA systems with
optional waveform generators are obsprgof £ and obsprgon for the observe
transmitter, decprgof £ and decprgon for the first decoupler, dec2prgof £ and
dec2prgon for the second decoupler, and dec3prgoffand dec3prgon for the third
decoupler. Table 26 provides a summary of these statements.

Table 26. Programmable Control Statements

decprgoff () End programmable decoupling on first decoupler
dec2prgoff () End programmable decoupling on second decoupler
dec3prgoff () End programmable decoupling on third decoupler
decprgon* Start programmable decoupling on first decoupler
dec2prgon* Start programmable decoupling on second decoupler
dec3prgon* Start programmable decoupling on third decoupler
obsprgoff () End programmable control of observe transmitter
obsprgon* Start programmable control of observe transmitter
* decprgon (name, 90 pulselength, tipangle resoln)
dec2prgon (name, 90 pulselength, tipangle resoln)
dec3prgon (name, 90 pulselength, tipangle resoln)
obsprgon (name, 90 pulselength, tipangle resoln)

106 vnmrJ User Programming 01-999253-00 A0604

2.10 Pulse Shaping

Programmable Control of Observe Transmitter

Use obsprgon (name, 90 pulselength, tipangle resoln) to set
programmable phase and amplitude control of the observe transmitter. name is the name
of thefilein shapelib that stores the decoupling pattern, 90 pulselength isthe
pulse duration for a90° tip angle, and tipangle resoln istheresolutionin tip-angle
degrees to which the decoupling pattern is stored in the waveform generator (e.g.,
obsprgon ("waltzlée",pw90,90.0)).

The obsprgon statement returns the number of 50-nsticks (as an integer value) in one
cycle of the decoupling pattern. Explicit gating of the observe transmitter with xmt ron
and xmtroff isgeneraly required.

To terminate any programmable phase and amplitude control on the observe transmitter
under waveform generator control, use obsprgoff ().

Programmable Control of Decouplers

Thedecprgon, dec2prgon, and dec3prgon statements set programming decoupling
on the first, second, and third decouplers, respectively. The arguments for each statement
arethesameasobsprgon, except they apply to the decoupler controlled by the statement.
Each statement returns the number of 50 ns ticks (as an integer value) in one cycle of the
decoupling pattern. Similarly, explicit gating of the selected decoupler is generally
required, and termination of the control isdone by thedecprgoff (), dec2prgoff (),
and dec3prgoff () statements, respectively.

Argumentsto obsprgon, decprgon, dec2prgon, and dec3prgon can bevariables
(which need the appropriate getval and get str Sstatements) to permit changes via
parameters.

The macro pwsadj (shape file,pulse parameter) adjuststhe pulseinterval
time so that the pulse interval for the shape specified by shape file (afilefrom
shapelib)isanintegra multiple of 100 ns. Thiseliminates atimetruncation error inthe
execution of the shaped pulse by the programmable pul se modulators.

pulse parameter isastring containing the adjusted pulseinterval time.

Setting Spin Lock Waveform Control

Statementsfor spin lock control on YNTYINOVA systemswith optional waveform generators
are spinlock, decspinlock, dec2spinlock, and dec3spinlock for the
observe transmitter, first decoupler, second decoupler, and third decoupler, respectively.
Table 27 provides a summary of these statements.

Table 27. Spin Lock Control Statements

decspinlock* Set spin lock waveform control on first decoupler
dec2spinlock* Set spin lock waveform control on second decoupler
dec3spinlock* Set spin lock waveform control on third decoupler
spinlock* Set spin lock waveform control on observe transmitter

* decspinlock (name, 90 pulselength, tipangle resoln,phase,ncycles)
decs2pinlock (name, 90 pulselength, tipangle resoln,phase,ncycles)
decs3pinlock (name, 90 pulselength, tipangle resoln,phase,ncycles)
spinlock (name, 90 pulselength,tipangle resoln,phase,ncycles)

01-999253-00 A0604 vnmrJ User Programming 107

Chapter 2. Pulse Sequence Programming

Spin Lock Waveform Control on Observe Transmitter

To execute a waveform-generator-controlled spin lock on the observe transmitter, use
spinlock (name, 90 pulselength, tipangle resoln,phase,ncycles),
name isthe name of thefilein shapelib that storesthe decoupling pattern (leave off
the . DEC file extension); 90 pulselength isthe pulse duration for a90° tip angle;
tipangle resolnistheresolutionintip-angledegreestowhich thedecoupling pattern
is stored in the waveform generator; phase isthe phase angle of the spinlock (it must be
area-time variable); and ncycles isthe number of timesthat the spin-lock patternisto
be executed (e.g., spinlock ('mlevl6',pw90,90.0,v1,50)).

Both rf gating and the mixing delay are handled within this statement.

Spin Lock Waveform Control on Decouplers

Thedecspinlock, dec2spinlock, and dec3spinlock set spin lock waveform
control on thefirst, second, and third decouplers, respectively. The arguments are the same
as used with spinlock, except that 90 pulselength isthe pulse duration for a 90° tip
angle on the decoupler controlled by the statement.

Argumentsto spinlock,decspinlock,dec2spinlock,anddec3spinlock can
be variables (which would need the appropriate getval and get str statements) to
permit changes via parameters.

Shaped Pulse Calibration

Macrosbandinfo and pulseinfo canberuninteractively (without arguments) to give
atable with shaped pulse information for calibration. bandinfo takesthe name of the
shape and the bandwidth desired for the pulse and gives a table containing the duration of
that pulse and a predicted 90° pulse power setting. pulseinfo takesthe name of the
shape and the duration of the pulse and gives the bandwidth of that pulse and a predicted
90° pulse power setting. Both macros can also be called from another macro. For more
information, refer to the Command and Parameter Reference.

2.11 Shaped Pulses Using Attenuators

108

UNITYINOVA and MERCURYplus/-Vx systems are equipped with computer-controlled
attenuators (0 dB to 79 dB on UNTYINOVA, 0 dB to 63 dB on (MERCURYplus/-Vx) on the
observe and decouple channels, linear amplifiers, and T/R (transmit/receive) switch
preamplifiersthat allow low-level transmitter signalsto be generated and pass unperturbed
into the probe. The combination of these el ements meansthat the capability for performing
shaped pulse experimentsisinherent in the systems and does not require the more
sophisticated waveform generation capability of the optiona waveform generators.

Hardware differences must be considered between systems, with and without the waveform
generators. The attenuators have more limited dynamic range, slower switching time, and
fewer pulse programming steps available. Nonethel ess, the capability still alows
significant experiments using only attenuators.

Three issues affect all shaped pulses, but particularly attenuator-based pul ses:

® Number of steps— The more stepsused, the closer the shape approxi mates a continuous
shape. At what level does this become overkill? For the most common shape,
Gaussian, as few as 19 steps have been shown to be completely acceptable.

VnmrJ User Programming 01-999253-00 A0604

2.11 Shaped Pulses Using Attenuators

® Dynamic range — How much dynamic range is required within a shape for proper
results. For a Gaussian shapeit has been shown that 33 dB isauseful limit; little or no
improvement is achieved with more. With asingle 63-dB attenuator, then, a Gaussian
pulse with 33 dB dynamic range can be superimposed on alevel ranging from 0- to 30-
dB, more with a 79-dB attenuator.

® Overall power level of the shape — A Gaussian pulse has an effective power
approximately 8 dB lower than arectangular pulse with an identical peak power. This
means that given afull-power rectangular pulse of, say, 25 kHz, a Gaussian pulse with
the same peak power has approximately a 10 kHz strength. Using instead a Gaussian
pulsewith only 33 dB dynamic range and apeak power 30 dB lower resultsin ashaped
pulse of approximately 312 Hz, which is useful for some applications, like exciting the
NH region of a spectrum, but too strong for others.

To increase the dynamic range (and decrease the strength of the shaped pulse) further, we
can use one of three approaches:

® Replace the 63-dB attenuator with a 79-dB unit. This adds 16 dB of dynamic range,
producing shaped pulses in the range of 50 Hz, suitable for multiplet excitation.

® Add an additional 63-dB attenuator in series with thefirst. If you use the entire 63 dB
of the second attenuator to control thelevel of the pulse and usethefirst attenuator only
for the shape, you still produce a pulse whose power is (for a Gaussian) 71 dB (63 + 8)
below that of the hard pulse. Thiswould produce a7 Hz pulse, about as weak a pulse
as one ever needs (and which could be reduced 30 dB further by only using 33 dB of
the first attenuator for the shape). It is possible to use this control to create shaped
pulses without a waveform generator.

® Useatime-sharing or “DANTE" approach, applying the shaped pulse in such away
that it isswitched on and off with aparticular duty cycle during the course of the shape.
A 10% duty cycle, for example, reduces the power by afactor of ten.

On UNTYINOVA systems, both the phase and linear attenuator on each transmitter can be
controlled through pulse sequence statements (see pwr £, obspwrf, decpwrf,
dec2pwrf, dec3pwrf, pwrm, rlpwrm, and dcplrphase) soitis possible to create
shaped pulses without a waveform generator.

AP Bus Delay Constants

Table 28 lists the most important AP bus delay “constants’ (C macros). Thelist is
incomplete, but a complete list can be found at the bottom of the text file
/vnmr/psg/apdelay.h.

The constants OFFSET DELAY and OFFSET LTCH DELAY are applicable only to
UNITYINOVA systems that use PT'S synthesizers with latching on the input. Although the
constants areidentical, use only OFFSET DELAY on these systems.

Controlling Shaped Pulses Using Attenuators

The statements power, obspower, decpower, dec2power, dec3power, and
(optionally) pwrf, obspwrf, decpwrf, dec2pwrf, dec3pwrf, pwrm, and rlpwrm
are used to change the attenuation (and hence the power level) of either the transmitter or
decouplers. A pulse sequence in which one of these statements is placed in aloop and
repeatedly executed with different values for the amount of attenuation therefore resultsin
ashaped pulse. Thiscan be a C loop or a*“soft” loop (using the 1oop statement), but not a
“hard” loop. The successive values for the power may be calculated in real-time, read from
atable (assuming that only positive numbers are involved), or set up from a static C

01-999253-00 A0604 vnmrJ User Programming 109

Chapter 2. Pulse Sequence Programming

Table 28. AP Bus Delay Constants

Constant Indicates Duration of

ACQUIRE START DELAY* Overhead at start of acquisition

ACQUIRE STOP DELAY* Overhead at end of acquisition

DECMODFREQ DELAY Overhead for setting modulator frequency

GRADIENT DELAY rgradient, zgradpulse (two times)

OBLIQUEGRADIENT DELAY oblique gradient (applicableonly toimaging)

OFFSET DELAY** decoffset,dec2offset,obsoffset,offset

OFFSET LTCH DELAY*** decoffset,dec2offset,obsoffset,offset

POWER_ DELAY decpower, dec2power, obspower, power, rlpower, eC.

PRG OFFSET DELAY Time shift of WFG output with obsprgon, etc.

PRG_START DELAY decprgon, dec2prgon, obsprgon, &c.

PRG_STOP_ DELAY decprgoff, dec2prgoff, obsprgoff, €c.

PWRF DELAY decpwrf, dec2pwrf, obspwrf, pwrf

SAPS DELAY dcplrphase, dcplr2phase, dcplr3phase,
xmtrphase

SETDECMOD DELAY Overhead for setting modulator mode

SPNLCK_START DELAY Overhead at start of decspinlock, spinlock, €c.

SPNLCK_STOP DELAY Overhead at end of decspinlock, spinlock, etc.

VAGRADIENT DELAY vagradpul se (two times)

WFG OFFSET DELAY Time shift of WFG output

WFG_START DELAY Overhead at start of decshaped pulse, shaped pulse

WFG_STOP_DELAY**** Overhead at end of decshaped pulse, shaped pulse

WFG2_START DELAY Overhead at start of simshaped pulse, efc.

WFG2_STOP_DELAY**** Overhead at end of simshaped pulse, etc.

WFG3_START DELAY Overhead at start of sim3shaped pulse, efc.

WFG3_STOP_DELAY**** Overhead at end of sim3shaped pulse, etc.

* On UNMYINOVA systems; on other systems, this constant is zero (no support for FSQ).
** Use OFFSET_DELAY only on UNTYINOVA systems.

*** Only on systems that use PTS synthesizers with latching.

**%% On UNITYplus systems only, this constant is zero.

variable. Although no standard pulse sequences exist that implement this feature, several
contributions to the user library provide excellent examples of how to do this.

The statements shaped pulse, decshaped pulse, and dec2shaped pulse
provide fine-grained “waveform generator-type” pulse shaping through the AP bus. If an
rf channel does not have a waveform generator configured, this is the same type of pulse
shaping that statements apshaped pulse, apshaped decpulse, and
apshaped dec2pulse provide, and is asimpler implementation.

Theapshaped pulse,apshaped decpulse,andapshaped dec2pulse pulse
statements use table variables to define the amplitude and phase tables, whereas the
standard shaped pulse, decshaped pulse, and dec2shaped pulse
statements create and use these tables on the fly. Both types of AP buswaveshaping
statements use real-time variables v12 and v13 to control shape execution. Table 29
summarizes the statements described in this section.

110 vnmrJ User Programming 01-999253-00 A0604

2.12 Internal Hardware Delays

MERCURYplus/-Vx systems support the shaped pulse and decshaped pulse.
However, shapes are created using DANTE style pulses, not using a waveform generator.
Furthermore, the apshaped pulse issupported. However, only power level is
controlled, not phase, which makes gauss.RF the only usuable shape.

Table 29. Statements for Pulse Shaping Through the AP Bus

apshaped decpulse* First decoupler pulse shaping viathe AP bus
apshaped dec2pulse* Second decoupler pulse shaping viathe AP bus
apshaped pulse* Observe transmitter pulse shaping viathe AP bus
decshaped pulse* Perform shaped pulse on first decoupler
dec2shaped pulse* Perform shaped pul se on second decoupler
shaped pulse* Perform shaped pul se on observe transmitter

* apshaped decpulse (shape,pulse width,pulse phase,

power table,phase table,RG1l,RG2)

apshaped dec2pulse (shape,pulse width,pulse phase,
power table,phase table,RG1l,RG2)

apshaped pulse (shape,pulse width,pulse phase,power table,
phase table,RG1,RG2)

decshaped pulse (shape,width,phase,RG1,RG2)

dec2shaped pulse (shape,width, phase, RG1,RG2)

dec3shaped pulse (shape,width, phase, RG1,RG2)

shaped pulse (shape,width, phase, RG1l,RG2)

Controlling Attenuation

On systemswith two attenuators, connect the two existing attenuatorsin series, leaving one
channel without computer-controlled attenuation. Thisis often acceptable in homonuclear
experiments, while in heteronuclear experiments and some homonuclear experiments it
may be desirable to insert a simple fixed attenuator in-line in the channel that isn’t being
shaped.

If you take this approach, the tpwr and dpwr parameters (or, equivalently, the

power (...,0BSch) and power (...,.DECch) pulse sequence statements) control the two
attenuators. The simplest approach isto use one of the two attenuatorsto control the shape,
while using the second to set the overall level of the pulse. Assuming that there are also
hard pulses in the pulse sequence, you'll also need to remember to write your pulse
sequence to return both attenuators to val ues suitable for the hard pulse.

2.12 Internal Hardware Delays

Many pulse sequence statementsresult in “hidden” delays. These delaysare notintrinsic to
pulse sequence generation (PSG) software but are rather internal to the hardware.

Each AP businstruction is considered a FIFO event and incurs the following delay, which
isthetimeit takesto set the hardware on the AP bus:

® OnUNTYINOVA, 0.5-us delay (except PFG, which has a 1.0-us delay).
® On MERCURYplug/-Vx, 1.2 usdelay.

Delays from Changing Attenuation

The pulse sequence statement power, which is used to change the level of attenuation
produced by a 63-dB rf attenuator in the system, leads to the following values:

01-999253-00 A0604 VnmrJ User Programming 111

Chapter 2. Pulse Sequence Programming

112

® OnUNTYINOVA, 1 AP businstruction, 0.5-us concomitant internal delay (WFG start
takes 1 AP businstructions at 0.5 usand extraboard delay of 0.75 us, total 1.25 us).

® On MERCURYplus/-Vx, 4 AP businstructions, 4.8-us concomitant internal delay.

Table 30 listsall pulse sequence statements that lead to an internal delay and the magnitude
of thisdelay. Similar information to the table is contained in the PSG header file
apdelay.h, which residesin the VnmrJ system PSG directory.

On systems with the Output board, Table 30 indicates that the pulse sequence statement
power incursa4.5 usinternal delay, not a4.3 usdelay as previously stated. Of the 4.5 us
delay, 0.2 usisto alow any high-speed line, (for example, the transmitter gate control line)
that has been turned off in PSG at the end of the preceding delay to actually turn off in
hardware before the AP bus instructions have been issued from the FIFO. Otherwise, any
such high-speed line would not be turned off in hardware until the end of the series of AP
bus instructions. This extra 0.2 us delay can be avoided with the apovrride statement.

Delays from Changing Status

Other delays can be incurred with the status and setstatus statements. The first
occurrence of the status statement always incurs the full delay. On subsequent
occurrences of status, the delay depends on values of the parameters dmm, dmm2, and
dmm3. There are three parts that contribute to this delay:

® Modulation mode — On YWNIYINOVA, if and only if the modulation mode changes, 1.0
usis added to the delay, and the first occurrence of ' s in the dm string (or dm2 or
dm3) adds an extra 1.0 us. On systemswith apinterface=3, if and only if the
modulation mode changes. Note that the waveform generator (mode 'p ') needs CW
modulation (mode 'c').

® \\aveform generator — Starting awaveform generator adds 1.25 us on YT INOVA and
10.75 uson other systems. Stopping a waveform generator adds 1 us on the
UNITYINOVA and 4.3 us on other systems. (The modulation modeisto or from 'p'.)
The waveform generator also has an offset or propagation delay, which isdiscussed on
page 114.

® Modulation frequency — If the modulation frequency changes, 1 usisadded on the
UNITYINOVA and 6.45 s on other systems. Notethat for the WTYINOVA, thisisdifferent
for a shaped pulse. The modulation frequency can change if the statement
setstatus iscalled with amodulation frequency different from the parameter
corresponding to the transmitter set, or if the modul ation mode changesto or from ' g
and 'r'. If thechangeisto 'g' and 'r', the modulation frequency isinternally
scaled, changing the frequency.

Finally, these delays are added up for each channel, and this becomesthe delay incurred for
status or setstatus. For example, if dm="nnnss', dmm="'cpfwp', and
dm2="y"', then dmm2="cccpc', Table 31 summarizes the internal intervals, assuming
status (a) istheinitia state.

To keep the st atus timing constant, use the statusdelay statement. This statement
allows the user to specify a defined period of time for the status statement to execute.
For example, if statusdelay ('B',2.0e-5) isused, aslong asthetimeit takesto
execute status for state B isless than 20 microseconds, the statement will alwaystake
20 microseconds. If the time to execute state B is greater than 20 microseconds, the
statement still executes, but awarning message is generated.

VnmrJ User Programming 01-999253-00 A0604

2.12 Internal Hardware Delays

Table 30. AP Bus Overhead Delays

Internal Delay (us)

Pulse Sequence Satements UNTYINOVA MERCURYplus/-Vx Ot EEEIRe

Systems

acquire 1.0 pre — —

0.5 post
xmtrphase 0.5 7.2 2035
dcphase
dcplrphase
dcplr2phase
dcplr3phase
power, obspower 0.5 4.8 4.5
decpower
dec2power
dec3power
pwrf, obspwrf 0.5 = =
decpwrf
dec2pwrf
dec3pwrf
offset (S=standard 4.0 86.4 15.25 S
L=latching) 21.7 L
shaped pulse 1.25 pre -— 15.45
decshaped pulse 0.5 post
dec2shaped pulse
dec3shaped pulse
simshaped pulse * — 30.50
sim3shaped pulse *k — 45.55
obsprgon 1.25 = 10.95
decprgon
dec2prgon
dec3prgon
obsprgoff 0.5 - 4.5
decprgoff
dec2prgoff
dec3prgoff
spinlock 1.25 pre -— 15.45
decspinlock 0.5 post
dec2spinlock
dec3spinlock
rgradient and 4.0 — Not an
vgradient with option
gradtype="p'
rgradient and 0.5 = Not an
vgradient with option
gradtype="'w'
zgradpulse delay = Not an
gradtype="'p' + 8.0 option
zgradpulse delay = Not an
gradtype="'w' + 1.0 option

* simshaped pulse: 1.75 pre, 0.5 post
** sim3shaped pulse: 2.25 pre, 0.5 post

01-999253-00 A0604 vnmrJ User Programming 113

Chapter 2. Pulse Sequence Programming

114

Table 31. Example of AP Bus Overhead Delaysfor status Statement

Delay (us) ~ Delay (us)

Satement uurviNOVA apinterface=3 oo

status(B) O 0 dmm from 'c' to 'p ', WFG not
started because dm="n"' inB

status(C) 1.0 4.3 dmm from 'p' to ' £', no WFG to
stop

status(D) 1.0+41.25 4.3+410.75 dmm from'£'to'w',YNTYINOVA
synchronize, dmm2 from 'c' to 'p"'

status(E) 1.75+0.5 15.05+4.3 dmm from 'w' to 'p' (='c') and
start WFG, dmm2 from 'p' to 'c',
only stop WFG

Waveform Generator High-Speed Line Trigger

Along with the AP bus overhead delay, the waveform generator has an offset delay asa
result of high-speed line (WFG) propagation delay. Thisshiftsthe rf pattern beyond the AP
bus delay. Figure 3 illustrates the delay for "NTYINOVA. Thetime overhead for the AP bus
is1.25 us(thisincludes a0.5-us AP busdelay and a0.75-us board delay). The offset delay
isan additional 0.45 us, for atotal delay of 1.70 us. The "NTYINOVA WFG a so has a post
pulse overhead delay.

1.25 us + 0.45 ps

>
RF out RE

> € 045ps

XMTR —1.25us—» HS line

WFG HS line

Figure 3. Waveform Generator Offset Delay on UNTYINOVA Systems

Note that if the shaped pulseisfollowed by adelay, say d3, then the end of the delay isat
1.7+pshape+0.5+d3. Toobtainthe proper offset delay, availableinapdelay.h. are
macros WFG_OFFSET DELAY, WFG2 OFFSET DELAY, and WFG3 OFFSET DELAY.

At the end of data collection, 3.5 msisinserted to give the acquisition computer time to
check lock, temperature, spin, etc. The UNTYINOVA has a 0.004-ms delay at the start of a
transient to initialize the data collection hardware, and a 2.006-ms delay at the end of a
transient for data collection error detection. For systems with gradients, the end of scan
delays do not include thetimes to turn off gradients, which is done at the end of every scan.

VnmrJ User Programming 01-999253-00 A0604

2.13 Indirect Detection on Fixed-Frequency Channel

2.13 Indirect Detection on Fixed-Frequency Channel

Indirect detection experiments, in which the observe nucleusis H and the decouple
nucleus is alow-frequency nucleus, usually 13C, are easily done on systems with two
broadband channels. Systems with a fixed-frequency decoupler depend on the type of
system.

Fixed-Frequency Decoupler

A UNITYINOVA system with thelabel Typeof RF set to U+ H1 Only in the CONFIG window,
or any MERCURYplus/-Vx broadband system, can use the same parameter sets and pulse
sequences as a dua-broadband system (e.g., HMQC) as long as the pulse statementsin a
sequence do not use the channel identifiers TODEV, DODEV, DO2DEV, and DO3DEV. This
restriction is negligible because statements obspower, decpower, dec2power, and
dec3power are available that specify an rf channel without requiring the these channel
identifiers. Each of these statements require only the power level and can be remapped to
different rf channels. The rfchannel parameter enables remapping rf channel selection.
Refer to the description of rfchannel inthe Command and Parameter Reference for
details.

MERCURYplus/-Vx support automatic channel swapping as well.

2.14 Multidimensional NMR

A standard feature of all pulse sequencesisthe ability to array acquisition parameters and
automatically acquire an array of the corresponding FIDs. For example, arraying the pw
parameter and viewing the resulting array of spectrais one way to estimate the 90-degree
pulsewidth. Thisexplicit array featureisautomatic, whenever aparameter isset to multiple
values, suchaspw=5,6,7,8,9,10.

A separate type of arrayed data set are the 2D, 3D, and 4D data sets. The distinguishing
feature of thistype of data set isthat the arrayed element has a uniform, automatically
calculated increment between values. Theni parameter is set to the number of increments
desired in the first indirect dimension of a multidimensional data set. The inverse of the
parameter swl defines the increment in successive values of the implicitly arrayed delay
dz. For example, if ni=8, animplicit d2 array with valuesd2=0, 1/swl, 2/swl, 3/
swl, 4/swl,5/swl, 6/swl, 7/swl isgenerated. Eight FIDs, each using the
corresponding d2 delay, will be acquired.

For the second indirect dimension, the ana ogous parametersare ni2, sw2, and d3. For
the third indirect dimension, the analogous parameters areni 3, sw3, and d4.

When creating a new 2D pulse sequence in standard form, the pulse sequence should
contain ad2 delay. To create the appropriate parameters, use the par2d macro. Itis
usually convenient to call par2d from within the macro used to set up the pul se sequence,
and to set the parameters to appropriate values with the set 2d macro. Examples of 2D
pulse sequences are given in the standard software in /vnmr /psglib and /vnmr/
maclib.

When creating a new 3D pulse sequence in standard form, the pulse sequence should
contain the delays d2 and d3, and parameters can be created with the par3d macro.
Similarly, a4D pulse sequence should contain the delays d2, d3, and d4, with parameters
created by the par4d macro.

01-999253-00 A0604 vnmrJ User Programming 115

Chapter 2. Pulse Sequence Programming

Each indirect dimension of data can be acquired in a phase-sensitive mode. Examples of
this include the hypercomplex method and the TPPI method (see the chapter on
multidimensional NMR in VnmrJ Liquids NMR manual for more details).

For each indirect dimension, a phase parameter sel ectsthe type of acquisition. For the first
indirect dimension, the corresponding phase parameter is phase. For the second indirect
dimension, the parameter isphase2. For the third indirect dimension, the parameter is
phase3. Thetotal number of FIDs in a given multidimensional data set is stored in the
parameter arraydim. For a2D experiment, arraydimisequal to ni* (number of
elements of the phase parameter).

When programming the multidimensional pulse sequences, it is convenient to have access
to the current increment in a particular indirect dimension, and to know what the phase
element is. Table 32 lists these PSG variables (see Table 20 for the full list of Vnmr
parameters and their corresponding PSG variable names and types).

Table32. Multidimensional PSG Variables

PSG Variable PSG type VnmrJ parameter Description

d2_ index int 0to (ni-1) Current index of the d2 array

id2 real-time 0to (ni-1) Current real-time index of thed2 array
inc2D double 1.0/swl Dwell time for first indirect dimension
phasel int phase Acquisition mode for first indirect dimension
d3_index int 0to (ni2-1) Current index of the d3 array

id3 real-time 0to (ni2-1) Current real-time index of thed3 array
inc3D double 1.0/sw2 Dwell time for second indirect dimension
phase2 int phase2 Acquisition mode for second indirect dimension
d4_ index int 0to (ni3-1) Current index of the a4 array

id4 real-time 0to (ni3-1) Current real-time index of thed4 array
inc4D double 1.0/sw3 Dwell time for third indirect dimension
phase3 int phase3 Acquisition mode for third indirect dimension

ix

int

l1toarraydim

Current element of an arrayed experiment

116

Some pulse sequences, such as heteronuclear 2D-J (HET2DJ), can be used “asis’ for
phase-sensitive 2D NMR; however, the hypercomplex and TPPI experiments require more
information compared to “normal” pulse sequences, and this is presented here.

Hypercomplex 2D

Hypercomplex 2D (States, Haberkorn, Ruben) requires only that a pulse sequence be run
using an arrayed parameter that generates the two required experiments. While this can be
any parameter, for consistency we recommend the use of a parameter phase, which can
be set by the user to O (to give a non-phase-sensitive experiment) or to an array (asin
phase=1, 2) to generate the two desired experiments. The parameter phase is
automatically made available to a pulse sequence as the integer phasel. Typica code as
part of the pulse sequence might look like this:

pulsesequence ()

VnmrJ User Programming 01-999253-00 A0604

2.15 Gradient Control for PFG and Imaging

if (phasel==0)
{ /* Phase calculation for */
. /* 'nmormal' experiment */
}
else if (phasel==1)
{ /* Phase calculation for */
. /* first of two arrays */
}
else if (phasel==2)
{ /* Phase calculation for */
C.. /* second of two arrays */
}
}

This code usually can be condensed because the phases are obviously related in the three
experiments, and three separate phase cal culations are not needed. One possibility isto
write down the phase cycle for the entire experiment, interspersing the “real” and
“imaginary” experiments, then generate an “effective transient counter” asfollows:

if (phasel==0) assign(ct,v10); /* v10=01234... */
else /* phasel=1 */ dbl (ct,v10); /* v10=02468... */
if (phasel==2) incr(v10); /* v10=13579... */

Now asingle phase cycle can bederived from v10 instead of from ct. If phase1=0, each
element of this phase cycleisselected. If phase1=1, only the odd elements are sel ected
(the first, third, fifth, etc. transients for which ct=0, 2, 4,...). If phase1=2, theeven
elements only are selected (ct odd).

Real Mode Phased 2D: TPPI

For TPPI experiments, the increment index is typically needed at some point in the phase
calculation. The simplest way to obtain the index isto use the built-in real-time constant
id2. Thiscan be used in aconstruction such as

if (phasel==3)

add(v1l1l,id2,v1l) ;

which adds the increment value (which starts at 0) to the phase contained inv11.

2.15 Gradient Control for PFG and Imaging

UNITYINOVA and MERCURYplus/-Vx systems support gradient control for applications
using the optional pulsed field gradient (PFG) and imaging. The configuration parameter
gradtype, set by the conf ig program, specifiesthe presence of gradient hardware and
its capabilities. The available gradient control statementsare listed in Table 33.
MERCURYplus/-Vx systems use rgradient and vagradient, andthe 1k _sample
and 1k_hold statements

Table 34 lists delays for shaped gradient statements on systems with gradient waveform
generators (gradtype="'w' or gradtype="'q'). Thetimesfor the three-axis gradient
statements (obl gradient, oblique gradient,pe2 gradient,

phase encode3 gradient, etc.) arethe overhead times for setting all three
gradients. The gradients are always set in sequential 'x', 'y', 'z order.

Some gradient statements use DAC valuesto set the gradient levels and others use values
in gauss/cm. The lower level gradient statements (gradient, rgradient,

01-999253-00 A0604 VnmrJ User Programming 117

Chapter 2. Pulse Sequence Programming

Table 33. Gradient Control Statements

1k hold()
1k sample ()

obl gradient*

oblique gradient*

obl shapedgradient*
oblique shapedgradient*
pe gradient*

pe2 gradient*

pe3 gradient*

pe shapedgradient*

pe2 shapedgradient*

pe3 shapedgradient*

Set lock correction circuitry to hold
Set lock correction circuitry to sample

Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient
Execute a shaped oblique gradient
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 2 axes
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 2 axes
Oblique shaped gradient with PE in 3 axes

Oblique gradient with PE in 1 axis
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 3 axes
Set gradient to specified level

Shaped gradient pulse

Arrayed shaped gradient function
Dynamic variable gradient function
Dynamic variable shaped gradient function

phase encode gradient*

phase encode3 gradient*

phase encode shapedgradient*
phase encode3 shapedgradient*
rgradient (channel,value)
shapedgradient*
shaped2Dgradient*
shapedincgradient*
shapedvgradient*

vgradient* Set gradient to level determined by real-time math
vagradient* Variable angle gradient
vagradpulse* Pulse controlled variable angle gradient

Variable angle shaped gradient

Variable angle pul se controlled shaped gradient
Create a gradient pulse on the z channel
zero_all gradients* Set all gradients to zero

* For the argument list, refer to the statement reference in Chapter 3

vashapedgradient*
vashapedgradpulse*
zgradpulse (value, delay)

shapedgradient, etc.) use DAC vaues, and the obliquing and variable-angle gradient
statements use gauss'cm. The gradient statements associated with DAC values are used in
single-axis PFG pulse sequences and microimaging pul se sequences, while the gradient
statements associated with gauss/cm are used in imaging pulse sequences and triple-axis
PFG pulse sequences.

Setting the Gradient Current Amplifier Level

To set the gradient current amplifier level, use rgradient (channel, value), where
channelis'X','x','Y','y','Z",or 'z' (only 'Z' or 'z"' issupported on
MERCURYplus/-Vx) and value isarea number for the amplifier level

(e.g, rgradient ('z',1327.0)). For the Performal PFG module, value must be
from 2048 to 2047; for Performall, value must be from —32768.0 to 32767.0.

To set the gradient current amplifier level but determine the value instead by real-time
math, use vgradient (channel, intercept, slope, rtval), where channel
isused the sameasin rgradient, and amplifier level isdetermined by intercept +
slope* rtval (eg., vgradient ('z',-5000.0,2500.0,v10). Thisstatement
not available on the Performal PFG module.

118 vnmrJ User Programming 01-999253-00 A0604

2.15 Gradient Control for PFG and Imaging

Table 34. Delays for Obliquing and Shaped Gradient Statements

Delay (us)

Pulse Sequence Satements UNITYINOVA
shapedgradient 0.5
shapedvgradient 1.5
shapedincgradient 1.5
incgradient (gradtype='p', 4.0
gradtype='q")

incgradient (gradtype='w') 0.5

obl gradient, oblique gradient, 12.0

pe gradient,

phase encode gradient

(gradtype='p', gradtype='qg'")

obl gradient, oblique gradient, 1.5
pe gradient,

phase encode gradient

(gradtype='w"'")

pe2 gradient, 12.0
phase encode3 gradient

(gradtype='p', gradtype='qg'")

pe2 gradient, 1.5
phase encode3 gradient

(gradtype="w"'")

obl shapedgradient, 1.5
oblique shapedgradient

pe shapedgradient, 4.5
phase encode shapedgradient

pe2 shapedgradient, 4.5
pe3 shapedgradient,

phase encode3 shapedgradient

Generating a Gradient Pulse

To create a gradient pulse on the z channel with given amplitude and duration, use
zgradpulse (value,delay), Wherevalue isusedthesameasin rgradient and
delay isany delay parameter (e.g., zgradpulse (1234.0,d2)).

shapedgradient (pattern,width, amp, channel, loops,wait) generatesa
shaped gradient, wherepatternisafilein shapelib, width isthe pulselength, amp
isavauethat scalesthe amplitude of the pulse, channel isthe same as used with
rgradient, loops isthe number of times (1 to 255) to loop the waveform, and wait
isWAIT or NOWAIT for whether or not adelay isinserted to wait until the gradient is
completed before executing the next statement (e.g.,

shapedgradient ("hsine",0.02,32676,'y',1,NOWAIT))

This statement is only available on the Perform || PFG module.

01-999253-00 A0604 vnmrJ User Programming 119

Chapter 2. Pulse Sequence Programming

Controlling Lock Correction Circuitry

On MERCURYplug/-Vx and UNTYINOVA systems, 1k_sample () and 1k_hold () are
provided to control the lock correction circuitry. If during the course of a pulse sequence
the lock signal is disturbed—for instance, with a gradient pulse or pulses at the H
frequency—thelock circuitry might not be ableto hold onto thelock. When thisisthe case,
the correction added in the feedback |oop that holdsthe lock can be held constant by calling
1k hold().Atsometimeafter the disturbance has passed (how long dependson thetype
of disturbance), the statement 1k_sample () should be called to allow the circuitry to
correct for disturbances external to the experiment.

Programming Microimaging Pulse Sequences

The proceduresfor programming microimaging pulse sequences are the same as those used
in the programming of spectroscopy sequences, with the exception that additional pulse
sequence statements have been added to define the amplitude and timing of the gradient
pulses and the shaped rf pulses. For example, in the statement

rgradient (name, value) toset agradient, theargument name iseither X, Y, or Z (or
alternatively with the connection through the parameter orient, gread, gphase, or
gslice)and value isthedesired gradient strength in DAC units at the time the
statement is to be implemented.

The basic imaging sequences included with the VnmrJ software are sequences for which
theimage data can be acquired, processed, and displayed with essentially the same software
toolsthat are used with 2D spectra. These sequences have been written in aform that
provides a great deal of flexibility in adapting them to the different modes of imaging and
include the capabilities of multislice and multiecho imaging. Many of the spectroscopic
preparation pulse sequences can be linked to the standard imaging sequences to limit the
spin population type that isimaged, to provide greater contrast in the image, or to remove
artifacts from the image.

2.16 Programming the Performa XYZ PFG Module

120

The Performa XY Z pulsed field gradient (PFG) module adds new capabilities to high-
resol ution liquids experimentson Varian spectrometers. The module applies gradientsin Bg
along three distinct axes at different times during the course of the pulse sequence. These
gradients can perform many functions, including solvent suppression and coherence
pathway selection. This section describes pul se sequence programming of the module.

Creating Gradient Tables

In order for the software to have the necessary information on al three axes to convert
between gauss’'cm and DAC val ues, the XY Z PFG probe and amplifier combination can be
calibrated using the creategtable macro and agradient table madein
/vnmr/imaging/gradtables.

The macro first prompts the user to seeif the gradient axes are set to the same gradient
strength (horizontal-bore imaging system) or if the axes have different gradient strengths
(vertical-bore PFG gradients). Next, the user is prompted for a name for the gradient coil,
and that nameisthen usedinthe gcoil and sysgcoil parametersin order to correctly
translate between DAC and gauss/cm values. Finaly, the macro prompts the user for the
boresize of the magnet (51 mm), the gradient rise time (40 ps), and the maximum gradient

VnmrJ User Programming 01-999253-00 A0604

2.16 Programming the Performa XYZ PFG Module

strength obtainable for each axis. Note that the gradient strengths are not equal and the
amplifier does not limit the combined output.

If the parameter gcoi1 doesnot exist in a parameter set and must be created, you must set
the protection bit that causesthemacro _gcoil to be executed whenthevaluefor gcoil
is changed. Setting the protection bit can be done two ways:

® Usethe macro updtgcoil, which will create the gcoil parameter if it does not

exist.

® Create gcoil with the following commands:
create('gcoil', 'string!')
setprotect ('gcoil!', 'set',9)

In an experiment that uses gradient coils, the sysgcoil parameter can be set to the coil
name specified with the creategtable macro and then the updtgcoil macro can be
run to update thelocal gcoi 1 parameter fromthe global sysgcoil parameter. When the
local gcoil parameter is updated, the local gxmax, gymax, gzmax, trise and
boresize parametersare also updated. Refer to the Command and Parameter Reference
and the VnmrJ Imaging User Guide for additional information about creategtable.

Pulse Sequence Programming

Table 35 lists the pulse sequence statements related to the XY Z PFG module. The system
can be programmed by using the statements rgradient (channel, value) and
zgradpulse (value, delay). Pulse sequencesg2pul .c and profile.cin
/vnmr/psglib are examples of using the gradaxis parameter and the rgradient
statement.

Table 35. Performa XY Z PFG Module Statements

magradient (gradlvl) Simultaneous gradient at the magic angle
magradpulse (gradlvl,gradtime) Simultaneous gradient pulse at the magic angle
mashapedgradient* Simultaneous shaped gradient at the magic angle
mashapedgradpul se* Simultaneous shaped gradient pulse at the magic angle
rgradient (axis, value) Set gradient to specified level
vagradpulse* Variable angle gradient pulse
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle shaped gradient
zgradpul se (value, delay) Create a gradient pulse on the z channel
* mashapedgradient (pattern,gradlvl,gradtime, theta,phi, loops,wait)
mashapedgradpulse (pattern,gradlvl,gradtime, theta, phi)
vagradpulse (gradlvl,gradtime, theta, phi)
vashapedgradient (pattern,gradlvl,gradtime, theta,phi, loops,wait)
vashapedgradpulse (pattern,gradlvl,gradtime, theta, phi)

To produce a gradient at any angle by the combination of two or more gradients, the
vagradpulse (gradlvl,gradtime, theta,phi) statement can be used, and to
produce three equal and simultaneous gradients, such that an effective gradient is produced
at the magic angle, the magradpulse (gradlvl,gradtime) statementisavailable.
The statements vagradpul se and magradpulse are structured so that the software
does all of the calculations to produce the effective gradient desired. Both statements take
the argument for the gradient level (gradlvl) in gauss/cm. Thisisdistinctly different
from the rgradient and zgradpulse statements, which take the argument for the
gradient level (value) in DAC.

01-999253-00 A0604 VnmrJ User Programming 121

Chapter 2. Pulse Sequence Programming

With these statements, thegcoil and sysgcoil parametersarerequired for the software
to calculate the correct DAC value for each channel in order to produce the requested
effective gradient. After the gradients have each been calibrated and agradtable has
been constructed with the creategtable macro, as described above, then the
sysgcoil parameter can be set to that coil name used. The updtgcoil macro canthen
update the local gcoil parameter from the global sysgcoil parameter.

The vagradpulse statement usesthe theta and phi angles to produce an effective
gradient at any arbitrary angle. For example, using vagradpulse with theta=54.7
and phi=0. 0, an effective gradient is produced at the magic angle by the correct
combination of theZ gradient and the Y gradient. Wheress, if theta=54 .7 andphi=90,
an effective gradient is produced at the magic angle by the correct combination of the Z
gradient and the X gradient. Variations on the vagradpul se statement include the
capability of shaping the gradient waveform with the vashapedgradient and the
vashapedgradpulse statements. For more information about these statements, see
their descriptionsin Chapter 3.

In addition, themagradpulse statement produces equal and simultaneous gradients on
all three axesin order to produce an effective gradient at the magic angle. Variations on the
magradpul se statement include the capability of shaping the gradient waveform with
themashapedgradient andthemashapedgradpulse statements. Again, for more
information, refer to Chapter 3.

2.17 Imaging-Related Statements

122

Table 36 summarizes the PSG statements related to imaging.

Statements related to imaging can be grouped as follows:
® Real-time gradient statements
® Oblique gradient statements
® Global list and position statements
® L ooping statements
® Waveform initialization statements
® Other statements

These statements were developed to support oblique imaging using standard units (gauss/
cm) to set the gradient values and to support the use of real-time variables and loops when
constructing imaging sequences. Using real -time variables and loops resulting in
“compressed” acquisitions, instead of standard acquisition arrays, reduces the number of
acodes sets needed to run the experiment, cutting down significantly on the start-up time of
the experiment and removing any inter-FID and intertransient overhead delays. Thisis not
really a problem on UNTYINOVA systems, because its small overhead delaysand do
parameter make the inter-FID and intertransient delays consistent, but may make a
difference in some applications.

Real-time Gradient Statements

Real-time gradient statements consist of additions to the standard gradient and
shapedgradient statements, which provide real-time variable control for the gradient
amplitudes. Real-time statementsinclude shapedvgradient, which providesrea -time
control on one axis, incgradient and shapedincgradient, which support real-
time control over three axes. The vgradient statement also belongs to this group.

VnmrJ User Programming 01-999253-00 A0604

2.17 Imaging-Related Statements

Table 36. Imaging-Related Statements

create delay list*
create freq list¥*

create offset list*
endmsloop*/endpeloop*
getarray¥*
getorientation*
incgradient*

init rfpattern*

init gradpattern*

init vscan*

obl gradient¥*

oblique gradient*

obl shapedgradient*
oblique shapedgradient*
msloop* /peloop*

pe gradient*

pe2 gradient*

pe3 gradient*

pe shapedgradient¥*

pe2 shapedgradient*

pe3 shapedgradient*
phase encode gradient*
phase encode3 gradient*
phase encode shapedgradient¥*
phase encode3 shapedgradient*
poffset*/position offset*
poffset list*

position offset list¥*
shapedgradient*
shaped2Dgradient *
shapedincgradient*
shapedvgradient*

slix*

vagradient*
vagradpulse*
vashapedgradient*
vashapedgradpulse*
vdelay*

vdelay list*

vireg*

vgradient*

voffset*

vscan¥*

vsli*

zero_all gradients¥*

Create table of delays
Create table of frequencies

Create table of frequency offsets

Ends aloop started by the msloop/pel oop
Retrieves al values of arrayed parameter
Read image plane orientation

Dynamic variable gradient function

Create rf pattern file

Create gradient pattern file

Initialize real-time variable for vscan
Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient
Execute a shaped oblique gradient
Provides a sequence-switchable loop
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 2 axes
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 2 axes
Oblique shaped gradient with PE in 3 axes
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 3 axes
Set frequency based on position

Set frequency from position list

Set frequency from position list

Provide shaped gradient pulse

Arrayed shaped gradient function
Dynamic variable gradient function
Dynamic variable shaped gradient function
Set SLI lines

Variable angle gradient

Pulse controlled variable angle gradient
Variable angle shaped gradient

Variable angle pulse controlled shaped gradient
Select delay from table

Get delay value from delay list with real-time index
Select frequency from table

Dynamic variable gradient

Select frequency offset from table
Dynamic variable scan function

Set SLI lines from real-time variable

Sets all gradients to zero

* For the argument list, refer to the statement reference in Chapter 3

01-999253-00 A0604

VnmrJ User Programming

123

Chapter 2. Pulse Sequence Programming

124

Oblique Gradient Statements

To support oblique imaging and the imaging interface, oblique gradient statementsinclude
oblique gradient,phase encode gradient,pe gradient,andal of their
variations. The inputs to these statements are amplitudes and phases. Amplitudes are
expressed in gauss/'cm and correspond to the read-out, phase-encode, and slice-select axis
in the logical frame. Phase angles correspond to Euler anglespsi, phi, and theta and
describe the coordinate rotation applied to the input amplitudes. For more information on
use, see the manual VnmrJ Imaging User Guide.

Global List and Position Statements

The globa list statements support real-time selection of frequencies, offsets, and delays.
Global lists are different from AP tables in that the lists are sent down to the acquisition
console when the experiment starts up and remain accessible until the experiments
completes. The lists can be arrayed parameters (with a protection bit set to prevent an
arrayed acquisition) read into the pulse sequence using the getarray statement or
standard C language arrays calculated within the pulsesequence. The lists are initialized
with the statements create freqg list,create offset list,and

create delay list,andthen selected and set usingthe vireq, voffset, and
vdelay 1list statements; which use areal-time parameter as an index into thelist.

The position statements set the rf frequency from a given position or an array of positions.
These statements are pof fset, poffset list,position offset, and
position offset list.Thepositionliststatementsuseglobal lists, whichinitialize
the list and select and set the position in a single statement.

When creating global list parameters, create them as acquisition parameters and set
protection bit 8 (value 256) or else PSG triesto array them as standard arrayed acquisitions.

Looping Statements

The looping statements ms 1 oop and peloop define multislice and phase encode loops
when creating imaging pulse sequences. The looping statements &l so allow selection of a
standard “arrayed” acquisition or a“compressed” acquisition using the segcon parameter.

Waveform Initialization Statements

Thewaveforminitialization statementsinit rfpatternand init gradpattern
are availableto all configurations and alow the user to calculate and create gradient and rf
patternsin PSG.

Other Statements

Theinit vscan and vscan statementsare used to provide a dynamic scan capability.
Thesliandvsli statementsareused with the Synchronized Line Interface board, which
isa SIS specific hardware device used to support interfacing to external devices. Thes1i
and vs11i statementsare not supported on UNITYINOVA. UNITYINOVA support for interfacing
to an external deviceisincluded in the AP User interface.

VnmrJ User Programming 01-999253-00 A0604

2.18 User-Customized Pulse Sequence Generation

2.18 User-Customized Pulse Sequence Generation

The complete pulse sequence generation (PSG) source code is supplied in the VnmrJ
system psg directory. This code enables users to create their own 1ibpsglib. so PSG
directory for link loading with the pulse sequence object file pul sesequence. o.

The UNIX shell script setuserpsg in the system directory creates the directory
vnmrsys/psg for auser, if it does not already exist, and initializes this user PSG
directory with the appropriate object libraries from the system PSG directory. The script
setuserpsg should only have to be run once by each separate user. setuserpsg
placesthefile 1ibpsglib.a inthe user'spsg directory.

The UNIX shell script psggen compilesfilesin the user PSG object directory and places
the filesin the user PSG directory. When executed, seqggen looks first for the user PSG
library ~/vnmrsys/psg in the user PSG directory, and then in the system library
directory /vnmr/1ib.

Modifying a PSG source file and subsequently recompiling the user PSG object directory
is done asfollows:

1. Enter setuserpsg fromaUNIX shell (done only once).

Typica output from this command is as follows:
Creating user PSG directory...
Copying User PSG library from system directory...

2. Copy the desired PSG source file(s) from $vnmrsystem/psg to
Svnmruser/psg.

Modify the PSG source files(s) in the user PSG directory.

4. Enter psggen from a UNIX shell or from within Vvnmr.

Typical output from this command is as follows:
Creating additional source links...
Compiling PSG Library...

PSG Library Complete.

01-999253-00 A0604 vnmrJ User Programming 125

Chapter 2. Pulse Sequence Programming

126 VnmrJ User Programming 01-999253-00 A0604

chapter 3. Pulse Sequence Statement Reference

This chapter contains a detailed reference to the statements used in VnmrJ pul se sequence

programming.
A

A B C D E G H I L Mm O P R S T V W X Z
abort message Send and error to VnmrJ and abourt the PSG process
abort Do not use abort, seepsg_abort
acquire Explicitly acquire data
add Add integer values
apovrride Override internal software AP bus delay
apshaped decpulse First decoupler pulse shaping via AP bus
apshaped dec2pulse Second decoupler pulse shaping via AP bus
apshaped pulse Observe transmitter pulse shaping via AP bus
assign Assign integer values

abort message Send and error to VhmrJ and abourt the PSG process

Syntax:

Description:

acquire
Applicability:
Syntax:

Description:

abort message (char *format, ...)

abort message sendsthe specified error messageto VnmrJand then aborts
the PSG process.

Explicitly acquire data
UNTYINOVA systems.

acquire (number points,sampling interval)
double number points; /* points to acquire */
double sampling interval; /* dwell time in sec */

Acquire data points where the sequence of eventsisto acquire a pair of points
for 200 ns, delay for sampling interval minus 200 ns, then repeat for
number points/2 times.

For UNITYINOVA systems, there are small overhead delays before and after the
acquire. The pre-acquire delay takesinto account setting thereceiver phase with
oph and enabling data overflow detection. The post-acquire delay isfor
disabling data overflow detection. When using acquire statements within a

01-999253-00 A0604 VnmrJ User Programming 127

Chapter 3. Pulse Sequence Statement Reference —

add

128

Arguments:

Examples:

Related:

Syntax:

Description:
Arguments:
Examples:

Related:

hardware | oop these overhead delays and the functions associated with them are
placed outside the hardware loop. When using multiple acquire statements
outside ahardwareloop in apul se sequence setting, the phase and enabling data
overflow detection is done before the first acquire statement. Disabling
overflow detection is done after the last acquire, so thereis no overhead time
between acquire statements.

If an acquire statement occurs outside a hardware loop, the number of
complex pointsto be acquired must be amultiple of 2 on systemswith a Digital
Acquisition Controller board, an Acquisition Controller board, or a Pulse
Sequence Controller board, or must be a multiple of 32 on systemswith a
Output board (see page 128 for descriptions of each board).
Inside a hardware loop, systemswith aDigital Acquisition Controller board or
a Pulse Sequence Controller board can accept a maximum of 2048 complex
points, systemswith an Acquisition Controller board can accept amaximum of
1024 complex points, and systemswith an Output board can accept a maximum
of 63 complex points.
Thefollowing list identifies the acquisition controller boards used on Varian
NMR spectrometer systems:
e Data Acquisition Controller boards, Part No. 01-902010-00. Started
shipping in mid-1995 with the introduction of the YTYINOVA system.
® Pulse Sequence Controller boards, Part No. 00-992560-00. Started
shipping in early 1993 with the introduction of the UNITYplus system.
® Acquisition Controller boards, Part No. 00-969204-00 or 00-990640-00.
Started shipping 00-969204-00 in | ate 1988 as areplacement for the Output
boards. Part No. 00-990640-00 replaced 00-969204-00 in mid-1990.
® Output boards, Part No. 00-953520-0#, where#isan integer. Shipped with
systems prior to 1988.

number points isthe number of data point to be acquired.
sampling interval isthelength, in seconds, of the sampling interval.
acquire (np,1.0/sw) ;

endhardloop End hardware loop
starthardloop Start hardware loop

Add integer values

add (vi,vj,vk)

codeint vi; /* real-time variable vi for addend */
codeint vij; /* real-time variable vj for addend */
codeint vk; /* real-time variable vk for sum */

Sets vk equa to the sum of integer values of vi and v7.
vi, vj, and vk arereal-time variables (v1 to v14, oph, etc.).
add (vl,v2,v3) ;

assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2

VnmrJ User Programming 01-999253-00 A0604

apovrride

Applicability:

Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Override internal software AP bus delay

Systems with the 63-step Output board (Part No. 00-953520-0#, where # is an
integer). This board shipped prior to 1988.

apovrride ()

Systemswith the 63-step Output board can use this statement to prevent adelay
of 0.2 usfrom being inserted prior to the next (and only the next) occurrence of
one of the AP (analog port) bus statements dcplrphase, deplr2phase,
dcplr3phase, decprgoff, dec2prgoff, dec3prgoff, decprgon,
dec2prgon, dec3prgon, decshaped pulse, dec2shaped pulse,
dec3shaped pulse,decspinlock, dec2spinlock,
dec3spinlock, obsprgoff, obsprgon, power, rlpower,

shaped pulse, simshaped pulse, sim3shaped pulse,
spinlock, and xmtrphase.

apshaped decpulse First decoupler pulse shaping via AP bus

Applicability:

Syntax:

Description:

Arguments:

UNITYINOVA systems. On MERCURYplus/-Vx, only shapes with no phase shifts
are supported.

apshaped decpulse (shape,pulse width,pulse phase,
power table,phase table,RG1,RG2)

char *shape; /* name of .RF shape file */

double pulse width; /* pulse width in sec */

codeint pulse phase; /* real-time phase of pulse */
codeint power table; /* table variable to store power */
codeint phase table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Providesfirst decoupler fine-grained “waveform generator-type” pul se shaping
through the AP bus. A pulse shape file for the waveform generator (/vnmr/
shapelib/* .RF)isused. This statement overrides any existing small-angle
phase shifting (i.e., apreceding dcplrphase) and step size setting on thefirst
decoupler channel. After apshaped decpulse, first decoupler channel
small-angle phase shifting isreset to zero and the step sizeis set to 0.25 degrees.

apshaped decpulse capability isnow integrated into the statement
decshaped pulse. Thedecshaped pulse statement calls
apshaped decpulse without table variablesif awaveform generator isnot
configured on the decoupler channel. decshaped pulse creates AP tables
on thefly for amplitude and phase, and does not use the AP tables allocated for
users. It still uses real-time variablesv12 and v13.

shape isashapefile (without the . RF extension) in /vnmr/shapelib or
in~/vnmrsys/shapelib. The amplitude and phase fields of the shapefile
are used. Therelative duration field (field 3) should be left at the default value
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used
because the transmitter is switched on throughout the shape. On
MERCURYplus/-Vx systems, no phase is changed or set.

01-999253-00 A0604 vnmrJ User Programming 129

Chapter 3. Pulse Sequence Statement Reference —

Examples:
Related:

pulse width isthetotal pulsewidth, in seconds, excluding the amplifier
gating delays around the pulse.

pulse phase isthe 90° phase shift of the pulse. For small-angle phase
shifting, notethat apshaped decpulse setsthe phase step size to the
minimum on the one channel that is used.

power table andphase table aretwotablevariables(t1tote0) used
asintermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped decpulse iscaled more than once, different
table names should be used in each call.

RG1 isthe amplifier gating time, in seconds, before the pulse.
RG2 isthe amplifier gating time, in seconds, after the pulse.
apshaped decpulse("gauss",pw,vl,rofl,rof2);

apshaped dec2pulse Second decoupler pulse shaping viathe AP bus
apshaped pulse Observe transmitter pulse shaping viathe AP bus
dcplrphase Set small-angle phase of first decoupler, rf type C or D
decshaped pulse Perform shaped pulse on first decoupler

apshaped dec2pulse Second decoupler pulse shaping via AP bus

Applicability:
Syntax:

Description:

Arguments:

UNITYINOVA systems.

apshaped dec2pulse (shape,pulse width,pulse phase,
power table,phase table,RG1,RG2)

char *shape; /* name of .RF shape file */

double pulse width; /* pulse width in sec */

codeint pulse phase; /* real-time phase of pulse */

codeint power table; /* table variable to store power */

codeint phase table; /* table variable to store phase */

double RG1; /* gating time before pulse in sec */

double RG2; /* gating time after pulse in sec */

Provides second decoupler fine-grained “waveform generator-type” pulse
shaping through the AP bus. A pulse shape file for the waveform generator (/
vamr/shapelib/* .RF) isused. Note that the real-time variables v12 and
v13 areused by this statement. apshaped dec2pulse overridesany
existing small-angle phase shifting (i.e., apreceding dcplr2phase) and step
size setting on the second decoupler channel.

After apshaped dec2pulse, second decoupler channel small-angle phase
shifting isreset to zero and the step size is set to 0.25 degrees.

apshaped dec2pulse capability isnow integrated into the statement
dec2shaped pulse. Thedec2shaped pulse statement cals
apshaped dec2pulse without table variablesif a waveform generator is
not configured on the decoupler channel. dec2shaped pulse creates AP
tables on the fly for amplitude and phase, and does not use the AP tables
allocated for users.It still uses real-time variables v12 and v13.

shape isashapefile (without the .RF extension) in /vamr/shapelib or
in~/vnmrsys/shapelib. The amplitude and phase fields of the shapefile
are used. Therelative duration field (field 3) should be left at the default value
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used
because the transmitter is switched on throughout the shape.

pulse width isthetotal pulsewidth, in seconds, excluding the amplifier
gating delays around the pulse.

130 vnmrJ User Programming 01-999253-00 A0604

Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

pulse phase isthe 90° phase shift of the pulse. For small-angle phase
shifting, notethat apshaped dec2pulse setsthe phase step size to the
minimum on the one channel that is used.

power table andphase table aretwotablevariables(t1 tote0) used
asintermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped dec2pulse iscaled more than once, different
table names should be used in each call.

RG1 isthe amplifier gating time, in seconds, before the pulse.
RG2 isthe amplifier gating time, in seconds, after the pulse.
apshaped dec2pulse("gauss",pw,vl,tl0,tl1ll,rofl,rof2);

apshaped decpulse Firstdecoupler pulse shaping viathe AP bus
apshaped pulse Observe transmitter pulse shaping viathe AP bus
dcplr2phase Set small-angle phase of 2nd decoupler, rf type C or D
dec2shaped pulse Perform shaped pulse on second decoupler

apshaped pulse Observe transmitter pulse shaping via AP bus

Applicability:

Syntax:

Description:

Arguments:

UNITYINOVA systems. On MERCURYplus/-Vx systems, only shapes with no
phase shifts are supported.

apshaped pulse (shape,pulse width,pulse phase,

power table,phase table,RG1,RG2)
char *shape; /* name of .RF shape file */
double pulse width; /* pulse width in sec */
codeint pulse phase; /* real-time phase of pulse */
codeint power table; /* table variable to store power */
codeint phase table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Provides observe transmitter fine-grained “waveform generator-type” pulse
shaping through the AP bus. A pulse shape file for the waveform generator (/
vamr/shapelib/* .RF) isused. This statement overrides any existing
small-angle phase shifting (i.e., apreceding xmt rphase) and step size setting
on the observe transmitter channel. After apshaped pulse, observe
transmitter channel small-angle phase shifting is reset to zero and the step size
is set to 0.25 degrees.

apshaped pulse capability isnow integrated into the shaped pulse
statement. The shaped pulse statement callsapshaped pulse without
table variablesif awaveform generator is not configured on the decoupler
channel. shaped pulse creates APtablesonthefly for amplitude and phase,
and does not usethe AP tablesallocated for users. It still usesreal-timevariables
v12 and v13.

pattern isashapefile (without the . RF extension) in /vnmr/shapelib
orin~/vnmrsys/shapelib. The amplitude and phase fields of the shape
fileareused. Therelative duration field (field 3) should be left at the default
value of 1.0 or at least small numbers, and the gatefield (field 4) iscurrently not
used because the transmitter is switched on throughout the shape. On
MERCURYplus/-Vx systems, no phase is changed or set.

pulse widthisthetotal pulsewidth, in seconds, excluding amplifier gating
delays around the pulse.

01-999253-00 A0604 vnmrJ User Programming 131

Chapter 3. Pulse Sequence Statement Reference —

pulse phase isthe 90° phase shift of the pulse. For small-angle phase
shifting, notethat apshaped pulse setsthe phase step sizeto the minimum
on the one channel that is used.

power table andphase table aretwotablevariables(t1 tote0) used
asintermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped pulse iscaled more than once, different table
names should be used in each call.

RG1 isthe amplifier gating time, in seconds, before the pulse.
RG2 isthe amplifier gating time, in seconds, after the pulse.

Examples. apshaped pulse ("gauss",pw,vl,rofl,rof2);

Related: apshaped decpulse First decoupler pulse shaping viathe AP bus
apshaped dec2pulse Second decoupler pulse shaping viathe AP bus
shaped pulse Perform shaped pulse on observe transmitter
xmtrphase Set small-angle phase of observe transmitter, rf C or D

assign Assign integer values
Syntax: assign(vi,vj)
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for assigned value */
Description: Setsvj equal to theinteger value vi.
Arguments. vi and vj arereal-timevariables (vl to v14, oph, €tc.).
Examples. assign(v3,v2);

Related: add Add integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

A B C bDE GH I L M OWP R S T V W X Z
blankingoff Unblank amplifier channels and turn amplifiers on
blankingon Blank amplifier channels and turn amplifiers off
blankoff Stop blanking observe or decoupler amplifier (obsolete)
blankon Start blanking observe or decoupler amplifier (obsolete)

132 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

blankingoff Unblank amplifier channels and turn amplifiers on
Applicability: MERCURYplusg/-Vx systems only.
Syntax: blankingoff ()
Description: Unblanks, or enables, both amplifier channels.
Related: blankingon Blank amplifier channels and turn amplifiers off
blankingon Blank amplifier channels and turn amplifiers off
Applicability: MERCURYplusg/-Vx systems only.
Syntax: blankingon ()
Description: Blanks, or disables, both amplifier channels.
Related: blankingoff Unblank amplifier channelsand turn amplifierson
blankoff Stop blanking observe or decoupler amplifier (obsolete)
Description: No longer in VnmrJ. Theblankof £ statement is replaced by the statements
obsunblank, decunblank, dec2unblank, and dec3unblank.

Related: decunblank Unblank amplifier associated with first decoupler
dec2unblank Unblank amplifier associated with second decoupler
dec3unblank Unblank amplifier associated with third decoupler
obsunblank Unblank amplifier associated with observe transmitter

blankon Start blanking observe or decoupler amplifier (obsolete)
Description: No longer in VnmrJ. Theblankon statement isreplaced by the statements
obsblank, decblank, dec2blank, and dec3blank.

Related: decblank Blank amplifier associated with first decoupler
dec2blank Blank amplifier associated with second decoupler
dec3blank Blank amplifier associated with third decoupler
obsblank Blank amplifier associated with observe transmitter

A B C D E G H | L Mm O P R S T V W X Z
clearapdatatable Zero al datain acquisition processor memory
create delay list Create table of delays

create freqg list Create table of frequencies

create offset list

clearapdatatable
Applicability:
Syntax:

01-999253-00 A0604

Create table of frequency offsets

Zero all data in acquisition processor memory
UNTYINOVA systems.
clearapdatatable ()

133

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Description:

Zeroesthe acquired data table at times other than at the start of the execution of
a pulse sequence, when the datatable is automatically zeroed. Thisstatement is
generally not needed.

create delay list Create table of delays

Applicability:
Syntax:

Description:

Arguments:

Examples:

UNITYINOVA systems.

create delay list(list,nvals,list number)

double *1ist; /* pointer to list of delays */
int nvals; /* number of values in list */
int list number; /* number 0-255 for each list */

Stores global lists of delays that can be accessed with areal-time variable or
table element for dynamic setting in pulse sequences. The lists need to be
created in order starting from O using the 1ist number argument, or by
settingthe 1ist number argument to —1, which makes the software allocate
and create the next freelist and give the list number as areturn value. Each list
must have a unique and sequential 1ist number. There can be a maximum
of 256 lists, depending on the size of the lists. The lists are stored in data
memory and compete for space with the acquisition datafor each array element.
If alistiscreated, the return valueisthe number of thelist (0 to 255); if an error
occurs, the return value is negative.

create delay list createswhatiscalled aglobal list. Global listsare
different from APtablesin that thelistsare sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful whenusinga—1in
the list number argument because alist will be created for each array
element. In this case, alist parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
usethegetarray statement. To ensurethat thelist isonly created once, check
theglobal array counter variable ix, and only call create delay listto
create the list when it equals 1 (as shown in the example).

list isapointer to alist of delays.
nvals isthe number of valuesin thelist.
list number —1 or aunique number from O to 255 for each list.

pulsesequence ()
{
/* Declare static to save between calls */
static int listl, 1list2;
int i, n;
double delayl[1024], delay2[1024];

n = 1024;
if (ix == 1) {
for (i=0; i<n; i++) {
/* Initialize delayl & delay2 arrays */
}

/* First, listl is set to 0 */

listl = create delay list(delayl,n,0);

/* This is list #1 */

create freq list (fregs,nfreqgs,OBSch,1);
/* This is list #2 */

create offset list (fregs,nfregs,OBSch,?2) ;

134 vnmrJ User Programming 01-999253-00 A0604

Related:

Chapter 3. Pulse Sequence Statement Reference —

/* Next, list2 is set to 3 */
list2 = create delay list(delay2,n,-1);

}
vdelay list(list2,v5); /* Use v5 from list2 */
vireq(1l,v2) ; /* Use v2 from list #1 */
voffset (2,vl) ; /* Use vl from list #2 */
vdelay list(listl,vl); /* Use vl from listl */

}

create freq list Create table of frequencies

create offset list Createtable of frequency offsets

delay Delay for a specified time

getarray Retrieves al values of an arrayed parameter

vdelay Select delay from table

create freq list Create table of frequencies

Applicability:
Syntax:

Description:

Arguments:

UNITYINOVA systems.

create freq list(list,nvals,device,list number)

double *list; /* pointer to list of frequencies */
int nvals; /* number of values in list */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list number; /* number 0-255 for each list */

Stores global lists of frequencies that can be accessed with area-time variable
or table element for dynamic setting of frequencies. Frequency lists use
frequenciesin MHz (such asfrom sfrq, dfrq). Thelistsneed to be created in
order starting from O using the List number argument, or by setting the
list number argument to—1, which makes the software allocate and create
the next freelist and give the list number as areturn value. Each list must have
aunigue and sequential 1ist number. There can be amaximum of 256 lists
depending on the size of the lists. The lists are stored in data memory and
compete for space with the acquisition datafor each array element. If alistis
created, the return value is the number of thelist (0 to 255); if an error occurs,
the return value is negative.

create freq list createswhat iscalled aglobal list. Global listsare
different from APtablesin that thelistsare sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when usinga—1in
the list number argument because alist will be created for each array
element. In this case, alist parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
usethegetarray statement. To ensurethat thelist isonly created once, check
the global array counter variable ix, and only call create freqg listto
create thelist when it equals 1. An exampleis shown in the entry for the
create delay list statement.

list isapointer to alist of frequencies.
nvals isthe number of valuesin thelist.

device isOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can aso be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

01-999253-00 A0604 vnmrJ User Programming 135

Chapter 3. Pulse Sequence Statement Reference —

Examples:
Related:

list number is—1 or aunique number from O to 255 for each list created.
Seethe examplefor the create delay list statement.

create delay list Create table of delays

create offset list Create table of frequency offsets
getarray Retrieves al values of an arrayed parameter
delay Delay for a specified time

vireg Select frequency from table

create offset list Create table of frequency offsets

Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

UNITYINOVA systems.

create offset list(list,nvals,device,list number)

double *1list; /* pointer to list of frequency offsets */
int nvals; /* number of values in list */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list number; /* number 0-255 for each list */

Stores global lists of frequencies that can be accessed with area-time variable
or table element for dynamic setting of frequency offsets. Offset listsdefinelists
of frequency offsetsin Hz (such as from tof, dof). Imaging pul se sequences
typically use offset lists, not frequency lists. Thelistsneed to be created in order
starting from O using the 1ist number argument, or by setting the

list number argument to—1, which makes the software allocate and create
the next freelist and give the list number as areturn value. Each list must have
aunigue and sequential 1ist number. There can be amaximum of 256 lists
depending on the size of the lists. The lists are stored in data memory and
compete for space with the acquisition datafor each array element. If alistis
created, the return value is the number of thelist (0 to 255); if an error occurs,
the return value is negative.

create offset list createswhat iscalled aglobal list. Global lists are
different from APtablesin that thelistsare sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a—1in
thelist number argument because alist will be created for each array
element. In this case, alist parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
usethegetarray statement. To ensure that thelist isonly created once, check
the global array counter variable ix, and only call create offset list
to create the list when it equals 1. An example is shown in the entry for the
create delay list statement.

list isapointer to alist of frequency offsets.
nvals isthe number of valuesinthelist.

device isOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

list number is—1 or aunique number from O to 255 for each list created.
Seethe examplefor the create delay list statement.

create delay list Create table of delays
create freq list Create table of frequencies
getarray Retrieves al values of an arrayed parameter

136 vnmrJ User Programming 01-999253-00 A0604

delay
voffset

Chapter 3. Pulse Sequence Statement Reference —

Delay for a specified time
Select frequency offset from table

D

A B C D E G H

dbl
dcphase
dcplrphase
dcplr2phase
dcplr3phase
decblank
dec2blank
dec3blank
declvloff
declvlon
decoff
dec2off
dec3off
decoffset
dec2offset
dec3offset
decd4offset
decon
dec2on
dec3on
decphase
dec2phase
dec3phase
dec4phase
decpower
dec2power
dec3power
dec4power
decprgoff
dec2prgoff
dec3prgoff
decprgon
dec2prgon
dec3prgon
decpulse
decpwr

decpwrf

01-999253-00 A0604

L

M O P

R S T VvV W X Z

Double an integer value

Set decoupler phase (obsolete)

Set small-angle phase of 1st decoupler, rf type C or D
Set small-angle phase of 2nd decoupler, rf type C or D
Set small-angle phase of 3rd decoupler, rf type C or D
Blank amplifier associated with first decoupler

Blank amplifier associated with second decoupler

Blank amplifier associated with third decoupler

Return first decoupler back to “normal” power

Turn on first decoupler to full power

Turn off first decoupler

Turn off second decoupl er

Turn off third decoupler

Change offset frequency of first decoupler

Change offset frequency of second decoupler

Change offset frequency of third decoupler

Change offset frequency of fourth decoupler

Turn on first decoupler

Turn on second decoupler

Turn on third decoupler

Set quadrature phase of first decoupler

Set quadrature phase of second decoupler

Set quadrature phase of third decoupler

Set quadrature phase of fourth decoupler

Change first decoupler power level, linear amp. systems
Change second decoupler power level, linear amp. systems
Change third decoupler power level, linear amp. systems
Change fourth decoupler power level, linear amp. systems
End programmable decoupling on first decoupler

End programmable decoupling on second decoupler
End programmable decoupling on third decoupler

Start programmabl e decoupling on first decoupler

Start programmabl e decoupling on second decoupler
Start programmabl e decoupling on third decoupler
Pulse first decoupler transmitter with amplifier gating
Set first decoupler high-power level, class C amplifier
Set first decoupler fine power

VnmrJ User Programming 137

Chapter 3. Pulse Sequence Statement Reference —

dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power

decr Decrement an integer value

decrgpulse Pulse first decoupler with amplifier gating
dec2rgpulse Pulse second decoupler with amplifier gating
dec3rgpulse Pulse third decoupler with amplifier gating
dec4rgpulse Pulse fourth decoupler with amplifier gating

decshaped pulse
dec2shaped pulse
dec3shaped pulse

Perform shaped pulse on first decoupler
Perform shaped pulse on second decoupler
Perform shaped pulse on third decoupler

decspinlock Set spin lock waveform control on first decoupler
dec2spinlock Set spin lock waveform control on second decoupler
dec3spinlock Set spin lock waveform control on third decoupler
decstepsize Set step size for first decoupler

dec2stepsize

dec3stepsize

Set step size for second decoupler
Set step size for third decoupler

decunblank Unblank amplifier associated with first decoupler
dec2unblank Unblank amplifier associated with second decoupler
dec3unblank Unblank amplifier associated with third decoupler
delay Delay for a specified time
dhpflag Switch decoupling from low-power to high-power
divn Divide integer values
dps_ off Turn off graphical display of statements
dps_on Turn on graphica display of statements
dps_show Draw delay or pulsesin a sequence for graphical display
dps_skip Skip graphical display of next statement
dbl Double an integer value
Syntax: dbl (vi,vj)
codeint vi; /* variable for starting value */
codeint vij; /* variable for twice starting value */

Description: Setswvj equal to twice the integer value of vi.
Arguments. vi and vj arereal-time variables (v1 to v14, oph, €tc.).
Examples. dbl (v1,v2) ;

Related: add Add integer values
assign Assign integer values
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

138 vnmrJ User Programming 01-999253-00 A0604

dcphase

Description:

Related:

dcplrphase

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

dcplr2phase

Applicability:
Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

Set decoupler phase (obsolete)

No longer supported. Replace dcphase statements with the decphase
statement.

decphase Set phase of first decoupler

Set small-angle phase of 1st decoupler, rf type C or D
Systems using afirst decoupler with rf type C or D and MERCURYplus/-Vx.

dcplrphase (multiplier)
codeint multiplier; /* real-time phase step multiplier */

Setsfirst decoupler phasein step size unitsset by the stepsize statement.
The small-angle phaseshift is aproduct of multiplier and the step size. If
stepsize hasnot been used, default step sizeis90°.

If the product of the step size set by the stepsize statement and
multiplier isgreater than 90°, the sub-90° part isset by dcplrphase.
Only on systems with an Output board are carryovers that are multiples of 90°
automatically saved and added in at the time of the next 90° phase selection
(suchasat thetime of thenext pulse or decpulse). Onsystemswith aData
Acquisition Controller board, a Pulse Sequence Controller board, or an
Acquisition Controller board, thisisdoneby dcplrphase (seethedescription
section of the acquire statement for further information about these boards).

Unlike decphase, decplrphase isneeded any time thefirst decoupler
phase shift isto be set to avalue not amultiple of 90°. decphase sets
quadrature phase shift only, which is rarely needed.

multiplier isasmall-angle phaseshift multiplier for thefirst decoupler. The
valuemust beareal-timevariable(v1tov14, oph, etc.)or real-timeconstant
(zero, one, €c.)

dcplrphase (zero) ;

dcplr2phase Set small-angle phase of second decoupler, rf type C or D
dcplr3phase Set small-angle phase of third decoupler, rf type C or D
decphase Set quadrature phase of first decoupler

stepsize Set small-angle phase step size, rf type C or D
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Set small-angle phase of 2nd decoupler, rf type C or D
Systems using a second decoupler with rf type C or D.

dcplr2phase (multiplier)
codeint multiplier; /* real-time phase step multiplier */

Sets second decoupler phasein step size unitsset by the st epsi ze statement.
The small-angle phaseshift is aproduct of multiplier and the step size. If
stepsize hasnot been used, the default step sizeis 90°.

If the product of the step size set by the stepsize statement and
multiplier isgreater than 90°, the sub-90° part isset by dcplr2phase.
Only on systems with an Output board are carryovers that are multiples of 90°
are automatically saved and added in at the time of the next 90° phase selection
(such as at the time of the next pulse or dec2pulse). On systemswith a
Data Acquisition Controller board, a Pulse Sequence Controller board, or an
Acquisition Controller board, thisis doneby dcplr2phase (seethe

01-999253-00 A0604 vnmrJ User Programming 139

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

dcplr3phase

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

decblank

Applicability:
Syntax:

Description:

Related:

dec2blank

Applicability:

140

VnmrJ User Programming

description section of the acquire statement for further information about
these boards).

Unlikedec2phase, dcplr2phase isneeded any time the second decoupler
phase shift isto be set to avalue that isnot amultiple of 90°. dec2phase sets
quadrature phase shift only, which is rarely need.

multiplier isasmall-angle phaseshift multiplier for the second decoupler.
Thevalue must be areal-time variable (v1 to v14, oph, etc.) or rea-time
constant (zero, one, ec.).

dcplr2phase (zero) ;

dcplrphase Set small-angle phase of first decoupler, rf type C or D
dec2phase Set quadrature phase of second decoupler

stepsize Set small-angle phase step size, rf type C or D
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Set small-angle phase of 3rd decoupler, rf type C or D
Systems using a third decoupler with rf type C or D.

dcplr3phase (multiplier)

codeint multiplier; /* multiplies phase step */

Setsthe third decoupler phase in units set by the stepsi ze statement. If
stepsize hasnot been used, the default step size is 90°. The small-angle
phaseshift isaproduct of multiplier andthe preset stepsize. Thefull
small-angle phaseisset by dcplr3phase.

Unlike dec3phase, deplr3phase isneeded any time the third decoupler
phase shift isto be set to avalue that isnot amultiple of 90°. dec3phase sets
quadrature phase shift only, which is rarely needed.

multiplier isasmall-angle phaseshift multiplier for the third decoupler.
Thevalue must be areal-time variable (v1 tov14, oph, €tc.) or rea-time
constant (zero, one, ec.).

dcplr2phase (zero) ;

dcplrphase Set small-angle phase of first decoupler, rf type C or D
dec3phase Set quadrature phase of third decoupler

stepsize Set small-angle phase step size, rf type C or D
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Blank amplifier associated with first decoupler
UNTYINOVA systems.
decblank ()

Disables the amplifier for the first decoupler. Thisis generaly used after a call
to decunblank.

decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

Blank amplifier associated with second decoupler
All systemswith linear amplifiers.

01-999253-00 A0604

Syntax:

Description:

Related:

dec3blank

Applicability:
Syntax:

Description:

Related:

declvloff

Syntax:

Description:

Related:

declvlon

Syntax:

Description:

Related:

decoff

Syntax:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

dec2blank ()

Disables the amplifier for the second decoupler. Thisis generaly used after a
cdl to dec2unblank.

dec2unblank Unblank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Blank amplifier associated with third decoupler
UNITYINOVA systems with third decoupler.
dec3blank ()

Disablesthe amplifier for the third decoupler. Thisisgenerally used after acall
to dec3unblank.

dec3unblank Unblank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Return first decoupler back to “normal” power

declvloff ()

Switches the decoupler power to the power level set by the appropriate
parameters defined by the amplifier type: dhp for class C amplifiers or dpwr

for linear amplifiers. If dhp="n"',declvloff hasno effect on systemswith
class C amplifiersbut still functions for systemswith linear amplifiers.

declvlon Turn on first decoupler to full power

power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, lin. amp. sys.
rlpwrf Set transmitter or decoupler fine power

Turn on first decoupler to full power
declvlon/()

Switches the first decoupler power level between the power level set by the
high-power parameter(s) to the full output of the decoupler. If dhp="n",
declvloff hasno effect on systemswith class C amplifiersbut still functions
for systems with linear amplifiers.

If declvlon isused, make suredeclvloff isused prior totime periodsin which
normal, controllable power levels are desired, such as prior to acquisition. Use
full decoupler power only for decoupler pulses or for solids applications.

declvloff Return first decoupler back to “normal” power
power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, lin. amp. sys.
rlpwrf Set transmitter or decoupler fine power

Turn off first decoupler
decoff ()

141

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Description:

Related:

dec20off

Applicability:
Syntax:

Description:

Related:

dec3off

Applicability:
Syntax:

Description:

Related:

decoffset

Syntax:

Description:

Arguments:
Examples:

Related:

dec2offset

Syntax:

Description:

Arguments:
Examples:

Related:

dec3offset

Syntax:

142

VnmrJ User Programming

Explicitly gates off the first decoupler in the pul se sequence.

decon Turn on first decoupler
dec20ff Turn off second decoupler
dec3off Turn off third decoupler

Turn off second decoupler

Systems with a second decoupler.

dec2o0ff ()

Explicitly gates off the second decoupler in the pul se sequence.
dec2on Turn on second decoupler

Turn off third decoupler

UNITYINOVA systems with a third decoupler.

dec3off ()

Explicitly gates off the third decoupler in the pul se sequence.
dec3on Turn on third decoupler

Change offset frequency of first decoupler

decoffset (frequency)

double frequency; /* offset in Hz */

Changes the offset frequency of the first decoupler (parameter dof) . It is
functionally thesameas of fset (frequency, DODEV) .

frequency isthe offset frequency desired, in hertz.
decoffset (dol) ;

dec2offset Change offset frequency of second decoupler
decl3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Change offset frequency of second decoupler

dec2offset (frequency)

double frequency; /* offset frequency in Hz */

Changes the offset frequency of the second decoupler (parameter do£2). Itis

functionally thesameas of fset (frequency, DO2DEV) .
frequency isthe offset frequency desired, in hertz.
dec2offset (do2) ;

decoffset Change offset frequency of first decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Change offset frequency of third decoupler

dec3offset (frequency)

double frequency; /* offset frequency in Hz */

01-999253-00 A0604

Description:

Arguments:
Examples:

Related:

dec4offset

Applicability:
Syntax:
Description:

Arguments:
Examples:

Related:

decon

Syntax:

Description:

Related:

dec2on

Applicability:
Syntax:

Description:

Related:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Changes the offset frequency of the third decoupler (parameter dof3). Itis
functionally thesameas of fset (frequency, DO3DEV) .

frequency isthe offset frequency desired, in hertz.
dec3offset (do3) ;

decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Change offset frequency of fourth decoupler

UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

dec4offset (frequency)

double frequency; /* offset frequency in Hz */

Changes the offset frequency of the fourth decoupler (parameter dof4). Itis
functionally thesameas of fset (frequency, DO4DEV) .

frequency isthe offset frequency desired, in hertz.
dec4offset (do4) ;

decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler
rftype Type of rf generation

Turn on first decoupler
decon ()

Explicitly gates on the first decoupler in the pulse sequence. First decoupler
gating is handled automatically by the statements declvloff, declvlon,
decpulse, decrgpulse, decshaped pulse,decspinlock
simpulse, sim3pulse, simshaped pulse, sim3shaped pulse

decprgon generally needsto be enabled with an explicit decon statement
and followed by adecof £ call.

decoff Turn off first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler

Turn on second decoupler
Systems with a second decoupler.
dec2on ()

Explicitly gates on the second decoupler in the pulse sequence. Second
decoupler gating is handled automatically by the statements dec2rgpulse,
dec2shaped pulse, dec2spinlock, sim3pulse, and
sim3shaped pulse.

dec2prgon generally needs to be enabled with an explicit dec2on
statement and followed by adec2of £ call.

dec20off Turn off second decoupler

143

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

dec3on
Applicability:
Syntax:

Description:

Related:

decphase

Syntax:

Description:

Arguments:

Examples:
Related:

dec2phase
Applicability:
Syntax:

Description:
Arguments:

Examples:
Related:

dec3phase
Applicability:
Syntax:

Description:
Arguments:

Examples:
Related:

144

VnmrJ User Programming

Turn on third decoupler
UNITYINOVA systems with a third decoupler.
dec3on ()

Explicitly gates on the third decoupler in the pulse sequence. Third decoupler
gating is handled automatically by the statements dec3rgpulse,
dec3shaped pulse, and dec3spinlock

dec3prgon generally needs to be enabled with an explicit dec3on
statement and followed by adec3of £ cal.

dec3off Turn off third decoupler

Set quadrature phase of first decoupler

decphase (phase)

codeint phase; /* real-time variable for quad. phase */

Sets quadrature phase (multiple of 90°) for thefirst decoupler rf. decphase is
syntactically and functionally equivalent to t xphase and isuseful for a
decoupler pulsein all caseswhere t xphase isuseful for atransmitter pulse.

phase isthe quadrature phase for the first decoupler rf. The value must be a
real-timevariable (v1 to v14, oph, ct, €tc.).

decphase (v4) ;

deplrphase Set small-angle phase of first decoupler, rf type C or D
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler

txphase Set quadrature phase of observe transmitter

Set quadrature phase of second decoupler
Systems with a second decoupler.

dec2phase (phase)

codeint phase; /* real-time variable for quad. phase */
Sets quadrature phase (multiple of 90°) for the second decoupler rf.

phase isthe quadrature phase for the second decoupler rf. The value must be
ared-timevariable (v1 tov14, oph, ct, €tc.).

dec2phase (v9) ;

deplr2phase Set small-angle phase of second decoupler, rf type C or D
Set quadrature phase of first decoupler

decphase
Set quadrature phase of third decoupler
UNITYINOVA systems with a third decoupler.

dec3phase (phase)

codeint phase; /* real-time variable for quad. phase */

Sets quadrature phase (multiple of 90°) for the third decoupler rf.

phase isthe quadrature phase for the third decoupler rf. The value must be a
real-timevariable (v1 to v14, oph, ct, €tc.).

dec3phase (v9) ;

Set small-angle phase of third decoupler, rf type C or D
Set quadrature phase of first decoupler

dcplr3phase
decphase

01-999253-00 A0604

dec4phase

Applicability:

Syntax:

Description:
Arguments:

Examples:

Related:

decpower

Applicability:
Syntax:

Description:

Arguments:

CAUTION:

Related:

dec2power

Applicability:
Syntax:

Description:

Arguments:

Related:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Set quadrature phase of fourth decoupler

UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

dec4phase (phase)

codeint phase; /* real-time variable for quad. phase */

Sets quadrature phase (multiple of 90°) for the fourth decoupler rf.

phase isthe quadrature phase for the third decoupler rf. The value must be a
real-timevariable (v1 to v14, oph, ct, €tc.).

dec4dphase (v9) ;

Type of rf generation
Set quadrature phase of first decoupler

rftype
decphase

Change first decoupler power level, linear amp. systems
Systems with linear amplifiers.

decpower (power)

double power; /* new power level for DODEV */

Changes the first decoupler power. It isfunctionally the same as
rlpower (value, DODEV).

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power) on channelswith a63-dB attenuator, or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

On systems with linear amplifiers, be careful when using values of
decpower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for
parameters tpwr, dpwr, dpwr2, and dpwr3.

dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

Change second decoupler power level, linear amp. systems
Systems with a second decoupler.

dec2power (power)

double power; /* new power level for DO2DEV */

Changes the second decoupler power. It is functionally the same as
rlpower (value, DO2DEV).

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power) on channelswith a63-dB attenuator, or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

decpower Change first decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

145

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

dec3power

Applicability:
Syntax:

Description:

Arguments:

Related:

dec4power

Applicability:
Syntax:
Description:

Arguments:

Related:

decprgoff

Applicability:
Syntax:

Description:

Related:

dec2prgoff

Applicability:
Syntax:

Description:

Related:

146

VnmrJ User Programming

Change third decoupler power level, linear amp. systems
UNITYINOVA systems with a third decoupler.

dec3power (power)

double power; /* new power level for DO3DEV */

Changes the third decoupler power. It is functionally the same as
rlpower (value, DO3DEV).

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power) on channelswith a63-dB attenuator, or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

Change fourth decoupler power level, linear amp. systems

UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

dec4power (power)

double power; /* new power level for DO4DEV */

Changes the third decoupler power. It is functionally the same as
rlpower (value, DO4DEV).

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power).

decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

rftype Type of rf generation

End programmable decoupling on first decoupler
Systems with a waveform generator on rf channel for the first decoupler.
decprgoff ()

Terminates any waveform-generator-controlled programmable decoupling on
the first decoupler started by the decprgon statement.

decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
dec3prgoff End programmable decoupling on third decoupler

End programmable decoupling on second decoupler
Systems with a waveform generator on rf channel for the second decoupler.
dec2prgoff ()

Terminates any waveform-generator-controlled programmable decoupling on
the second decoupler set by the dec2prgon statement.

dec2prgon Start programmable decoupling on second decoupler

01-999253-00 A0604

dec3prgoff
Applicability:

Syntax:

Description:

Related:

decprgon
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

dec2prgon
Applicability:
Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

End programmable decoupling on third decoupler

UNITYINOVA systems with awaveform generator on rf channel with the third
decoupler.

dec3prgoff ()

Terminates any waveform-generator-controlled programmable decoupling on
the third decoupler set by the dec3prgon statement.

dec3prgon Start programmable decoupling on third decoupler

Start programmable decoupling on first decoupler
Systems with a waveform generator on rf channel for the first decoupler.
decprgon (pattern, 90 pulselength,tipangle resoln)

char *pattern; /* name of .DEC file */

double 90 pulselength; /* 90cco-deg pulse length in sec
*/

double tipangle resoln; /* tip-angle resolution */

Executes programmable decoupling on the first decoupler under waveform
generator control, and returns the number of 50-nsticks (asaninteger value) in
one cycle of the decoupling pattern. Explicit gating of the first decoupler with
decon and decof £ isgenerally required. Arguments can be variables (which
requiretheappropriate getval and get st r statements) to permit changes by
the parameters (see the second example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
first decoupler.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

decprgon ("garpl",1/dmf, 1.0);

decprgon (modtype, pwx90,dres) ;

n50ns ticks = decprgon("waltzle",1/dmf,90.0);

decprgoff End programmable decoupling on first decoupler
dec2prgon Start programmable decoupling on second decoupler
dec3prgon Start programmable decoupling on third decoupler
obsprgon Start programmabl e control of obs. transmitter

Start programmable decoupling on second decoupler
Systems with a waveform generator on rf channel for the second decoupler.
dec2prgon (pattern, 90 pulselength, tipangle resoln)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90ccc0co-deg pulse length in sec
*/

double tipangle resoln; /* tip-angle resolution */

Executes programmable decoupling on second decoupler under waveform
generator control, and returns the number of 50-nsticks (asaninteger value) in
one cycle of the decoupling pattern. Explicit gating of the second decoupler
withdec2on anddec20of £ isgenerally required. Argumentscan bevariables
(which require the appropriate getval and get st r statements) to permit
changes by the parameters (see the second example).

01-999253-00 A0604 VnmrJ User Programming 147

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

dec3prgon

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

decpulse

Syntax:

Description:

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
second decoupler.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

(1) dec2prgon ("waltzl16",1/dmf2,90.0) ;

(2) dec2prgon (modtype, pwx290,dres?2) ;
n50ns_ticks=dec2prgon("garpl",1/dmf2,1.0);

decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
obsprgon Start programmabl e control of obs. transmitter

Start programmable decoupling on third decoupler

UNITYINOVA systems with awaveform generator on rf channel for the third
decoupler.

dec3prgon (pattern, 90 pulselength, tipangle resoln)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length in sec */
double tipangle resoln; /* tip-angle resolution */

Executes programmable decoupling on third decoupler under waveform
generator control. It returns the number of 50-ns ticks (as an integer value) in
one cycle of the decoupling pattern. Explicit gating of the third decoupler with
dec3on and dec3of £ isgeneraly required. Arguments can be variables
(which require the appropriate getval and get st r statements) to permit
changes by parameters (see second example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
third decoupler.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

(1) dec3prgon ("waltz16",1/dmf3,90.0) ;

(2) dec3prgon (modtype, pwx390,dres3) ;
n50ns _ticks = dec3prgon("garpl",1l/dmf3,1.0);

decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
obsprgon Start programmabl e control of obs. transmitter

Pulse first decoupler transmitter with amplifier gating

decpulse (width, phase)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase of pulse */

Pulses thefirst decoupler at its current power level. The amplifier is gated off
during decoupler pulses asit is during observe pulses. The amplifier gating
times (see RG1 and RG2 for decrgpulse) areinternaly set to zero for this
statement. dmm should be set to ' ¢ ' during any period of timein which
decoupler pulses occur.

148 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:

Related:

decpwr

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

decpwrf

Applicability:
Syntax:

Description:

Arguments:
Examples:

Related:

dec2pwrf

Applicability:
Syntax:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

width isthe duration of the pulse, in seconds.

phase isthe phase of the pulse. The value must be area-time variable (v1 to
v14, etc.) or ared-time constant (zero, one, €c.).

decpulse (pp,Vv3) ;
decpulse (2.0*pp, zero) ;

Pulse decoupler transmitter with amplifier gating
Pulse the decoupler transmitter with |PA

Pulse observe transmitter with amplifier gating
Pulse observe, decoupler channels simultaneously
Simultaneous pulse on 2 or 3 rf channels

decrgpulse
idecpulse
rgpulse
simpulse
sim3pulse

Set first decoupler high-power level, class C amplifier
All systemswith class C amplifiers.

decpwr (level)

double level; /* new power level for DODEV channel */

Changesthe first decoupler high-power level to the value specified. To reset the
power back to the “standard” dhp level, use decpwr (dhp) .

Switching between low power decoupling (dhp="n") and high power
decoupling (dhp=Xx), as well as switching between different levels of low
power decoupling, usesrelayswhose switching time isabout 10 ms and are not
provided for in the standard pul se sequence capability. Neither function should
prove necessary because extremely low levels of decoupling are provided for in
dhp mode by using very small (0 to 30) values of dhp.

level specifies the decoupler high-power level, from 0 (lowest) to 255 (full
power). These valuesin thisrange increase monotonically but are neither linear
nor logarithmic

decpwr (255.0) ;
decpwr (levell) ;

declvloff Return first decoupler back to “normal” power
Set first decoupler fine power
Systems with fine power control on the first decoupler.

decpwrf (power)

double power; /* new fine power value for DODEV */

Changes first decoupler fine power. It is functionally the same as
rlpwrf (value,DECch).

power isthe fine power desired.
decpwrf (4.0) ;

dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Set second decoupler fine power
Systems with fine power control on the second decoupler.

dec2pwrf (power)

149

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

double power; /* new fine power value for DO2DEV */

Description: Changes the second decoupler fine power. It is functionaly the same as
rlpwrf (value, DO2DEV).

Arguments. power isthefine power desired.
Examples: dec2pwrf(4.0);

Related: decpwrf Set first decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

dec3pwrf Set third decoupler fine power

Applicability: YNTYINOVA systems with fine power control on the third decoupler.

Syntax: dec3pwrf (power)
double power; /* new fine power value for DO3DEV */

Description: Changes third decoupler fine power. It is functionally the same as
rlpwrf (value,DO3DEV).

Arguments. power isthefine power desired.
Examples. dec3pwrf (4.0) ;

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power
decr Decrement an integer value
Syntax: decr (vi)
codeint vi; /* real-time variable for starting value */

Description: Decrementsinteger valuevi by 1(i.e, vi=vi-1).
Arguments. vi isarea-timevariable (vl tov1l4, oph, €c.).
Examples. decr (v5) ;

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

decrgpulse Pulse first decoupler with amplifier gating
Syntax: decrgpulse (width, phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

150 vnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

Examples:

Related:

dec2rgpulse
Applicability:
Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

Syntactically equivalent to rgpul se statement and functionally equivalent to
rgpul se with two exceptions. First, the first decoupler (instead of the
transmitter) ispulsed at its current power level. Second, if homo="n"', theslow
gate on thefirst decoupler board is aways open and therefore need not be
switched open during RG1. In contrast, if homo="y ', theslow gate on thefirst
decoupler board is normally closed and must therefore be allowed sufficient
time during RG1 to switch open.

For systemswith linear amplifiers, RG1 for adecoupler pulseisimportant from
the standpoint of amplifier stabilization under thefollowing conditions: tn, dn
equal {3H, 1H, 19F} (high-band nuclei, 3H does not apply to MERCURYplus/-
Vx systems), or tn, dn less than or equal to 31P (low-band nuclei). For these
conditions, the “decoupler” amplifier moduleis placed in pulse mode, in which
it remains blanked as long as the receiver is on. In thismode, RG1 must be
sufficiently long to allow the amplifier to stabilize after blanking is removed: 5
to 10 us (2 ustypica for MERCURYplus/-Vx) for high-band nuclei and 10 to 20
us (2 ustypical for MERCURYplus/-Vx) for low-band nuclei. Solids require at
least 1.5 us. On 500-MHz systems that use the ENI-5100 class A amplifier for
low-band nuclei on the observe channel, RG1 should be 40-60 ps.

If the tn nucleus and the dn nucleus are in different bands (e.g., tn is 1H and
dn is13C), the“decoupler” amplifier moduleis placedin thecwmode, in which
it isalways unblanked regardless of the state of the receiver. In this mode RG1
is unimportant with respect to amplifier stabilization prior to the decoupler
pulse.

width isthe duration, in seconds, of the decoupler transmitter pulse.

phase isthephase of the pulse. It must beareal-timevariable(v1 tov14, etc.)
or ared-time constant (zero, one, etc.).

RG1 isthe time, in seconds, before the start of the pulse that the amplifier is
gated off.

RG2 isthetime, in seconds, after the end of the pulse that the amplifier is gated
on.

decrgpulse (pp,v3,rofl,rof2);
decrgpulse (pp, zero,1.0e-6,0.2e-6) ;

decpulse Pulse first decoupler with amplifier gating
dec2rgpulse Pulse second decoupler with amplifier gating
dec3rgpulse Pulsethird decoupler with amplifier gating
idecpulse Pulse first decoupler transmitter with 1PA
idecrgpulse Pulsefirst decoupler with amplifier gating and IPA

irgpulse Pulse observe transmitter with PA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Pulse second decoupler with amplifier gating
Systems with a second decoupler.
dec2rgpulse (width, phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs an explicit amplifier-gated pul se on the second decoupler (DO2DEV).

01-999253-00 A0604 vnmrJ User Programming 151

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:
Related:

dec3rgpulse
Applicability:
Syntax:

Description:
Arguments:

Examples:
Related:

dec4rgpulse
Applicability:

width isthe duration, in seconds, of the pulse.

phase isthephase of the pulse. It must beareal-timevariable(v1 tov1i4, etc.)
or area-time constant (zero, one, etc.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of thisdelay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 isthedelay, in seconds, between gating the rf transmitter off and gating the
amplifier off. homo has no effect on the gating on the second decoupler board.
On UNTYINOVA , homo2 controls gating of second decoupler rf.
dec2rgpulse (pl,v10,rofl,rof2);

decpulse Pulse first decoupler with amplifier gating

decrgpulse Pulsefirst decoupler with amplifier gating

idecpulse Pulse first decoupler with [PA

rgpulse Pulse observe transmitter with amplifier gating

simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Pulse third decoupler with amplifier gating
UNITYINOVA systems with a third decoupler.
dec3rgpulse (width,phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs an explicit amplifier-gated pulse on the third decoupler (DO3DEV).
width isthe duration, in seconds, of the pulse.

phase isthephase of the pulse. It must beareal-timevariable(v1 tov14, etc.)
or ared-time constant (zero, one, etc.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of thisdelay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 isthedelay, in seconds, between gating the rf transmitter off and gating the
amplifier off. homo hasno effect on the gating on thethird decoupler board. On
UNITYINOVA , homo3 controls gating of third decoupler rf.

dec3rgpulse (pl,v10,rofl,rof2);

decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulsefirst decoupler with amplifier gating
idecpulse Pulse first decoupler with [PA

rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Pulse fourth decoupler with amplifier gating

UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

152 vnmrJ User Programming 01-999253-00 A0604

Syntax:

Description:
Arguments:

Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

dec4rgpulse (width,phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs an explicit amplifier-gated pulse on the fourth decoupler (DO4DEV).
width isthe duration, in seconds, of the pulse.

phase isthephase of the pulse. It must beareal-timevariable(v1 tov14, etc.)
or ared-time constant (zero, one, ec.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of thisdelay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 isthedelay, in seconds, between gating the rf transmitter off and gating the
amplifier off.

dec4rgpulse (pl,v10,rofl,rof2);

decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulsefirst decoupler with amplifier gating
idecpulse Pulse first decoupler with [PA

rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

decshaped pulse Perform shaped pulse on first decoupler

Applicability:

Syntax:

Description:

UNITYINOVA systems, or systemswith waveform generator on rf channel for the
first decoupler.

decshaped pulse (pattern,width, phase,RG1l,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pulse on the first decoupler. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an

apshaped decpulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When decshaped pulse is
called, the shape is addressed and started. The minimum pulse length is0.2 us.
The overhead at the start and end of the shaped pulse varies:

® UNTYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)

If the length islessthan 0.2 us, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the decshaped pulse statement creates AP tables on the fly
for amplitude and phase. It also uses the real-time variables v12 and v13 to

01-999253-00 A0604 vnmrJ User Programming 153

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:
Related:

control the execution of the shape. It doesnot use AP table variables. For timing
and more information, see the description of apshaped decpulse. Note
that if using AP tableswith shapesthat have alarge number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

pattern isthe name of atext filein the shapel ib directory that stores the
rf pattern (leave off the . RF file extension).

width isthe duration, in seconds, of the pulse.

phase isthephase of the pulse. It must beareal-timevariable (vl tov14, etc.)
or area-time constant (zero, one, €tc.)

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the first decoupler off and gating
the amplifier off.

decshaped pulse("sinc",pl,v5,rofl,rof2) ;
apshaped decpulse First decoupler pulse shaping via AP bus

dec2shaped pulse Perform shaped pulse on second decoupler
dec3shaped pulse Perform shaped pulse on third decoupler
shaped pulse Perform shaped pulse on observe transmitter
simshaped pulse Simultaneous two-pul se shaped pulse
sim3shaped pulse Simultaneous three-pul se shaped pulse

dec2shaped pulse Perform shaped pulse on second decoupler

Applicability:
Syntax:

Description:

Systems with a waveform generator on rf channel for the second decoupler.
dec2shaped pulse (pattern,width,phase,RG1l,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pulse on the second decoupler. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an

apshaped dec2pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When dec2shaped pulseis
called, the shape is addressed and started. The minimum pulse length is0.2 us.
The overhead at the start and end of the shaped pulse varies:

® UNITYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)

If the length islessthan 0.2 us, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, thedec2shaped pulse statement creates AP tableson thefly
for amplitude and phase. It also uses the real-time variables vi2 and v13 to

control the execution of the shape. It doesnot use AP table variables. For timing
and more information, see the description of apshaped dec2pulse. Note

154 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

that if using AP tableswith shapesthat have alarge number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

pattern isthe name of atext filein the shapel ib directory that stores the
rf pattern (leave off the .RF file extension).

width isthe duration, in seconds, of the pulse.

phase isthephase of the pulse. It must beareal-timevariable (vl tov14, etc.)
or area-time constant (zero, one, €tc.)

RG1 isthe delay, in seconds, between gating the amplifier on and gating the
second decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the second decoupler off and
gating the amplifier off.

dec2shaped pulse("gauss",pl,v9,rofl,rof2);
apshaped dec2pulse Second decoupler pulse shaping via AP bus

decshaped pulse Perform shaped pulse on first decoupler
shaped pulse Perform shaped pulse on observe transmitter
sim3shaped pulse Simultaneous three-pul se shaped pulse

dec3shaped pulse Perform shaped pulse on third decoupler

Applicability:
Syntax:

Description:

UNTYINOVA systems.
dec3shaped pulse (pattern,width,phase,RG1l,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pulse on the third decoupler. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an

apshaped dec3pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When dec3shaped pulseis
called, the shape is addressed and started. The minimum pulse length is0.2 us.
The overhead at the start and end of the shaped pulse varies:

® UNITYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)

If the length islessthan 0.2 us, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, thedec3shaped pulse statement creates AP tableson thefly
for amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It doesnot use AP table variables. For timing
and more information, see the description of apshaped dec3pulse. Note
that if using AP tableswith shapesthat have alarge number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

01-999253-00 A0604 vnmrJ User Programming 155

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:
Related:

decspinlock
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

dec2spinlock
Applicability:
Syntax:

pattern isthe name of atext filein the shapel ib directory that stores the
rf pattern (leave off the .RF file extension).

width isthe duration, in seconds, of the pulse.

phase isthephase of the pulse. It must beareal-timevariable(v1 tov14, etc.)
or ared-time constant (zero, one, etc.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the
third decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the third decoupler off and gating
the amplifier off.

dec3shaped pulse("gauss",pl,v9,rofl,rof2);

decshaped pulse Perform shaped pulse on first decoupler
shaped pulse Perform shaped pulse on observe transmitter

Set spin lock waveform control on first decoupler
Systems with waveform generator on rf channel for the first decoupler.

decspinlock (pattern, 90 pulselength,tipangle resoln,
phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90cco-deg pulse length in sec
*/

double tipangle resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */

int ncylces; /* number of cycles to execute */

Executes a waveform-generator-controlled spin lock on the first decoupler,
handling both rf gating and the mixing delay. Arguments can be variables
(which require the appropriate getval and get st r statements) to permit
changes via parameters (see the second example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the . DEC file extension).

90 pulselength isthe pulse duration, in seconds, for a 90° tip angle.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

phase isthe phase of the spinlock. It must bearea-time variable (v1 tovi14,
etc.) or area-time constant (zero, one, €c.).

ncycles isthe number of timesthe spin-lock pattern isto be executed.

decspinlock ("mlevlée",pl90,dres,vl,30) ;
decspinlock (spinlk,pp90,dres,vl,cycles) ;

dec2spinlock Set spin lock waveform control on second decoupler
dec3spinlock Set spin lock waveform control on third decoupler
spinlock Set spin lock waveform control on obs. transmitter

Set spin lock waveform control on second decoupler
Systems with a waveform generator on rf channel for the second decoupler.

dec2spinlock (pattern, 90 pulselength,

tipangle resoln,phase,ncycles)
char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length of channel */

156 vnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

Examples:

Related:

dec3spinlock

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

double tipangle resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Executes a waveform-generator-controlled spin lock on the second decoupler.
Both the rf gating and the mixing delay are handled within this function.
Arguments can be variables (which require the appropriate getval and
getstr statements) to permit changes via parameters (see the second
example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the . DEC file extension).

90 pulselength isthe pulse duration, in seconds, for a 90° tip angle.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

phase isthe phase of the spinlock. It must be area-time variable (v1 tovi4,
etc.) or area-time constant (zero, one, €c.).

ncycles isthe number of timesthat the spin-lock pattern isto be executed.

(1) dec2spinlock ("mlevlé",p290,dres2,vl,42) ;
(2) dec2spinlock (lock2, pwx2,dres2,vl,cycles) ;

decspinlock Set spinlock waveform control on first decoupler
spinlock Set spin lock waveform control on obs. transmitter

Set spin lock waveform control on third decoupler

UNITYINOVA systems with awaveform generator on rf channel for the third
decoupler.

dec3spinlock (pattern, 90 pulselength,

tipangle resoln,phase,ncycles)
char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length of channel */
double tipangle resoln;/* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Executes a waveform-generator-controlled spin lock on the third decoupler.
Both the rf gating and the mixing delay are handled within this function.
Arguments can be variables (which would need the appropriate getval and
getstr statements) to permit changes via parameters (see the second
example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the . DEC file extension).

90 pulselength isthe pulse duration, in seconds, for a 90° tip angle.

tipangle resoln istheresolution in tip-angle degreesto which the
decoupling pattern is stored in the waveform generator.

phase isthe phase of the spinlock. It must bearea-time variable (v1 tovi14,
etc.) or ared-time constant (zero, one, €tc.).

ncycles isthe number of timesthat the spin-lock pattern isto be executed.

dec3spinlock ("mlevlée",p390,dres3,vl,42) ;
dec3spinlock (lock2,pwx2,dres3,vl,cycles) ;

decspinlock Set spin lock waveform control on first decoupler
spinlock Set spin lock waveform control on observe transmitter

01-999253-00 A0604 vnmrJ User Programming 157

Chapter 3. Pulse Sequence Statement Reference —

decstepsize

Syntax:

Description:

Arguments:
Examples:
Related:

dec2stepsize
Applicability:
Syntax:

Description:

Arguments:
Examples:
Related:

dec3stepsize
Applicability:
Syntax:

Description:

Arguments:
Examples:
Related:

decunblank
Applicability:
Syntax:

158

VnmrJ User Programming

Set step size for first decoupler

decstepsize(step _size)

double step size; /* phase step size of DODEV */

Sets the step size of thefirst decoupler. It is functionally the same as
stepsize (base, DODEV).

step_size isthe phase step size desired and isarea number or avariable.
decstepsize (30.0) ;

Set step size of second decoupl er

Set step size of third decoupler

Set step size of observe transmitter

Set small-angle phase step size, rf type C or D

dec2stepsize
dec3stepsize
obsstepsize
stepsize

Set step size for second decoupler
Systems with a second decoupler.

dec2stepsize (step size)

double step size; /* phase step size of DO2DEV */

Setsthe step size of thefirst decoupler. This statement is functionally the same
asstepsize (base, DO2DEV).

step_size isthe phase step size desired and isareal number or avariable.
dec2stepsize (30.0) ;

Set step size of first decoupler

Set step size of third decoupler

Set step size of observe transmitter

Set small-angle phase step size, rf type C or D

decstepsize
dec3stepsize
obsstepsize
stepsize

Set step size for third decoupler
UNITYINOVA systems with a third decoupler.

dec3stepsize (step size)

double step size; /* phase step size of DO3DEV */

Setsthe step size of the third decoupler. This statement isfunctionally the same
asstepsize (base,DO3DEV).

step_size isthe phase step size desired and isarea number or avariable.
dec3stepsize (30.0) ;

Set step size of first decoupler

Set step size of second decoupl er

Set step size of observe transmitter

Set small-angle phase step size, rf type C or D

decstepsize
dec2stepsize
obsstepsize
stepsize

Unblank amplifier associated with first decoupler

UNTYINOVA systems.
decunblank ()

01-999253-00 A0604

Description:

Related:

dec2unblank

Applicability:
Syntax:

Description:

Related:

dec3unblank

Applicability:
Syntax:

Description:

Related:

delay

Syntax:

Description:
Arguments:
Examples:

Related:

dhpflag

Applicability:
Syntax:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Explicitly enablesthe amplifier for the first decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pul ses.
decunblank isgenerally followed by acall to decblank.

decblank Blank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

Unblank amplifier associated with second decoupler
Systems with a second decoupler.
dec2unblank ()

Explicitly enables the amplifier for the second decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pulses.
dec2unblank isgeneraly followed by acall to dec2blank.

dec2blank Blank amplifier associated with second decoupl er
rcvroff Turn off receiver
rcvron Turn on receiver

Unblank amplifier associated with third decoupler
UNITYINOVA systems with a third decoupler.
dec3unblank ()

Explicitly enables the amplifier for the third decoupler. This overwritesthe
implicit blanking and unblanking of the amplifier before and after pulses.
dec3unblank isgeneraly followed by acall to dec3blank.

dec3blank Blank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Delay for a specified time

delay (time)
double time; /* delay in sec */
Setsadelay for a specified number of seconds.
time specifies the delay, in seconds.

delay(dl) ;
delay(d2/2.0) ;

dps_show Draw delay or pulsesin a sequence for graphical display
hsdelay Delay specified time with possible homospoil pulse
idelay Delay for a specified time with IPA

incdelay Real time incremental delay

initdelay Initialize incrementa delay

vdelay Delay with fixed timebase and real time count

Switch decoupling from low-power to high-power
On dl systems with class C amplifiers.
dhpflag

159

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Description:

Values:

Related:

divn

Syntax:

Description:
Arguments:

Examples:

Related:

dps off

Syntax:

Examples:

Related:

dps on

Syntax:

Description:

Related:

dps show

Syntax:

160

VnmrJ User Programming

Switches the system from low-power to high-power decoupling; e.g.,
dhpflag=TRUE (correct use of upper and lower case letters is necessary).

TRUE ; switchesthe system to high-power decoupling.
FALSE; switchesthe system to low-power decoupling.
status Draw delay or pulsesin a sequence for graphical display
Divide integer values

divn(vi,vj,vk)
codeint vi;
codeint vj;
codeint vk;

/* real-time variable for dividend */
/* real-time variable for divisor */
/* real-time variable for quotient */

Setstheinteger value vk equa tovi divided by v3j. Any remainder isignored.

vi isthedividend, v3j isthe divisor, and vk isthe quotient. All three are real-
time variables (v1 to v14, oph, etc.).

divn(v2,v3,v4) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Turn off graphical display of statements
dps_off ()

Turns off dps display of statements. Pulse statementsfollowing dps_off are
not shown in the graphical display.

dps_on Turn on graphical display of statements
dps_show Draw delay or pulsesin a sequence for graphical display
dps_skip Skip graphical display of next statement

Turn on graphical display of statements
dps_on()

Turnson dps display of statements. Pulse statementsfollowing dps_on are
shown in the graphical display.

dps_off Turn off graphical display of statements
dps_show Draw delay or pulsesin a sequence for graphical display
dps_skip Skip graphical display of next statement

Draw delay or pulses in a sequence for graphical display

(1) dps_show("delay", time)
double time; /* delay in sec */

01-999253-00 A0604

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Chapter 3. Pulse Sequence Statement Reference —

(2) dps_show ("pulse",channel, label,width)

char *channel; /* "obs", "dec”, "dec2",or "dec3" */
char *label; /* text label selected by user */
double width; /* pulse length in sec */

(3) dps_show ("shape pulse",channel,label,width)

char *channel; /* "obs", "dec”, "dec2",or "dec3" */
char *label; /* text label selected by user */
double width; /* pulse length in sec */

(4) dps_show ("simpulse",label of obs,width of obs,
label of dec,width of dec)

char *label of obs; /* text label selected by user */
double width of obs; /* pulse length in sec */
char *label of dec; /* text label selected by user */
double width of dec; /* pulse length in sec */

(5) dps_show ("simshaped pulse",label of obs,
width of obs,label of dec,width of dec)

char *label of obs; /* text label selected by user */
double width of obs; /* pulse length in sec */
char *label of dec; /* text label selected by user */
double width of dec; /* pulse length in sec */

(6) dps_show ("sim3pulse",label of obs,width of obs,
label of dec,width of dec,label of dec2,
width of dec2)

char *label of obs; /* text label selected by user */
double width of obs; /* pulse length in sec */
char *label of dec; /* text label selected by user */
double width of dec; /* pulse length in sec */
char *label of dec2; /* text label selected by user */

double width of dec2; /* pulse length in sec */

(7) dps_show ("sim3shaped pulse",label of obs,
width of obs,label of dec,width of dec,
label of dec2,width of dec2)

char *label of obs; /* text label selected by user */
double width of obs; /* pulse length in sec */
char *label of dec; /* text label selected by user */
double width of dec; /* pulse length in sec */
char *label of dec2; /* text label selected by user */

double width of dec2; /* pulse length in sec */

(8) dps_show ("zgradpulse",value,delay)

double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

(9) dps_show ("rgradient", channel,value)

char channel; /* "X, 'x', 'Y', 'y', 'Z', or 'z' */
double value; /* amplitude of gradient amplifier */

(10) dps_show ("vgradient", channel, intercept,
slope,mult)

char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */

int slope; /* gradient increment */

codeint mult; /* real-time variable */

(11) dps_show ("shapedgradient",pattern,width, amp,
channel, loops,wait)

char *pattern; /* name of shape text file */

double width; /* length of pulse */

01-999253-00 A0604 vnmrJ User Programming 161

Chapter 3. Pulse Sequence Statement Reference —

Syntax:

Description:

Examples:

double amp; /* amplitude of pulse */

char channel; /* gradient channel 'x', 'y', or 'z' */

int loops; /* number of loops */

int wait; /* WAIT or NOWAIT */

(12) dps_show ("shaped2Dgradient",pattern,width, amp,
channel, loops,wait, tag)

char *pattern; /* name of shape text file */

double width; /* length of pulse */

double amp; /* amplitude of pulses */

char channel; /* gradient channel 'x', 'y', or 'z' */

int loops; /* number of loops */

int wait; /* WAIT or NOWAIT */

int tag; /* unique number for gradient element */

Drawsfor dps graphica display the pulses, lines, and labels related to the

statement (if it exists) given as the first argument.
e Syntax 1 draws aline to represent a delay.
e Syntax 2 draws a pulse picture and display alabel underneath the picture.

e Syntax 3 draws the picture of a shaped pulse and displays a label
undernesath the picture.

e Syntax 4 draws observe and decoupler pulses at the same time.

e Syntax 5 draws a shaped pulse for observe and decoupler channels at the
sametime.

e Syntax 6 draws observe, decoupler, and second decoupler pulses at the
sametime.

e Syntax 7 draws a shaped pulse for observe, decoupler, and the second
decoupler channels at the same time.

e Syntax 8 draws a pulse on the z channel.

e Syntax 9 draws a pulse on the specified channel.

e Syntax 10 draws a gradient picture.

e Syntax 11 draws a shaped pulse on a specified channel.

e Syntax 12 draws a shaped pulse on aspecified channel. For an explanation
of the arguments (delay, shapedpulse, €etc.), see the corresponding
entry in this reference.

dps_show ("delay",dl) ;

dps_show ("pulse", "obs", "obspulse",pl) ;

dps_show ("pulse", "dec", "pw",pw) ;

dps_show ("shaped pulse", "obs", "shaped",pl*2) ;

dps_show ("shaped pulse", "dec2", "gauss",pw) ;

dps_show ("simpulse", "obs pulse",pl, "dec pulse",p2) ;

dps_show ("simshaped pulse", "gauss",pl, "gauss",p2) ;

dps_show ("sim3pulse", "pl",pl, "p2",p2, "pl*2",pl*2);

dps_show ("zgradpulse",123.0,d1) ;

dps_show ("rgradient", 'x',1234.0) ;

dps_show ("vgradient", 'x',0,2000,v10) ;

dps_show ("shapedgradient", "sinc",1000.0,3000.0, \
'y',1,NOWAIT) ;

162 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

dps_show ("shaped2Dgradient", "square",1000.0, \
3000.0,'y',0,NOWAIT,1) ;

Related: delay Delay for a specified time
dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_skip Skip graphica display of next statement
pulse Pulse observe transmitter with amplifier gating
rgradient Set gradient to specified level
shaped pulse Perform shaped pul se on observe transmitter
shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
simpulse Pulse observe and decoupl e channels simultaneously
sim3pulse Pulse simultaneously on 2 or 3 rf channels
simshaped pulse Perform simultaneous two-pulse shaped pulse
sim3shaped pulse Perform asimultaneous three-pulse shaped pulse
vgradient Set gradient to alevel determined by real-time math
zgradpulse Create a gradient pulse on the z channel
dps_skip Skip graphical display of next statement
Syntax: dps_skip ()
Description: Skips dps display of the next statement. The statement following dps_ skip
isnot shown in the graphical display.
Related: dps off Turn off graphical display of statements

dps_on Turn on graphical display of statements
dps_show Draw delay or pulses for graphical display of a sequence

A B C bDE GH I L M OWP R S T V W X Z

elsenz Execute succeeding statements if argument is nonzero

endhardloop End hardware loop

endif End execution started by ifzero or elsenz

endloop End loop

endmsloop End multislice loop

endpeloop End phase-encode [oop

elsenz Execute succeeding statements if argument is nonzero
Syntax: elsenz (vi)
codeint vi; /* real-time variable tested as 0 or not */
Description: Placed betweenthe i fzero and endi £ statements to execute succeeding

statements if vi isnonzero. The elsenz statement can be omitted if it is not
desired. It is also not necessary for any statements to appear between the
ifzeroandtheelsenz, or betweentheelsenz andtheendi £ statements.

01-999253-00 A0604

163

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

endhardloop

Syntax:

Description:
Related:

endif

Syntax:

Description:
Arguments:

Examples:

Related:

endloop

Syntax:

Description:
Arguments:

Examples:

Related:

endmsloop
Applicability:
Syntax:

Description:

164

VnmrJ User Programming

viisarea-timevariable (vl tov14, oph, etc.) tested for either being zero or
non-zero.

n isthe samevalue (1, 2, or 3) asused in the corresponding i £ zero statement.

elsenz (v2) ;

elsenz (1) ;
endif End ifzero statement
ifzero Execute succeeding statements if argument is zero

End hardware loop
endhardloop ()
Ends a hardware loop that was started by the starthardloop statement.

Explicitly acquire data
Start hardware loop

acquire
starthardloop

End execution started by ifzero or elsenz

endif (vi)

codeint vi; /* real-time variable to test if 0 or not */
Ends conditional execution started by the i fzero and el senz statements.

vi isareal-timevariable (v1 tov14, oph, etc.) that is tested for either being
Zero or non-zero.

nisthe samevalue (1, 2, or 3) asused in the corresponding i £ zero statement.

endif (v4) ;

endif (2) ;

elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero
End loop

endloop (index)

codeint index; /* real-time variable */
Ends aloop that was started by a 1 oop statement.

index isareal-time variable used as atemporary counter to keep track of the
number of times through the loop. It must not be altered by any statements
within the loop.

n isthe same value (1, 2, or 3) as used in the corresponding 1ocop statement.
endloop (v2) ;

endloop(2) ;
loop Start loop
End multislice loop
UNTYINOVA systems.

endmsloop (state, apv2)
char state;
codeint apv2;

/* compressed or standard */
/* current counter value */

Ends aloop that was started by ams 1oop statement.

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Arguments. state iseither 'c' to designate the compressed mode, or ' s ' to designate
the standard arrayed mode. It should be the same value that wasin the state
argument in the ms 1oop loop that it is ending.
apv?2 isareal-timevariable that holds the current counter value. Thisvariable
should be the same variable that wasin the apv2 counter variable in the
msloop loop that it is ending.

Examples. endmsloop (seqcon([1],v12) ;

Related: msloop Multislice loop
endloop End loop
endpeloop End phase-encode |oop

endpeloop End phase-encode loop
Applicability: YNTYINOVA systems.
Syntax: endpeloop (state, apv2)

char state; /* compressed or standard */
codeint apv2; /* current counter value */

Description: Ends aloop that was started by ape 1oop statement.

Arguments. state iseither 'c' to designate the compressed mode, or ' s ' to designate
the standard arrayed mode. It should be the same value that wasinthe state
argument in the pe1oop loop that it is ending.
apv?2 isareal-timevariable that holds the current counter value. Thisvariable
should be the same variable that wasin the apv2 counter variable in the
peloop loop that it is ending.

Examples. endpeloop (seqcon([1],v12);
Related: peloop Phase-encode loop

endloop End loop

endmsloop End multi-slice loop
A B C DE GH I L M OWPIR STV WX Z
gate Device gating (obsolete)
getarray Get arrayed parameter values
getelem Retrieve an element from an AP table
getorientation Read image plane orientation
getstr Look up vaue of string parameter
getval Look up vaue of numeric parameter
G _Delay Generic delay routine
G Offset Frequency offset routine
G_Power Fine power routine
G_Pulse Generic pulse routine

01-999253-00 A0604 vnmrJ User Programming 165

Chapter 3. Pulse Sequence Statement Reference —

gate

Description:

getarray

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

getelem

Syntax:

Description:
Arguments:

Device gating (obsolete)

Not supported. Replace gate statements asfollows:

gate (DECUPLR, TRUE) by adecon () statement.
gate (DECUPLR, FALSE) by adecoff () statement.
gate (DECUPLR2, TRUE) by adec2on () statement.
gate (DECUPLR2, FALSE) by adec20off () statement.
gate (RXOFF, TRUE) by arcvroff () statement.
gate (RXOFF, FALSE) by arcvron () statement.
gate (TXON, FALSE) by axmtroff () statement.
gate (TXON, TRUE) by axmtron () statement.

Get arrayed parameter values
UNTYINOVA systems.

number=getarray (parname,array)
char *parname; /* parameter name */
double arrayl]; /* starting address of array */

Retrievesall values of an arrayed parameter from the parameter set. It performs
asizeof onthearray addressto check for the maximum number of statements
that the array can hold. The number of statements in the arrayed parameter
parname is determined and returned by getarray asan integer. This
statement is very useful when reading in parameter values for aglobal list of
PSG statementssuch aspoffset list andposition offset list.

When creating an acquisition parameter array that will be treated aslists,
protection bit 8 (256) is set if the parameter is not to be treated as an arrayed
acquisition parameter. An example of the pss parameter when compressing
dlice select portion of the acquisitioniscreate (pss, real)
setprotect (pss,on, 256)

number isan integer return argument that holds the number of valuesin
parname.

parname iSanumeric parameter, either arrayed or single value.
array isthe starting address of an array of doubles.

double upss[256]; /* declare array upss */
int uns;
uns = getarray (upss,upss); /* get values from upss */

poffset list (upss,gss,uns,vl2);

create delay list Create table of delays

create freq list Create table of frequencies
create offset list Create table of offsets
poffset list Set frequency from position list

position offset list Setfrequency from position list

Retrieve an element from an AP table
getelem(table,AP index,AP dest)

codeint table; /* table variable */
codeint AP_index; /* variable for index to element */
codeint AP dest; /* variable for destination */

Gets an element from an AP table. The element isidentified by an index.
table specifiesthe name of thetable (t1 to £60).

166 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

AP indexisan APvariable (vl tovl14, oph, ct,bsctr, or ssctr) that
containsthe index of the desired table element. Note that the first element of an
AP table hasanindex of 0. For tablesfor which the autoincrement feature is set,
theAP index argument isignored and can be set to any AP variable name;
each element in such atable is by definition always accessed sequentialy.

AP destisanAPvariable(v1 tov14 and oph) into whichtheretrievedtable
element is placed.

Examples. getelem(t25,ct,vl);

Related: loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integersin areal-time AP table

getorientation Read image plane orientation
Applicability: Systems with imaging or PFG modules.
Syntax: <error return => getorientation (&charl, &char2, \
&char3, search string)
char *charl, *char2, *char3; /* program variable pointers */
char *search string; /* pointer to search string */
Description: Readsin and processes the value of astring parameter used typically for control
of magnetic field gradients. The source of the string value istypically a user-
created parameter available in the current parameters of the experiment used to
initiate acquisition.
Arguments. error return can contain the following values:
® error returnissettozeroif getorientation wassuccessful in
finding the parameter givenin search string andreadinginthevalue
of that parameter.
® error returnissetto-1if search string wasnot empty but it
did not contain the correct characters.
® error_ return issettoavaluegreater than zeroif the procedure failed
or if the string value is made up of characters other than n, x, y, and z.
charl, char2, and char3 are user-created program variables of type char
(single characters). The address operator (&) is used with these argumentsto
pass the address, rather than the values of these variables, to
getorientation.
search stringisalitera stringthat getorientation will searchforin
the VnmrJ parameter set, i.e., the parameter name. For example, if
search string="orient",thevaue of parameter orient will be
accessed. The value of the parameter should not exceed three characters and
should only be made up of characters from the set n, x, y, and z.
Themessage can’t find variable in tree aborts
getorientation. Thismeansthereis no string associated with
search_string or the parameter name cannot be found.
Examples. (1) pulsesequence ()

{

char phase,read,slice;

01-999253-00 A0604 vnmrJ User Programming 167

Chapter 3. Pulse Sequence Statement Reference —

Related:

getstr

Syntax:

Description:

Arguments:

Examples:

Related:

getval
Syntax:

Description:

Arguments:

Examples:

Related:

getorientation (&read, &phase, &slice, "orient") ;

}
(2) pulsesequence ()

{

char rd, ph, sl;
int error;

error=getorientation (&rd, &ph, &sl,”ort”) ;

shapedvgradient Dynamic variable shaped gradient function
rgradient Set gradient to specified level
vgradient Dynamic variable gradient function

Look up value of string parameter

getstr (parameter name,internal name)
char *parameter name; /* name of parameter */
char *internal name; /* parameter value buffer name */

L ooks up the value of the string parameter parameter name in the current
experiment parameter list and introduces it into the pulse sequence in the
variableinternal name. If parameter name isnot found in the current
experiment parameter list, internal name isset to the null string and PSG
produces a warning message.

parameter name iSastring parameter.

internal name isany legitimate C variable name defined at the beginning
of the pulse sequence as an array of type char with dimension MAXSTR.

getstr ("xpol", xpol) ;

getval Look up value of numeric parameter

Look up value of numeric parameter

internal name = getval (parameter name)
char *parameter name; /* name of parameter */

L ooks up thevalue of the numeric parameter parameter name inthecurrent
experiment parameter list and introduces it into the pulse sequence in the
variableinternal name. If parameter name isnot found in the current
experiment parameter list, internal name issetto zeroand PSG produces
awarning message.

parameter name iSanumeric parameter.

internal name canbeany legitimate C variable namethat hasbeen defined
at the beginning of the pulse sequence as type double.

J=getval ("J") ;
acgtime=getval ("at") ;

delay (getval ("mix")) ;

getstr Look up value of string parameter

168 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

G Delay Generic delay routine
Applicability: YNTYINOVA systems.
Syntax: G_Delay (DELAY TIME, di,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 60,
SLIDER MIN, 0,
SLIDER UNITS, 1.0,
0);
Description: See the section “ Generic Pulse Routine,” page 92.
G Offset Frequency offset routine
Applicability: UNTINOVA systems.
Syntax: G _Offset (OFFSET DEVICE, TODEV,
OFFSET_FREQ, tof,
SLIDER LABEL, NULL,
SLIDER SCALE, 0,
SLIDER MAX, 1000,
SLIDER MIN, -1000,
SLIDER UNITS, 0,
0);
Description: See the section “Frequency Offset Subroutine,” page 93.
G_Power Fine power routine
Applicability: UNTYINOVA systems.
Syntax: G_Power(POWER_VALUE, tpwrf,
POWER DEVICE, TODEV,
SLIDER LABEL, NULL,
SLIDER_SCALE, 1,
SLIDER_MAX, 4095,
SLIDER_MIN, 0,
SLIDER_UNITS, 1.0,
0);
Description: See the section “Fine Power Subroutine,” page 96.
G _Pulse Generic pulse routine
Applicability: UNTYINOVA systems.
Syntax: G_Pulse (PULSE_WIDTH, pw,
PULSE_PRE ROFF, rofl,
PULSE POST ROFF, rof2,
PULSE_DEVICE, TODEV,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 1000,
SLIDER MIN, 0,
SLIDER UNITS, le-6,
PULSE_ PHASE, oph,

0);

01-999253-00 A0604

VnmrJ User Programming

169

Chapter 3. Pulse Sequence Statement Reference —

Description: See “Generic Pulse Routine,” page 92.
A B C b E GH I L M OWP R S T V W X Z
hdwshiminit Initialize next delay for hardware shimming
hlv Find half the value of an integer
hsdelay Delay specified time with possible homospoil pulse
hdwshiminit Initialize next delay for hardware shimming
Applicability: YNTYINOVA systems
Syntax: hdwshiminit ()
Description: Enables hardware shimming during the following delay or during the following
presaturation pulse, defined as a power level change followed by pulse.
hdwshiminit isnot necessary for the first delay or presaturation pulsein a
pul se sequence, which isautomatically enabled for hardware shimming.
Examples: hdwshiminit () ;
delay (d2) ;
/*hardware shim during d2 if hdwshim='y'*/
hdwshiminit () ;
obspower (satpwr) ;
rgpulse (satdly,v5, rofl, rof2);
/*hardware shim during satdly if hdwshim='p'*/
Related: delay Delay for a specified time
hlv Find half the value of an integer
Syntax: hlv (vi,vj)
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for 1/2 starting value */
Description: Setsvj equal to the integer part of one-half of vi.
Arguments. vi isthe starting value, and v isthe integer part of one-half of the starting
value. Both arguments much be real-time variables (v1 to v14, oph, etc.).
Examples. hlv (v2,v5) ;
Related: z2dd Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n

170 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

mult Multiply integer values
sub Subtract integer values
hsdelay Delay specified time with possible homospoil pulse
Syntax: hsdelay (time)
double time; /* delay in sec */

Description: Setsadelay for aspecified number of seconds. If the homospoil parameter hs
is set appropriately (see the definition of status), hsdelay insertsa
homospoil pulse of length hst sec at the beginning of the delay.

Arguments. time specifiesthe length of the delay, in seconds.

Examples. hsdelay (dl) ;
hsdelay (1.5e-3);
Related: delay Delay for a specified time
idelay Delay for a specified time with IPA
incdelay Real time incremental delay
initdelay Initialize incrementa delay
vdelay Delay with fixed timebase and rea time count
A B C D E G H I L Mm O P R S T V W X Z
idecpulse Pulsefirst decoupler transmitter with |PA
idecrgpulse Pulse first decoupler with amplifier gating and IPA
idelay Delay for aspecified time with IPA
ifzero Execute succeeding statements if argument is zero
incdelay Set real-time incremental delay
incgradient Generate dynamic variable gradient pulse
incr Increment an integer value
indirect Set indirect detection
init rfpattern Create rf pattern file
init gradpattern Create gradient pattern file

init vscan

Initialize real-time variable for vscan statement

initdelay Initialize incremental delay

initparms_sis Initialize parameters for spectroscopy imaging sequences
initval Initialize areal-time variabl e to specified value
iobspulse Pulse observe transmitter with [PA

ioffset Change offset frequency with IPA

ipulse Pulse observe transmitter with [PA

ipwrf Change transmitter or decoupler fine power with |PA
ipwrm Change transmitter or decoupler lin. mod. power with [PA
irgpulse Pulse observe transmitter with [PA

01-999253-00 A0604 VnmrJ User Programming 171

Chapter 3. Pulse Sequence Statement Reference —

idecpulse
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:
idecrgpulse

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

idelay
Applicability:
Syntax:

Pulse first decoupler transmitter with IPA
UNTYINOVA systems.
idecpulse (width, phase, label)

double width; /* pulse width in sec */
codeint phase; /* real-time variable for phase */
char *label; /* slider label in acgi */

Functions the same asthe decpulse statement but generatesinteractive
parameter adjustment (1PA) information when gf orgo ('acqgi') istyped.
idecpulse isthesameas decpulse if go istyped.

width isthe duration, in seconds, of the pulse.

phase isthe phase of the pulse. It must be areal-time variable (v1 tovi14,
oph, etc.) or areal-time constant (zero, one, €c.).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

idecpulse (pp,Vvl, "decpul") ;
idecpulse (pp,Vv2, "pp") ;

decpulse Pulse the decoupler transmitter

Pulse first decoupler with amplifier gating and IPA
UNTYINOVA systems.
idecrgpulse (width, phase,RG1,RG2, label)

double width; /* pulse width in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acgi */

Works similar to the decrgpul se statement but generates interactive
parameter adjustment (1PA) information when gf orgo ('acqgi') istyped.
idecrgpulse isthesameasdecrgpul se if go istyped.

width isthe duration, in seconds, of the decoupler transmitter pulse.

phase sets the decoupler transmitter phase. The value must be areal-time
variable.

RG1 isthetime, in seconds, that the amplifier is gated on prior to the start of the
pulse.

RG2 isthetime, in seconds, that the amplifier is gated off after the end of the
pulse.

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

idecrgpulse (pp,v5,rofl, rof2, "decpul") ;
idecrgpulse (pp,v4,rofl, rof2, "pp") ;

decrgpulse Pulsedecoupler transmitter with amplifier gating

Delay for a specified time with IPA
UNITYINOVA systems.

idelay (time, label)
double time; /* delay in sec */
char *label; /* slider label in acgi */

172 vnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

Examples:

Related:

ifzero

Syntax:

Description:

Arguments:

Examples:

Related:

incdelay

Applicability:
Syntax:

Description:

Arguments:

Chapter 3. Pulse Sequence Statement Reference —

Works similar to the de 1 avy statement but generates interactive parameter
adjustment (IPA) information when gf or go ('acgi') isentered. idelay
isthesameas delay if goisentered.

time isthe length of the delay, in seconds.

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

idelay (d1l, "delay") ;

idelay (d1,"d1i") ;

delay Delay for a specified time

Execute succeeding statements if argument is zero

ifzero(vi)

codeint vi; /* real-time variable to check for zero */
Executes succeeding statementsif vi iszero. If viisnon-zeroandanelsenz
statement exits before the next endi £ statement, execution moves to the
elsenz statement. Conditional execution endswhen the endi £ statement is
reached. It is not necessary for any statements to appear between the i f zero
andthe el senz or betweenthe el senz and the endi £ statements.

vi isareal-timevariable (vl tov14, oph, etc.) that is tested for being either
Zero or non-zero.

nisthesamevaue (1, 2, or 3) asused inthe corresponding e L senz or endi £
statements.

mod2 (ct,vl) ; /* v1=010101... */

ifzero(vl) ; /* test 1if vl is zero */
pulse (pw,v2) ; /* execute if vl is zero */
delay (d3) ; /* execute if vl is zero */

elsenz (vl) ; /* test if vl is non-zero */
pulse (2.0*pw,v2); /* execute if vl is non-zero */
delay (d3/2.0) ; /* execute if vl is non-zero */

endif (v1) ; /* end conditional execution */

elsenz Execute succeeding statements if argument is nonzero

endif End ifzero statement

initval Initialize real-time variable to specified value

Set real-time incremental delay
UNTYINOVA systems.

incdelay (count, index)
codeint count; /* real-time variable */
int index; /* time increment: DELAY1l, DELAY2, etc. */

Enables real-time incrementa delays. Before incdelay can be used to set a
delay, an associated initdelay statement must be executed to initialize the
time increment and delay index.

count isarea-timevariable (ct, v1 tov14, etc.) that multiplies the
time increment (initializedbytheinitdelay statement)to setthedelay
time.

index iSDELAY1, DELAY2, DELAY3, DELAY4, or DELAYS. It identifies
which time increment is being multiplied by count to equal the delay.

01-999253-00 A0604 vnmrJ User Programming 173

Chapter 3. Pulse Sequence Statement Reference —

Examples:

Related:

incgradient

Applicability:

174

Syntax:

Description:

Arguments:

incdelay (ct,DELAY1) ;
incdelay (v3,DELAY2) ;

delay Delay for a specified time

hsdelay Delay with possible homospoil pulse
idelay Delay for a specified time with IPA
initdelay Initialize incrementa delay

vdelay Delay with fixed timebase and real time count

Generate dynamic variable gradient pulse
UNTYINOVA systems.

incgradient (channel,base,incl,inc2,inc3,multl, \
mult2, mult3)

char channel; /* gradient 'x', 'y', or 'z' */

int base; /* base value */

int incl, inc2,inc3; /* increments */

codeint multl, mult2,mult3; /* multipliers */

Provides a dynamic variable gradient pulse controlled using the AP math
functions. It drives the chosen gradient to the level defined by the formula:

level=base+incl*multl+inc2*mult2+inc3*mult3
withincrementsinci, inc2, inc3 and multipliersmultl, mult2, mult3.

Therange of the gradient level is—2047 to +2047 if the gradients are run
through the DAC board, and —32767 to +32767 if the gradient waveform
generator packageisinstalled. If the requested level lies outsidethelegal range,
itisclipped at the appropriate boundary value. Note that, while each variablein
the level formulamust fitin a16-bit integer, partial sums and productsin the
calculation are done with double-precision 32-bit integers.

The action of the gradient after the use of the incgradient statement is
controlled by the gradient power supply and optional gradient compensation
boards. The gradient level is ramped at the maximum slew rate to the value
requested by incgradient. Thisfact becomes a concern when using the
incgradient statement in aloop with adelay statement to produce a
modulated gradient. The delay statement should be sufficiently long so asto
allow the gradient to reach the assigned va ue, that is,
[new_level —old level|
full_scae

The following error messages are possible:

X risetime

delay >

® Bad gradient specified: channel iscaused by the channel
character evaluating to other than 'x', 'y',or ' z'; or by being a string.

® mult[i] illegal RT variable: multiplier i iscausedby
multl, mult2, ormult3 having avaue other than a AP math variable,
v1ltovl4.

channel isan expression that evaluatesto the character 'x', 'y',or 'z'.
(donot confusecharacters 'x ', 'y' and 'z ' withstrings"x", "y"and"z".
base and inc1l, inc2, inc3 are the base value and increments used in the
formulafor determining the gradient level.

multl, mult2, mult3 arethemultipliersused in the gradient level formula.
These arguments should be AP math variables, v1 tov14. Notethat AP tables
(t1to t60) are not allowed in this statement.

VnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

incr

Syntax:

Description:
Arguments:

Examples:
Related:

indirect
Applicability:
Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

Seethe program inctst.c

getorientation Read image plane orientation

rgradient Set gradient to specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Increment an integer value

incr (vi)
codeint vi; /* real-time variable to increment */

Increments by 1 the integer value given by vi (i.e, vi=vi+1).

vi istheinteger to beincremented, It must be areal-timevariable (v1 tovi4,
oph, etc.).

incr(v4) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Set indirect detection
No longer useful to any system using VNMR 5.2 or later.
indirect ()

Starting with VNMR 5.2, if tnis 'H1' anddnisnot 'H1', the software
automatically uses the decoupler as the observe channel and the broadband
channel as the decoupler channel.

init rfpattern Create rf pattern file

Applicability:
Syntax:

Description:

UNTYINOVA systems.

init rfpattern(pattern,rfpat struct,nsteps)
char *pattern; /* name of .RF text file */
RFpattern *rfpat struct; /* pointer to struct RFpattern */
int nsteps; /* number of steps in pattern */
typedef struct RFpattern {

double phase; /* phase of pattern step */

double amp; /* amplitude of pattern step */

double time: /* length of pattern step in sec */
} RFpattern

Creates and defines rf patterns within a pulse sequence. The patterns can be
created by any algorithm as long as each pattern step is correctly put into the
rfpat struct argument. The number of stepsin the pattern also hasto be
furnished asan argument. init rfpattern savesthe created pattern asa

01-999253-00 A0604 vnmrJ User Programming 175

Chapter 3. Pulse Sequence Statement Reference —

pattern file (with the suffix . RF appended to the name) in the user’s
shapelib directory. This statement does not have any return value.

Arguments. pattern isthe name of the pattern file (without the . RF suffix).
rfpat struct istherf structure that contains the pattern.
nsteps isthe number of stepsin the pattern.

Examples. #include "standard.h"
pulsesequence ()

{

int nsteps;
RFpattern pulsel[512], pulse2([512];
Gpattern gshape[512];

nsteps = 0;

for (3j=0; j<256; j++) {
pulsel [j] .phase = (double)j*0.5;
pulsel[j] .amp = (double)j*2;

pulsel[j] .time = 1.0;
nsteps = nsteps +1;
}
init rfpattern(plpat,pulsel,nsteps) ;
nsteps = 512;
for (j=0; j<nsteps; j++) {
gshape[j] .amp = 32767.0*sin((double)j/50.0) ;
gshape[j] .time = 1.0;
}

init gradpattern("gpat",gshape,nsteps) ;
shaped pulse(plpat,pl,vl,rofl,rofl);

shapedgradient ("gpat", .01, 16000.0, 'z', 1, WAIT);

}

Related: init gradpattern Creategradient pattern file
pulse Pulse observe transmitter with amplifier gating
shaped pulse Perform shaped pulse on observe transmitter
shapedgradient Provide shaped gradient pulse to gradient channel
simpulse Pulse observe and decoupl e channels simultaneously
simshaped pulse Perform simultaneous two-pul se shaped pulse

init gradpattern Create gradient pattern file
Applicability: YNTYINOVA systems.
Syntax: init gradpattern (pattern name,gradpat struct,nsteps)

char *pattern; /* name of .GID pattern file */
Gpattern *gradpat struct; /* pointer to struct Gpattern */
int nsteps; /* number of steps in pattern */
typedef struct _Gpattern({
double amp; /* amplitude of pattern step */
double time; /* pattern step length in sec */
} Gpattern

Description: Creates and defines gradient patterns within a pulse sequence. The patterns can
be created by any algorithm aslong as each pattern step is correctly put into the

176 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:

Related:

init vscan

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

initdelay

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

gradpat_struct argument. The number of stepsin the pattern also hasto
be furnished asan argument. init gradpattern savesthe created pattern
asapattern file (with a . GRD suffix is appended to the name) in the user’s
shapelib directory. This statement has no return value.

pattern isthe name of the pattern file (without the . GRD suffix).
gradpat_struct isthe gradient structure that contains the pattern.
nsteps isthe number of stepsin the pattern.

Seethe examplefor the init rfpattern statement.

pulse Pulse observe transmitter with amplifier gating
shaped pulse Perform shaped pulse on observe transmitter
simpulse Pulse observe and decouple channels simultaneously

simshaped pulse Peform simultaneous two-pulse shaped pulse

Initialize real-time variable for vscan statement
Systems with imaging capability.
init vscan(vi,number points)

codeint vi; /* variable to initialize */
double number points; /* number of points to acquire */

Initializes areal-time AP math variable for use with the vscan statement.
init_ vscan hasno return value.

viisan AP math variable (v1 tov14). Itsrangeis1 to 32767.

number points isthe number of pointsto acquirein the scan. Thisis not
limited to one acquisition but can be the sum of multiple acquires.
See the example used in the entry for vscan.

vscan Dynamic variable scan function

Initialize incremental delay
UNITYINOVA systems.

initdelay(time_ increment, index)
double time increment; /* time increment in sec */
int index; /* time increment: DELAY1, etc. */

Initializesatimeincrement delay and its associated delay index. This statement
must be executed beforean incdelay statement can set anincremental delay.
A maximum of fiveincremental delays (set by the index argument) can be
defined in one pulse sequence.

time increment isthetimeincrement, in seconds, that ismultiplied by the
count argument (set in the incdelay statement) for the delay time.

index iSDELAY1, DELAY2, DELAY3, DELAY4, or DELAYS5, and identifies
which time increment is being initialized.

initdelay(1.0/sw,DELAY1) ;
initdelay(1.0/swl,DELAY2) ;

delay Delay for a specified time

hsdelay Delay with possible homospoil pulse
idelay Delay for a specified time with IPA
incdelay Real time incremental delay

vdelay Delay with fixed timebase and real time count

01-999253-00 A0604 VnmrJ User Programming 177

Chapter 3. Pulse Sequence Statement Reference —

initparms sis

Applicability:

Syntax:

Description:

Examples:

initval

Syntax:

Description:

Arguments:

Examples:

Related:

iobspulse
Applicability:
Syntax:

Initialize parameters for spectroscopy imaging sequences

Systems with imaging capability; however, this statement will be obsoleted in
future versions of VnmrJ.

void initparms sis ()

Sets the default state of the receiver to ON so that the receiver is enabled for
explicit acquisitions. The original purpose of initparms sis wasto

initialize the standard imaging parameters in imaging sequences, but starting
with VNMR 5.3, initialization of these parameters has been folded into PSG.

/* To upgrade older SIS sequences for Vnmr 5.1+: */
/* insert initparms sis() after the variable */
/* declarations and update ‘griserate’ variable. */

/* EXTERNAL TRIGGER */

double rcvry,hold;

initparms _sis () ;

griserate = trise/gradstepsz;

/**[3.2] PARAMETER READ IN FROM EXPERIMENT ***x%%x%/

Initialize a real-time variable to specified value

initval (number,vi)
double number; /* value to use for initialization */
codeint vi; /* variable to be initialized */

Initializes areal- time variable with areal number. The real number input is
rounded off and placed inthevariable vi. Unlike add, sub, etc., initvalis
executed once and only once at the start of a non-arrayed 1D experiment or at
the start of each increment in an n-dimensional or an arrayed experiment, not at
the start of each transient; this must be taken into account in pulse sequence
programming, as shown in the example.

number isthe real number, from —32768.0 to 32767.0, to be placed in the real -
time variable. Entering avalue lessthan —32768.0 (after rounding off) resultsin
using —32768, and entering a value greater than 32767.0 (after rounding off)
resultsin using 32767.
vi istherea-timevariable (v1 to v14, etc.).to beinitialized
(1) initval (nt,v8) ;
(2) ifzero(ct) ;

assign(vs,v7) ;
elsenz(ct) ;

decr (v7) ;
endif (ct) ;
elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero
loop Start loop

Pulse observe transmitter with IPA
UNTYINOVA systems.

iobspulse (label)
char *label; /* slider label in acgi */

178 vnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

Examples:

Related:

ioffset

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

ipulse

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Functions the same as obspul se except iobspul se generates interactive
parameter adjustment (IPA) information whengf orgo ('acgi') isentered.
If go isentered, iobspulse isthesameasobspulse.

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

iobspulse ("pulse") ;

iobspulse ("pw") ;

obspulse Pulse observe transmitter with amplifier gating
Change offset frequency with IPA

UNITYINOVA systems.

ioffset (frequency,device, label)
double frequency;
int device;

char *label;

/* offset frequency */
/* OBSch, DECch, DEC2ch, or DEC3ch */
/* slider label in acgi */

Functionsthe sameas of £ set except that iof fset generatesinteractive
parameter adjustment (IPA) information when gf orgo ('acgi') isentered.
If goisentered, ioffset isthesameasoffset.

frequency isthe new offset frequency of the device specified.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).
ioffset (tof,OBSch, "tof") ;

offset Change offset frequency of transmitter or decoupler

Pulse observe transmitter with IPA
UNTYINOVA systems.

ipulse (width, phase, label)
double width;
codeint phase;
char *label;

/* pulse length in sec */
/* real-time variable for phrase */
/* slider label in acgi */

Functionsthesameaspulse (width, phase) statement except that
ipulse generatesinteractive parameter adjustment (1PA) information when
gf orgo('acgi') isentered. If goisentered, ipulse isthe sameas
pulse.

width specifies the duration, in seconds, of the pulse.

phase setsthe phase of the pulse. The value must be areal-timevariable (v1
tov14, oph, etc.).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

ipulse (pw,v4, "pulse") ;

ipulse (pw, V5, "pw") ;

pulse Pulse observe transmitter with amplifier gating

179

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

ipwrf

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

ipwrm

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

irgpulse

Applicability:
Syntax:

Change transmitter or decoupler fine power with IPA
UNTYINOVA systems.

ipwrf (power,device, label)

double power; /* new fine power level */
int device; /* OBSch, DECch, DEC2ch, DEC3ch */
char *label; /* slider label in acgi */

Functions the same as r 1 pwr £ statement except that ipwrf generates
interactive parameter adjustment (1PA) informationwhengf orgo ('acgi')
isentered. If go isentered, ipwrf isignored by the pulse sequence; use
r1pwrf for thispurpose. Do not execute r1pwrf and ipwr £ together
because they cancel each other's effect.

power isthe new fine power level. It can range from 0.0 to 4095.0 (60 dB on
UNITYINOVA , about 6 dB on other systems).

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

ipwrf (powr, OBSch, "fpower") ;
ipwrf (2000.0,DECch, "dpwrf") ;

rlpwrf Set transmitter or decoupler fine power

Change transmitter or decoupler lin. mod. power with IPA
UNTYINOVA systems.

ipwrm(value,device, label)

double value; /* new linear modulator power level */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acgi */

Functions the same as r 1 pwrm statement except that ipwrm generates
interactive parameter adjustment (1PA) informationwhengf orgo ('acgi')
isentered. If go isentered, ipwrm isignored by the pulse sequence; use
r1pwrmfor thispurpose. Do not execute r 1 pwrm and i pwrm together asthey
cancel each other's effect.

value isthenew linear modulator power level. It can rangefrom 0.0 to 4095.0
(60 dB on UNTYINOVA , about 6 dB on other systems).

device iSOBSch (observe transmitter) or DECch (first decoupler). On the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

ipwrm (power, OBSch, "fpower") ;
ipwrm (2000.0,DECch, "dpwrm") ;

rlpwrm Set transmitter or decoupler linear modulator power

Pulse observe transmitter with IPA
UNITYINOVA systems.
irgpulse (width, phase,RG1,RG2, 1label)

180 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

double width; /* pulse length in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acgi */

Description: Functions the same asthe rgpul se statement except that i rgpulse
generates interactive parameter adjustment (IPA) information when gf or
go('acgi') isentered. If go isentered, irgpulse isthe same as
rgpulse.

Arguments. width specifiesthe duration, in seconds, of the observe transmitter pulse.
phase sets the observe transmitter phase. It must be areal-time variable.
RG1 isthetime, in seconds, the amplifier is gated on prior to the start of the
pulse.

RG2 isthetime, in seconds, the amplifier is gated off after the end of the pulse.
label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).
Examples. irgpulse (pw,v3,rofl,rof2, "rgpul") ;
irgpulse (pw,v7,rofl, rof2, "pw") ;
Related: rgpulse Pulse observe transmitter with amplifier gating
AB C DE GH I L M OWPIR STV WX Z
1k _hold Set lock correction circuitry to hold correction
1k sample Set lock correction circuitry to sample lock signal
loadtable Load AP table elements from table text file
loop Start loop
loop_ check Check that number of FIDs is consitent with number of slices, etc.
1k hold Set lock correction circuitry to hold correction
Syntax: 1k _hold ()

Description: Makes the lock correction circuitry hold the correction to the zO constant,
thereby ignoring any influence on the lock signal such as gradient or pulses at
’H frequency. The correction remainsin effect until thestatement 1k sample
iscalled or until the end of an experiment. If an acquisition is aborted, the lock
correction circuitry will be reset to sample the lock signal.

Related: 1k sample Set lock correction circuitry to sample lock signal
lk_sample Set lock correction circuitry to sample lock signal
Syntax: 1k _sample ()

01-999253-00 A0604 vnmrJ User Programming 181

Chapter 3. Pulse Sequence Statement Reference —

Description: Makes the lock correction circuitry continuously sample the lock signal and
correct z0 with the time constant as set by the parameter 1ockacqgtc. The
correction remains in effect until the statement 1k hold iscalled.

Related: 1k hold Set lock correction circuitry to hold correction
loadtable Load AP table elements from table text file
Syntax: loadtable(file)
char *file; /* name of table file */

Description: Loads AP table elements from atable file (a UNIX text file). It can be called
multiple times within a pulse sequence but make sure that the same table name
isnot used more than once within all the table files accessed by the sequence.
Table values can be greater than, equal to, or less than zero.

Arguments:. file isthe name of atablefilein auser’'s private tablib or inthe system
tablib.

Examples: loadtable ("tabletest") ;

Related: getelem Retrieve an element from an AP table
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integersin areal-time AP table

loop Start loop
Syntax: loop (count, index)
codeint count /* number of times to loop */
codeint index /* real-time variable to use during loop */

Description: Startsaloop to execute statementswithin the pul se sequence. Theloop isended
by the end1oop statement.

Arguments. count isareal-time variable used to specify the number of times through the
loop. count can be any positive number, including zero.

index isareal-time variable used as atemporary counter to keep track of the
number of times through the loop. The value must not be altered by any
statements within the loop.

n isthe same value (1, 2, or 3) as used in the corresponding endloop

statement.

Examples. (1) initval(5.0,v1l); /* set first loop count */
loop(vl,v10) ;
dbl (ct,v2) ; /* set second loop count */

loop (v2,v9) ;
rgpulse(pl,v1,0.0,0.0);
endloop (v9) ;
delay (d2) ;
endloop (v10) ;

(2) loop(2,5.0,v9) ;

Related: initval Initialize real-time variable to specified value
endloop End loop
msloop Multislice loop

182 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

loop check Check that number of FIDs is consitent with number of slices, etc.
Syntax: loop_ check
Description: Checks that the number of FIDs in a compressed acquisition (nf) is consistent

with the number of slices (ns), number of echoes (ne), number of phase
encoding steps in the various dimensions (nv, nv2, nv3), and segcon.

AB C DE GH I L M OWPIR STV WX Z

magradient Simultaneous gradient at the magic angle

magradpulse Gradient pulse at the magic angle

mashapedgradient

Simultaneous shaped gradient at the magic angle
Simultaneous shaped gradient pulse at the magic angle
Find integer value modulo 2

Find integer value modulo 4

Find integer value modulo n

Multislice loop

Multiply integer values

Simultaneous gradient at the magic angle

/* gradient amplitude in G/cm */

Appliesasimultaneous gradient onthe x, y, and z axes at the magic angleto By,
Information from agradient tableis used to scale and set values correctly. The
gradients are left at the given levels until they are turned off. To turn off the
gradients, add another magradient statement with gradlvl set to zero or
insert the statement zero all gradients

gradlvl isthe gradient amplitude, in gauss/cm.

mashapedgradpulse
mod?2
mod4
modn
msloop
mult
magradient
Applicability: UNTYINOVA systems.
Syntax: magradient (gradlvl)
double gradlvl;
Description:
Arguments:

Examples: magradient (3.0) ;
pulse (pw, oph) ;
delay(0.001 - pw) ;
zero_all gradients() ;

Related: magradpulse

mashapedgradient
mashapedgradpulse
vagradient
vagradpulse
vashapedgradient
vashapedgradpulse
zero all gradients

01-999253-00 A0604

Simultaneous gradient pulse at the magic angle
Simultaneous shaped gradient at the magic angle
Simultaneous shaped gradient pulse at the magic angle
Variable angle gradient

Variable angle gradient pulse

Variable angle shaped gradient

Variable angle shaped gradient pulse

Zero al gradients

183

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

magradpulse
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

Gradient pulse at the magic angle
UNTYINOVA systems.

magradpulse (gradlvl,gradtime)

double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */
Appliesasimultaneous gradient pulse on the x, y, and z axes at the magic angle
to By. Information from agradient tableis used to scale and set values correctly.

magradpulse differsfrommagradient inthat the gradients are turned off
after gradt ime seconds. Use magradpulse if there are no other actions
while the gradients are on. magradient isused if there are actions to be
performed while the gradients are on.

gradlvl isthe gradient pulse amplitude, in gauss/cm.
gradtime isthetime, in seconds, to apply the gradient.
magradpulse(3.0,0.001) ;

magradient Simultaneous gradient at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zeroal gradients

mashapedgradient Simultaneous shaped gradient at the magic angle

Applicability:
Syntax:

Description:

Arguments:

UNITYINOVA systems.

mashapedgradient (pattern,gradlvl,gradtime, \
loops,wait)

char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */

int loops; /* number of waveform loops */

int wait; /* WAIT or NOWAIT*/

Applies a simultaneous gradient with shape pattern and amplitude
gradlvl onthex, y, and z axes at the magic angle to B, Information is used
from a gradient table to scale and set the values correctly.
mashapedgradient leavesthe gradients at the given levels until they are
turned off. To turn off the gradients, add another mashapedgradient
statement with gradlvl setto zero or includethe zero all gradients
statement.

mashapedgradpul se differsfrom mashapedgradient inthat the
gradients are turned off after gradt ime seconds. mashapedgradient is
used if there are actions to be performed while the gradients are on.
mashapedgradpul se isbest when there are no other actions required while
the gradients are on.

pattern isthe name of atext file describing the shape of the gradient. The
text fileislocated in $vnmrsystem/shapelib or in the user directory
Svnmruser/shapelib.

gradlvl isthe gradient amplitude, in gauss/cm.
gradtime isthe gradient application time, in seconds.

184 vnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

loops isavaue from 0 to 255 to loop the selected waveform. Gradient
waveforms on YNTYINOVA systems do not use thisfield, and 1oops issetto 0
on UNTYINOVA systems.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
statement.

mashapedgradient ("ramp hold",3.0,trise, 0,NOWAIT) ;
pulse (pw, oph) ;

delay (0.001-pw-2*trise) ;
mashapedgradient ("ramp down",3.0,trise, 0,NOWAIT) ;

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zeroal gradients

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle

Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

UNTYINOVA systems.
mashapedgradpulse (pattern,gradlvl,gradtime, theta, ph)

char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Applies a simultaneous gradient with shape pattern and amplitude
gradlvl onthex,y, and zaxes at the magic angle to By,
mashapedgradpul se assumesthat the gradient pattern zeroesthe gradients
at its end and so it does not explicitly zero the gradients. Information from a
gradient tableis used to scale and set values correctly.

mashapedgradpulse isusedif thereareno other actionsrequired when the
gradientsareon. mashapedgradient isused if there are actions to be
performed while the gradients are on.

pattern isthe name of atext file describing the shape of the gradient. The
text fileislocated in $vnmrsystem/shapelib or in the user directory
Svnmruser/shapelib.

gradlvl isthe gradient amplitude, in gauss/cm.
gradtime isthe gradient application time, in seconds.

mashapedgradpulse ("hsine",3.0, 0.001);

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zeroadl gradients

01-999253-00 A0604 vnmrJ User Programming 185

Chapter 3. Pulse Sequence Statement Reference —

mod2

Syntax:

Description:
Arguments:

Examples:

Related:

mod4

Syntax:

Description:
Arguments:

Examples:

Related:

modn

Syntax:

Description:
Arguments:

Examples:

Related:

Find integer value modulo 2

mod2 (vi,vj)

codeint vi; /* variable for starting value */

codeint vij; /* variable for result */

Setsthe value of vj equa to vi modulo 2.

vi isthe starting integer value and vj isthe value of vi modulo 2 (the
remainder after vi isdivided by 2). Both arguments must bereal-time variables
(vitovild4, etc.).

mod2 (v3,v5) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Find integer value modulo 4

mod4 (vi,vj)
codeint vi; /* variable for starting value */
codeint vij; /* variable for result */

Setsthe value of vj equa to vi modulo 4.

vi isthe starting integer value and vj isthe value of vi modulo 4 (the
remainder after vi isdivided by 4). Both arguments must bereal-time variables
(vitovld4, etc.).

mod4 (v3,v5) ;

mod?2 Find integer value modulo 2
modn Find integer value modulo n

Find integer value modulo n

modn (vi,vj,vk)

codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for modulo number */
codeint vk; /* real-time variable for result */

Setsthe value of vk equal to vi modulo v7.

vi isthe starting integer value, vj isthe modulo value, and vk isvi modulo
vj (the remainder after vi isdivided by v7). All arguments must be real-time
variables (v1 tovl4, etc.).

modn (v3,v5,v4) ;

mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4

186 vnmrJ User Programming 01-999253-00 A0604

msloop

A

mult

pplicability:
Syntax:

Description:

Arguments:

Examples:

Related:

Syntax:

Description:
Arguments:

Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

Multislice loop
UNTYINOVA systems.

msloop (state, max count,apvl,apv2)

char state; /* compressed or standard */
double max count; /* initializes apvl */
codeint apvl; /* maximum count */

codeint apv2; /* current counter value */

Provides a sequence-switchable loop that can userea-time variablesin what is
known as a compressed loop or it can use the standard arrayed features of PSG.
Inimaging sequences, ms 1 oop usesthe second character of the segqcon string
parameter (segcon [1]) for the state argument. ms1loop isusedin
conjunction with endms1oop.

state iseither 'c' to designate the compressed mode, or 's' to designate
the standard arrayed mode.

max_count initidizesapvl. If stateis 'c', thisvaue should equal the
number of dlices. If stateis's', thisvalue should be 1.0.

apv1l isreal-time variable that holds the maximum count.

apv2 isareal-timevariable that holds the current counter value. If state is
'c', apv2 countsfrom 0 tomax count-1.If stateis's', apv2 isset
to zero.

msloop (seqcon[l] ,ns,v1l,v12) ;
poffset list(pss,gss,ns,v12);
acquire (np,1.0/sw) ;

endmsloop (seqcon[1l],v12) ;

endmsloop End multislice loop
loop Start loop
peloop Phase-encode loop

Multiply integer values

mult (vi,vj,vk)

codeint vi; /* real-time variable for first factor */
codeint vj; /* real-time variable for second factor */
codeint vk; /* real-time variable for product */

Setsthe value of vk equal to the product of the integer valuesvi and vj.

vi isaninteger value, vj isanother integer value, and vk isthe product of vi
and vj. All arguments must be real-time variables (v1 to v14 etc.).

mult (v3,v5,v4) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4

01-999253-00 A0604 vnmrJ User Programming 187

Chapter 3. Pulse Sequence Statement Reference —

modn
sub

Find integer value modulo n
Subtract integer values

O

A B C D E G H

obl gradient
obligque gradient
obl shapedgradient
oblique shapedgradient
obsblank

obsoffset

obspower

obsprgoff

obsprgon

obspulse

obspwrf
obsstepsize
obsunblank

offset

obl gradient
Applicability:

L

M O P

R S T VvV W X Z

Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient

Execute a shaped oblique gradient

Blank amplifier associated with observe transmitter
Change offset frequency of observe transmitter
Change observe transmitter power level, lin. amp. systems
End programmable control of observe transmitter
Start programmable control of observe transmitter
Pulse observe transmitter with amplifier gating

Set observe transmitter fine power

Set step size for observe transmitter

Unblank amplifier associated with observe transmitter
Change offset frequency of transmitter or decoupler

Execute an oblique gradient
UNTYINOVA systems.

Syntax: obl gradient (levell, level2,level3)

double levell, level2,level3;

/* gradient values in G/cm */

Description: Defines an oblique gradient with respect to the magnet reference frame. This
statement isbasically the sameasthe statement obligue gradient except
that obl gradient usesthe parameterspsi, phi, and theta inthe
parameter set rather than setting them directly. It has no return value.

The pul se sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments. levell, level2, level3 aregradient values, in gauss/cm.

Examples: obl gradient(0.0,0.0,gss);
obl gradient (gro,0.0,0.0);

Related:

oblique gradient

Execute an oblique gradient

oblique gradientExecute an oblique gradient

Applicability: YNTYINOVA systems.

Syntax: oblique gradient (levell,level2,level3,psi,phi,theta)

double levell, level2,level3;
double psi,phi, theta;

188 VnmrJ User Programming

/* gradient values in G/cm */
/* Euler angles in degrees */

01-999253-00 A0604

Description:

Arguments:

Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

Defines an oblique gradient with respect to the magnet reference frame. It has
no return value. The gradient amplitudes (levell, level2, level3) are
put through a coordinate transformation matrix using psi, phi, and thetato
determine the actual x, y, and z gradient levels. These are then converted into
DAC values and set with their corresponding gradient statements. For more
coordinate system information, refer to the manual User Guide: Imaging.

The pul se sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

levell, level2, level3 are gradient values, in gauss’cm.
psi isan Euler angle, in degrees, with a range of —90 to +90.

phi isan Euler angle, in degrees, with the range of —180 to +180.
theta isan Euler angle, in degrees, with the range —90 to +90.
oblique gradient (gvoxl,0,0,vpsi,vphi,vtheta) ;

obl gradient Execute an oblique gradient

obl shapedgradient Execute a shaped oblique gradient

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

UNTYINOVA systems.

obl shapedgradient (patl,pat2,pat3,width,1vll, \
1v1l2,1v13,loops,wait)

char *patl,*pat2,*pat3; /* names of gradient shapes */

double width; /* gradient length in sec */

double 1vl11l,1v12,1v1l3; /* gradient values in G/cm */

int loops; /* times to loop waveform */

int wait; /* WAIT or NOWAIT */

Defines a shaped oblique gradient with respect to the magnet reference frame.
Itisbasically thesameastheoblique shapedgradient statement except
that obl shapedgradient usesthe parameterspsi, phi, and thetain
the parameter set rather than setting them directly.

The pul se sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

patl, pat2, pat3 arenamesof gradient shapes. (Note that the VNMR 5.1
and 5.2 software releases used only one pattern in the argument list.)

width isthelength of the gradient, in seconds.
levell, level2, level3 are gradient values, in gauss’cm.
loops isthe number of times, from 1 to 255, to loop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to stop until the gradient has completed before executing the
next statement.

obl shapedgradient ("ramp hold","","",trise,gro, \
0.0,0.0,1,NOWAIT) ;

oblique shapedgradient Execute a shaped oblique gradient

oblique shapedgradient Execute a shaped oblique gradient

Applicability:
Syntax:

UNTYINOVA systems.

oblique shapedgradient (patl,pat2,pat3,width, \
1v1ll,1vl2,1v13,psi,phi, theta, loops,wait)

01-999253-00 A0604 vnmrJ User Programming 189

Chapter 3. Pulse Sequence Statement Reference —

Description:

Arguments:

char *patl,*pat2,*pat3; /* names of gradient shapes */
double width; /* gradient length in sec */
double 1vl11l,1v12,1v1l3; /* gradient values in G/cm */
double psi,phi,theta; /* Euler angles in degrees */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Defines a shaped oblique gradient with respect to the magnet reference frame.
The gradient patterns (pat1, pat2, pat3) and the gradient amplitudes
(1vli, 1v12, 1v13)areputthroughacoordinate transformation matrix using
psi, phi, and theta to determine the actual X, y, and z gradient levels.

patl and 1v11 correspond to the logical read-out axis.
pat2 and 1v12 correspond to the logical phase-encode axis.
pat3 and 1v13 correspond to the logical slice-select axis.

Patternsare read in; scaled according to their respective amplitudes; rotated into
X, Y, and z patterns; rescaled; converted to DAC values; and written out to
temporary files shapedgradient x, shapedgradient vy, and
shapedgradient zintheuser's shapelib directory; and set with their
corresponding shapedgradient statements. If an axis does not have a
pattern, use empty quotes (") to indicate anull pattern. The patterns must have
the same number of points, or an integral multiple number of points.

The pul se sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

patl, pat2, pat3 arenames of gradient shapes. (Note that the VNMR 5.1
and 5.2 software releases used only one pattern in the argument list.)

width isthelength of the gradient, in seconds.

1v11, 1v12, 1v13 aregradient values, in gauss/cm.

psi isan Euler angle, in degrees, with a range of —90 to +90.

phi isan Euler angle, in degrees, with the range —180 to +180.
theta isan Euler angle, in degrees, with the range —90 to +90.
loops isthe number of times, from 1 to 255, to loop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to stop until the gradient has completed before executing the
next statement.

WAIT or NOWAIT adds extra pulse sequence programming flexibility for
imaging experiments. It allows performing other pul se sequence events during
thegradient pulse. Becauseoblique shapedgradient “talks’ tothex,y,
and z gradient axes, NOWAIT cannot be used to produce simultaneous oblique
gradient pulses, even if they are orthogona . In the following example,

oblique_ shapedgradient (patx, tdelta,gdiff,0.0,0.0, \
0.0,0.0,0.0, 1,NOWAIT);

oblique shapedgradient (paty,tdelta 0.0,gdiff, 0.0 \
0.0,0.0,0.0, 1,NOWAIT);

oblique shapedgradient (patz,tdelta,0.0,0.0,gdiff, \
0.0,0.0,0.0, 1,WAIT);

the first two function calls set up al three gradients. In both cases, after afew
microseconds, the gradient hardwareisreset by the third function call, whichis
the only cal fully executed. Even though the third call is executed, expect
negative side-effects from the first two “ suppressed” calls.

190 vnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

obsblank

Syntax:

Description:

Related:

obsoffset

Syntax:

Description:

Arguments:
Examples:

Related:

obspower

Applicability:
Syntax:

Description:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

oblique shapedgradient ("ramp hold","","",trise, \
gvoxl,0,0,vpsi,vphi,vtheta,1l,NOWAIT) ;

obl shapedgradient Execute a shaped oblique gradient
Blank amplifier associated with observe transmitter
obsblank ()

Disables the amplifier for the observe transmitter. This statement is generally
used after acall to obsunblank.

decunblank Unblank amplifier associated with first decoupler
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

Change offset frequency of observe transmitter

obsoffset (frequency)

double frequency; /* offset frequency */

Changesthe offset frequency, in Hz, of the observe transmitter (parameter tof).
Itisfunctionally thesameasof fset (frequency, OBSch).

® For systemswith rf types A or B, the frequency typically changes between
10to 30 us, but 100 usis automatically inserted into the sequence by the
of fset statement so that thetime duration of of £ set isconstant and not
frequency-dependent.

® For systemswith rf type C, which necessarily have PTS frequency
synthesizers, the frequency shift timeis15.05 usfor standard, non-latching
synthesizers and 21.5 us for the latching synthesizers with the overrange/
under-range option.

® For the WTYINOVA, the frequency shiftis4 us.

® For the MERCURYplus/-Vx, this statement inserts a86.4-psdelay, athough
the actual switching of the frequency takes 1 us.

® For systems with the Output board (and only those systems), all of fset
statements by default are preceded internally by a 0.2-us delay (see the
apovrride statement for more details).

frequency isthe offset frequency desired for the observe channel.
obsoffset (to) ;

decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
offset Change offset frequency of transmitter or decoupler

Change observe transmitter power level, lin. amp. systems
Systems with linear amplifiers.

obspower (power)

double power; /* new coarse power level */

Changes observe transmitter power. This statement is functionally the same as
rlpower (value, OBSch).

191

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

CAUTION:

Related:

obsprgoff

Applicability:
Syntax:

Description:

Related:

obsprgon

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

obspulse

Syntax:

192

VnmrJ User Programming

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power) on channelswith a 63-dB attenuator or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

On systems with linear amplifiers, be careful when using values of
obspower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
rlpower Change power level, linear amplifier systems

End programmable control of observe transmitter
Systems with a waveform generator on the observe transmitter channel.
obsprgoff ()

Terminates any programmable phase and amplitude control on the observe
transmitter started by the obsprgon statement under waveform generator
control.

obsprgon Start programmabl e control of observe transmitter
Start programmable control of observe transmitter
Systems with a waveform generator on the observe transmitter channel.

obsprgon (pattern, 90 pulselength, tipangle resoln)

/* name of .DEC text file */

/* 90-deg pulse length, in sec */
/* tip-angle resolution */

char *pattern;
double 90 pulselength;
double tipangle resoln;

Executes programmabl e phase and amplitude control on the observe transmitter
under waveform generator control. It returns the number of 50-nsticks (asan
integer value) in one cycle of the decoupling pattern. Explicit gating of the
observe transmitter with xmtron and xmtrof £ isgenerally required.
Arguments can bevariables (which requiresappropriate getval andgetstr
statements) to permit changes via parameters (see second example).

pattern isthename of the text file (without the . DEC file suffix) in the
shapelib directory that stores the decoupling pattern.

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
observe transmitter.

tipangle resoln istheresolution in tip-angle degreesto which the
decoupling pattern is stored in the waveform generator.

obsprgon ("waltzlée",pw90,90.0) ;
obsprgon ("modulation", pp90,dres) ;

decprgon Start programmable decoupling on first decoupler
dec2prgon Start programmable decoupling on second decoupler
obsprgoff End programmable control of observe transmitter

Pulse observe transmitter with amplifier gating

obspulse ()

01-999253-00 A0604

Description:

Related:

obspwrf
Applicability:
Syntax:

Description:

Arguments:
Examples:
Related:

obsstepsize

Syntax:

Description:

Arguments:
Examples:
Related:

obsunblank

Syntax:

Description:

Related:

Chapter 3. Pulse Sequence Statement Reference —

A special case of the rgpulse (width, phase,RG1,RG2) statement, in
which width ispreset to pw and phase ispreset to oph. Thus, obspulse
isexactly equivalent to rgpulse (pw, oph, rof1l, rof2). Note that
obspulse has nothing whatsoever to do with data acquisition, despite its
name. Except in special cases, data acquisition begins at the end of the pulse
sequence.

iobspulse Pulse observe transmitter with PA

ipulse Pulse observe transmitter with [PA

irgpulse Pulse observe transmitter with PA

pulse Pulse observe transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels
Set observe transmitter fine power
Systems with fine power control.

obspwrf (power)

double power; /* new fine power level for OBSch */

Changesobserve transmitter fine power. This statement isfunctionally the same
asrlpwrf (value, OBSch).

value isthefine power desired.
obspwrf (4.0) ;

decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
rlpwrf Set transmitter or decoupler fine power

Set step size for observe transmitter

obsstepsize (step _size)

double step size; /* small-angle phase step size */

Setsthe step size of the observe transmitter. This statement is functionaly the
sameas stepsize (base,OBSch) .

step_size isthe phase step size desired and isarea number or avariable.
obsstepsize (30.0) ;

decstepsize
dec2stepsize
dec3stepsize

Set step size of first decoupler
Set step size of second decoupl er
Set step size of third decoupler

stepsize Set small-angle phase step size, rf type C or D
Unblank amplifier associated with observe transmitter
obsunblank ()

Explicitly enablesthe amplifier for the observe transmitter. obsunblank is
generaly followed by acall to obsblank.

decblank Blank amplifier associated with first decoupler
decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter

01-999253-00 A0604

193

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

rcvroff Turn off receiver
rcvron Turn on receiver
offset Change offset frequency of transmitter or decoupler

Applicability: This statement will be eliminated in future versions of VnmrJ software.
Although it is still functional, you should not write any new pulse sequences
using it and should replace it in existing sequences with obsoffset,
decoffset,dec2offset, Ordecl3offset, asaopropriate.

Syntax: offset (frequency,device)
double frequency; /* frequency offset */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the offset frequency of the observe transmitter (parameter tof), first
decoupler (dof), second decoupler (dof2), or third decoupler (dof3).

Arguments. frequency isthe offset frequency desired.

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

Examples. offset (do2,DECch) ;
offset (to2,0BSch) ;
delay (d2) ;
offset (tof,OBSch) ;

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter

ioffset Change offset frequency with IPA
P

A B C DE GH I L M OWPR S T V WX Z
pe gradient Oblique gradient with phase encode in one axis
pe2 gradient Oblique gradient with phase encode in two axes
pe3 gradient Oblique gradient with phase encode in three axes
pe shapedgradient Oblique shaped gradient with phase encode in one axis
pe2 shapedgradient Oblique shaped gradient with phase encode in two axes
pe3 shapedgradient Oblique shaped gradient with phase encode in three axes
peloop Phase-encode loop
phase encode gradient Oblique gradient with phase encode in one axis
phase encode3 gradient Oblique gradient with phase encode in three axes

phase encode shapedgradient Oblique shaped gradient with PE in one axis
phase encode3 shapedgradient Oblique shaped gradient with PE in three axes

phaseshift Set phase-pulse technique, rf type A or B
poffset Set frequency based on position
poffset list Set frequency from position list

194 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

position offset Set frequency based on position

position offset list Set frequency from position list

power Change power level, linear amplifier systems
psg_abort Abort the PSG process

pulse Pulse observe transmitter with amplifier gating
putCmd Send a command to VnmrJ form a pul se sequence
pwrf Change transmitter or decoupler fine power

pwrm Change transmitter or decoupler linear modulator power

pe gradient
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

pe2 gradient

Applicability:
Syntax:

Description:

Oblique gradient with phase encode in one axis
UNITYINOVA systems.
pe gradient (statl,stat2,stat3,step2,vmult2)

double statl,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */

Sets static oblique gradient levels plus one oblique phase encode gradient. The
phase encode gradient is associated with the second axis of the logical frame.
This corresponds to the convention read, phase, slice for the functions of the
logical frame axes. This statement is the same as

phase encode gradient exceptthe Euler anglesareread from the
default set for imaging. 1im2 is automatically set to half the nv (number of
views) where nv is usually the number of phase encode steps.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss'cm, of the component for the step size changein
the variable portion of the gradient.

vmult?2 isareal-timemath variable (v1 tovi4, ct, zero, one, two,
three) or referenceto APtables (t1 to £ 60), whose associated values vary
dynamically in amanner controlled by the user.

pe gradient (0.0, -sgpe*nv/2.0,gss, sgpe,Vv6) ;

phase encode gradient Oblique gradient with phase encodein 1 axis

Oblique gradient with phase encode in two axes
UNTYINOVA systems.

pe2 gradient (statl,stat2,stat3,step2,step3, \
vmult2,vmult3)

double statl,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient stepsize */
codeint vmult2,vmult /* real-time math variables */

Setsonly two oblique phase encode gradients; otherwise, pe2 gradient is
thesameas pe3 gradient.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

01-999253-00 A0604 vnmrJ User Programming 195

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

pe3 gradient
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2, step3 arevalues, in gauss’cm, of the components for the step size
change in the variable portion of the gradient.

vmult2, vmult3 arerea-time math variables (v1itovi4, ct, zero, one,
two, three) or referencesto AP tables (t 1 to £ 60), whose associated values
vary dynamically in amanner controlled by the user.

pe2 gradient (gro,sgpe*nv/2.0,sgpe2*nv2/2.0,sgpe, \
sgpe2,v6,v8) ;

pe3 gradient Oblique gradient with phase encode in 3 axes

Oblique gradient with phase encode in three axes
UNTYINOVA systems.

pe3 gradient (statl,stat2,stat3,stepl, step2, \
step3,vmultl,vmult2, vmult3)

double statl,stat2,stat3; /* static gradient components */
double stepl,step2,step3; /* gradient step sizes */
codeint vmultl,vmult2,vmult3; /* real-time variables */

Sets three oblique phase encode gradients. This statement is the same as
phase encode3 gradient exceptthe Euler anglesare read from the
default set for imaging. 1im1, 1im2, and 1im3 aresettonv/2, nv2/2, and
nv3/2, respectively.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss'cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vmult2, vmult3 arerea-time math variables (v1 tovi4, ct,

zero, one, two, three) or referencesto AP tables (t 1 to t60) whose

associated values vary dynamically in amanner controlled by the user.

pe3 gradient (gro, sgpe*nv/2.0,sgpe2*nv2/2.0,0.0, \
sgpe, sgpe2, zero,ve6,v8) ;

phase encode3 gradient Obliquegradient with phase encodein 3 axes

pe shapedgradient Oblique shaped gradient with phase encode in one axis

Applicability:
Syntax:

Description:

UNTYINOVA systems.

pe_ shapedgradient (pattern,width, statl,stat2, \
stat3, step2,vmult2,wait, tag)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double step2; /* variable gradient step size */
codeint vmult2; /* real-time math variable */
int wait; /* WAIT or NOWAIT */

int tag; /* tag to a gradient element */

Sets a static oblique shaped gradient plus one oblique phase encode shaped
gradient. Thisissameasphase encode shapedgradient exceptin

196 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

pe_shapedgradient the Euler angles are read from the default set for
imaging. 1im2 isautomatically setto nv/2, where nv isusually the number
of phase encode steps.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments. pattern isthe name of agradient shape file.
width isthelength, in seconds, of the gradient.
statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.
step2 isthe vaue, in gauss'cm, of the component for the step size changein
the variable portion of the gradient.
vmult?2 isareal-time math variable (v1 tov14, ct, zero, one, two,
three) or referenceto AP tables (t1 to £t 6 0) whose associated values vary
dynamically in amanner controlled by the user.
wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing the
next statement.
tag isaunique integer that “tags’ the gradient element from any other
gradient elements used in the sequence. These tags are used for variable
amplitude pulses.
Related: phase encode shapedgradient Oblique shaped gradient with PE on 1 axis
pe2 shapedgradient Obligue shaped gradient with phase encode in two axes
Applicability: YNTYINOVA systems.
Syntax: pe2 shapedgradient (pattern,width, statl,stat2, \
stat3, step2,step3,vnult2, vmult3)
char *pattern; /* name of gradient shape file */
double width; /* length of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient step size */
codeint vmult2,vmult3; /* real-time math variables */
Description: Setstwo oblique phase encode shaped gradients; otherwise, thisstatement isthe
sameaspe3 shapedgradient.
Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.
Arguments. pattern isthe name of agradient shape file.
width isthelength, in seconds, of the gradient.
statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.
step2, step3 arevalues, in gauss'cm, of the components for the step size
change in the variable portion of the gradient.
vmult2, vmult3 arereal-time math variables (v1 to vi4, ct, zero,
one, two, three) or referencesto AP tables (t 1 to t 60) whose associated
values vary dynamically in amanner controlled by the user.
Related: pe3 shapedgradient Oblique shaped gradient with phase encode in 3 axes

01-999253-00 A0604 vnmrJ User Programming 197

Chapter 3. Pulse Sequence Statement Reference —

pe3 shapedgradient Oblique shaped gradient with phase encode in three axes

Applicability:
Syntax:

Description:

Arguments:

Related:

peloop
Applicability:
Syntax:

Description:

Arguments:

UNTYINOVA systems.

pe3 shapedgradient (pattern,width, statl, stat2, \
stat3, stepl, step2,step3,vmultl, vmult2, vmult3)

char *pattern; /* name of gradient shape file */

double width; /* width of gradient in sec */

double statl,stat2,stat3; /* static gradient components */

double stepl,step2,step3; /* var. gradient components */

codeint vmultl,vmult2,vmult3; /* real-time variables */

Setsthree oblique phase encode shaped gradients. This statement isthe same as
the statement phase encode3 shapedgradient except the Euler
angles are read from the default set for imaging. The 1im1, 1im2, and 1im3
argumentsin phase encode3 shapedgradient aresetto
nv/2,nv2/2,and nv3/2, respectively.

Pulse sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pattern isthe name of agradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss/cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vimult2, vimult3 arereal-time math variables (v1 tovi4, ct,
zero, one, two, three) or referencesto AP tables (t1 to t60) whose
associated values vary dynamically in amanner controlled by the user.

phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

Phase-encode loop
UNTYINOVA systems.

peloop (state, max_count,apvl,apv2)

char state; /* compressed or standard */
double max_ count; /* initializes apvl */
codeint apvl; /* maximum count */

codeint apv2; /* current counter value */

Provides a sequence-switchable loop that can userea-time variablesin what is
known asa compressed loop, or it can use the standard arrayed features of PSG.
In the imaging sequences it uses the third character of the segcon string
parameter seqgcon [2] for the state argument. The statement isused in
conjunction with the endpeloop statement.

peloop differsfrom ms1loop inhow it setsthe apv2 variable in standard
arrayed mode (stateis 's'). In standard arrayed mode, apv2 isset to
nth2D-1 if max count isgreater than zero. nth2D isa PSG internal
counting variable for the second dimension. When in the compressed mode,
apv2 counts from zero tomax_count-1.

state iseither 'c' to designate the compressed mode, or 's' to designate
the standard arrayed mode.

apv1l isareal-timevariable that holds the maximum count.

198 vnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

apv2 isareal-timevariable that holds the current counter value. If state is
's' andmax_count isgreater than zero, apv2 issettonth2D-1;
otherwise, it is set to zero.

peloop (seqcon[2] ,nv,v5,ve) ;
msloop (seqcon[l] ,nv,v1l,v12) ;

poffset list(pss,gss,ns,v12):
pe gradient (gror, -0.5*sgpe*nv,gssr, sgpe,Vvé6) ;
acquire (np,1.0/sw) ;

endmsloop (seqcon[1l],v12) ;
endpeloop (segcon{2},v6;
endpeloop End phase-encode |oop

loop Start loop
msloop Multislice loop

phase encode gradient Oblique gradient with phase encode in one axis

Applicability:
Syntax:

Description:

Arguments:

Related:

UNTYINOVA systems.

phase encode gradient (statl,stat2,stat3,step2, \
vmult2,1lim2,angl, ang2, ang3)

double statl,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */
double 1lim2; /* max. gradient value step */
double angl, ang2,ang3; /* Euler angles in degrees */

Sets static oblique gradient levels plus one oblique phase encode gradient. The
phase encode gradient is associated with the second axis of the logical frame.
This corresponds to the convention: read, phase, slice for the functions of the
logical frame axes. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss'cm, of the component for the step size changein
the variable portion of the gradient.

vmult?2 isareal-timemathvariable(v1-v14, ct, zero, one, two, three)
or referenceto AP tables (t 1 to t 60), whose associated values vary
dynamically in amanner controlled by the user.

1im2 isavalue representing the dynamic step that will generate the maximum
gradient value for each component. This provides error checking in pulse
sequence generation and isnormally nv /2.

angl isEuler angle psi, in degrees, with the range —90 to +90.
ang?2 is Euler angle phi, in degrees, with the range —180 to +180.
ang3 isEuler angle theta, in degrees, with the range —90 to +90.

oblique gradient Execute an oblique gradient
oblique shapedgradient Execute a shaped oblique gradient
pe gradient Oblique gradient with PE on 1 axis

01-999253-00 A0604 vnmrJ User Programming 199

Chapter 3. Pulse Sequence Statement Reference —

phase encode shapedgradient Oblique sh. gradient with PE on 1 axis
phase encode3 gradient Oblique gradient with PE on 3 axes
phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

phase encode3 gradient Obligue gradient with phase encode in three axes

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

UNITYINOVA systems.

phase encode3 gradient (statl, stat2,stat3, \
stepl, step2,step3,vmultl, vmult2, vmult3, \
liml,1im2,1im3,angl, ang2,ang3)
double statl,stat2,stat3; /* static gradient components */
double stepl, step2, step3; /* var. gradient stepsize */
codeint vmultl,vmult2,vmult3; /* real-time variables */
double 1iml,lim2,1im3; /* max. gradient value steps */
double angl, ang2,ang3; /* Euler angles in degrees */

Sets three oblique phase encode gradients. It has no return value.

Pul se sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevaues, in gauss’cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vmult2, vmult3 arered-time math variables (v1 tovi4, ct,
zero, one, two, three) or referencesto AP tables (t 1 to t60) whose
associated values vary dynamically in amanner controlled by the user.

1lim1, 1im2,1im3 arevauesrepresenting the dynamic step that will generate
the maximum gradient value for each component. This provides error checking
in pulse sequence generation and isnormally nv/2.

angl isEuler angle psi, in degrees, with the range —90 to +90.
ang?2 is Euler angle phi, in degrees, with the range —180 to +180.
ang3 isEuler angle theta, in degrees, with the range —90 to +90.

phase encode3 gradient(0,0,0,0,0,2.0*gcrush/ne, \
zero,zero,v12,0,0,0,psi,phi, theta) ;
pe3 gradient Oblique gradient with PE in 3 axes

phase encode shapedgradient Oblique sh. gradient with PE on 1 axis
phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

phase encode shapedgradient Oblique shaped gradient with PE in one axis

Applicability:
Syntax:

UNTYINOVA systems.

phase encode shapedgradient (pattern,width, \
statl,stat2,stat3,step2,vmult2,1im2, \
angl,ang2,ang3,vloops,wait, tag)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double step2; /* var. gradient step size */
codeint vmult2; /* real-time math variable */
double 1lim2; /* max. gradient value steps */
double angl, ang2,ang3; /* Euler angles in degrees */
codeint vloops; /* number of loops */

200 vnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

Related:

Chapter 3. Pulse Sequence Statement Reference —

int wait; /* WAIT or NOWAIT */
int tag; /* tag to a gradient element */

Sets static oblique shaped gradients plus one oblique phase encode shaped
gradient. The phase encode gradient is associated with the second axis of the
logical frame. This corresponds to the convention: read, phase, slice for the
functions of thelogical frame axes. One gradient shapeisused for all three axes.
It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pattern isthe name of agradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss'cm, of the component for the step size changein
the variable portion of the gradient.

vmult?2 isareal-time math variable (v1 tov14, ct, zero, one, two,
three) or referenceto AP tables (t1 to £t 6 0) whose associated values vary
dynamically in amanner controlled by the user.

1im2 isthe value representing the dynamic step that will generate the
maximum gradient value for the component. This provides error checking in
pul se sequence generation and is normally nv /2.

angl isthe Euler angle psi, in degrees, with the range of —90 to +90.
ang?2 isthe Euler angle phi, in degrees, with the range of —180 to +180.
ang3 isthe Euler angle theta, in degrees, with the range of —90 to +90.

vloops isareal-time math variable (v1 tov14, ct, zero, one, two,
three) or referencesto AP tables (t 1 to t 60) that dynamically setsthe
number of times to loop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing the
next statement.

tag isaunique integer that “tags” the gradient element from any other
gradient elements used in the sequence. These tags are used for variable
amplitude pulses.

oblique gradient Execute an oblique gradient
oblique shapedgradient Execute a shaped oblique gradient
pe_shapedgradient Oblique sh. gradient with PE in 1 axis

phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

phase encode3 shapedgradient Oblique shaped gradient with PE in three axes

Applicability:
Syntax:

UNTYINOVA systems.

phase encode3 shapedgradient (pattern,width, \
statl,stat2,stat3,stepl, step2, step3, \
vmultl,vmult2,vmult3,liml,l1im2,1im3, \
angl,ang2,ang3, loops,wait)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double statl,stat2,stat3; /* static gradient components */

double stepl,step2,step3; /* var. gradient step sizes */

01-999253-00 A0604 vnmrJ User Programming 201

Chapter 3. Pulse Sequence Statement Reference —

Description:

Arguments:

Related:

phaseshift

Applicability:

Syntax:

Description:
Arguments:

202

codeint vmultl,vmult2,vmult3; /* real-time variables */
double 1liml,lim2,1im3; /* max. gradient value steps */
double angl, ang2,ang3; /* Euler angles in degrees */
int loops; /* number of times to loop */
int wait; /* WAIT or NOWAIT */

Setsthree oblique phase encode shaped gradient. Note that this statement has a
loops argument that is an integer, as opposed to the v1oops argument in
phase encode shapedgradient. It hasno returnvalue.

Pul se sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pattern isthe name of the gradient shape file.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss/cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vmult2, vmult3 arered-time math variables (v1 tovi4, ct,
zero, one, two, three) or referencesto AP tables (t 1 to t60) whose
associated values vary dynamically in amanner controlled by the user.

1lim1, 1im2,1im3 arevauesrepresenting the dynamic step that will generate
the maximum gradient value for each component. This provides error checking
in pulse sequence generation and isnormally nv /2.

angl isthe Euler angle ps1i, in degrees, with the range of —90 to +90.
ang?2 isthe Euler angle phi, in degrees, with the range of —180 to +180.
ang3 isthe Euler angle theta, in degrees, with the range of —90 to +90.

loops isnon-rea-timeinteger value, from 1 to 255, that sets the number of
times to loop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing
the next statement.

pe3 shapedgradient
phase encode shapedgradient
phase encode3 gradient

Oblique sh. gradient with PE in 3 axes
Oblique sh. gradient with PE on 1 axis
Oblique gradient with PE in 3 axes

VnmrJ User Programming

Set phase-pulse technique, rf type A or B
Systems with rf type A or B (MERCURYplus/-Vx systems are rf type E or F).

phaseshift (base,multiplier,device)

/* base small-angle phase shift */
/* real-time variable */

/* channel, TODEV or DODEV */

double base;
codeint multiplier;
int device;

Implements the “phase-pulse” technique.

base isareal number, expression, or variable representing the base phase shift
in degrees. Any value is acceptable.

multiplierisarea-timevariable(v1tovi14, ct, etc.). Thevalue must be
positive. The actual phase shiftis ((base*multiplier)mod360).

device iSTODEV (observe transmitter) or DODEV (first decoupler).

01-999253-00 A0604

Examples:

poffset
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

poffset list
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

phaseshift (60.0,ct, TODEV) ;
phaseshift (-30.0,v1l,DODEV) ;

Set frequency based on position
UNITYINOVA systems.

poffset (position, level)
double position; /* slice position in cm */
double level; /* gradient level in G/cm */

Setstherf frequency from position and conjugate gradient values. pof fset is
functionally thesameasposition offset exceptthat poffset takesthe
valueof resfrqg fromtheresto parameter and always assumesthe deviceis
the observe transmitter device TODEV.

position isthedlice position, in cm.

level isthe gradient level, in gauss/cm, used in the slice selection process.
poffset (pss[0],gss) ;

position offset Setfrequency based on position

Set frequency from position list
UNTYINOVA systems.

poffset list(posarray,grad,nslices,apvl)

double position arrayl[]; /* position values in cm */
double level; /* gradient level in G/cm */
double nslices; /* number of slices */
codeint vi; /* variable or AP table */

Setstherf frequency from aposition list, conjugate gradient value, and dynamic
math selector. poffset list isfunctionally the sameas

position offset list exceptthat poffset 1ist takesthevalueof
resfrqg from the resto parameter, assumes the device is the observe
transmitter device OBSch, and assumes that the list number is zero.

position array isalist of position values, in cm.

level isthe gradient level, in gauss/cm, used in the slice selection process.
nslices isthe number of slices or position values.

vi isadynamic rea-timevariable (v1 tov14) or APtable (t1 to t60).
poffset list(pss,gss,ns,v8);

getarray Retrieves al values of an arrayed parameter
position offset list Setfrequency from position list

position offset Setfrequency based on position

Applicability:
Syntax:

Description:

UNTYINOVA systems.

position offset (pos,grad, resfrqg,device)

double pos; /* slice position in cm */

double grad; /* gradient level in G/cm */

double resfrqg; /* resonance offset in Hz */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Setsthe rf frequency from position and conjugate gradient values. It has no
return value.

01-999253-00 A0604 vnmrJ User Programming 203

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:
Related:

pos isthe slice position, in cm.
grad isthe gradient level, in gauss/cm, used in the slice selection process.
resfrq isthe resonance offset value, in Hz, for the nucleus of interest.

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

position offset (posl,gvoxl,resto,OBSch) ;

poffset Set frequency based on position
position offset list Setfrequency from position list

position offset listSet frequency from position list

Applicability:
Syntax:

Description:

Arguments:

Related:

power

Applicability:

Syntax:

UNTYINOVA systems.

position offset list (posarray,grad,nslices, \
resfrqg,device,list number,apvl)

double posarrayl(]; /* position values in cm */

double level; /* gradient level in G/cm */

double nslices; /* number of slices */

double resfrqg; /* resonance offset in Hz */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

int list number; /* number for global list */

codeint vij; /* real-time variable or AP table */

Setstherf frequency from aposition list, conjugate gradient value, and dynamic
math sel ector. The dynamic math selector (apv1) holds theindex for required
dlice offset value as stored in the array. The arrays provided to this statement
must count zero up; that is, array [0] must have the first slice position and
array [ns-1] thelast. It hasno return value.

position array isalist of position values, in cm.

level isthe gradient level, in gauss/cm, used in the slice selection process.
nslices isthe number of slices or position values.

resfrq isthe resonance offset, in Hz, for the nucleus of interest.

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNTYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

list number isavaueforidentifying aglobal list. Thefirst global list must
begin at zero and each created list must be incremented by one.

vi isadynamicreal-timevariable (v1 tovi14) or APtable (t1 to t60).

getarray Retrieves all vaues of an arrayed parameter
poffset list Set frequency from position list
position offset Set frequency based on position

Change power level, linear amplifier systems

Systems with linear amplifiers. Use of statements obspower, decpower,
dec2power, Of dec3power, as appropriate, is preferred.

power (power,device)
int power; /* new value for coarse power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

204 vnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

CAUTION:

Examples:

Related:

psg _abort

Syntax:

Description:

pulse

Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

Changes transmitter or decoupler power by assuming values of O (minimum
power) to 63 (maximum power) on channels with a 63-dB attenuator or —16
(minimum power) to 63 (maximum power) on channels with a 79-dB
attenuator. On systemswith an Output board, by default, powe r statementsare
preceded internally by a0.2-usdelay (seethe apovrride statement for more
details).

power isthe power desired. It must be stored in areal-timevariable (vi-v14,
etc.), which means it cannot be placed directly in the power statement. This
allows the power to be changed in real-time or from pulse to pulse. Setting the
power argument is most commonly done using initval (seethe example).
To avoid consuming areal-time variable, use the r 1 power statement instead
of the power statement.

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

On systems with linear amplifiers, be careful when using values of
power greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

pulsesequence ()

{

double newpwr;
newpwr=getval ("newpwr") ;
initval (newpwr,v2) ;
power (v2,0BSch) ;

o

decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems

initval Initialize areal-time variable to a specified value
obspower Change observe transmitter power, linear amplifier systems
pwrf Change transmitter or decoupler fine power

rlpower Change transmitter or decoupler power, linear amplifier
rlpwrf Set transmitter or decoupler fine power

Abort the PSG process
psg_abort (int error)

psg_abort aborts the PSG process. The acquisition will not start. the error
argument istypically 1.

Pulse observe transmitter with amplifier gating

pulse (width, phase)
double width; /* pulse length in sec */
codeint phase; /* real-time variable for phase */

Turnson a pulse the same asthe rgpulse (width, phase,RG1,RG2)
statement, but with RG1 and RG2 set to the parameters rof1 and rof2,
respectively. Thus, pulse isaspecia case of rgpulse wherethe “hidden”
parameters rof 1 and rof2 remain “hidden.”

01-999253-00 A0604 vnmrJ User Programming 205

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:
Related:

putCmd

206

Syntax:

Description:

width specifiesthe width of the observe transmitter pulse.
phase sets the phase and must be area-time variable.

pulse (pw,v2) ;

dps_show Draw delay or pulsesin a sequence for graphical display

obspulse Pulse observe transmitter with PA

ipulse Pulse observe transmitter with [PA

irgpulse Pulse observe transmitter with |PA

obspulse Pulse observe transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Send a command to VnmrJ form a pulse sequence
putCmd(char *format, ...)

The put Cmd function alows you to execute any Magical expression from a
pulse sequence. For example,

putCmd ("setvalue('dl', %g, 'processed')",dl) ;

will update the d1 parameter in the experiment processed parameter tree. The
argumentsto put Cmd are anaogous to those for print £. Thefirst argument
toputCmd islikethe printf format string.

Thego ('check') command will execute the pulse sequence and any
putCmd statements. It will not, however, start an acquisition.

If youwant put Cmd to update a parameter used as part on an acquisition, then
you will probably need to use setvalue and change the parameter in the
processed tree. You might also change it in the current tree.

For example:
putCmd("setvalue('dl',%g, processed’) setvalue('dl’,%g, current’)”,d1,d1);

Theinteger "checkflag" indicates whether go (' check ') wascalled, or not.
If theputCmdisonly used whengo (' check ') isused, thenitisokay to use
something like

if (checkflag)
putCmd ("dl=%g",dl) ;

Some parameters are defined as subtype pulse. Examplesare pw, p1, etc. A
consequence of thisisthat the values entered in VnmrJ are multiplied by 1e-6
in PSG. Therefore, if from the VnmrJ command line you entered pw? you
might get 6.4. In PSG, the value of pw will be 6.4e-6. Therefore, the appropriate
putCmd in this case would be

putCmd ("pw=%g", pw*le6)

That is, the internal PSG variable is converted back to microseconds for use
with putCcmd. If an arrayed experiment is done, the put Cmd function is only
active for thefirst increment. Any Magical expression can be used in putCmd.
For example,

putCmd ("banner ('acquisition started')");
putCmd ("dps") ;

VnmrJ User Programming 01-999253-00 A0604

pwrf

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

pwrm

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

Change transmitter or decoupler fine power
UNTYINOVA systems.

pwrf (power,device)
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes the fine power of the device specified by adjusting the optional fine
attenuators. Do not executepwr £ and i pwr £ together becausethey will cancel
each other's effect.

power isthe fine power desired. It must be areal-time variable (v1 tov14,
etc.), which means it cannot be placed directly in the pwrf statement. It can
range from O to 4095 (60 dB on YNTYINOVA , about 6 dB on other systems).

device iSOBSch (observe transmitter) or DECch (first decoupler). On the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

pwrf (v1l,0BSch) ;

ipwrf Change transmitter or decoupler fine power
power Change transmitter or decoupler power, linear amp. system
rlpwrf Set transmitter or decoupler fine power

Change transmitter or decoupler linear modulator power

UNITYINOVA systems only. Use of statements obspwrf, decpwrf,
dec2pwrf, or dec3pwrf, asappropriate, is preferred.

pwrm (power,device)
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes the linear modulator power of the device specified by adjusting the
optiona fine attenuators. Do not execute pwrm and i pwrm together because
they will cancel each other's effect.

power isthe linear modulator power desired. It must be area-time variable
(v1tov14, etc.), which means the power level as an integer cannot be placed
directly in the pwrm statement. power can range from 0 to 4095 (60 dB on
UNITYINOVA .

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

pwrm(vl,OBSch) ;

decpwrf Set first decoupler fine power

dec2pwrf Set second decoupler fine power

dec3pwrf Set third decoupler fine power

ipwrf Change transmitter or decoupler fine power with 1PA
ipwrm Change transmitter or decoupler linear modul ator power
obspwrf Set observe transmitter fine power

rlpwrm Set transmitter or decoupler linear modulator power

01-999253-00 A0604 vnmrJ User Programming 207

Chapter 3. Pulse Sequence Statement Reference —

A B CDEGH I L MOWPIR STV WX Z

rcvroff Turn off receiver gate and amplifier blanking gate

rcvron Turn on receiver gate and amplifier blanking gate

readuserap Read input from user AP register

recoff Turn off receiver gate only

recon Turn on receiver gate only

rgpulse Pulse observe transmitter with amplifier gating

rgradient Set gradient to specified level

rlpower Change power level, linear amplifier systems

rlpwrf Set transmitter or decoupler fine power

rlpwrm Set transmitter or decoupler linear modulator power

rotorperiod Obtain rotor period of MAS rotor

rotorsync Gated pulse sequence delay from MAS rotor position
rcvroff Turn off receiver gate and amplifier blanking gate

Syntax: rcvroff ()

Description: Thereceiver isnormally off during the pulse sequence and iis turned on only
during acquisition. The rcvrof £ statement also unblanks, or enables, the
observe transmitter.

Receiver gating is normally controlled automatically by decpulse,
decrgpulse, dec2rgpulse, dec3rgpulse, obspulse, pulse, and
rgpul se. Attheend of each of these statements, thereceiver isautomatically
turned back on if and only if the receiver has not been previously turned off
explicitly byarcvrof £ statement. Inall cases, thereceiver isimplicitly turned
back on immediately prior to data acquisition.
Related: rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver only
recon Turn on receiver only
rcvron Turn on receiver gate and amplifier blanking gate
Syntax: rcvron ()

Description: Thereceiver isnormally off during the pulse sequence. It isturned on only
during acquisition. On other systems, rcvron providesexplicit receiver gating
in the pulse sequence. The rcvron statement also blanks, or disables, the
observe transmitter
Receiver gating is normally controlled automatically by obspulse, pulse,
and rgpulse, decpulse, decrgpulse, dec2rgpulse, and
dec3rgpulse. At the end of each of these statements, the receiver is
automatically turned back onif and only if the receiver has not been previously

208 vnmrJ User Programming 01-999253-00 A0604

Related:

readuserap
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

recoff
Applicability:
Syntax:

Chapter 3. Pulse Sequence Statement Reference —

turned off explicitly by a rcvrof £ statement. In al cases, the receiver is
implicitly turned back on immediately prior to data acquisition.

rcvroff Turn off receiver gate and amplifier blanking gate
recoff Turn off receiver gate only
recon Turn on receiver gate only

Read input from user AP register
UNTYINOVA systems.

readuserap (vi)
codeint vi; /* index to value read in user AP register */

Reads input from user AP bus register 3 to areal-time variable. The user can
then act on this information using real-time math and real time control
statements while the pul se sequence is running. Register 3islines 1 to 8 of the
USER AP connector J8212 on the Breakout panel on the rear of the left console
cabinet. Thisregister interfacesto abidirectional TTL-compatible 8-bit buffer,
which has a 100-ohm series resistor for circuit protection.

readuserap sStops parsing acodes (acquisition codes) until the linesin the
buffer have been read and the val ue placed into the specified real-timevariable.
In order for the parser to parse and stuff more words into the FIFO before
underflowing, the readuserap statement putsin a500 s delay after reading
the input. However, depending on what isto be done after reading the lines, a
longer delay may be needed to avoid FIFO underflow.

If an error occursin reading, awarning message is sent to the host and avalue
of =1 isreturned to the real-time variable.

vi isareal-timevariable (v1 tov14, etc.) that indexes a signed or unsigned
number read from user AP register 3.

/* Check a value read in from input register and */
/* execute a pulse if it is the expected value. */
double testval;
testval=getval (testval) /* set value to check */
initval (testval,v2) ;
loop (two,vl) ; /* reset below makes loop go */
readuserap (vl); /* until expected value reads in */
delay (d2) ;
sub (vl,v2,v3) ;
ifzero(v3) ;
pulse (pw, oph) ;
assign(one,vl) ;
elsenz (v3)
assign(zero,vl) ; /*reset counterx/
endif (v3) ;
endloop (vl) ;

setuserap Set user AP register
vsetuserap Setuser AP register using real-time variable

Turn off receiver gate only
UNTYINOVA systems.

recoff ()

01-999253-00 A0604 vnmrJ User Programming 209

Chapter 3. Pulse Sequence Statement Reference —

Description:

Related:

recomn

Applicability:
Syntax:

Description:

Related:

rgpulse

Syntax:

Description:

Arguments:

On UNITYINOVA systems, receiver gating has been decoupled from amplifier
blanking. The recof £ statement is similar to the rcvrof £ statement in that
it defaults the receiver off throughout the pulse sequence; however, unlike
revrof £, the recof £ statement only affects the receiver gate and does not
affect the amplifier blanking gate. In al cases, the receiver isturned off when
applying pulses and turned on during acquisition. The default state of the
receiver is off for YWTYINOVA systems (except for whole body systems and for
imaging pulses sequences that havethe initparms sis statement at the
beginning).

initparms sis Initialize parametersfor spectroscopy imaging sequences

rcvroff Turn off receiver gate and amplifier blanking gate
rcvron Turn on receiver gate and amplifier blanking gate
recon Turn on receiver gate only

Turn on receiver gate only
UNTYINOVA systems.
recon ()

On UNITYINOVA systems, receiver gating has been decoupled from amplifier
blanking. The recof £ statement issimilar to the rcvron statement in that it
defaults the receiver on throughout the pulse sequence; however, unlike
rcvron, the recon statement only affectsthereceiver gate and doesnot affect
theamplifier blanking gate. Inall cases, thereceiver isturned off when applying
pulses and turned on during acquisition. The default state of the receiver is off
for UNTYINOVA systems (except for whole body systemsand for imaging pulses
sequences that havethe initparms sis statement at the beginning).

initparms sis Initialize parametersfor spectroscopy imaging sequences

rcvroff Turn off receiver gate and amplifier blanking gate
rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver gate only

Pulse observe transmitter with amplifier gating
rgpulse (width, phase, RG1,RG2)

double width; /* length of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gate delay before pulse in sec */
double RG2; /* gate delay after pulse in sec */

Pul ses the observe transmitter with amplifier gating. The amplifier is gated on
prior to the start of the pulse by RG1 sec and gated off RG2 sec after the end of
the pulse. Thetotal length of this event is therefore not simply width, but
width+RG1+RG2.

The amplifier gating times RG1 and RG2 may be specified explicitly. The
parameters rof 1 and rof 2 are often used for these times. These parameters
are normally “hidden” parameters, not displayed on the screen and entered by
the user. Their values can beinterrogated by entering the name of the parameter
followed by a question mark (e.g., rof1?).

width specifies the duration, in seconds, of the observe transmitter pulse.
phase sets the observe transmitter phase and must be areal-time variable.

210 vnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

rgradient

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

rlpower

Applicability:

Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

RG1 isthetime, in seconds, the amplifier is gated on prior to the start of the
pulse (typically 10 usfor 1H/19F, 40 psfor other nuclei, and 2 psfor the
MERCURYplus/-Vx).

RG2 isthetime, in seconds, before the amplifier is gated off after the end of the
pulse (typically 10 uson the MERCURYplus/-Vx, and about 10 to 20 pson other
systems).

rgpulse (pw,vl,rofl,rof2);
rgpulse (2.0*pw,v2,1.0e-6,0.2e-6) ;

iobspulse Pulse observe transmitter with [PA

ipulse Pulse observe transmitter with PA

irgpulse Pulse observe transmitter with [PA

obspulse Pulse observe transmitter with amplifier gating
pulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Set gradient to specified level
Systems with imaging or PFG modules.

rgradient (channel,value)

char channel; /* gradient 'x', 'y', or 'z' */

double value; /* amplitude of gradient amplifier */
Setsthe gradient current amplifier to specified value. Inimaging, rgradient
setsagradient to a specified level in DAC units.

channel specifiesthe gradient to set. It uses one of the characters 'x', 'x ',
'Y','y','Zz'or'z'.Inimaging, channel canbe 'gread', 'gphase’,
or 'gslice'.

value specifiesthegradient level by areal number (aDAC setting inimaging)

from —4096.0 to 4095.0 for the Performa | PFG module, and from —32768.0 to
32767.0 for the Performa |l PFG module.

rgradient ('z',1327.0) ;

dps_show Draw delay or pulsesin a sequence for graphical display
getorientation Read image plane orientation

shapedgradient Generate shaped gradient

vgradient Set gradient to alevel determined by real-time math
zgradpulse Create a gradient pulse on the z channel

Change power level, linear amplifier systems

Systems with linear amplifiers. This statement is due to be eliminated in future
versions of VnmrJsoftware. Althoughitisstill functional, you should not write
pulse sequences using it and should replace it in existing sequences with
obspower,decpower,dec2power,0rdec3power,&SQXHODHme

rlpower (power,device)
double power; /* new level for coarse power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes transmitter or decoupler power the same as the power statement but
avoidsconsuming areal-timevariablefor thevalue. On systemswith the Output
board (and only on these systems), by default, r1power statements are

01-999253-00 A0604 VnmrJ User Programming 211

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

CAUTION:

Examples:

Related:

rlpwrf
Description:

Related:

rlpwrm
Applicability:
Syntax:

preceded internally by a0.2-usdelay (seethe apovrride statement for more
details).

power setsthe power level by assuming values of 0 (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator or —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can aso be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

On systems with linear amplifiers, be careful when using values of
ripower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

(1) pulsesequence ()

{

double satpwr;
satpwr=getval ("satpwr") ;

rlpower (satpwr,OBSch) ;

}
(2) rlpower (63.0,0BSch) ;
decpower Change first decoupler power, linear amplifier systems

dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems

obspower Change observe transmitter power, linear amplifier systems
power Change transmitter or decoupler power, linear amp. sys.
rlpwrf Set transmitter or decoupler fine power

Set transmitter or decoupler fine power (obsolete)

Do not write any new pulse sequences using this statement and should replace
it in existing sequenceswith obspwrf, decpwrf, dec2pwrf, Or
dec3pwrt, as appropriate.Changes transmitter or decoupler fine power the
same asthe pwr £ statement, except r1pwrf uses areal-number variable for
the power level desired instead of consuming areal-time variable for the level.

decpwrf Set first decoupler fine power

dec2pwrf Set second decoupler fine power

dec3pwrf Set third decoupler fine power

ipwrf Change transmitter or decoupler fine power with IPA
obspwrf Set observe transmitter fine power

power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power

rlpwrf Set transmitter or decoupler fine power

Set transmitter or decoupler linear modulator power
UNTYINOVA systems.

rlpwrm (power,device)
double power; /* new level for lin. mod. power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

212 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Description: Changestransmitter or decoupler linear modul ator power the same asthe pwrm
statement, but to avoid using real-time variables, r1pwrm uses a C variable of
type double as the argument for the amount of change.

Arguments. power isthelinear modulation (fine) power desired.
device iSOBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

Examples. rlpwrm(4.0,0BSch) ;
Related: ipwrm Change transmitter or decoupler lin. mod. power with IPA
pwrm Change transmitter or decoupler linear modul ator power
rotorperiod Obtain rotor period of MAS rotor
Applicability: Systemswith MAS (magic-angle spinning) rotor synchronization hardware.
Syntax: rotorperiod (period)
codeint period; /* variable to hold rotor period */

Description: Obtains the rotor period.

Arguments. period isareal-timevariable into which is placed the rotor period as an
integer in units of 100 ns. For example, for rotorperiod (v4), if v4
contains the value 1700, the rotor period is 170 us and the rotor speed is 1E+7
/ 1700 = 5882 Hz.

Examples. rotorperiod(v4) ;
Related: rotorsync Gated pulse sequence delay from MAS rotor position
xgate Gate pulse sequence from an external event
rotorsync Gated pulse sequence delay from MAS rotor position
Applicability: Systemswith MAS (magic-angle spinning) rotor synchronization hardware.
Syntax: rotorsync (rotations)
codeint rotations; /* variable for turns to wait */

Description: Inserts a variable-length delay that allows synchronizing the execution of the
pulse sequence with a particular orientation of the sample rotor. When the
rotorsync statement is encountered, the pulse sequence is stopped until the
number of rotor rotations has occurred.

Arguments. rotations isareal-timevariablethat specifiesthe number of rotor rotations
to occur before restarting the pul se sequence.

Examples. rotorsync (vé) ;
Related: rotorperiod Obtainrotor period of MAS rotor
xgate Gate pulse sequence from an external event
A B C DE GH I L M OWPIR STV WX Z

setautoincrement

setdivnfactor

setreceiver

01-999253-00 A0604

Set autoincrement attribute for an AP table
Set divn-return attribute and divn-factor for AP table
Associate the receiver phase cycle with an AP table

213

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

setstatus Set status of observe transmitter or decoupler transmitter
settable Store an array of integersin areal-time AP table
setuserap Set user AP register

shapedpulse Perform shaped pulse on observe transmitter

shaped pulse
shapedgradient
shaped2Dgradient

shapedincgradient

Perform shaped pulse on observe transmitter
Generate shaped gradient pulse

Generate arrayed shaped gradient pulse

Generate dynamic variable gradient pulse

shapedvgradient Generate dynamic variable shaped gradient pulse
simpulse Pulse observe and decouple channels simultaneously
sim3pulse Pulse simultaneously on 2 or 3 rf channels
sim4pulse Simultaneous pulse on four channels

simshaped pulse

sim3shaped pulse

Perform simultaneous two-pulse shaped pulse
Perform a simultaneous three-pul se shaped pulse

sli Set SLI lines

spH#off Turn off specified spare line

sp#on Turn on specified spare line

spinlock Control spin lock on observe transmitter
starthardloop Start hardware loop

status Change status of decoupler and homospoil
statusdelay Execute the status statement with a given delay time

stepsize

sub

Set small-angle phase step size, rf type C or D
Subtract integer values

setautoincrement Set autoincrement attribute for an AP table

Syntax: setautoincrement (table)
codeint table; /* real-time table variable */
Description: Setsthe autoincrement attributein an AP table. The index into thetableis set to
0 at the start of an FID acquisition and isincremented after each access into the
table. Tables using the autoincrement feature cannot be accessed within a
hardware loop.

Arguments. table isthe name of thetable (t1 to t60).
Examples. setautoincrement (t9) ;

Related: getelem Retrieve an element from an AP table

loadtable Load AP table elements from table text file
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integersin areal-time AP table

setdivnfactor Set divn-return attribute and divn-factor for AP table

Syntax: setdivnfactor (table,divn factor)
codeint table; /* real-time table variable */
int divn_ factor; /* number to compress by */
Description: Setsthe divn-return attribute and divn-factor for an AP table. The actual index
into thetable isnow set to (index/divn-factor). {0 1} 2 istherefore transl ated by

214 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:
Related:

setreceiver

Syntax:

Description:

Arguments:
Examples:
Related:

setstatus
Applicability:
Syntax:

Description:

Arguments:

Chapter 3. Pulse Sequence Statement Reference —

the acquisition processor, not by PSG (pulse sequence generation), into 00 1 1.
The divn-return attribute results in a divn-factor-fold compression of the
AP table at the level of the acquisition processor.

table specifiesthe name of thetable (t1 to £60).
divn_factor specifies the divn-factor for the table.
setdivnfactor(t7,4);

getelem Retrieve an element from an AP table
loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integersin areal-time AP table

Associate the receiver phase cycle with an AP table

setreceiver (table)
codeint table; /* real-time table variable */

Assigns the ctth element of atable to the receiver variable oph. If multiple
setreceiver statementsare used in apulse sequence, or if the value of oph
is changed by real-time math statements such asassign, add, etc., the last
value of oph prior to the acquisition of datadeterminesthe value of thereceiver
phase.

table specifiesthe name of thetable (t1 to £60).

setreceiver (tl8) ;

getelem Retrieve an element from an AP table

loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
settable Store an array of integersin areal-time AP table

Set status of observe transmitter or decoupler transmitter
UNTYINOVA systems.

setstatus (channel, on,mode, sync, mod_freq)

int channel; /* OBSch, DECch, DEC2ch, or DEC3ch */
int on; /* TRUE (=on) or FALSE (=off) */

char mode; /* 'ec', 'w', 'g', etc. */

int sync; /* TRUE (=synchronous) or FALSE */
double mod freq; /* modulation frequency */

Sets the status of atransmitter independent of the status statement, thus
overriding decoupler parameters such as dm and dmm. Sincethe setstatus
statement is part of the pulse sequence, it has no effect when only an su
command is executed. It is the only way the observe transmitter can be
modulated on UNTYINOVA systems.

channel iSOBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

on IS TRUE (turn on decoupler) or FALSE (turn off decoupler).

mode is one of the following values for a decoupler mode (for further
information on decoupler modes, refer to the description of the dmm parameter
in the manual Command and Parameter Reference):

® ' ¢ sets continuous wave (CW) modulation.

01-999253-00 A0604 vnmrJ User Programming 215

Chapter 3. Pulse Sequence Statement Reference —

Examples:

Related:

settable

Syntax:

Description:

Arguments:

Examples:

Related:

setuserap

Applicability:
Syntax:

Description:

® ' £ satsfm-fm modulation (swept-square wave).

® 'g' sets GARP modulation.

® 'm' sets MLEV-16 modulation.

® 'n' setsnoise modulation.

® 'p' sats programmable pulse modulation (i.e., waveform generation).
® 'y sets sguare wave modulation.

® 'y setsuser-supplied modulation from external hardware.

® 'y' sets WALTZ-16 modulation.

® 'x' sets XY 32 modulation.

OntheUNITY|NOVA' ICI' lfll lgll lmll lpll lrll lull lwlland 'x' are
available.

sync iS TRUE (decoupler is synchronous, on UNTYINOVA systems only) or
FALSE (decoupler is asynchronous).

mod_ freq is the modulation frequency.

setstatus (DECch, TRUE, 'w', FALSE, dmf) ;
setstatus (DEC2ch, FALSE, 'c',FALSE,dmf2);

status Change status of decoupler and homospoil

Store an array of integers in a real-time AP table

settable (tablename, numelements, intarray)

codeint tablename; /* real-time table variable */
int numelements; /* number in array */
int *intarray; /* pointer to array of elements */

Storesaninteger array inareal -time AP table. The autoincrement or divn-return
attributes can be subsequently associated with atable defined by settable by
using setautoincrement and setdivnfactor.

table isthe name of thetable (t1 to £ 60).
number elements isthesize of thetable.

intarray isaC array that containsthe table elements, which can range from
—3276810 32767. Beforecalling set table, thisarray must be predefined and
predimensioned in the pulse sequence using C statements.

settable(tl,10,int array);

getelem Retrieve an element from an AP table

loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table

Set user AP register
UNTYINOVA systems.

setuserap (value, register)
real value; /* value sent to user AP register */
int register; /* AP bus register number: 0, 1, 2, or 3 */

Setsavaluein one of the four 8-bit AP busregisters that provide an output
interface to user devices. The outputs of these registers go to the USER

216 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:
Related:

shapedpulse
Applicability:

shaped pulse
Applicability:

Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

AP connectors J8212 and J38213, located on the back of theleft consol e cabinet.
These outputs have a 100-ohm seriesresistor for circuit protection.

value isasigned or unsigned number (real or integer) to output to the
specified user AP register. The number is truncated to an 8-bit byte.

register isthe AP register number, mapped to output lines as follows:
® Register 0isJ8213, lines 9 to 16.
® Register 1isJ8213, lines 1 to 8.
® Register 21533212, lines 9 to 16.
® Register 3isJ8212, lines 1 to 8.
setuserap(127.0,0) ;

readuserap Readinput from user AP register
vsetuserap Setuser AP register using real-time variable

Perform shaped pulse on observe transmitter

This statement is due to be eliminated in future versions of VnmrJ software.
Although it is still functional, you should not write any new pulse sequences
using it and should replace it in existing sequences with shaped pulse,
which functions exactly the same as shapedpulse.

Perform shaped pulse on observe transmitter

UNITYINOVA systems, or systems with a waveform generator on the observe
transmitter channel.

shaped pulse (pattern,width,phase,RG1l,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pul se on the observe transmitter. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an
apshaped pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper beforethe start of an experiment. When shaped pulseiscalled,
the shape is addressed and started. The minimum pulse length is 0.2 us. The
overhead at the start and end of the shaped pulse varies with the system:

® UNITYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)

If the length islessthan 0.2 us, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the shaped pulse statement creates AP tables on the fly for
amplitude and phase. It also usesthereal-timevariablesv1i2 and v13 to
control the execution of the shape. It does not use AP table variables. For
timing and more information, seethe description of apshaped pulse.Note
that if using AP tableswith shapesthat have alarge number of points, the FIFO

01-999253-00 A0604 VnmrJ User Programming 217

Chapter 3. Pulse Sequence Statement Reference —

can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

Arguments. f£ile isthe name of atext fileinthe shapelib directory that storesthe rf
pattern (leave off the . RF file extension).

width isthe duration, in seconds, of the pulse on the observe transmitter.
phase isthe phase of the pulse and must be areal-time variable.

RG1 isthe delay, in seconds, between gating the amplifier on and gating the
observe transmitter on (the phase shift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the observe transmitter off and
gating the amplifier off.

Examples. shaped pulse ("gauss",pw,vl,rofl,rof2);

Related: apshaped pulse Observe transmitter pul se shaping via AP bus
decshaped pulse Shaped pulse on first decoupler
dec2shaped pulse Shaped pulse on second decouple r
simshaped pulse Simultaneous two-pulse shaped pulse

sim3shaped pulse Simultaneous three-pul se shaped pulse

shapedgradient Generate shaped gradient pulse
Applicability: Systems with waveform generation on imaging or PFG module.
Syntax: shapedgradient (pattern,width, amp, channel, loops,wait)

char *pattern; /* name of shape text file */

double width; /* length of pulse */

double amp; /* amplitude of pulse */

char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */

int wait; /* WAIT or NOWAIT */

Description: Operates the selected gradient channel to provide a gradient pulse to the
selected set of gradient coils. The pulseis created using a gradient waveform
generator and has a pulse shape determined by the arguments name, width,
amp, and Loops. Unlike the shaped rf pulses, the shaped gradient leaves the
gradients at the last value in the gradient pattern when the pulse completes.

Arguments. pattern isthe name of atext file without a.GRD extension to describe the
shape of the pulse. The text file with a .GRD extension should be located in
$vnmrsystem/shapelib or inthe users directory $vnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The pulse length is
affected by two factors: (1) the minimum time of every element in the shape
file must be at least 10 uslong, and (2) the time for every element must be a
multiple of 50 ns. If thewidth of the pulseislessthan 10 ustimesthe number
of stepsin the shape, awarning message is generated. The shaped gradient
software rounds each element to a multiple of 50 ns. If the requested width
differsfrom the actual width by more than 2%, awarning message is displayed.

amp is avalue that scales the amplitude of the pulse. Only the integer portion
of the value isused and it ranges from 32767 to —32767; where 32767 is full
scale and —32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y',or ' z'.(Besurenot to confusethecharacters 'x', 'y ',
or 'z' withthestrings"x", "y",or "z".

218 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

loops isavaue, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given valueis the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
statement. Thetotal timeit will waitiswidth*1oops. If loopsis supplied as
0, it will be counted as 1 when determining its total time.

Examples. shapedgradient ("hsine",0.02,32767,'y',1,NOWAIT) ;
#include "standard.h"
#define POVR 1.2e-5 /* shaped pulse overhead=12 us */
pulsesequence ()
{
for (i=-32000; 1<=32000; i+16000)
{
shapedgradient ("hsine",pw+d3+rx1+rx2,1, 'x', \
1,NOWAIT) ;
shapedpulse ("sinc", pw, oph, rx1l, rx2) ;
delay (d3) ;
}
/* This step sets a square gradient from a low value */
/* to a high value while executing a shaped pulse */
/* and a delay during each gradient value. */
}
Related: dps show Draw delay or pulsesin a sequence for graphical display
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Arrayed shaped gradient function
vgradient Set gradient to alevel determined by real-time math
shaped2Dgradient Generate arrayed shaped gradient pulse
Applicability: Systems with WFG on imaging or PFG module.
Syntax: shaped2Dgradient (pattern,width, amp, channel, \
loops,wait, tag)
char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */
Description: Operates the selected gradient channel to provide a gradient pulse to the

selected set of gradient coils. This statement is basically the same as the
shapedgradient statement except that shaped2Dgradient istalored
to be used in pulse sequences where the amplitude is arrayed (imaging
sequences). For sequences that array the amplitude, it does not use the amount
of waveform generator memory that the shapedgradient statement uses,
but there is a penalty in the amount of overhead time used in setting it up. The
pulseis created using a gradient waveform generator and has a pulse shape
determined by the name, width, amp, and 1oops arguments.

01-999253-00 A0604 vnmrJ User Programming 219

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

pattern isthenameof atext file without a.GRD extension that describesthe
shape of the pulse. The text file with a.GRD extension should be located in
$vnmrsystem/shapelib or inthe users directory $vnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The width of the pulse
isaffected by two factors: (1) the minimum time of every element inthe shape
file must be at least 200 nslong, and (2) the time for every element must be a
multiple of 50 ns. If thewidth of the pulseislessthan 10 ustimesthe number
of stepsin the shape, awarning message is generated. The shaped gradient
software will round each element to a multiple of 50 ns. If the requested width
differsfrom the actual width by more than 2%, awarning message is displayed.

amp isavalue that scales the amplitude of the pulse. Only the integer portion
of the value isused and it ranges from 32767 to —32767; where 32767 is full
scale and —32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y',or ' z'.(Besurenot to confusethecharacters 'x', 'y ',
or 'z' withthestrings"x", "y",or "z".

loops isavaue, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given valueis the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once. Due to a digital
hardware bug affecting looping, patterns must be carefully constructed to
achieve the desired results.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
element. Thetotal timeit will waitiswidth*1loops.

tagisauniqueinteger that “tags’ the gradient element from any other gradient
elements used in the sequence.

#include "standard.h"
pulsesequence ()

{

shaped2Dgradient ("hsine",d3,0.0-gpe, 'x',0,NOWAIT, 1) ;
delay (d3) ;
shaped2Dgradient ("hsine",d4,gpe, 'y', 0,NOWAIT, 2) ;

}

dps_show Draw delay or pulsesin a sequence for graphical display
rgradient Set gradient to a specified level

shapedgradient Provide shaped gradient pulse to gradient channel
vgradient Set gradient to alevel determined by real-time math

shapedincgradient Generate dynamic variable gradient pulse
Applicability:

220

Syntax:

Systems with WFG on imaging or PFG module.

shapedincgradient (channel,pattern,width, \
al0,al,a2,a3,x1,x2,x3,loops,wait)

char channel; /* gradient channel 'x', 'y', or 'z' */
char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */

double a0,al,a2,al3; /* coefficients to determine level */
codeint x1,x2,X3; /* variables to determine level */

VnmrJ User Programming 01-999253-00 A0604

Description:

Arguments:

Related:

Chapter 3. Pulse Sequence Statement Reference —

int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Provides a dynamic, variable shaped gradient pulse controlled using the AP
math functions. The statement drives the chosen gradient with the specified
pattern, scaled to the level defined by the formula:

level = a0 + al*xl + a2*x2 + a3*x3

The pulseis created using a gradient waveform generator and has a pul se shape
determined by the pattern, width, and 1oops arguments, aswell as the
calculation of level.

Unlike the shaped rf pulses, the shapedincgradient will leavethe
gradients at thelast value in the gradient pattern when the pul se completes. The
range of the gradient level is—32767 to +32767. If the requested level lies
outsidethelegal range, itisclipped at the appropriate boundary value. Notethat,
while each variable in the calculation of level must fit in a 16-bit integer,
intermediate sums and productsin the cal culation are done with double
precision, 32-bit integers.

The following error messages are possible:

® Machine configuration doesn't allow gradient
patterns isdisplayed if this statement is used on a system without
gradient waveshaping hardware.

® shapedincgradient: x[i] illegal RT variable: xior
shapedincgradient: no match! isdisplayed if the requested
shape cannot be found or if awidth of zero is specified.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x ', 'y ', or 'z'. (Becareful not to confuse the characters 'x ',
'y',or 'z' withthestrings "x", "y",or "z".

pattern isthe name of atext file without a.GRD extension to describe the
shape of the pulse. The text file with a.GRD extension should be located in
$vnmrsystem/shapelib or inthe users directory $vnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
filemust beat least 10 us, and (2) thetime for every element must beamultiple
of 50 ns. If thewidth of the pulse islessthan 10 ustimes the number of stepsin
the shape), awarning message is generated. The shapedincgradient
software will round each element to a multiple of 50 ns. If the requested width
differsfrom the actual width by more than 2%, awarning message is displayed.

a0, al, a2, a3, x1, x2, x3 arevaues used in the calculation of “level.”

loops isavaue, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given valueis the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once. Due to a digital
hardware bug affecting looping, patterns must be carefully constructed to
achieve the desired results.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted towait until the gradient is compl eted before executing the next
element. Thetotal timeitwill waitiswidth*loops. If loops issupplied as
0, it will be counted as 1 when determining its total time.

getorientation Read image plane orientation
rgradient Set gradient to a specified level

01-999253-00 A0604 VnmrJ User Programming 221

Chapter 3. Pulse Sequence Statement Reference —

shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Set gradient to alevel determined by real-time math

shapedvgradient Generate dynamic variable shaped gradient pulse

Applicability:
Syntax:

Description:

Arguments:

Systems with WFG on imaging or PFG module.

shapedvgradient (pattern,width,amp const, \
amp incr,amp vmult,channel,vloops,wait, tag)
char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double amp const; /* sets amplitude of pulse */
double amp incr; /* sets amplitude of pulse */
codeint amp vmult; /* sets amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
codeint vloops; /* variable for number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Operates the sel ected gradient channel to provide a shaped gradient pulseto the
selected set of gradient coils. This statement is tailored to provide a dynamic
variable shaped gradient level controlled using the system AP math functions
and real-time looping. The statement drives the chosen gradient shape to the
level defined by the formula

amplitude = amp const + amp incr*amp vmult

Therange of the gradient amplitude is-32767 to +32767, where 32767 is full
scale and —32767 is negative full scale.

If the requested level lies outside this range, it is truncated to the appropriate
boundary value. Note that the vl oops argument is also controlled by areal-
time AP math variable. Unlike the shaped rf pulses, the shaped gradient leaves
the gradients at the last value in the gradient pattern when the pulse compl etes.

name isthe name of atext file without a.GRD extension to describe the shape
of the pulse. Thetext file with a.GRD extension should be located in
$vnmrsystem/shapelib orinthe user'sdirectory Svnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
filemust beat least 10 us, and (2) thetime for every element must beamultiple
of 50 ns. If width islessthan 10 us timesthe number of stepsin the shape, a
warning message is generated. The shaped gradient software will round each
element to a multiple of 50 ns. If the requested width differs from the actual
width by more than 2%, awarning message is displayed.

amp const,amp incr, and amp vmult scalethe amplitude of the pulse
according to theformulaabove. amp const and amp incr can bevalues of
type double or integer. amp _vmult must be areal-time AP math variable (v1
tov14) or atable pointer (t1 to t60). The amplitude ranges are also given
above.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x ', 'y’ ,or 'z'. (Becareful not to confuse the characters 'x ',
'y',or 'z' withthestrings "x", "y",or "z".

v1oops allowsthe user toloop the selected waveform. Vauesrange from 1to
255. This also must be area-time AP math variable (v1 tov14) or atable

222 vnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

simpulse

Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

pointer (t1 to t60). Do not use 0 for vloops, because this may cause
inconsistencies when WAIT isselected for thewait 4 me argument. Dueto
adigital hardware bug affecting looping, patterns must be carefully constructed
to achieve the desired results.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted towait until the gradient is compl eted before executing the next
element. Thetotal timeit will waitiswidth*vloops.Itusestheincdelay
statement when waiting for the gradient pulse to compl ete.

tag isauniqueinteger that “tags’ this gradient statement from any other
gradient statement used in the sequence.

#include "standard.h"
pulsesequence ()

{
char gphase, gread, gslice;

amplitude=(int) (0.5*ni*gpe) ;
stat=getorientation (&gread, &gphase, &gslice, "orient")

I

initval(1.0,v1);
initval (nf,v9) ;
loop (v9,V5) ;

shapedvgradient ("hsine",d3,amplitude,igpe, \
v5,gphase,vl,NOWAIT, 1) ;

endloop (v5) ;

}
incdelay Set real-time incremental delay
rgradient Set gradient to specified level

shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Pulse observe and decouple channels simultaneously

simpulse (obswidth,decwidth, obsphase, decphase, \

RG1,RG2)
double obswidth, decwidth; /* pulse lengths in sec */
codeint obsphase,decphase; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Gates the observe and decoupler channels. The shorter of the two pulsesis
centered on the longer pulse, while the amplifier gating occurs before the start
of the longer pulse (even if it isthe decoupler pulse) and after the end of the
longer pulse.

For UNITYINOVA, the absol ute difference in the two pulse widths must be greater
than or equal to 0.2 s, otherwise, atimed event of lessthan the minimum value
(0.1 pus) would be produced:

® if thedifferenceislessthan 0.1 us, the pulses are made equally long.

01-999253-00 A0604 vnmrJ User Programming 223

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

sim3pulse

Applicability:
Syntax:

224

Description:

Arguments:

Examples:

Related:

® |f the differenceisfrom 0.1 to 0.2 us, the difference is made 0.2 us.

® |f thedifferenceislarger than 0.2 us, the difference is made as close as the
timing resolution allows (0.0125 ps).

For systems other than YN INOVA, the minimum timeis 0.2 s, thus, the times
are doubled (the difference must be 0.4 ps, resolution is 0.025 ps).

obswidthand decwidth aretheduration, in sec, of the pulse on the observe
transmitter and first decoupler, respectively.

obsphase and decphase are the phase of the pulse on the observe
transmitter and the first decoupler, respectively. Each must be areal-time
variable.

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

simpulse (pw,pp,vl,v2,0.0,r0f2) ;

decpulse Pulse the decoupler transmitter

decrgpulse Pulsedecoupler transmitter with amplifier gating

dps_show Draw delay or pulsesin a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating

sim3pulse Simultaneous pulse on 2 or 3 rf channels

sim4pulse Simultaneous pulse on four channels

Pulse simultaneously on 2 or 3 rf channels
Systems with two or more independent rf channels.
sim3pulse (pwl, pw2,pw3,phasel,phase2,phase3,RG1l,RG2)

double pwl,pw2,pw3; /* pulse lengths in sec */
codeint phasel,phase2,phase3; /* variables for phases */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Performsa simultaneous, three-pul se pul se on three independent rf channels. A
simultaneous, two-pul se pul se on the observe transmitter and second decoupler
can also be performed by setting the pulse length for the first decoupler to 0.0
(see the second example for how thisis done).

Timing limitations connected with the difference in pulse widths are covered in
the description of simpulse.

pwl, pw2, and pw3 are the pulse length, in seconds, of channels OBSch,
DECch, and DEC2ch, respectively.

phasel, phase2, and phase3 are the phases of the corresponding pulses.
These must be real-time variables (v1 tov14, oph, etc.).

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

sim3pulse (pw,pl,p2,0ph,v10,vl,rofl, rof2) ;
sim3pulse (pw,0.0,p2,0ph,v10,vl,rofl,rof2);

decpulse Pulse the decoupler transmitter

decrgpulse Pulse decoupler transmitter with amplifier gating

VnmrJ User Programming 01-999253-00 A0604

simé4pulse
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

dps_show Draw delay or pulsesin a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim4pulse Simultaneous pulse on four channels

Simultaneous pulse on four channels
Systems with two or more independent rf channels.

sim4pulse (pwl, pw2,pw3,pw4d,phasel, phase2, \
phase3,phase4,RG1,RG2)

double pwl,pw2,pw3,pw4; /* pulse length in sec */
codeint phasel,phase2; /* variables for phase */
codeint phase3,phase4; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Allows for simultaneous pulses on up to four different channels. If any of the
pulses are set to 0.0, no pulse is executed on that channel.

Timing limitations connected with the difference in pulse widths is covered in
the description of simpulse.

pwl, pw2, pw3, and pw4 arethe pulse length, in seconds, of channels OBSch,
DECch, DEC2ch, and DEC3ch, respectively.

phasel, phase?2, phase3, andphase4 arethe phasesof the corresponding
pulses. Each must be real-time variable (v1-v14, oph, €tc.)

RG1 isthe delay, in seconds, between gating on theamplifier and turning on the
first transmitter (all phases set at beginning of RG1, even if pwn is 0.0).

RG2 isthe delay, in seconds, between the fina transmitter off and gating the
amplifier off.

sim4pulse (pw, 2*pw,pl, 2*pl,oph,v3, ZERO, TWO,RG1,RG2) ;
sim4pulse(pw,0.0,0.0,2*pl,oph, ZERO, ZERO, TWO,RG1,RG2) ;
rgpulse Pulse observe channel with amplifier gating

simpulse Pulse observe and decoupler channel simultaneously
sim3pulse Pulse simultaneously on 2 or 3 channel s

simshaped pulse Perform simultaneous two-pulse shaped pulse

Applicability:
Syntax:

Description:

Systems with a waveform generator on two or more rf channels.

simshaped pulse (obsshape,decshape,obswidth, \
decwidth, obsphase, decphase,RG1,RG2)

char *obsshape, *decshape; /* names of .RF shape files */
double obswidth, decwidth; /* pulse lengths in sec */
codeint obsphase,decphase; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Performsasimultaneous, two-pulse shaped pulse on the observe transmitter and
thefirst decoupler under waveform generator control. The overhead at the start
and end of the two-pulse shaped pulse varies with the system:

® UNITY|NOVA: 1.45 us (start), 0 (end).
® Systems with an Acquisition Controller board: 21.5 us, 8.6 us.
® Systems with an Output board: 21.7 us, 8.8 us.

01-999253-00 A0604 vnmrJ User Programming 225

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

These values hold regardless of the values for the arguments obswidth and
decwidth.

If either obswidthor decwidthis0.0, no pulseoccursonthe corresponding
channel. If both obswidth and decwidth are non-zero and either
obsshape or decshape issettothenull string (' '), thenahard pulse occurs
on the channel with the null shape name. If either the pulse width is zero or the
shape nameisthe null string, then awaveform generator is not required on that
channel.

obsshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the observe transmitter.

decshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the first decoupler.

obswidth isthe length of the pulse, in seconds, on the observe transmitter.
decwidth isthe length of the pulse, in seconds, on the first decoupler.

obsphase isthe phase of the pulse on the observe transmitter. The value must
be areal-time variable (v1 to v14, oph, €c.).

decphase isthe phase of the pulse on thefirst decoupler. The value must be
ared-timevariable (vl tov14, oph, etc.).

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

simshaped pulse("gauss", "hrml80",pw,pl,v2,v5, \
rofl,rof2);

decshaped pulse Shaped pulse on first decoupler
dec2shaped pulse Shaped pulse on second decoupler
shaped pulse Shaped pulse on observe transmitter
sim3shaped pulse Simultaneous three-pul se shaped pulse

sim3shaped pulse Perform a simultaneous three-pulse shaped pulse
Applicability:

226

Syntax:

Description:

Systems with a waveform generator on three or more rf channels.

sim3shaped pulse (obsshape, decshape,dec2shape, \
obswidth,decwidth,dec2width, obsphase, \
decphase, dec2phase,RG1,RG2)

char *obsshape; /* name of obs .RF file */

char *decshape; /* name of dec .RF file */

char *dec2shape; /* name of dec2 .RF file */

double obswidth; /* obs pulse length in sec */

double decwidth; /* dec pulse length in sec */

double dec2width; /* dec2 pulse length in sec */
codeint obsphase; /* obs real-time var. for phase */
codeint decphase; /* dec real-time var. for phase */
codeint dec2phase; /* dec2 real-time var for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a simultaneous, three-pulse shaped pulse under waveform generator
control on three independent rf channels. The overhead at the start and end of
the shaped pulse varies:

* UNTY|NOVA: 1.95 s (start), O (end).

VnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:

Related:

sli

Applicability:

Syntax:

Chapter 3. Pulse Sequence Statement Reference —

® Systems with an Acquisition Controller board: 32.25 s, 12.9 ps.
® Systems with an Output board: 32.45 us, 13.1 us.

These values hold regardless of the values of the arguments obswidth,
decwidth, and dec2width.

sim3shaped pulse can aso be used to perform a simultaneous two-pulse
shaped pulse on any combination of three rf channels. This can be achieved by
setting one of the pulse lengths to the value 0.0 (see the second example for an
illustration of how thisis done).

If any of the shape names are set to the null string (' '), then ahard pul se occurs
on the channel with the null shape name. If either the pulse width is zero or the
shape nameisthe null string, then awaveform generator is not required on that
channel.

obsshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the observe transmitter.

decshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the first decoupler.

dec2shape isthe name of the text file in the shapelib directory that
contains the rf pattern to be executed on the second decoupler.

obswidth isthe length of the pulse, in seconds, on the observe transmitter.
decwidth isthe length of the pulse, in seconds, on the first decoupler.
dec2width isthelength of the pulse, in seconds, on the second decoupler.

obsphase isthephaseof the pulse onthe observetransmitter. The value must
be areal-time variable (v1 to v14, oph, €tc.).

decphase isthe phase of the pulse on thefirst decoupler. The value must be
ared-timevariable (vl tov14, oph, etc.).

dec2phase isthe phase of the pulse on the second decoupler. The value must
be areal-time variable (v1 to v14, oph, €tc.).

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and

gating the amplifier off.

sim3shaped pulse("gauss", "hrml80", "sinc",pw,pl,p2, \
v2,v5,v6,rofl,rof2);

sim3shaped pulse ("dumy", "hrml80","sinc",0.0,pl,p2, \
v2,v5,v6,rofl,rof2);

decshaped pulse Shaped pulse on first decoupler
dec2shaped pulse Shaped pulse on second decoupler
shaped pulse Shaped pulse on observe transmitter
simshaped pulse Simultaneous two-pulse shaped pulse
Set SLI lines

Systems with imaging capability and the Synchronous Line Interface (SLI)
board, an option that provides an interface to custom user equipment.

sli (address, mode, value)

int address; /* SLI board address */
int mode; /* SLI_SET, SLI OR, SLI AND, SLI XOR */
unsigned value; /* bit pattern */

01-999253-00 A0604 VnmrJ User Programming 227

Chapter 3. Pulse Sequence Statement Reference —

Description:

Arguments:

Examples:

Setslines on the SLI board. It has no return value. The board contains 32 TTL-
compatible logic signals that can be set by these functions. Each line has an
LED indicator and a 100-ohm seriesresistor for circuit protection. Thelinesare
accessible through the 50-pin ribbon connector J4 on the front edge of the SL1
board. The pin assignments are as follows:

® Pinsland49 area +5V supply through 100-ohm seriesresistor (enabled
by installing jumper J3L)

® Pins3to 10 control bitsOto 7

® Pins12 to 19 control bits 8 to 15

® Pins21 to 28 control bits 16 to 23

® Pins41 to 48 control bits 24 to 31

® Pins2, 11, 20, 29, 40, and 50 are ground

s1i hasapre-execution delay of 10.950 us but no post-execution delay. The
delay is composed of a 200-ns startup delay with 5 AP bus cycles (1 AP bus
cycle=2.150 us).

Thelogic levelson the SLI lines are not all set simultaneously. The four bytes
of the 32 bit word are set consecutively, the low-order byte first. The delay
between setting of consecutive bytesis 1 AP bus cycle £100 ns. (This 100-ns
timing jitter is non-cumulative.)

Theerror message I1legal mode: niscaused by themode argument not
being oneof SLI SET, SLI OR, SLI_XOR, Or SLI_AND.

address isthe address of the SLI board in the system. It must match the
address specified by jumper J7R on the board. Note that the jumpers 19-20
through -2 specify bits 2 through 11, respectively. Bits0 and 1 are always zero.
An installed jumper signifiesa“one” bit, and a missing jumper a*“zero”. The
standard addresses for the SL1 in the VME card cage:

® Digital (Ieft) sideis C90 (hex) = 3216
® Analog (right) sideis 990 (hex) = 2448

mode determines how to combine the specified value with the current output of
the SLI to produce the new output. The four possible modes:

® SLI_SET istoload the new valuedirectly into the SLI
® SLI ORistologicaly OR the new value with the old
® SLI AND isto logicaly AND the new value with the old
® SLI XOR isto logicaly XOR the new value with the old

value (as modified by the mode argument) specifies the bit pattern to be set
inthe SLI board. This should be a non-negative number, between 0 (al lines
low) and 232-1 (all lines high).

pulsesequence ()

{

int SLIaddr; /* Address of SLI board */
unsigned SLIbits; /* 32 bits of SLI line settings */

SLIbits = getval("sli");
SLIaddr = getval ("address");

sli (SLIaddr, SLI SET, SLIbits);

228 vnmrJ User Programming 01-999253-00 A0604

Related:

sp#off

Applicability:
Syntax:

Description:

Examples:

Related:

sp#on

Applicability:
Syntax:

Description:

Examples:

Related:

spinlock

Applicability:
Syntax:

Description:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

}

Notethat s1i and address are not standard parameters, but need to be
created by the user if they are mentioned in a user pulse sequence (for
details, see the description of the create command).

sp#on Turn on specified spare line
sp#off Turn off specified spare line
vsli Set SLI lines from real-time variable

Turn off specified spare line
UNTYINOVA systems.
sploff () to sp5Soff ()

Turns off the specified user-dedicated spare line connector (splof £ for
SPARE 1, sp2of £ for SPARE 2, etc.) for high-speed device control.

® UNTYINOVA has five spare lines available from the Breakout panel on the
back of the left console cabinet.

sploff () ;
sp4off () ;

sp#on Turn on specified spare line

Turn on specified spare line
UNTYINOVA systems.
splon () to sp5on ()

Turns on the specified user-dedicated spare line connector (splon for SPARE
1, sp2on for SPARE 2, etc.) for high-speed device control. On the YNTYINOVA,
each spare line changes from low to high when turned on.

® UNITYINOVA has five spare lines available from the Breakout panel on the
back of the left console cabinet.

splon();
sp5on () ;

sp#off Turn off specified spare line

Control spin lock on observe transmitter
Systems with a waveform generator on the observe transmitter channel.

spinlock (pattern, 90 pulselength, tipangle resoln, \
phase,ncycles)

char *pattern; /* name of .DEC text file */

double 90 pulselength; /* 90-deg pulse length of channel */

double tipangle resoln;/* resolution of tip angle */

codeint phase; /* phase of spin lock */

int ncylces; /* number of cycles to execute */

Executes awaveform-generator-controlled spin lock onthe observetransmitter.
Both the rf gating and the mixing delay are handled within this function.
Arguments can be variables (which require the appropriate getval and
getstr statements) to permit changes via parameters (see the second
example).

229

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Arguments:

Examples:

Related:

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulse duration for a90° tip angle on the observe
transmitter.

tipangle resoln istheresolution in tip-angle degreesto which the
decoupling pattern is stored in the waveform generator.

phase isthe phase angle of the spin lock. It must be area-time variable (v1
tov14, oph, etc.).

ncycles isthe number of timesthat the spin-lock pattern isto be executed.

spinlock ("mlevlée",pw90,90.0,v1,50) ;
spinlock (locktype, pw, resol,vl,cycles) ;

decspinlock First decoupler spin lock waveform control
dec2spinlock Second decoupler spin lock waveform control
dec3spinlock Third decoupler spin lock waveform control

starthardloop Start hardware loop

Syntax:

Description:

starthardloop (vloop)
codeint vloop; /* real-time variable for loop count */

Starts ahardware loop. The number of repetitions of the hardware loop must be
two or more. If the number of repetitionsis 1, the hardware looping feature is
not activated. A hardware loop with a count equal to 0 is not permitted and
generates an error. Depending on the pul se sequence, additional code may be
needed to trap for this condition and skip the starthardloop and
endhardloop statementsif the count is 0.

Only instructions that require no further intervention by the acquisition
computer (pulses, delays, acquires, and other scattered instructions) are allowed
inahard loop. Most notably, no real-time math statements are allowed, thereby
precluding any phase cycle calculations. The number of eventsincluded in the
hard loop, including the total number of datapointsif acquisition is performed,
is subject to the following limitations:

® 2048 or less for the Data Acquisition Controller board, Pulse Sequence
Controller board, or MERCURYplus/-Vx STM/Output board.

® 1024 or less for the Acquisition Controller board.

® 63 or lessfor the Output board (seethe description section of theacquire
statement for further information about these boards).

In all cases, the number of events must be greater than one. No nesting of hard
loops is allowed.

For the Output board, a hardware loop must be preceded by some timed event
other than an explicit acquisition or another hardware loop. If two hardware
loops must follow one another, it will therefore be necessary to insert a
statement like delay (0.2e-6) between thefirst endhardloop and the
second starthardloop. Withonly asingle hardwareloop, thereisnotiming
limitation on the length of a single cycle of the loop. With two hardware oops
(such as aloop of pulses and delays followed by an implicit acquisition), the
first hardware loop must have a minimum cycle length of approximately 80 us.
With three or more hardware loops, |oops that are not the first or last must have
aminimum cycle length of about 100 us.

230 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:
Related:

status

Syntax:

Description:

Arguments:
Examples:
Related:

Chapter 3. Pulse Sequence Statement Reference —

For the Data Acquisition Controller, Pulse Sequence Controller, Acquisition
Controller, and MERCURYplus/-Vx STM/Output boards, there are no timing
restrictions between multiple, back-to-back hard loops. There is one subtle
restriction placed on the actual duration of ahard loop if back-to-back hard
loops are encountered: the duration of theith hard loop must be N(i+1) * 0.4 us,
where N(i+1) is the number of events occurring in the (i+21)th hard loop.

v1oop isthe number of hardware loop repetitions. It must be area-time
variable (v1tov14, ct, etc.) and not an integer, area number, or aregular
variable.

starthardloop (v2) ;

acquire Explicitly acquire data
endhardloop End hardware loop

Change status of decoupler and homospoil

status (state)

int state; /* index: A, B, C, ..., Z */

Controls decoupler and homospoil gating. Parameters controlled by status
are dm (first decoupler mode), dmm (first decoupler modulation mode), and hs
(homospoil). For systems with athird rf channel, dm2 (second decoupler
mode), dm3 (third decoupler mode), dmm2 (second decoupler modulation
mode), and dmm3 (third decoupler modulation mode) are also controlled.

Each of these parameters can have multiple states: status (A) setseach
parameter to the state described by the first letter of itsvalue, status (B) uses
the second letter, etc. If a pulse sequence has more status statements than there
are status modes for a particular parameter, control reverts to the last | etter of
the parameter value. Thusif dm="ny"', status (C) will look for the third
letter, find none, and then use the second letter (y) and turn the decoupler on
(actually, leave the decoupler on).

The states do not have to increase monotonically during a pulse sequence. It is
perfectly possible to write a pulse sequence that startswith status (2), goes
later to status (B), then goesback to status (A), thento status (C),
etc.

Homospoil is treated slightly differently than the decoupler. If a particular
homospoil code letter is ' v ', delays coded as hsde 1 ay that occur during the
time the status corresponds to that code letter will begin with a homospoil
pulse, the duration of which is determined by the parameter hst. Thusif
hs="ny", dl hsdelay delaysthat occur during status (B) will begin with
ahomospoil pulse. The final status always occurs during acquisition, at which
time ahomospoil pulse is not permitted. Thus, if a particular pul se sequence
uses status (A), status (B), and status (C), dm and other decoupler
parameters can have up to three letters, but hs has only two, because having
hs="y"' during status (C) ismeaningless and is consequently ignored.

On all systemswith class C amplifiersto switch from low-power to high-power
decoupling, insert dhpf1ag=TRUE; or dhpflag=FALSE; inapulse
sequence just before a status statement.

state setsthe status modeto A, B, C, ..., or Z.

status () ;
dhpflag Switch decoupling from low-power to high-power
hsdelay Delay specified time with possible homospoil pulse

01-999253-00 A0604 vnmrJ User Programming 231

Chapter 3. Pulse Sequence Statement Reference —

statusdelay
Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

stepsize

Applicability:

232

Syntax:

Description:

Arguments:

setstatus Set status of observe transmitter or a decoupler transmitter
statusdelay Execute the status statement with a given delay time

Execute the status statement with a given delay time
UNITYlNOVA

statusdelay (state, time)

int state; /* index: A, B, C, ..., Z */

double time; /* delay time, in sec. */

Executes the status statement and delays for the time provided as an
argument.

The current status statement takes a variable amount of time to execute,
which depends on the number of rf channels configured in the system, the
previous status state of each decoupler channel, and the new status state of each
decoupler channel. Thistimeissmall (on the order of afew microseconds
without programmable decoupling to tens of microseconds with programmable
decoupling) but can be significant in certain experiments. statusdelay
allowsthe user to specify adefined period of timefor the status statement to
execute.

If theamount of time given as an argument is not long enough to account for the
overhead delays of status; the pulse sequence will still run, but awarning
message will be generated to let the user know of the discrepancy.

The following table lists the maximum amount of time per channel for the
status statement to execute.

System Without programmable With programmable
decoupling (us) decoupling (us)
UNITYINOVA 25 25

state specifiesthe statusmode asA,B,C,...,.Z.
time specifiesthe delay time, in seconds.

statusdelay (A,dl) ;
statusdelay (B, 0.000010) ;

status Change status of decoupler and homospoil

Set small-angle phase step size, rf type C or D

Systems with rf type C or D, and MERCURYplus/-Vx. This statement is due to
be eliminated in future versions of VnmrJ software. Although it is still
functional, you should not write any pul se sequences using it and should replace
itin existing sequenceswith obsstepsize, decstepsize,
dec2stepsize, Ordec3stepsize, asappropriate.

stepsize (step size,device)
double step size; /* step size of phase shifter */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Setsthe step size of the small-angle phaseincrement for aparticular device. The
phase information into statements decpul se, decrgpul se,
dec2rgpulse,dec3rgpulse, pulse, rgpulse,and simpulse isstill

expressed in units of 90°.
step_ size isarea number or avariable for the phase step size desired.

VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

device isOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler). Thestep size phase shift selected isactive only
for the xmtrphase statement if device iSOBSch, only for the
deplrphase statement if device iSDECch, only for thedcplr2phase
statement if device iSDEC2ch, or only for thedcplr3phase statement if
the deviceisDEC3ch.

Examples. stepsize(30.0,0BSch) ;
stepsize (step,DEC2ch) ;

Related: dcplrphase Set small-angle phase of first decoupler, rf type C or D
dcplr2phase Set small-angle phase of second decoupler, rf type C or D
dcplr3phase Set small-angle phase of third decoupler, rf type C or D
decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
xmtrphase Set small-angle phase of observe transmitter, rf type C

sub Subtract integer values
Syntax: sub (vi,vj,vk)
codeint vi; /* real-time variable for minuend */
codeint vij; /* real-time variable for subtrahend */
codeint vk; /* real-time variable for difference */

Description: Setsthe value of vk equa tovi-vj.

Arguments. vi istheinteger valueof theminuend, vj istheinteger value of the subtrahend,
and vk isthe difference of vi and vj. Each argument must be a rea-time
variable (v1tov14, oph, etc.).

Examples. sub (v2,v5,vé) ;

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values

A B C D E G H I L Mm O P R S T V W X Z

text error
text message
tsadd

Send atext error message to VnmrJ
Send amessage to VnmrJ
Add an integer to AP table elements

01-999253-00 A0604 vnmrJ User Programming 233

Chapter 3. Pulse Sequence Statement Reference —

tsdiv
tsmult
tssub
ttadd
ttdiv
ttmult
ttsub
txphase

text error

Syntax:

Description:

text message

Syntax:

Description:

tsadd
Syntax:

Description:
Arguments:

Examples:
Related:

tsdiv

Syntax:

Description:

Arguments:

Divide an integer into AP table elements
Multiply an integer with AP table elements
Subtract an integer from AP table elements
Add an AP table to a second table

Divide an AP table into a second table
Multiply an AP table by a second table
Subtract an AP table from a second table
Set quadrature phase of observe transmitter

Send a text error message to VnmrJ
text error (char *format, ...)

Sends an error message to VnmrJ and writes the message into the file
userdir+'/psg.error' .

Send a message to VhmrJ
text message (char *format, ...)

Sends amessage to VnmrJ. text_messageislike warn message, except it does
not cause the beep to occur.

Add an integer to AP table elements

tsadd (table, scalarval,moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer added */
int moduloval; /* modulo value of result */

A run-time scalar operation that adds an integer to elements of an AP table.
table specifiesthe name of thetable (t1 to £60).
scalarval isaninteger to be added to each element of the table.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

tsadd (t31,4,4);

tsdiv Divide an integer into AP table elements
tsmult Multiply an integer with AP table elements
tssub Subtract an integer from AP table elements

Divide an integer into AP table elements

tsdiv (table, scalarval,moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer divisor */
int moduloval; /* modulo value of result */

A run-time scalar operation that divides an integer into the elements of an
AP table.

table specifiesthe name of thetable (t1 to £60).

scalarval isaninteger to be divided into each element of the table.
scalarval must not equal O; otherwise, an error isdisplayed and PSG aborts.

234 vnmrJ User Programming 01-999253-00 A0604

Examples:

Related:

tsmult

Syntax:

Description:

Arguments:

Examples:

Related:

tssub

Syntax:

Description:

Arguments:

Examples:

Related:

ttadd

Syntax:

Description:
Arguments:

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

tsdiv(t31,4,4);

tsadd Add an integer to AP table elements
tsmult Multiply an integer with AP table elements
tssub Subtract an integer from AP table elements

Multiply an integer with AP table elements

temult (table, scalarval, moduloval)
codeint table;
int scalarval;
int moduloval;

/* real-time table variable */
/* integer multiplier */
/* modulo value of result */

A run-time scalar operation that multiplies an integer with the elements of an
AP table.

table specifiesthe name of thetable (t1 to £60).
scalarval isaninteger to be multiplied with each element of the table.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

temult (t31,4,4);

tsadd Add an integer to AP table elements
tsdiv Divide an integer into AP table elements
tssub Subtract an integer from AP table elements

Subtract an integer from AP table elements

tssub (table, scalarval,moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer subtracted */

int moduloval; /* modulo value of result */

A run-time scalar operation that subtracts an integer from the elements of an AP
table.

table specifies the name of thetable (t1 to £60).
scalarval isaninteger to be subtracted from each e ement of thetable.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

tssub (t31,4,4);

tsadd Add an integer to AP table elements
tsdiv Divide an integer into AP table elements
tsmult Multiply an integer with AP table elements

Add an AP table to a second table

ttadd(table dest,table mod,moduloval)
codeint table dest;
codeint table mod;
int moduloval;

/* real-time table variable */
/* real-time table variable */
/* modulo value of result */

A run-time vector operation that adds one AP table to a second table.
tablenamedest isthe name of the destination table (t1 to t60).

235

VnmrJ User Programming

Chapter 3. Pulse Sequence Statement Reference —

Examples:

Related:

ttdiv

Syntax:

Description:
Arguments:

Examples:

Related:

ttmult

Syntax:

Description:
Arguments:

table mod isthenameof thetable(t1 tot60)that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest.Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod.

moduloval isthe modulo value taken on the result of the operation if
moduloval is greater than 0.

ttadd (t28,t42,6) ;

ttdiv Divide an AP table into a second table
ttmult Multiply an AP table by a second table
ttsub Subtract an AP table from a second table

Divide an AP table into a second table
ttdiv(table dest,table mod,moduloval)

codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */

A run-time vector operation that divides one AP table into a second table.
table dest isthe name of the destination table (t1 to t60).

table mod isthenameof thetable(t1 tot60)that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest.Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod. Noelementin table mod canequal O.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

ttdiv (t28,t42,6) ;

ttadd Add an AP table to a second table
ttmult Multiply an AP table by a second table
ttsub Subtract an AP table from a second table

Multiply an AP table by a second table
ttmult (table dest, table mod,moduloval)

codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */

A run-time vector operation that multiplies one AP table by a second table.
table dest isthename of the destination table (t1 to t60).

table mod isthenameof thetable(t1 tote60)that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest.Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

236 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Examples. ttmult (t28,t42,6);
Related: ttadd Add an AP table to a second table
ttdiv Divide an AP table into a second table
ttsub Subtract an AP table from a second table
ttsub Subtract an AP table from a second table
Syntax: ttsub (table dest,table mod,moduloval)
codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */
Description: A run-time vector operation that subtracts one AP table from a second table.
Arguments. table dest isthe name of the destination table (t1 to t60).
table mod isthenameof thetable(t1 tote60)that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest. Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod.
moduloval isthe modulo vaue taken on the result of the operation if
moduloval is greater than 0.
Examples. ttsub(t28,t42,6);
Related: ttadd Add an AP table to a second table
ttdiv Divide an AP table into a second table
ttmult Multiply an AP table by a second table
txphase Set quadrature phase of observe transmitter
Syntax: txphase (phase)
codeint phase; /* variable for quadrature phase */
Description: Sets the observe transmitter quadrature phase to the vaue referenced by the
real-time variable so that the transmitter phase is changed independently from a
pulse. Thismay be useful to “preset” the transmitter phase at the beginning of a
delay that precedes a particular pulse. For example, in the sequence
txphase (v2) ; delay (d2) ; pulse (pw,v2) ;,thetransmitter phaseis
changed at the start of the d2 delay. In a“norma” sequence, an rof1 time
precedes the pulse to change the transmitter phase.
Arguments. phase isthequadrature phasefor the observetransmitter. It must beareal-time
variable (vl tov14, oph, ct, etc.).
Examples. txphase (v3) ;
Related: decphase Set quadrature phase of first decoupler
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler
AB C DE GH I L M OWPIR STV WX Z

01-999253-00 A0604 vnmrJ User Programming 237

Chapter 3. Pulse Sequence Statement Reference —

vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

var_ active Checks if the parameter is being used
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse

vdelay Set delay with fixed timebase and real-time count
vdelay list Get delay value from delay list with real-time index
vireq Select frequency from table

vgradient Set gradient to alevel determined by real-time math
voffset Select frequency offset from table

vscan Provide dynamic variable scan

vsetuserap Set user AP register using real-time variable

vsli Set SLI linesfrom rea-time variable

vagradient Variable angle gradient
Syntax: vagradient (gradlvl, theta,phi)

double gradlvl; /* gradient amplitude in G/cm */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Description: Appliesagradient of amplitude gradlvl at an angle theta from the z axis
and rotated about the xy plane at an angle phi. Information from a gradient
table is used to scale and set the values correctly. The values applied to each

gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

vagradient leavesthe gradients at the given levels until they are turned off.
To turn off the gradients, add avagradient statement with gradlvl setto

zero or includethe zero _all gradients statement.

vagradient isused if there are actions to be performed while the gradients
areon. vagradpulse issimpler to useif there are no other actions performed

while the gradients are on.
Arguments. gradlvl isthe gradient amplitude, in gauss/cm.
theta definesthe angle, in degrees, from the z axis.

phi definesthe angle of rotation, in degrees, about the xy plane.

Examples. vagradient (3.0, 54.7, 0.0);
pulse (pw, oph) ;
delay (0.001 - pw);
zero _all gradients() ;

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient

238 vnmrJ User Programming 01-999253-00 A0604

vagradpulse
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

var_active

Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

vashapedgradpulse Variable angle shaped gradient pulse
zero _all gradients Zero all gradients

Variable angle gradient pulse
UNITYINOVA systems.
vagradpulse (gradlvl,gradtime, theta, phi)

double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Appliesagradient pulse of amplitudegradlvl at anangle theta fromthez
axisand rotated about the xy plane at an angle ph1i. Information from agradient
table is used to scale and set the values correctly. The values applied to each
gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

The gradients are turned off after gradt ime seconds.

vagradpulse issimpler to useif there are no other actions while the
gradientsare on. vagradient isused if there are actionsto be performed
while the gradients are on.

gradlvl isthe gradient amplitude, in gauss/cm.
gradtime isthetime, in seconds, to apply the gradient.
theta istheangle, in degrees, from the z axis

phi isthe angle of rotation, in degrees, about the xy plane.
vagradpulse(3.0,0.001,54.7,0.0) ;

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle gradient pulse
zero all gradients Zeroal gradients

Checks if the parameter is being used
var_active

Checksif the parameter is“ active" (returns 1) or “inactive” (returns0). Applies
to numbers, not strings. “Inactive” means that the parameter is not being used.
If the parameter is a number, you can set it to 'n' to make it “inactive.” For
example, you can set fn=256 or fn="n". |f the paramerer does not exist,
var_activeisO

01-999253-00 A0604 vnmrJ User Programming 239

Chapter 3. Pulse Sequence Statement Reference —

vashapedgradientVariable angle shaped gradient
Applicability: YNTYINOVA systems.

Syntax: vashapedgradient (pattern,gradlvl,gradtime, theta, \
phi, loops,wait)

char* pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* time to apply gradient in sec */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */
int loops; /* number of waveform loops */

int wait; /* WAIT or NOWAIT */

Description: Appliesagradient shape pattern with an amplitude gradlvl at an angle
theta from the z axis and rotated about the xy plane at an angle phi.
Information from a gradient table is used to scale and set the values correctly.
The amplitudes applied to each gradient axis are as follows:

x gradlvl * (sgsin(phi)*sin(theta))
vy gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

vashapedgradient leavesthe gradients at the given levels until they are
turned off. To turn off the gradients, add another vashapedgradient
statement with gradlvl setto zero orinsertazero all gradients
statement. Note that vashapedgradient assumes the gradient pattern
zeroes the gradients at its end, and it does not explicitly zero the gradients.

vashapedgradient isused if there are actions to be performed while the
gradientsare on,
Arguments. pattern isatext filethat describes the shape of the gradient. Thetext fileis

located in $vnmrsystem/shapelib or inthe usersdirectory
Svnmruser/shapelib.

gradlvl isthe gradient amplitude, in gauss/cm.
gradtime isthetime, in seconds, to apply the gradient.
theta istheangle, in degrees, from the z axis.

phi isthe angle of rotation, in degrees, about the xy plane.

loops isavaue from 0to 255 to loop the selected waveform. Gradient
waveforms on the YNTYINOVA do not use this field and it should be set to 0.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
statement.

Examples. vashapedgradient ("ramp hold",3.0,trise,54.7, \
0.0,0,NOWAIT) ;
pulse (pw, oph) ;
delay (0.001-pw-2*trise) ;
vashapedgradient ("ramp_down",3.0,trise,54.7, \
0.0,0,NOWAIT) ;

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse

240 vnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zeroall gradients

vashapedgradpulse Variable angle shaped gradient pulse

Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

vdelay
Applicability:
Syntax:

UNITYINOVA systems.
vashapedgradpulse (pattern,gradlvl,gradtime, \

theta,phi)
char *pattern; /* gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Appliesagradient shape pattern with an amplitude gradlvl at an angle
theta from the z axis and rotated about the xy plane at an angle phi.
Information from a gradient table is used to scale and set the values correctly.
The amplitudes applied to each gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

The gradient are turned off after gradt ime seconds. Note that
vashapedgradpul se assumesthat the gradient pattern zeroesthe gradients
at its end and does not explicitly zero the gradients.

vashapedgradpulse issimpler to usethenthe vashapedgradient
statement if there are no other actions while the gradients are on.
vashapedgradient isused when there are actions to be performed while
the gradients are on.

pattern isatext filethat describes the shape of the gradient. The text fileis
located in $vnmrsystem/shapelib orintheuser directory Svnmruser/
shapelib.

gradlvl isthe gradient amplitude, in gauss/cm.

gradtime isthetime, in seconds, to apply the gradient.

theta istheangle, in degrees, from the z axis.

phi isthe angle of rotation, in degrees, about the xy plane.
vashapedgradpulse ("hsine",3.0,0.001,54.7,0.0) ;

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

vashapedgradient Variable angle shaped gradient

zero all gradients Zeroall gradients

Set delay with fixed timebase and real-time count
UNTYINOVA systems.

vdelay (timebase, count)
int timebase; /* NSEC, USEC, MSEC, or SEC */
codeint count; /* real-time variable for count */

01-999253-00 A0604 VnmrJ User Programming 241

Chapter 3. Pulse Sequence Statement Reference —

Description:

Arguments:

Examples:
Related:

vdelay list

Applicability:

Syntax:

Description:

Arguments:

Examples:

Setsadelay for atime period equal to the product of the specified t imebase
and the count.

timebase isone of the four defined time bases: NSEC (described below),
USEC (microseconds), MSEC (milliseconds), or SEC (seconds).

count isareal-timevariable (v1 tov14). For predictable acquisition, thereal -
time variable should have a value of 2 or more.

If timebase issettoNSEC, the delay dependson which acquisition controller
board is used on the system (see the description section of the acquire
statement for further information about these boards.):

e On systemswith aData Acquisition Controller board, the minimum delay
isacount of 0 (100 ns), and acount of n correspondsto adelay of (100
+ (12.5*n)) ns. For example, vdelay (NSEC, v1),whenv1=4, givesa
delay of (100 + (12.5*4)) nsor 150 ns.

e On systems with a Pulse Sequence Controller board or an Acquisition
Controller board, the minimum delay isa count of 2 (200 ns). A count
greater than 2 isthe minimum delay plustheresolution (25 ns) of the board.
For example, vdelay (NSEC, v1),whenv1=4, givesadelay of (200 +
25) nsor 225 ns.

e On systems with Output boards, the minimum delay isa count of 2 (200
ns). A count greater than 2 isthe minimum delay plusthe resolution (100
ns) of the board. For example, vdelay (NSEC, v1l),whenv1=4, givesa
delay of (200 + 100) ns or 300 ns.

vdelay (USEC, v3) ;
create delay list Create table of delays

delay Delay for a specified time

hsdelay Delay specified time with possible homospoil pulse
idelay Delay for a specified time with IPA

incdelay Red time incrementa delay

initdelay Initialize incremental delay

vireg Select frequency from table

voffset Select frequency offset from table

vdelay list Get delay vaue from delay list with real-time index

Get delay value from delay list with real-time index
UNTYINOVA systems.
vdelay list (list number, vindex)

int list number; /* same index as create delay list */
codeint vindex; /* real time variable */

Provides a means of indexing into previously created delay lists using areal -
time variable or an AP table. Theindexing into thelist is from 0 to N-1, where
N isthe number of itemsin thelist. The delay table hasto have been created
withthecreate delay 1ist statement. It hasno return value.

tlist number isthe number between O and 255 for each list. This number
must match the 1ist number used when creating the table.

vindex isarea-timevariable (v1 tov14) or an APtable (t1 to t60).

pulsesequence ()

{

int noffset, ndelay, listnum;

242 vnmrJ User Programming 01-999253-00 A0604

Related:

vireq

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

vgradient

Applicability:
Syntax:

Description:

Chapter 3. Pulse Sequence Statement Reference —

double offsetsl[256],0ffsets2[256],delay[256];

/* initialize offset and delay lists */
create offset list (offsetsl,noffset,OBSch,0);
create delay list(delay,ndelay,1);

create offset list (offsets2,noffset,DECch,?2);

voffset (0,v4); /* get v4 from observe offset list */

vdelay 1list(1,v5); /* get v5 from delay list */
voffset(2,v4); /* get v4 from decouple offset list */
}

create delay list Create table of delays

delay Delay for a specified time

hsdelay Delay specified time with possible homospoil pulse
idelay Delay for a specified time with IPA

incdelay Red time incrementa delay

initdelay Initialize incremental delay

vireg Select frequency from table

voffset Select frequency offset from table

vdelay Set delay with fixed timebase and real-time count

Select frequency from table
UNTYINOVA systems.

vireg(list number, vindex)
int list number; /* same index as for create freg list */
codeint vindex; /* real-time variable */

Provides a means of indexing into previously created frequency lists using a
real-time variable or an AP table. The indexing into the list isfrom 0 to N-1,
where N isthe number of itemsin thelist. The frequency table must have been
created withthe create freqg 1ist statement. It hasno return value.

list number isthe number between 0 and 255 for each list. This number
must match the 1ist number used when creating the table.

vindex isarea-timevariable (v1 tov14) or an APtable (t1 to t60).
See the example for the vde 1ay statement.

create freq list Create table of frequencies
vdelay Select delay from table
voffset Select frequency offset from table

Set gradient to a level determined by real-time math
Systems with imaging or PFG modules. Not applicable to MERCURYplus/-Vx.

vgradient (channel, intercept, slope, mult)

char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */

int slope; /* gradient increment */

codeint mult; /* real-time variable */

Provides a dynamic variable gradient controlled using the AP real -time math
functions. It has no return value. The statement drives the chosen gradient to the
level defined by the formula

01-999253-00 A0604 vnmrJ User Programming 243

Chapter 3. Pulse Sequence Statement Reference —

level = intercept + slope*mult.

The gradient level ranges from —2047 to +2047 for systems with 12-bit DACs,
or from —32767 to +32767 for gradients using the waveform generators, which
have 16- bit DACs. If therequested level lies outside thisrange, it isrounded to
the appropriate boundary value.

After vgradient, the action of the gradient is controlled by the gradient
power supply. The gradient level isramped at the preset slew rate (2047 DAC
units per millisecond) to the value requested by vgradient. Thisfact
becomes a concern when using vgradient inaloop with adelay element, in
order to produce amodulated gradient. The delay element should be sufficiently

long so asto allow the gradient to reach the assigned val ue:
[new level —old level|

2047

delay > x risetime

Arguments. channel specifiesthe gradient to be set and is one of the characters ' X',
'x', 'Y, vy, rzor Pz Inimaging, channel canalso be 'gread!’,
'gphase',or 'gslice'.
intercept and slope areintegers. Inimaging, intercept istheinitia
gradient DAC setting and s1ope isthe gradient DAC increment.

mult isareal-timevariable (v1 tov14, etc.). Inimaging, mult isset so that
intercept+slope*mult isthe output.

Examples: (1) mod2 (ct,v10) ; /* v10 is 0,1,0,1,0,1,... */
vgradient ('z',0,2000,v10) ;
/* z gradient is 0,2000,0,2000,... */
delay (d2) ; /* delay for duration d2 */
rgradient ('z',0.0) ; /* gradient turned off */

(2) mod4 (ct,v10) ;
/* v10 is 0,1,2,3,4,0,1,2,3,4,... */
vgradient ('z',-5000.0,2500.0,v10) ;
/* z is -5000,-2500,0,2500 */

(3) pulsesequence ()

{

char gphase, gread, gslice;
int amplitude, igpe, stat;
double gpe;

gpe = getval ("gpe") ;

amplitude = (int) (0.5*ni*gpe) ;
igpe = (int)gpe;
stat =

getorientation (&gread, &gphase, &gslice, "orient") ;

initval (nf,v9) ;
loop (v9,vVvs) ;

vgradient (gphase, amplitude, igpe, v5) ;

endloop (v5) ;

244 vnmrJ User Programming 01-999253-00 A0604

Related:

voffset

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

vscan

Applicability:
Syntax:

Description:

Arguments:
Examples:

Chapter 3. Pulse Sequence Statement Reference —

}

dps_show Draw delay or pulsesin a sequence for graphical display
getorientation Read image plane orientation

rgradient Set gradient to specified level

shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
zgradpulse Create a gradient pulse on the z channel

Select frequency offset from table
UNTYINOVA systems.

voffset (list number, vindex)
int list number; /* number of list */
codeint vindex; /* real-time or AP table variable */

Provides a means of indexing into previously created frequency offset lists
using areal-time variable or an APtable. Theindexing into thelist isfrom 0 to
N-1, where N isthe number of itemsin thelist. The offset table hasto have been
created withthe create offset 1list statement. It has no return value.

list number isthe number between 0 and 255 for each list. This number
must match the 1ist number used when creating the table.

vindex isarea-timevariable (v1 tov14) or an APtable (t1 to t60).
See the example for the vde 1ay statement.

create offset list Createtable of frequency offsets
vdelay Select delay from table
vireg Select frequency from table

Provide dynamic variable scan
Systems with imaging capability.

vscan (rtvar)
codeint rtval; /* AP math variable */

Provides a dynamic scan capability for compressed-compressed image
sequences. It usesan APreal-timevariableasacounter. Thisreal-timevariable
must be supplied by the user, but need not be initialized since the

init vscan statement providestheinitialization. vscan uses the standard
nt parameter to determine the number of scansit performs. Sinceitisareal-
timevariable, it islimited to 32K scans. When vscan isused, system-supplied
scan functionality is disabled, similar to the use of the acquire statement.
vscan hasno return value.

rtvar isan AP math variable (v1 to v14). Itsrangeis 1 to 32767.

pulsesequence ()

{

char gphase, gread, gslice;
int amplitude, igpe, stat;
double gpe;

initval (nv,v10) ;

01-999253-00 A0604 vnmrJ User Programming 245

Chapter 3. Pulse Sequence Statement Reference —

Related:

vsetuserap

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

vsli

Applicability:

Syntax:

Description:

initval (nf,v9) ;

loop (v10,vé) ;
init vscan(vll,np*nf) ;
loop(v9,vVvs) ;

acquire (np,1/sw) ;

endloop (v5) ;
vscan(vll) ;
endloop (v6) ;

acquire Explicitly acquire data
init vscan Initializereal-time variablefor vscan statement

Set user AP register using real-time variable
UNTYINOVA systems.

vsetuserap (vi, register)
codeint vi; /* variable output to AP bus register */
int register; /* AP bus register: 0, 1, 2, or 3 */

Sets one of the four 8-bit AP bus registers that provide an output interface to
custom user equipment. The outputs of these registers go the USER AP
connectors J8212 and J8213, located on the back of theleft console cabinet. The
outputs have a 100-ohm series resistor for circuit protection.

vi isanindex to areal-time variable that contains a signed or unsigned real
number or integer to output to the specified user AP register.

register isthe AP register number, mapped to output lines as follows:
® Register 0isJ8213, lines 9 to 16.
® Register 1isJ8213, lines 1 to 8.
® Register 21533212, lines 9 to 16.
® Register 3isJ8212, lines 1 to 8.
vsetuserap(vl, 1) ;

readuserap Read input from user AP register
setuserap Set user AP register

Set SLI lines from real-time variable

Systems with imaging capability and the Synchronous Line Interface (SLI)
board, an option that provides an interface to custom user equipment.

vsli (address, mode, var)

int address; /* SLI board address */
int mode; /* SLI_SET, SLI OR, SLI AND, SLI XOR */
codeint var; /* real-time variables for SLI lines */

Sets lines from real-time variables on the SLI board. It has no return val ue.

vs1i hasapre-execution delay of 10.950 us but no post-execution delay. The
delay is composed of a 200-ns startup delay with 5 AP bus cycles (1 AP bus
cycle=2.150 us).

246 vnmrJ User Programming 01-999253-00 A0604

Arguments:

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

Thelogic levelson the SLI lines are not all set simultaneously. The four bytes
of the 32 bit word are set consecutively, the low-order byte first. The delay
between setting of consecutive bytesis 1 AP bus cycle £100 ns. (This 100-ns
timing jitter is non-cumulative.)

The following error messages are possible:

® T1legal mode: n iscaused by the mode argument not being one of
SLI SET,SLI OR,SLI XOR,Or SLI AND.

® T1legal real-time variable: niscaused by thevar argument
being outside the range v1 to v13.

address isthe address of the SLI board in the system. It must match the
address specified by jumper J7R on the board. Note that the jumpers 19-20
through -2 specify bits 2 through 11, respectively. Bits0 and 1 are always zero.
An installed jumper signifiesa“one” bit, and a missing jumper a“zero”. The
standard addresses for the SL1 in the VME card cage:

® Digital (Ieft) sideis C90 (hex) = 3216
® Analog (right) sideis 990 (hex) = 2448

mode determines how to combine the specified value with the current output of
the SLI to produce the new output. The four possible modes:

® SLI_SET istoload the new valuedirectly into the SLI
® SLI ORistologicaly OR the new value with the old
® SLI AND isto logicaly AND the new value with the old
® SLI XOR isto logicaly XOR the new value with the old

var specifiesthereal-timevariablesto useto set the SLI lines. Becausethe SLI

has 32 bitsand the real-time variables have only 16 bits, two real time variables
are used for each call. The one specified in the calling sequence is used for the
high-order word, and the next sequential real-time variableis used for the low-
order word. Thus, legal valuesfor var are vl tov13.

pulsesequence ()

{

int SLIaddr; /* Address of SLI board */
SLTIaddr = getval ("address") ;
vsli (SLIaddr, SLI_SET, v1);

Noticethat address isnot astandard parameter, but needsto be created by
the user if it ismentioned in a user pulse sequence (for details, see the
description of the create command).

sli Set SLI lines
sp#off Turn off specified spare line
sp#on Turn on specified spare line

01-999253-00 A0604 VnmrJ User Programming 247

Chapter 3. Pulse Sequence Statement Reference —

W

A B

warn message

warn message

C D E G H I L

M O P R S T V W X Z

Send awarning message to VnmrJ

Send a warning message to VnmrJ

Syntax: warn message (char *format, ...)
Description: Sends an warning message to VnmrJ and cause a beep.
A B C bDE GH I L M OWP R S T V W X Z
xgate Gate pul se sequence from an external event
xmtroff Turn off observe transmitter
xmtron Turn on observe transmitter
xmtrphase Set transmitter small-angle phase, 1f type C, D
xgate Gate pulse sequence from an external event
Applicability: YNTYINOVA systems.
Syntax: xgate (events)
double events; /* number of external events */
Description: Haltsthe pulse sequence. When the number of external events has occurred, the
pul se sequence continues.
Arguments. events isthe number of externa events.
Examples: xgate(2.0);
xgate (events) ;
Related: rotorperiod Obtainrotor period of MAS rotor
rotorsync Gated pulse sequence delay from MAS rotor position
xmtroff Turn off observe transmitter
Syntax: xmtroff ()
Description: Explicitly gates off the observe transmitter in the pulse sequence.
Related: xmtron Turn on observe transmitter
xmtron Turn on observe transmitter
Syntax: xmtron ()
248 vnmrJ User Programming 01-999253-00 A0604

Description:

Related:

xmtrphase

Syntax:

Description:

Arguments:

Examples:

Related:

Chapter 3. Pulse Sequence Statement Reference —

Explicitly gates on the observe transmitter in the pulse sequence. Transmitter
gating is handled automatically by the statements obspulse, pulse,
rgpulse, shaped pulse, simpulse, sim3pulse,

simshaped pulse, sim3shaped pulse, and spinlock.

The obsprgon statement generally needs to be enabled with an explicit
xmtron statement and followed by a xmtrof £ cal.

xmtroff Turn on observe transmitter

Set transmitter small-angle phase, rf type C, D

xmtrphase (multiplier)
codeint multiplier; /* real-time AP variable */

Sets the phase of transmitter in units set by the stepsize statement. The
small-angle phaseshiftisaproduct of multiplier andthe preset step sizefor
the transmitter. If stepsize hasnot been used, the default step sizeis 90°.

If the product of the step size set by the stepsize statement and
multiplier isgreater than 90°, the sub-90° part is set by xmt rphase.
Carryoversthat are multiples of 90° are automatically saved and added in at the
time of the next 90° phase selection (such as at the time of the next pulse or
decpulse).

xmtrphase should be distinguished from t xphase. xmt rphase isneeded
any time the transmitter phase shift isto be set to a value that is not amultiple
of 90°. txphase isoptional and rarely is needed.

multiplier isasmall-angle phaseshift multiplier and must be an AP
variable.

xmtrphase (v1l) ;

deplrphase Set small-angle phase of first decoupler, rf type C or D
deplr2phase Set small-angle phase of second decoupler, rf type C or D
deplr3phase Set small-angle phase of third decoupler, rf type C or D
stepsize Set small-angle phase step size, rf type C or D

A B C D E G H I L M O P R S T V WX Z

zero_all gradients Zero dl gradients

zgradpulse

Create agradient pulse on the z channel

zero all gradients Zero all gradients

Syntax:

Description:

zero_all gradients()

Setsthe gradientsin the x, y, and z axes to zero.

01-999253-00 A0604 vnmrJ User Programming 249

Chapter 3. Pulse Sequence Statement Reference —

Examples. vagradient (3.0, 54.7, 0.0);

delay (0.001) ;
zero _all gradients() ;

Related: vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse

zgradpulse Create a gradient pulse on the z channel
Applicability: Systems with imaging or PFG module.

Syntax: zgradpulse (value,delay)
double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

Description: Creates a gradient pulse on the z channel with amplitude and duration given by
the arguments. At the end of the pulse, the gradient is set to 0.
Arguments. value isthe amplitude of the pulse. It isarea number between —32768 and
32767.
delay isany delay parameter, such as d2.
Examples. zgradpulse (1234.0,d2) ;

Related: dps show Draw delay or pulses for graphical display of a sequence
rgradient Set gradient to specified level
vgradient Set gradient to level determined by real-time math

A B C D E G H I L M O P R S T V W X Z

abort message
acquire

add

apovrride
apshaped decpulse
apshaped dec2pulse
apshaped pulse
assign
blankingoff
blankingon
blankoff

blankon
clearapdatatable
create delay list
create freq list

create offset list

250 VnmrJ User Programming

Send and error to VnmrJ and abourt the PSG process
Explicitly acquire data

Add integer values

Override internal software AP bus delay

First decoupler pulse shaping via AP bus

Second decoupler pulse shaping via AP bus

Observe transmitter pulse shaping via AP bus

Assign integer values

Unblank amplifier channels and turn amplifierson
Blank amplifier channels and turn amplifiers off

Stop blanking observe or decoupler amplifier (obsolete)
Start blanking observe or decoupler amplifier (obsolete)
Zero al datain acquisition processor memory

Create table of delays

Create table of frequencies

Create table of frequency offsets

01-999253-00 A0604

dbl

dcphase
dcplrphase
dcplr2phase
dcplr3phase
decblank
dec2blank
dec3blank
declvloff
declvlon
decoff
dec2off
dec3off
decoffset
dec2offset
dec3offset
decd4offset
decon
dec2on
dec3on
decphase
dec2phase
dec3phase
dec4phase
decpower
dec2power
dec3power
dec4power
decprgoff
dec2prgoff
dec3prgoff
decprgon
dec2prgon
dec3prgon
decpulse
decpwr
decpwrf
dec2pwrf
dec3pwrf
decr
decrgpulse
dec2rgpulse
dec3rgpulse
dec4rgpulse
decshaped pulse
dec2shaped pulse

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Double an integer value

Set decoupler phase (obsolete)

Set small-angle phase of 1st decoupler, rf type C or D
Set small-angle phase of 2nd decoupler, rf type C or D
Set small-angle phase of 3rd decoupler, rf type C or D
Blank amplifier associated with first decoupler

Blank amplifier associated with second decoupler
Blank amplifier associated with third decoupler
Return first decoupler back to “normal” power

Turn on first decoupler to full power

Turn off first decoupler

Turn off second decoupler

Turn off third decoupler

Change offset frequency of first decoupler

Change offset frequency of second decoupler

Change offset frequency of third decoupler

Change offset frequency of fourth decoupler

Turn on first decoupler

Turn on second decoupler

Turn on third decoupler

Set quadrature phase of first decoupler

Set quadrature phase of second decoupler

Set quadrature phase of third decoupler

Set quadrature phase of fourth decoupler

Change first decoupler power level, linear amp. systems
Change second decoupler power level, linear amp. systems
Change third decoupler power level, linear amp. systems
Change fourth decoupler power level, linear amp. systems
End programmable decoupling on first decoupler

End programmable decoupling on second decoupler
End programmable decoupling on third decoupler
Start programmabl e decoupling on first decoupler
Start programmabl e decoupling on second decoupler
Start programmabl e decoupling on third decoupler
Pulsefirst decoupler transmitter with amplifier gating
Set first decoupler high-power level, class C amplifier
Set first decoupler fine power

Set second decoupler fine power

Set third decoupler fine power

Decrement an integer value

Pulse first decoupler with amplifier gating

Pulse second decoupler with amplifier gating

Pulse third decoupler with amplifier gating

Pulse fourth decoupler with amplifier gating

Perform shaped pulse on first decoupler

Perform shaped pulse on second decoupler

VnmrJ User Programming 251

Chapter 3. Pulse Sequence Statement Reference —

dec3shaped pulse
decspinlock
dec2spinlock
dec3spinlock
decstepsize
dec2stepsize
dec3stepsize
decunblank
dec2unblank
dec3unblank
delay
dhpflag

divn

dps_off
dps_on
dps_show
dps_skip
elsenz
endhardloop
endif
endloop
endmsloop
endpeloop
gate
getarray
getelem
getorientation
getstr
getval

G Delay

G Offset
G_Power

G Pulse
hdwshiminit
hlv

hsdelay
idecpulse
idecrgpulse
idelay
ifzero
incdelay
incgradient
incr
indirect
init rfpattern

init gradpattern

252 VnmrJ User Programming

Perform shaped pulse on third decoupler

Set spin lock waveform control on first decoupler
Set spin lock waveform control on second decoupler
Set spin lock waveform control on third decoupler
Set step size for first decoupler

Set step size for second decoupler

Set step size for third decoupler

Unblank amplifier associated with first decoupler
Unblank amplifier associated with second decoupler
Unblank amplifier associated with third decoupler
Delay for aspecified time

Switch decoupling from low-power to high-power
Divide integer values

Turn off graphical display of statements

Turn on graphical display of statements

Draw delay or pulsesin a sequence for graphical display

Skip graphical display of next statement
Execute succeeding statements if argument is nonzero
End hardware loop

End execution started by ifzero or elsenz

End loop

End multislice loop

End phase-encode [oop

Device gating (obsolete)

Get arrayed parameter vaues

Retrieve an element from an AP table

Read image plane orientation

Look up vaue of string parameter

Look up value of numeric parameter

Generic delay routine

Frequency offset routine

Fine power routine

Generic pulse routine

Initialize next delay for hardware shimming

Find half the value of an integer

Delay specified time with possible homospoil pulse
Pulse first decoupler transmitter with |PA
Pulsefirst decoupler with amplifier gating and |PA
Delay for a specified time with IPA

Execute succeeding statements if argument is zero
Set real-time incremental delay

Generate dynamic variable gradient pulse
Increment an integer value

Set indirect detection

Create rf pattern file

Create gradient pattern file

01-999253-00 A0604

init vscan
initdelay
initparms_sis
initval
iobspulse
ioffset
ipulse
ipwrf
ipwrm
irgpulse
1k hold

1k sample
loadtable
loop

loop check

magradient
magradpulse
mashapedgradient
mashapedgradpulse
mod2

mod4

modn

msloop

mult

obl gradient
obligque gradient

obl shapedgradient

oblique shapedgradient

obsblank

obsoffset

obspower

obsprgoff

obsprgon

obspulse

obspwrf
obsstepsize
obsunblank

offset

pe _gradient

pe2 gradient

pe3 gradient

pe shapedgradient
pe2 shapedgradient
pe3 shapedgradient
peloop

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Initialize real-time variable for vscan statement

Initialize incremental delay

Initialize parameters for spectroscopy imaging sequences
Initialize areal-time variabl e to specified value

Pulse observe transmitter with [PA

Change offset frequency with IPA

Pulse observe transmitter with [PA

Change transmitter or decoupler fine power with |PA
Change transmitter or decoupler lin. mod. power with [PA
Pulse observe transmitter with [PA

Set lock correction circuitry to hold correction

Set lock correction circuitry to sample lock signal

Load AP table elements from table text file

Start loop

Check that number of FIDs s consitent with number of
dices, etc.

Simultaneous gradient at the magic angle

Gradient pulse at the magic angle

Simultaneous shaped gradient at the magic angle
Simultaneous shaped gradient pulse at the magic angle
Find integer value modulo 2

Find integer value modulo 4

Find integer value modulo n

Multislice loop

Multiply integer values

Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient

Execute a shaped oblique gradient

Blank amplifier associated with observe transmitter
Change offset frequency of observe transmitter

Change observe transmitter power level, lin. amp. systems
End programmable control of observe transmitter

Start programmable control of observe transmitter
Pulse observe transmitter with amplifier gating

Set observe transmitter fine power

Set step size for observe transmitter

Unblank amplifier associated with observe transmitter
Change offset frequency of transmitter or decoupler
Oblique gradient with phase encode in one axis
Oblique gradient with phase encode in two axes
Oblique gradient with phase encode in three axes
Oblique shaped gradient with phase encode in one axis
Oblique shaped gradient with phase encode in two axes
Oblique shaped gradient with phase encode in three axes
Phase-encode loop

VnmrJ User Programming 253

Chapter 3. Pulse Sequence Statement Reference —

phase encode gradient
phase encode3 gradient
phase encode shapedgradient

phase encode3 shapedgradient

phaseshift
poffset

poffset list
position offset
position offset list
power

psg_abort

pulse

putCmd

pwrf

pwrm

rcvroff

rcvron
readuserap
recoff

recon

rgpulse
rgradient
rlpower

rlpwrf

rlpwrm
rotorperiod
rotorsync
setautoincrement
setdivnfactor
setreceiver
setstatus
settable
setuserap
shapedpulse
shaped pulse
shapedgradient
shaped2Dgradient
shapedincgradient
shapedvgradient
simpulse
sim3pulse
simd4pulse
simshaped pulse
sim3shaped pulse
sli

spH#off

254 VnmrJ User Programming

Oblique gradient with phase encode in one axis

Oblique gradient with phase encode in three axes

Oblique shaped gradient with PE in one axis

Oblique shaped gradient with PE in three axes

Set phase-pulse technique, rf type A or B

Set frequency based on position

Set frequency from position list

Set frequency based on position

Set frequency from position list

Change power level, linear amplifier systems

Abort the PSG process

Pulse observe transmitter with amplifier gating

Send a command to VnmrJ form a pul se sequence

Change transmitter or decoupler fine power

Change transmitter or decoupler linear modulator power

Turn off receiver gate and amplifier blanking gate

Turn on receiver gate and amplifier blanking gate

Read input from user AP register

Turn off receiver gate only

Turn on receiver gate only

Pulse observe transmitter with amplifier gating

Set gradient to specified level

Change power level, linear amplifier systems

Set transmitter or decoupler fine power

Set transmitter or decoupler linear modulator power

Obtain rotor period of MAS rotor

Gated pulse sequence delay from MAS rotor position

Set autoincrement attribute for an AP table

Set divn-return attribute and divn-factor for AP table

Associate the receiver phase cycle with an AP table

Set status of observe transmitter or decoupler transmitter

Store an array of integersin areal-time AP table

Set user AP register

Perform shaped pulse on observe transmitter

Perform shaped pulse on observe transmitter
Generate shaped gradient pulse

Generate arrayed shaped gradient pulse

Generate dynamic variable gradient pulse

Generate dynamic variable shaped gradient pulse

Pulse observe and decouple channels simultaneously

Pulse simultaneously on 2 or 3 rf channels

Simultaneous pulse on four channels

Perform simultaneous two-pulse shaped pulse

Perform a simultaneous three-pul se shaped pulse

Set SLI lines

Turn off specified spare line

01-999253-00 A0604

sp#on
spinlock
starthardloop
status
statusdelay
stepsize

sub

text error
text message
tsadd

tsdiv

tsmult

tssub

ttadd

ttdiv

ttmult

ttsub
txphase
vagradient
vagradpulse

var_active

vashapedgradient

vashapedgradpulse

vdelay
vdelay list
vireq
vgradient
voffset
vscan
vsetuserap
vsli

warn message
xgate
xmtroff
xmtron

xmtrphase

zero_all gradients

zgradpulse

01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference —

Turn on specified spare line

Control spin lock on observe transmitter
Start hardware loop

Change status of decoupler and homospoil

Execute the status statement with a given delay time

Set small-angle phase step size, rf type C or D
Subtract integer values

Send atext error message to VnmrJ

Send amessage to VnmrJ

Add an integer to AP table elements

Divide an integer into AP table elements
Multiply an integer with AP table elements
Subtract an integer from AP table elements
Add an AP table to a second table

Divide an AP table into a second table
Multiply an AP table by a second table
Subtract an AP table from a second table

Set quadrature phase of observe transmitter
Variable angle gradient

Variable angle gradient pulse

Checks if the parameter is being used
Variable angle shaped gradient

Variable angle shaped gradient pulse

Set delay with fixed timebase and real-time count

Get delay value from delay list with real-time index

Select frequency from table

Set gradient to alevel determined by real-time math

Select frequency offset from table

Provide dynamic variable scan

Set user AP register using real-time variable
Set SLI linesfrom rea-time variable

Send awarning message to VnmrJ

Gate pul se sequence from an external event
Turn off observe transmitter

Turn on observe transmitter

Set transmitter small-angle phase, 1f type C, D
Zero al gradients

Create a gradient pulse on the z channel

VnmrJ User Programming

255

Chapter 3. Pulse Sequence Statement Reference —

256 VnmrJ User Programming 01-999253-00 A0604

chapter 4. UNIX-Level Programming

Sectionsin this chapter:
® 4.1"UNIX and VnmrJ,” this page
® 4.2"UNIX: A Reference Guide,” page 258
® 4.3"UNIX Commands Accessible from VnmrJ,” page 260
® 4.4"Background VNMR,” page 260
4.5 “ Shell Programming,” page 261

UNIX isamong the most popular operating systems in the world today, with hundreds of
books written on every aspect of UNIX, at every level. This manual does not attempt to
replace that material, but attempts instead to provide a glimpse of the subject and then to
guide you to resources that can paint afuller picture.

4.1 UNIX and VnmrJ

Many VnmrJ software users do not need to have any contact with UNIX whatsoever.
Although the UNIX operating system is running the workstation at all times, a user who
wantsto useonly the Varian VnmrJ software package can do just that. In someinstallations,
the system operator starts VnmrJand different users simply sit down at the instrument and
use the NMR software, just asin the earlier generation of NMR spectrometers. The worst
that could happen isthat the previous user logged out, requiring the next user to log back
in with their name and password. After completing this login procedure, the VnmrJ
software starts automatically, and again you do not need to have contact with UNIX if you
don't wish to do so.

UNIX provides more than a hundred “tools” that can perform almost anything short of
complex mathematical manipulations like a Fourier transform. For example, UNIX has
commands to search through your files, to sort line lists, to tell you who is on the system,
to run a program unattended at night, and much more. The more performance you want to
get out of your computer, and the more you want to be able to do, the more it will benefit
you to learn about UNIX.

Dozens of manuals are available for your Sun computer system, and surely you will not
want to or be able to read them all. For those with no exposure to UNIX, however, we
strongly recommend that you read any user’s guides that accompanied your Sun
workstation. After that, abook we have found to be particularly useful is The UNIX System
by S. R. Bourne (Addison-Wesley). For coverage of the Solaris environment, a good book
is Guide to Solaris by John Pew (ZD Press).

01-999253-00 A0604 vnmrJ User Programming 257

Chapter 4. UNIX-Level Programming

4.2 UNIX: A Reference Guide

This section includes a brief overview of the UNIX computer operating system and its

258

associated commands. For more information on UNIX, refer to the Sun manuals covering

Solaris or to UNIX general references found at larger bookstores.

Command Entry

Single command entry
Command names

Multiple command separator
Arguments

File Names

Typical (shorthand names usually used)
Level separator

Individua filenames

Charactersin filenames

First character in filename

File Handling Commands

Delete (unlink) afile(s)
Copy afile

Rename afile

Make an dias (link)
Sort files

Tape backup

Directory Names

Home directory for each user
Working directory

Shorthand for current directory
Shorthand for parent directory
Shorthand for home directory
Root directory

Directory Handling Commands

Create (or make) a directory
Rename a directory

Remove an empty directory
Delete directory and all filesin it
List filesin adirectory, short list

VnmrJ User Programming

commandname
Generally lowercase, case-sensitive
; (semicolon) or new line

commandname argl arg2

/vnmr/fidlib/fidid

/ (forward slash)

Any number of characters (256 unique)
Underline, period often used

First character unrestricted

rm filenames

cp filename newfilename
mv filename newfilename
In target linkname

sort filenames

tar

Directory assigned by administrator
Current directory user isin
. (single period)
.. (two periods)
~ (tilde character)
/ (forward slash)

mkdir directoryname
mv dirname newdirname
rmdir directoryname
rm -r directoryname

ls directoryname

01-999253-00 A0604

List filesin adirectory, long list
Copy file(s) into adirectory
Move file(s) into adirectory
Show current directory

Change current directory

Text Commands

Edit atext fileusing vi editor
Edit atext fileusing ed editor
Edit atext fileusing textedit editor
Display first part of afile
Display last part of afile
Concatenate and display files
Compare two files

Compare two files deferentially
Print file(s) on line printer
Search file(s) for a pattern

Find spelling errors

Other Commands

Pattern scanning and processing
Change file protection mode
Display current date and time
Summarize disk usage

Report free disk space

Kill abackground process

Sign onto system

Send mail to other users

Print out UNIX manual entry
Process status

Convert quantities to another scale
Who is on the system

System identification

Special Characters

Send output into named file
Append output into named file
Take input from named file

Send output from first command to input of second command (pipe)

4.2 UNIX: A Reference Guide

ls -1 directoryname

cp filenames directoryname
mv filenames directoryname
pwd

cd newdirectoryname

vi filename

ed filename

textedit filename

head filename

tail filename

cat filenames

cmp filenamel filename?2
diff filenamel filename?2
lp filenames

grep expression filenames

spell filename

awk pattern filename
chmod newmode filename
date

du -k

df -k filesystem
kill process-id
login username

mail

man commandname

ps

units

w

uname -a

> filename
>> filename

< filename

| (vertical bar)

Wildcard character for a single character in filename operations ?
Wildcard character for multiple characters in filename operations *

01-999253-00 A0604

VnmrJ User Programming 259

Chapter 4. UNIX-Level Programming

Run program in background &
Abort the current process Control-C
Logout or end of file Control-D

4.3 UNIX Commands Accessible from VnmrJ

Several UNIX commands are accessible directly from VnmrJ, including the vi, edit,
shell, shelli, and w commands.

Opening a UNIX Text Editor from VnmrJ

Enteringvi (file) oredit (file) fromVnmrJinvokesa UNIX text editor for editing
the name of the file given in the argument (e.g., vi ('myfile')). On the Sun
workstation, apopup screen contains the editing window. Exiting from the editor closesthe
editing window.

Themost useful UNIX program you canlearnisvi, the powerful UNIX text editor. UNIX
providesat |east two other text editors, ed and textedit, that are easier tolearnthan vi,
but vi isthe most widely used UNIX text editor and worth learning because of its many
features. A text editor is necessary if you wish to prepare or edit text files, such as macros,
menus, and pulse sequences (short text files such as those used to annotate spectra are
usually edited in ssimpler ways)

Opening a UNIX Shell from VnmrJ

Entering the shel1 command from VnmrJ without any argument opens a normal UNIX
shell. On the Sun, a popup window is created. Entering she 11 with the syntax

shell (command) <:$Svarl, $var2,...>

executes the UNIX command line given, displays any text lines generated, and returns
control to VnmrJ when finished. If return arguments Svarl, $var2,... are present, the
results of thecommand line arereturned to the variabl eslisted, with each variablereceiving
asingle display line.

shell callsinvolving pipesor input redirection (<) require either an extra pair of
parentheses or the addition of ; cat tothe shell command string, for example:
shell (' (ls -t|grep May) ') :$list

shell('ls -t|grep May; cat'):$list

To display information about who is on UNIX, enter the w command from V nmrJ.

4.4 Background VNMR

260

Running VNMR commands and processing as a UNIX background tasks are possible by
using Vvnmr and vbg commands from UNIX.

Running VNMR Command as a UNIX Background Task

VNMR commands can be executed asa UNIX background task by using the command

vnmr -mback <-n#> command string <&>

VnmrJ User Programming 01-999253-00 A0604

4.5 Shell Programming

where -mback isakeyword (entered exactly as shown), -n# setsthat processing will
occur in experiment # (e.g., —-n2 setsexperiment 2), and command_stringisaVNMR
command or macro. If -n# isomitted, processing occursin experiment 1. If more than one
command is to be executed, place double quote marks around the command string; e.g.,
"printon dg printoff"

UNIX background operation (&) is possible, asin Vvnmr -mback wft2da &. Usualy
it isagood ideato use redirection (> or >>) with background processing:
Vnmr -mback -n3 wft2da > vnmroutput &

The UNIX shell script vbg is also available to run VNMR processing in the background.

All text output, both normal text window output and the typical two-letter prompts that
appear in the upper right (“FT”, “PH”, etc.), are directed to the UNIX output window.

Note the following characteristics of the vnmr command:

® Full multiuser protection isimplemented. If user vnmr1 islogged in and using
experiment 1, and another person logsin as vnmr1 from another terminal and triesto
use the background V nmr, the second vnmr1 receives the message “experiment
1 locked” if that person triesto use experiment 1. The second user can use other
experiments, however.

® Pressing Control-C does not work: if you type the UNIX command shown, you cannot
abort it with Control-C.
® Operation within VNMR is possible using the she11 command; eg.,
shell ('Vanmr -mback -n2 wftda')
® Plotting ispossible; e.g.,
Vnmr -mback -n3 "pl pscale pap page"
® Printing is possible; e.g.,
Vnmr -mback "printon dg printoff"

Running VNMR Processing in the Background

The UNIX shell script vbg runs VNMR processing in the background. The main
requirements are that viog must be run from withina UNIX shell and that no foreground or
other background processes can be activein the designated experiment. From UNIX, vbg
is entered in the following form:

vbg # command string <prefixs>

where # is the number of an experiment (from 1 to 9) in the user's directory in which the
background processing is to take place, command stringisoneor more VNMR
commands and macros to be executed in the background (double quotes surrounding the
string are mandatory), and pre £ i x isthe name of thelog file, making thefull log file name
prefix bgf.log (e.g., to perform background plotting from experiment 3, enter vbg
3 "vsadj pl pscale pap page" plotlog).

The default log filenameis# bgf . 1og, where # isthe experiment number. The log file
is placed in the experiment in which the background processing takes place. Refer to the
Command and Parameter Reference for more information on vbg.

4.5 Shell Programming

The shell executes commands given either from aterminal or contained in afile. Files
containing commands and control flow notation, called shell scripts, can be created,

01-999253-00 A0604 vnmrJ User Programming 261

Chapter 4. UNIX-Level Programming

allowing users to build their own commands. This section provides a very short overview
of such programming; refer to the UNIX literature for more information.

Shell Variables and Control Formats

Asaprogramming language, the shell provides string-valued variables: $1, $2,.... The
number of variablesis available as $# and the file being executed is available as $0.
Control flow is provided by special notation, including 1 £, case, while, and for. The
following format is used:

if command-list (not Boolean) while command-list
then command-list do command-list
else command-list done
fi
case word in for name (in wl w2)
pattern) command-list;; do command-list
c. done
esac

Shell Scripts

The following shell scripts show two ways a shell script might be written for the same
command. In both scripts, the command name 1ower is selected by the user and the intent
of the command is to convert afile to lower case, but the scripts differ in features.

The first script:

lower --- command to convert a file to lower case
: usage lower filename
: output filename.lower
tr '[A-Z]'" '[a-z]' < $1 > S$l.lower

The second script:
lower --- a command to convert a file to lower case
: usage lower filename or lower inputfile outputfile
: output filename.lower or output file
case S$# in
1) tr '[A-Z]' '[a-z]' <$1 > S$1.lower;;
2) tr '"[A-Z]' '[a-z]' <S1 > $2;;
*) echo "Usage: lower filename or lower \
inputfile outputfile";;
esac

In the first script, only one form of input is allowed, but in the second script, not only isa
second form of input allowed but aprompt explaining how to use 1 owe r appearsif the user
enters 1lower without any arguments. Notice that in both scriptsa colon isused to identify
lines containing comments (and that each script is carefully commented).

262 vnmrJ User Programming 01-999253-00 A0604

chapter 5. Parameters and Data

Sectionsin this chapter:
® 51“VnmrJDataFiles,” this page
® 5.2"FDF (Flexible Data Format) Files,” page 270
® 5.3"Reformatting Datafor Processing,” page 275
® 5.4*"Creating and Modifying Parameters,” page 278
® 55"Modifying Parameter Displaysin VNMR,” page 284
® 5.6 “User-Written Weighting Functions,” page 287
® 5.7 "User-Written FID Files,” page 289

5.1 VnmrJ Data Files

Although anumber of different files are used by VnmrJto process data, VnmrJ data files
use only two basic formats:

® Binary format — Stores FIDs and transformed spectra. Binary files consist of afile
header describing the details of the data stored in thefile followed by the spectral data
in integer or floating point format.

® Text format — Storesal other forms of data, such aslinelists, parameters, and al forms
of reduced data obtained by analyzing NMR spectra. The advantage of storing datain
text format is that it can be easily inspected and modified with atext editor and can be
copied from one computer to another with no major problems. Thetext on Sun systems
use the ASCII format in which each letter is stored in one byte.

Binary Data Files

Binary data files are used in the VnmrJfile system to store FIDs and the transformed
spectra. FIDs and their associated parametersare stored as filename. £id files. A
filename. f£id fileisalwaysadirectory file containing the following individual files:

® filename.fid/fidisabinary file containing the FIDs.
® filename.fid/procpar isatext file with parameters used to obtain the FIDs.
® filename.fid/text isatextfile

In experiments, binary files store FIDs and spectra. In non-automation experiments, the
FID is stored within the experiment regardless of what the parameter £ile isset to. The
path ~username/vnmrsys/expn/acqgfil/£id isthefull UNIX path to that file.
FIDs are stored as either 16- or 32-hit integer binary datafiles, depending on whether the
data acquisition was performed with dp="n"' or dp="y ', respectively.

01-999253-00 A0604 vnmrJ User Programming 263

Chapter 5. Parameters and Data

264

After an Fourier transform, the experiment file expn/datdir/data containsthe
transformed spectra stored in 32-bit floating point format. This file always contains
complex numbers (pairs of floating point numbers) except if pmode="'" was selected in
processing 2D experiments. To speed up the display, VnmrJ stores also the phased spectral
information in expn/datdir/phasefile, whereit isavailable only after the first
display of the data. In arrayed or 2D experiments, phasefile containsonly those traces
that have been displayed at |east once after the last FT or phase change. Therefore, a user
program to access that file can only be called after a complete display of the data.

The directory file expn for current experiment n contains the following files:
® expn/curpar isatext file containing the current parameters.
® expn/procpar isatext file containing the last used parameters.
® expn/text isatextfile
® expn/acgfil/fidisabinary filethat storesthe FIDs.
® expn/datdir/data isabinary file with transformed complex spectrum.
® expn/datdir/phasefile isabinary file with transformed phased spectrum.
® expn/snissaved display number n.

To access information from one of the experiment files of the current experiment, the user
must be surethat each of these files has been written to the disk. The problem arises because
VnmrJtries to keep individual blocks of the binary filesin the internal buffers as long as
possible to minimize disk accesses. This buffering in memory is not the same as the disk
cache buffering that the UNIX operating system performs. The command £1ush can be
used in VnmrJto write al data buffersinto disk files (or at least into the disk cache, where
it is also available for other processes). The command fsave can be used in VnmrJto
write dl parameter buffersinto disk files.

The default directory for the 3D spectral datais curexp/datadir3d. The output
directory for theextracted 2D planesisthe same asthat for the 3D spectral data, except that
2D usesthe /ext r subdirectory and 3D usesthe /data subdirectory. Within the 3D data
subdirectory /data are the following files and further subdirectories:

® dataltodata# aretheactual binary 3D spectral datafiles. If theoptionnfilesis
not entered, the number of datafiles depends upon the size of the largest 2D plane and
the value for the UNIX environmenta parameter memsize.

® infoisadirectory that storesthe 3D coefficient text file (coef) , the binary
informationfile (procdat), the 3D parameter set (procpar3d), and theautomation
file (auto). Thefirst threefilesare created by the set3dproc () command within
VnmrJ. Thelast fileis created by the £t£3d program.

® logisadirectory that storesthelog files produced by the £t 3d program. Thefile £3
contains all the log output for the f, transform. For thef, and f, transforms, there are
two log file for each datafile, one for the f, transform (£2 . #) and one for the f,
(£1.#). Thefile master contains the log output produced by the master £t34d
program.

Data File Structures

A datafile header of 32 bytesis placed at the beginning of aVnmrJ datafile. The header
contains information about the number of blocks and their size. It is followed by one or
more data blocks. At the beginning of each block, a data block header is stored, which
contains information about the data within the individual block. A typical 1D datafile,
therefore, has the following form:

data file header

VnmrJ User Programming 01-999253-00 A0604

5.1 VnmrJ Data Files

header for block 1
data of block 1
header for block 2
data of block 2

The data headers allow for 2D hypercomplex data that may be phased in both the f; and f2
directions. To accomplish this, the data block header has a second part for the 2D
hypercomplex data. Also, the data file header, the data block header, and the data block
header used with @l data have been slightly revised. The new format allows processing of
FIDs obtained with earlier versions of VnmrJ.The 2D hypercomplex data files with
datafilehead.nbheaders=2 have the following structure:

data file header

header for block 1

second header for block 1

data of block 1

header for block 2

second header for block 2

data of block 2

All datain thisfileis contiguous. The byte following the 32nd byte in the file is expected
to be the first byte of the first data block header. If more than one block is stored in afile,
the first byte following the last byte of datais expected to be the first byte of the second
data block header. Note that these data blocks are not disk blocks; rather, they are a
complete data group, such as an individual trace in a experiment. For non-arrayed 1D
experiments, only one block will be present in thefile.

Details of the data structures and constants involved can be found in thefile data . h,
which is provided as part of the VnmrJ source code license. The C specification of thefile
header isthe following:

struct datafilehead

/* Used at start of each data file (FIDs, spectra, 2D) */

{

long nblocks; /* number of blocks in file */

long ntraces; /* number of traces per block */

long np; /* number of elements per trace */

long ebytes; /* number of bytes per element */

long tbytes; /* number of bytes per trace */

long bbytes; /* number of bytes per block */

short vers id; /* software version, file id status bits */
short status; /* status of whole file */

long nbheaders; /* number of block headers per block */

Vi

Thevariablesin datafilehead structure are set as follows:
® nblocks isthe number of data blocks present in the file.
® ntraces isthe number of tracesin each block.

® np isthe number of simple elements (16-bit integers, 32-bit integers, or 32-bit floating
point numbers) in one trace. It is equal to twice the number of complex data points.

® ebytes isthe number of bytesin one element, either 2 (for 16-bit integersin single
precision FIDs) or 4 (for al others).

® tbytesissetto(np*ebytes).

01-999253-00 A0604 vnmrJ User Programming 265

Chapter 5. Parameters and Data

® pbbytesissetto(ntraces*tbytes + nbheaders*sizeof (struct
datablockhead)). Thesize of thedatablockhead structureis 28 bytes.

® vers_ idistheversion identification of present VnmrJ.
® nbheaders isthe number of block headers per data block.

® status ishitsas defined below with their hexadecimal values.
All other bits must be zero.

Bits 0-6: file header and block header status bits (bit 6 is unused):

0 S_DATA Ox1 0 =no data, 1 = data

1 S SPEC 0x2 0=FID, 1 = spectrum

2 S 32 Ox4 *

3 S _FLOAT 0x8 0 = integer, 1 = floating point
4 S_COMPLEX 0x10 0 =real, 1 =complex

5 S _HYPERCOMPLEX 0x20 1 = hypercomplex

*If S_FLOAT=0, S_32=0 for 16-bit integer, or S_32=1 for 32-bit integer.
If S FLOAT=1, S 32 isignored.
Bits 7-14: file header status bits (bits 10 and 15 are unused):

7 S_ACQPAR 0x80 0 = not Acgpar, 1 = Acqpar
S_SECND 0x100 0="first FT, 1 = second FT
9 S_TRANSF 0x200 0 =regular, 1 = transposed
11 S_NP 0x800 1= np dimension is active
12 S_NF 0x1000 1 =nf dimensionisactive
13 S NI 0x2000 1=ni dimension is active
14 S NI2 0x4000 1=ni2dimension is active

Block headers are defined by the following C specifications:
struct datablockhead
/* Each file block contains the following header */

{

short scale; /* scaling factor */

short status; /* status of data in block */

short index; /* block index */

short mode; /* mode of data in block */

long ctcount; /* ct value for FID */

float lpval; /* £2 (2D-f1l) left phase in phasefile */
float rpval; /* £2 (2D-f1) right phase in phasefile */
float 1vl; /* level drift correction */

float tlt; /* tilt drift correction */

Vi
status ishits 06 defined the same asfor file header status. Bits 7-11 are defined
below (all other bits must be zero):

7 MORE_BLOCKS 0x80 0 = absent, 1 = present
NP _CMPLX 0x100 0=redl, 1 =complex
9 NF_CMPLX 0x200 0=redl, 1 =complex
10 NI CMPLX 0x400 0=redl, 1 =complex
11 NI2 CMPLX 0x800 0=red, 1 =complex

Additional data block header for hypercomplex 2D data:
struct hypercmplxbhead

266 vnmrJ User Programming 01-999253-00 A0604

5.1 VnmrJ Data Files

{

short s sparel; /* short word: spare */

short status; /* status word for block header */
short s spare2; /* short word: spare */

short s spare3; /* short word: spare */

long 1 sparel; /* long word: spare */

float 1lpvall; /* 2D-f2 left phase */

float rpvall; /* 2D-f2 right phase */

float f sparel; /* float word: spare */

float f spare2; /* float word: spare */

}i
Main data block header mode bits 0-15:
Bits 0-3: bit 3is currently unused

0 NP_PHMODE Ox1 1 = ph mode
1 NP_AVMODE 0x2 1= av mode
2 NP PWRMODE 0x4 1= pwr mode

Bits4—7: bit 7 is currently unused

4 NF_PHMODE 0x10 1 = ph mode
5 NF_AVMODE 0x20 1= av mode
6 NF PWRMODE 0x40 1= pwr mode

Bits 8-11: bit 11 is currently unused

8 NI PHMODE 0x100 1 = ph mode
9 NI AVMODE 0x200 1=av mode
10 NI PWRMODE 0x400 1= pwr mode

Bits 12—15: bit 15 is currently unused

12 NI2 PHMODE 0x8 1 = ph mode
13 NI2 AVMODE 0x100 1= av mode
14 NI2 PWRMODE 0x2000 1= pwr mode

Usage bits for additional block headers (hypercmplxbhead. status)

U _HYPERCOMPLEX 0x2 1 = hypercomplex block structure

The actual FID dataistypically stored as pairs of integersin either 16-bit format or 32-bit
format. The first integer represents the real part of a complex pair (or the X channel from
the perspective of quadrature detection); the second integer represents the imaginary
component (or the Y channel). In phase-sensitive 2D experiments, “X” and “Y”
experiments are similarly interleaved. The format of the integers and the organization as
complex pairs must be specified in the data file header.

VnmrJ Use of Binary Data Files

To understand how VnmrJ uses individua binary data files, consider the example of a
simple Fourier transform followed by the display of the spectrum. The FT is performed
with the command £ t, which acts as follows:

1. Copy processing parameters from curpar into procpar.

2. If FIDisnotinthe £id file buffer, openthe £id file (if not aready open) and load
it into buffer.

01-999253-00 A0604 vnmrJ User Programming 267

Chapter 5. Parameters and Data

Initialize the data file with the proper size (using parameter £n).
Convert integer FID into floating point and store result in data file buffer.
Apply dc drift correction and first point correction.

Apply weighting function, if requested.

N o o M~ w

Zerofill data, if required.
8. Fourier transform datain data file buffer.

At thispoint, thedatafile buffer containsthe complex spectrum. Unless other FTsare done,
which use up more memory space than assigned to the data file buffer, the data is not
automatically written to thefile expn/datdir/data at thistime. Joining a different
experiment or the command £ 1ush would perform such a write operation.

The ds command takes the following stepsin displaying the spectrum:

1. If dataisnotinphasefile buffer or if the phase parameters have changed, ds
tries to open the phase file (if not already open) and load datainto the buffer (if itis
there). If ds is unsuccessful, the data must be phased:

a. If thedataisnot in the datafile buffer, ds opens the datafile (if not already
open) and loads it into the buffer.

b. dsinitializesthephasefile buffer with the proper size (using the same
parameter £n asused for last FT).

c. ds cdculatesthe phased (or absolute value) spectrum and storesit in the
phasefile buffer.

2. ds calculatesthe display and displays the spectrum.

The phasefile buffer now contains the phased spectrum. Unless other displays are
done, which use up more memory space than assigned to the phasef i1e buffer, the data
is not automatically writtento thefileexpn/datdir/phasefile at thistime. Joining
adifferent experiment or entering the command £1ush would perform such awrite
operation.

Depending on the nature of the data processing, thetwo filesdata and phasefile will
contain different information, as follows:

® After a 1D FT —data contains acomplex spectrum, which can be used for phased or
absolute value displays.

® After a 1D display —phasefile contains either phased or absolute value data,
depending on which type of display had been selected.

® After a2D FID display — data containsthe complex FIDs, floated and normalized for
different scaling during the 2D acquisition. phasefile contains the absolute value
or phased equivalent of this FID data

® After thefirst FT ina 2D experiment — data contains the once-transformed spectra.
Thisisequivalent to theinterferograms, if the datais properly reorganized (seefq and
fo tracesin“ Storing Multiple Traces” on page 269). If adisplay isdone now,
phasefile contains phased (or absolute value) hal f-transformed spectra or
interferograms.

® After the second FTina 2D experiment —data containsthe fully transformed spectra,
and after adisplay, phasefile contains the equivaent phased or absolute-value
spectra.

268 vnmrJ User Programming 01-999253-00 A0604

5.1 VnmrJ Data Files

Storing Multiple Traces

Arrayed experiments are handled in VnmrJ by storing the multiple traces of arrayed
experimentsin onefile. Toallow this, thefileisdividedinto several blocks, each containing
onetrace. Therefore, in an arrayed experiment, thefiles £id, data, and phasefile
typically contain the same number of blocks. The number of traces in an arrayed
experiment isidentical to the parameter arraydim. Theonly complication when working
with such datafiles in arrayed experiments might be that there are “holes” in such files (in
the UNIX version of VnmrJonly). The holes occur if not al FIDs are transformed or
displayed. They do not present a problem as long as a user program just uses a “ seek”
operation to position the file pointer at the right point in the file and does not try to read
traces that have never been calculated.

One can look at 2D experiments as a specia case of an arrayed experiment; however, the
situation is complicated by the fact that the data often has to be transposed. After the first
FT, the resulting spectra are transposed to become the FIDs used for the second FT, and
after the second FT, the user might want to work on traces in either the f1 or fo direction.
Furthermore, some types of symmetrization and baseline correction algorithms may have
to work on tracesin both directions at the same time. The situation is complicated by the
fact that the “in place” matrix transposition of large data sets is a very complex operation,
requiring many disk accesses and can therefore not be used in asystem that hasto transform
large non-symmetric data setsin a short time.

“Out of place” transpositions are not acceptable for large data sets because they double the
disk space requirements of the large 2D experiments. Therefore, VnmrJ software uses a
storage format in the 2D data file that all ows access to both rows and columns at the same
time. Because of the proprietary nature and complexity of the algorithm involved, it is not
presented here. The storage format is used only indatdir/data.

2D FIDs are stored the same way as 1D FIDs. Transformed 2D dataisstored in data in
large blocks of typically 256K bytes. This means that multiple traces are combined to form
ablock. Within one block, the datais not stored as individual traces but is scrambled to
make access to rows and columns as fast as possible.

Phased 2D dataisstoredinphasefile inthesamelargeblocksasindata, but thetraces
within each block are stored sequentially in their natural order. Both traces along f1 and f2
are stored in the same file. The first block(s) contain traces number 1 to £n aong the f1
axis, the next block(s) contains traces number 1to £nl aong the fo axis. Note again, that
phasefile will only contain dataif the corresponding display operation has been
performed. Therefore, in most typical situations, where only adisplay along one of the two
2D axesisdone, phasefile will contain only the block(s) for the tracesalong f1 or a
'hole' followed by the block(s) for the traces along fo. Furthermore, in large

2D experiments, where multiple blocks must be used to store the whole data, only a'full’
display will ensure that all blocks were actually calculated.

Header and Data Display

The VnmrJ commands ddf, ddf £, and ddfp display file headers and data. dd £ displays
the datafileinthe current experiment. Without arguments, only thefile header isdisplayed.
Usingddf< (block number, trace number, first number) >, ddf displaysa
block header and part of the data of that block isdisplayed. block number isthe block
number, default 1. trace number isthe trace number within the block, default 1.
first isthefirst data element number within the trace, default 1.

The ddf £ command displays the FID file in the current experiment and the ddfp
command displays the phase file in the current experiment. Without any arguments, both

01-999253-00 A0604 vnmrJ User Programming 269

Chapter 5. Parameters and Data

display only the file header. Using the same arguments asthe dd£ command, ddf £ and
ddfp display ablock header and part of the data of that block isdisplayed. Themstat
command displays statistics of memory usage by VnmrJ commands.

5.2 FDF (Flexible Data Format) Files

270

The FDF file format was devel oped to support the ImageBrowser, chemical shift imaging
(CSl), and single-voxel spectroscopy (SV'S) applications. When these applications were
under development, the current VnmrJfile formats for image data were not easily usable
for the following reasons:

® The data and parameters describing the data were separated into two files. If thefiles
were ever separated, there would be no way to use or understand the data.

® The datafile had embedded headers that were not needed and provided no useful
purpose.

® There was no support or structure for saving multislice data sets or a portion of a
multislice data set as image files.

FDF was developed to make it similar to VnmrJ formats, with parametersin an easy-to-
manipulate ASCII format and a data header that is not fixed so that parameters can be
added. This format makes it easy for users and different applications to manipulate the
headers and add needed parameters without affecting other applications.

File Structures and Naming Conventions

Severa file structure and naming conventions have been developed for more ease in using
and interpreting files. Applications should not assume certain names for certain file;
however, specific applications may assume default names when outputting files.

Directories

The directory-naming conventionis <name > . dat. Thedirectory can contain a parameter
file and any number of FDF files. The name of the parameter fileisprocpar, a standard
VnmrJ name.

File Names

Each type of file has adifferent name in order to make the file more recognizable to the
user. For image files, the nameis image [nnnn] . £df, wherennnn isanumeric string
from 0000 to 9999. For volumes, the nameisvolume [nnnn] . £df, wherennnn isaso
anumeric string from 0000 to 9999. Programs that read FDF files should not depend on
these names because they are conventions and not definitions.

Compressed Files

Although not implemented at thistime, compression will be supported for the data portion
of the file. The headers will not be compressed. A field will be put in the header to define
the compression method or to identify the command to uncompress the data.

File Format
The format of an FDF file consists of a header and data:

VnmrJ User Programming 01-999253-00 A0604

5.2 FDF (Flexible Data Format) Files

Listing 7 isan example of an FDF header. The header isin ASCI| text anditsfieldsare
defined by adata definition language. Using ASCII text makesit easy to decipher the
image content and add new fields, and is compatible with the ASCII format of the
procpar file. Thefieldsin the data header can be in any order except for the magic
number string, which are the first characters in the header, and the end of header
character <null>, which must immediately precede the data. The fields have a C-style
syntax. A correct header can be compiled by the C compiler and should not result in
any errors.

The data portion is binary data described by fields in the header. It is separated from
the header by anull character.

Listing 7. Example of an FDF Header

#!/usr/local/fdf/startup

int rank=2;

char *spatial rank="2dfov";

char *storage="float";

int bits=32;

char *type="absval";

int matrix[]:{256,256};

char *abscissal[]l={"cm","cm"};

char *ordinate[]={"intensity"};

float span([]={-10.000000,-15.000000};

float origin[]={5.000000,6.911132};

char *nucleus[]=("H1", "H1"};

float nucfreq[]={200.067000,200.067000};

float location[]={0.000000,-0.588868,0.000000};
float roi[]1={10.000000,15.000000,0.208557};
float Orientation[]:{0.000000,0.000000,l.OOOOOO,—l.OOOOOO,
0.000000,0.000000,0.000000,l.OOOOO0,0.000000};
checksum=0787271376 ;

<Zero>

Header Parameters

The fields in the data header are defined in this section.

Magic Number

The magic number is an ASCII string that identifiesthe file as a FDF file. The first two
charactersinthefilemust be # !, followed by theidentification string. Currently, the string
is#!/usr/local/fdf/startup.

Data Set Dimensionality or Rank Fields

These entries specify the data organization in the binary portion of thefile.

rank isapositive integer value (1, 2, 3, 4,...) giving the number of dimensionsin the
datafile(e.g., int rank=2;).

matrix isaset of rank integersgiving the number of data pointsin each dimension
(e.g., for rank=2, float matrix[]={256,256};)

spatial rankisastring("none", "voxel", "1dfov","2dfov", "3dfov")
for the type of data (e.g., char *spatial rank="2dfov";).

01-999253-00 A0604 VnmrJ User Programming 271

Chapter 5. Parameters and Data

Data Content Fields

The following entries define the data type and size.

® storageisastring("integer", "float")that definesthe datatype(e.g., char
*storage="float";).

® bitsisaninteger (8, 16, 32, or 64) that definesthe size of the data (e.g.,
float bits=32;).

® typeisastring("real", "imag", "absval", "complex") that definesthe
numerical datatype (e.g., char *type="absval";).

Data Location and Orientation Fields

The following entries define the user coordinate system and specify the size and position
of the region from which the data was obtained. Figure 4 illustrates the coordinate system.
Vectors that correspond to header parameters are shown in boldface.

First voxel in data set

always displayed at
*% t(Jp;\;VeryI eftlg? reen)
location origin
y

Data Sice

~Say X

&S?lr rzgerence fFar?é/ goo é" nate a/stem

di ce
X g o

Z7
&aqpe%efer ence fr,

13
PI rectl on Cos nes
(or |entat|on)

Figure4. Magnet Coordinates as Related to User Coordinates.

® orientation specifiestheorientation of the user reference frame (X, y, 2) with
respect to the magnet frame (X, Y, Z). orientation isgiven asaset of nine
direction cosines, in the order:

A1y, Ao, digs Ay A, oz, g, Ay, dyg
where:

X = d; X +dp,Y +di3Z

Yy = dy X +dy,Y +dysZ

dgy X +dgpY +dg3Z

z
and

272 vnmrJ User Programming 01-999253-00 A0604

5.2 FDF (Flexible Data Format) Files

X = dyx+dyy+dgyz

Y = dppxX+dyy +dgz

Z = dygXx+dygy +dgz

Thevaueiswritten as ninefloating point valuesgrouped asthreetriads (e.g., f1loat
orientation[]={0.0,0.0,1.0,-1.0,0.0,0.0,0.0,1.0,0.0};).

® location isthe position of the center of the acquired data volume relative to the
center of the magnet, in the user’s coordinate system. The position is given in
centimeters as atriple (three floating point values) of x, y, z distances
(e.g., float location[]={10.0,15.0,0.208};).

® roi isthe size of the acquired data volume (three floating point values), in
centimeters, in the user’s coordinate frame, not the magnet frame (e.g.,
float roi[]={10.0,15.0,0.208};).Donotconfusethisroi with ROIsthat
might be specified inside the data set.

Data Axes

The dataaxes entries specify the user coordinates of datapoints. These axesdo not tell how
to orient the display of the data, but only what to call the coordinates of a given datum.
Thereareno standard header entriesto specify the orientation of the datadisplay. Currently,
datais always displayed or plotted in the same order that it is stored. The fastest data
dimension is plotted horizontally from left to right; the next dimension is plotted vertically
from top to bottom.

® originisasetof rank floating point values giving the user coordinates of the first
point in the data set (e.g., float origin[l={5.0,6.91};).

® spanisaset of rank floating point valuesfor the signed length of each axis, in user
units. A positive value means the value of the particular coordinate increases going
away from thefirst point (e.g., float span[]={-10.000,-15.000};).

® abscissalisasetof rank strings("hz", "s", "cm", "cm/s", "cm/s2",
"deg", "ppml", "ppm2", "ppm3") that identifies the units that apply to each
dimension (e.g., char *abscissall={"cm", "cm"};).

® ordinateisastring("intensity", "s", "deg") that givesthe units that apply
to the numbersin the binary part of thefile (e.g.,
char *ordinate[]={"intensity"};).

Nuclear Data Fields

Data fields may contain data generated by interactions between more than one nucleus
(e.g., a2D chemica shift correlation map between protons and carbon). Such datarequires
interpreting the term “ppm” for the specific nucleus, if ppm to frequency conversions are
necessary, and properly labeling axes arising from different nuclei. To properly interpret
ppm and label axes, the identity of the nucleus in question and the corresponding nuclear
resonance frequency are needed. Thesefields arerelated to the abscissa vaues
"ppml", "ppm2",and "ppm3 " inthat the1, 2, and 3 areindicesinto thenucleus and
nucfreq fields. That is, the nucleus for the axiswith abscissa string "ppm1" isthe
first entry inthe nucleus field.

® nucleusisoneentry ("H1", "F19", same as VnmrJ tn parameter) for each rf
channel (eg., char *nucleus[]={"H1", "H1"};).

® nucfreq isthenuclear frequency (floating point) used for each rf channel (e.g.,
float nucfreq([]={200.067,200.067};).

01-999253-00 A0604 vnmrJ User Programming 273

Chapter 5. Parameters and Data

274

Miscellaneous Fields

® checksum isthe checksum of the data. Changes to the header do not affect the
checksum. The checksum is a 32-hit integer, calculated by the gluer program (e.g.,
int checksum=0787271376;).

® compressionisastringwith either the command needed to uncompress the data or
atag giving the compression method. Thisfield isnot currently implemented.

End of Header

A character specifiesthe end of the header. If thereis data, it immediately follows this
character. The data should be aligned according to its data type. For single precision
floating point data, the datais aligned on word boundaries. Currently, the end of header
character is <zero> (an ASCIl “NUL").

Transformations

By editing some of the header values, it is possible to make a program that reads FDF data
files to perform simple transformations. For example, to flip data | eft-to-right, set:
span‘g=—spang

origin'g=origing—span'q

Creating FDF Files

To generatefilesin the FDF format, the following macros are available to write out single
or multislice images:

® For the current imaging software—including sequences sems, mems, and flash—use
the macro svib (directory<, '£'|'m'|'i'|'o'>),wheredirectoryis
the directory name desired (. dat is appended to the name), ' £' outputs datain
floating point format (thisis the default), 'm' or 'i' outputs data as 12-bit integer
valuesin 16-bit words, and 'b' outputs datain 8-bit integer bytes.

® For older style SIS imaging sequences and microimaging sequences, use the macro
svsis(directory<,'f'|'m'>),wheredirectory, '£',and 'm' are
defined the same as svib.

Raw data from the FID file of the current experiment can be saved as an FDF file with the
svfdf (directory) macro, where directory isthe name of the directory in which
to store thefiles (. dat isappended to the name). Datais saved in multiple files, with one
trace per file. Thefilesarenamed £1d0001 . £d4f, £1d0002. £df, etc. Theprocpar

file from the current experiment is also saved in the same directory.

Another way to create the FDF filesis to edit or create a header defining a set of datawith
no headers and attach it to the data file with the fdfgluer program. Use the syntax
fdfgluer header file <data file <output filess> (from UNIX only).
Thisprogram tekesaheader file andadata_ file and putsthem together to form
an FDFfile. It also cal culates a checksum and insertsit into the header. If thedata file
argument isnot present, fdfgluer assumesthe dataisinput from the standard input, and
if theoutput file nameisnot present, ftdfgluer putsthe FDF file to the standard
output.

VnmrJ User Programming 01-999253-00 A0604

5.3 Reformatting Data for Processing

Splitting FDF Files

The £fdfsplit command takesan FDFfileand splitsitinto its dataand header parts. The
syntaxisfdfsplit fdf file data file header file (from UNIX only). If
the header still has a checksum value, that value should be removed.

5.3 Reformatting Data for Processing

Sometimes, data acquired in an experiment has to be reformatted for processing. Thisis
especially truefor in-vivo imaging experiments where time s critical in getting the data so
experiments are designed to acquire data quickly but not necessarily in the most desirable
format for processing. Reformatting data can aso occur in other applications because of a
particular experimental procedure.

The VnmrJ processing applications £t2d and £t 3d can accept datain standard,
compressed, or compressed-compressed (3D) data formats. There are anumber of routines
that allow usersto reformat their data into these formats for processing. The reformatting
routines allow usersto compress or uncompress their data (£ Lashc), move data around
between experiments and into almost any format (mf, mfblk, mfdata, mftrace),
reversedatawhilemovingit (rfblk, rfdata, rftrace), or useatableof values, inthis
casean AP tablestored in tablib, to sort and reformat scans of data (tabc, tcapply).

In this section, standard and compressed data are defined, reformatting options are
described, and several examples are presented. Table 37 summarizes the reformatting
commands described in this section. Note that the commands rsapply, tcapply,
tcclose, and tcopen are for 2D spectrum data; the remaining commands in the table
arefor FID data.

Standard and Compressed Formats

Usually when discussing standard and compressed data formats, standard means the data
was acquired using the arrayed parameters ni and ni2, which specify the number of
incrementsin the second and third dimensions; and compressed means using parameter nf
to specify the increments in the second dimension.

For multislice imaging, standard means using ni to specify the phase-encode increments
and nf to specify the number of slices and compressed means using nf to specify the
phase-encode increments while arraying the slices.

Compressed-compressed means using nf to specify the phase-encode increments and
slicesfor 2D or to specify the phase-encode incrementsin the second and third dimensions
for 3D. In compressed-compressed data sets, nf can be set to nv*ns or nv*nv2, where
nv isthe number of phase-encode incrementsin the second dimension, nv2 is the number
of phase-encode increments in the third dimension, and ns is the number of slices.

To give another view of data formats, which will help when using the “move FID”
commands, each ni increment or array element is stored as a data block in aFID fileand
each nf FID is stored as atrace within a data block in aFID file.

Compress or Uncompress Data

The most common form of reformatting for imaging hasbeento usethe £ 1ashc command
to convert compressed data setsto standard data setsin order to run £t 2d on the data. With
the implementation of £t2d ('nf', <index>), flashc isnolonger necessary.

01-999253-00 A0604 vnmrJ User Programming 275

Chapter 5. Parameters and Data

Table 37. Commands for Reformatting Data

Commands
flashc*

mf (<from exp,>to exp)
mfblk*

mfclose

mfdata*

mfopen (<src_expno, >dest expno)
mftrace*

rfblk*

rfdata*

rftrace*

rsapply

tabc< (dimension) >
tcapply< (file) >
tcclose

tcopen< (file) >

Convert compressed 2D data to standard 2D format
Move FIDs between experiments

Move FID block

Close memory map FID

Move FID data

Memory map open FID file

Move FID trace

Reverse FID block

Reverse FID data

Reverse FID trace

Reverse datain a spectrum

Convert datain table order to linear order
Apply table conversion reformatting to data
Close table conversion file

Open table conversion file

* flashc<('ms'|'mi'|'rare'<,traces><,echoes>)
mfblk (<src_expno, >src_blk no,dest expno,dest blk no)
mfdata (<src_expno,>,src_blk no,src start loc,dest expno, \

dest blk no,dest start loc,num points)
mftrace (<src_expno, >src_blk no,src_trace no,dest expno

dest blk no,dest trace no)

rfblk (<src_expno, >src_blk no,dest expno,dest blk no)

rfdata (<src_expno, >src_blk no,src_start loc,dest _expno, \
dest blk no,dest start loc,num points)
rftrace (<src_expno, >src_blk no,src_trace no,dest _expno, \

dest blk no,dest trace no)

276

However, use of £1ashc isstill necessary for converting compressed-compressed data to

compressed or standard formats.

Move and Reverse Data

Thecommandsmf, mfblk, mfdata,andmftrace areavailableto movedataaroundin
aFID file or to move data from one experiment FID file to another experiment FID file.
These commands give users more control in reformatting their data by allowing them to
move entire FID files, individual blocks within aFID file, individual traceswithin a block
of aFID file, or sections of data within a block of aFID file.

To illustrate the use of the “move FID” commands, Listing 8 isan example with code from
amacro that movesa3D dataset from an arrayed 3D dataset to another experiment that runs
ft3d onthedata. The $index variableisthe array index. It works on both compressed-
compressed and compressed 3D data.

The “reverse FID” commands rfblk, rftrace, and rfdata are similar to their
respectivemfblk, mftrace, and mEdata commands, except that rfblk, rftrace,
and rfdata aso reversethe order of the data. The r£blk, rftrace, and rfdata
commands were implemented to support EPI (Echo Planar Imaging) processing. Listing 9
is an example of using these commandsto reverse every other FID echo for EPI data. Note
that the mfopen and mf close commands can significantly speed up the data
reformatting by opening and closing the datafiles once, instead of every timethe datais
moved. Therfblk, rftrace, and rfdata commands can also be used with the “move
FID” commands.

VnmrJ User Programming 01-999253-00 A0604

5.3 Reformatting Data for Processing

Listing 8. Code from a“Move FID” Macro

if ($segcon[3] = 'c') and ($seqcon[4] = 'c') then

"kk*k* Compressed-compressed 3d *kkxn

Sarraydim = arraydim

if ($index > $arraydim) then
write ('error', 'Index greater than arraydim.')
abort

endif

mfblk ($index, Sworkexp, 1)

jexp ($Sworkexp)

setvalue ('arraydim', 1, 'processed')

setvalue ('arraydim', 1, 'current')
setvalue ('array','', 'processed')
setvalue ('array','', 'current')
ft3d
jexp (Scexpn)
else if ($seqgcon[3] = 'c') and ($seqgcon[4] = 's') then

%k % % % Compressed 3d *k kk N
if (ni < 1.5) then

write ('error', 'seqcon, ni mismatch check parameters.')
abort
endif
Sarraydim = arraydim/ni
if ($index > $arraydim) then
write ('error', 'Index greater than arraydim.')
abort
endif
$i =1

Sk = $Sindex
while ($i <= ni) do
mfblk ($k, Sworkexp, $1)
Sk = sk + Sarraydim
Si = $1 + 1
endwhile
jexp (Sworkexp)
setvalue ('arraydim',ni, 'processed')

setvalue ('arraydim',ni, 'current')
setvalue ('array','', 'processed')
setvalue ('array','', 'current')
ft3d

jexp (Scexpn)

CAUTION: For speed reasons, the “move FID” and “reverse FID” commands work
directly on the FID and follow data links. These commands can modify
data returned to an experiment with the rt command. To avoid
modification, enter the following sequence of VhmrJ commands
before manipulating the FID data:
cp (curexp+'/acqfil/fid', curexp+'/acqgfil/fidtmp"')
rm(curexp+"'/acqgfil/fid")

mv (curexp+'/acqgfil/fidtmp', curexp+'/acqgfil/fid"')

01-999253-00 A0604 VnmrJ User Programming 277

Chapter 5. Parameters and Data

Table Convert Data

V nmrJsupports reconstructing aproperly ordered raw dataset from any arbitrarily ordered
data set acquired under control of an external AP table. The data must have been acquired
according to atableinthe tablib directory. The command for table conversionis tabc.

Reformatting Spectra

The commands rsapply, to reverse a spectrum, and tcapply, to reformat a 2D set of
spectrausing an AP table, support reformatting of spectrawithin a 2D dataset. The types
of reformatting are the reversing of data within a spectrum and the reformatting of
arbitrarily ordered 2D spectrum by using an AP table. These commands do not change the
original FID data, and they may provide some speed improvement over the similar
commands that operate on FID data. For 2D data, an £t1d command should be applied to
the data, followed by the desired reformatting, and then an £ t 2d command to completethe
processing.

Listing 9. Example of Command Reversing Data Order

LIRS S SRS SR SRR SRS S EEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

" epirf (<blkno>) - macro to reverse every other FID

" Dblock & trace indicies start at 1 for rfblk,rftrace,rfdata **

AR S R R RS RS RS R EE RS EE SRS REE RS R LR SRS L RS R ER SR EREREEEEEEEEEEEEEEEEEEEESEEE]

mfopen

$i=2

while ($i <= nv) do
rftrace($1,$1)
Si = $i + 2

endwhile

mfclose

5.4 Creating and Modifying Parameters

VnmrJ parameters and their attributes can be created and modified with the commands
covered in this section. The parameter trees used by these commands are UNIX files
containing the attributes of a parameter as formatted text.

Parameter Types and Trees

The types of parametersthat can be created are 'real', 'string', 'delay’,
'frequency', 'flag’', 'pulse',and 'integer (defaultis'real’).Inbrief, the
meaning of these types are as follows (for more detail, refer to the description of the
create command in the VnmrJ Command and Parameter Reference):

® 'real' isany positive or negative value, and can be positive or negative.

® 'string' iscomposed of characters, and can be limited to selected words by
enumerating the possible values with the command setenumeral.

® 'delay' isavalue between 0 and 8190, in units of seconds.
® 'frequency' ispositiverea number vaues.

® 'flag' iscomposed of characters, similartothe ' string' type, but can belimited
to selected characters by enumerating the possible values with the command

278 vnmrJ User Programming 01-999253-00 A0604

5.4 Creating and Modifying Parameters

setenumeral. If enumerated valuesarenot set, the ' string' and ' flag' types
areidentical.

® 'pulse' isavalue between 0 and 8190, in units of microseconds.

® 'integer' iscomposed of integers (0, 1, 2, 3,...),
Thefour parameter treetypesare ' current', 'global', 'processed', and
'systemglobal' (thedefaultis 'current'):

® 'current' containsthe parametersthat are adjusted to set up an experiment. The
parameters are from the file curpar in the current experiment.

® 'global' containsuser-specific parametersfromthefileglobal inthevnmrsys
directory of the present UNIX user.

® 'processed' containsthe parameters with which the datawas obtained. These
parameters are from the file procpar in the current experiment.

® 'systemglobal' containsinstrument-specific parameters from the text file
/vnmr/conpar. The config program is used to define most of these parameters.
All users havethe same systemglobal tree.

Tools for Working with Parameter Trees
Table 38 lists commands for creating, modifying, and deleting parameters.

Table 38. Commands for Working with Parameter Trees

Commands
create (parameter<, type<, tree>>) Create a new parameter in parameter tree
destroy (parameter<, tree>) Destroy a parameter
destroygroup (group<, tree>) Destroy parameters of agroup in atree
display (parameter|'*'|'**'<, tree>) Display parameters and their attributes
fread(file<, tree<, 'reset'|'value'>>) Readinparametersfromafileinto atree
fsave (file<, tree>) Save parameters from atree to afile
getvalue (parameter<, index><, tree>) Get value of parameter in atree
groupcopy (from tree, to tree,group) Copy group parameters from tree to tree
paramvi (parameter<, tree>) Edit parameter and its attributes using vi
prune (file) Prune extra parameters from current tree
setdgroup (parameter, dgroup<, tree>) Set the Dgroup of a parameter in atree
setenumeral* Set values of a string parameter in atree
setgroup (parameter, group<, tree>) Set group of aparameter in atree
setlimit* Set limits of a parameter in atree
setprotect* Set protection mode of a parameter
settype (parameter, type<, tree>) Change type of a parameter
setvalue* Set value of any parameter in atree
* getenumeral (parameter,N,enuml,enum?2, .. .enumN<, tree>)

setlimit (parameter,maximum, minimum, step size<,tree>) or

setlimit (parameter, index<, tree>)
setprotect (parameter, 'set'|'on'|'off',value<,tree>)
setvalue (parameter,value<, index><, tree>)

To Create a New Parameter

Usecreate (parameter<, type<, tree>>) tocreate anew parameter in a
parameter tree with the name specified by parameter. For example, entering
create('a','real', 'global') createsanew rea-type parameter ain the global

01-999253-00 A0604 vnmrJ User Programming 279

Chapter 5. Parameters and Data

tree. type canbe 'real?', 'string', 'delay',' frequency','flag',
'pulse’', or 'integer'. If the type argument is not entered, the defaultis ' real .
treecanbe 'current', 'global', 'processed',or 'systemglobal' . If the
tree argument is not entered, the default is ' current '. See the section above for a
description of parameter types and trees. Note that these same arguments are used with all
the commands appearing in this section.

To Get the Value of a Parameter

The value of most parameters can be accessed simply by using their namein an expression;
for example, sw? or r1=np accesses the value of sw and np, respectively. However,
parameters in the processed tree cannot be accessed thisway. Use

getvalue (parameter<, index><, tree>) to get the value of any parameter,
including the value of aparameter in aprocessed tree. To makethiseasier, the default value
of treeis'processed'. Theindex argument isthe number of asingle elementin an
arrayed parameter (the default is 1).

To Edit or Set Parameter Attributes

Useparamvi (parameter<, tree>) toopenthefilefor aparameter inthe UNIX vi
text editor so that you can edit the attributes. To open a parameter file with an editor other
than vi, use paramedit (parameter<, tree>). Refer to entry for paramedit in
the VnmrJ Command and Parameter Reference for information on how to select a text
editor other than vi. Theformat of a stored parameter is described in the next section.

Severa parameter attributes can be set by the following commands:

® setlimit (parameter,maximum,minimum, step size<, tree>) sets
the maximum and minimum limits and stepsize of a parameter.

® setlimit (parameter, index<, tree>) Setsthe maximum and minimum
limits and the stepsize, but obtains the values from the index-th entry of atablein
conpar.

® setprotect (parameter, 'set'|'on'|'off',bit vals<,tree>)
sets the protection bits associated with a parameter. The keyword ' set ' causes the
current protection bits to be replaced with the set specified by bit vals (listedin
the VnmrJ Command and Parameter Reference). 'on' causes the bits specified in
bit vals tobeturned on without affecting other protection bits. 'of £ ' causesthe
bits specifiedinbit wvals to beturned off without affecting other protection bhits.

® settype (parameter, type<, tree>) changesthe type of an existing
parameter. A string parameter can be changed into a string or flag type, or areal
parameter can be changed into areal, delay, frequency, pulse, or integer type.

® setvalue (parameter,value<,index><,tree>) setsthevaueof any
parameter in atree. setvalue bypasses normal range checking for parameter entry.
It also bypasses any action that would be invoked by the parameter's protection bits.

® setenumeral (parameter,N, enuml, enum?2, ..., enumN<, tree>) Ses
possible values of a string-type or flag-type parameter in a parameter tree.

® setgroup (parameter, group<, tree>) Setsthegroup (also called the
Ggroup) of a parameter in atree. The group argument canbe 'all', 'sample’,
'acquisition', 'processing', 'display',0r 'spin'.

® setdgroup (parameter,dgroup<, tree>) setsthe Dgroup of aparameter in
atree. The dgroup argument is an integer. The usage of setdgroup is set by the
application. Only the experimental user interface uses this command currently.

280 vnmrJ User Programming 01-999253-00 A0604

5.4 Creating and Modifying Parameters

To Display a Parameter

Usedisplay (parameter|'*'|'**'<, tree>)todisplay one or more parameters
and their attributes from a parameter tree. The first argument can be one of the following
three options: aparameter name (to display the attributes of that parameter, ' * ' (todisplay
the name and value of all parametersin atree), or ' ** ' (to display the attributes of al
parameters in atree. The results are displayed in the process tab, test output.

To Move Parameters

Usegroupcopy (from tree,to tree,group) tocopy aset of parameters of a
group from one parameter tree to another (it cannot be the same tree). group isthe same
keywords as used with setgroup.

The fread (file<, tree<, 'reset'|'value'>>) command readsin parameters
from afileand loadstheminto atree. Thekeyword ' reset ' causesthetreeto be cleared
before the new fileisread; 'value' causesonly the values of the parametersin the file
to beloaded. The fsave (£ile<, tree>) command writes parametersfrom a
parameter tree to afile for which the user has write permission. It overwrites any file that
exists.

To Destroy a Parameter

Thedestroy (parameter<, tree>) command removes a parameter from a
parameter tree whilethe destroygroup (group<, tree>) command removes
parameters of agroup from aparameter tree. The group argument usesthe samekeywords
asused withthe set group command. If the destroyed parameter wasan array, thearray
parameter is automatically updated.

To removeleftover parameters from previousexperimental setups, use prune instead. The
prune (file) command destroys parameters in the current parameter tree that are not
also defined in the parameter file specified.

Format of a Stored Parameter

To usethe create command to create a new parameter, or to use the paramvi and
paramedit commands to edit a parameter and its attributes, requires knowledge of the
format of astored parameter. If an error in the format is made, the parameter may not load.
This section describes the format in detail.

The stored format of a parameter is made up of three or more lines:

® Line 1 containsthe attributes of the parameter and has the following fields (givenin
same order as they appear in the file):
name isthe parameter name, which can be any valid string.
subtype isaninteger valuefor the parameter type: 0 (undefined), 1 (real), 2 (string),
3 (delay), 4 (flag), 5 (frequency), 6 (pulse), 7 (integer).
basictype isaninteger value: 0 (undefined), 1 (real), 2 (string).
maxvalue isareal number for the maximum valuethat the parameter can contain, or
an index to a maximum value in the parameter parmax (found in
/vnmr/conpar). Appliesto both string and real types of parameters.

minvalue isarea number for the minimum value that the parameter can contain or
an index to a minimum value in the parameter parmin (found in
/vnmr/conpar). Appliesto real types of parameters only.

01-999253-00 A0604 vnmrJ User Programming 281

Chapter 5. Parameters and Data

282

stepsize isarea number for the step size in which parameters can be entered or
index to astep size in the parameter parstep (foundin /vnmr/conpar). If
stepsizeisO, itisignored. Appliesto real types only.

Ggroup isan integer value: 0 (ALL), 1 (SAMPLE), 2 (ACQUISITION),

3 (PROCESSING), 4 (DISPLAY), 5 (SPIN).

Dgroup isan integer value. The specific application determines the usage of this
integer.

protectionisa32-bit word made up of thefollowing bit masks, which are summed
to form the full mask:

Bit Value Description

0 1 Cannot array the parameter

1 2 Cannot change active/not active status

2 4 Cannot change the parameter value

3 8 Causes parameter macro to be executed (e.g., if parameter
isnamed sw, themacro _sw is executed when sw is changed)

4 16 Avoids automatic redisplay

5 32 Cannot del ete parameter

6 64 System parameter for spectrometer or data station

7 128 Cannot copy parameter from tree to tree

8 256 Cannot set array parameter

9 512 Cannot set parameter enumeral values

10 1024 Cannot change the parameter's group

11 2048 Cannot change protection bits

12 4096 Cannot changethe display group

13 8192 Takemax, min, step from /vnmr/conpar parameters

parmax, parmin, parstep.

active isaninteger value: O (not active), 1 (active).
intptr isnot used (generaly set to 64).

® Line2, or the group of lines starting with line 2, list the values of the parameter. The
first field on line 2 isthe number of values the parameter is set to. The format of the
rest of the fields on line 2 and subsequent lines, if any, depends on the val ue of
basictype set online 1 and the value entered in thefirst field on line 2:
If basictype isl (real) and first value online 2 isany number, all parameter values
are listed on line 2, starting in the second field. Each value is separated by a space.
If basictypeis?2 (string) and first value online 2is 1, the single string value of the
parameter is listed in the second field of line 2, inside double quotes.
If basictype is2 (string) and first value on line 2 is greater than 1, the first array
element islisted in the second field on line 2 and each additional element islisted on
subsequent lines, one value per line. Strings are surrounded by double quotes.

® Last line of aparameter file lists the enumerable values of a string or flag parameter.
This specifies the possible values the string parameter can be set to. Thefirst field is
the number of enumerablevalues. If thisnumber is greater than 1, al of thevalues are
listed on this line, starting in the second field.

For example, hereishow atypical real parameter file, named a, isinterpreted (the numbers
in parentheses are not part of the file but are line references in the interpretation):
(1) 2 31 1e+30 -1e+30 0 0 1 0 1 64

VnmrJ User Programming 01-999253-00 A0604

5.4 Creating and Modifying Parameters

(2) 24.126400
3 o

Thisfileis made up of thefollowing lines:

1. The parameter hasthe name a, subtypeis 3 (delay), basictypeis 1 (rea), maximum
sizeis 1e+30, minimum sizeis—1e+30, stepsizeis0, Ggroup is0 (ALL), Dgroup is
1 (ACQUISITION), protection is 0 (cannot array the parameter), activeis 1 (ON),
and intptr is 64 (not used).

2. Parameter a has 1 value, therea number 24.126400.
3. Parameter a has 0 enumerable values.

Asanother example, here are the valuesin afile for the parameter tof:
(1) tof 517 7 7 2 1 8202 1 64

(2) 1 1160

@) o

The tof fileis made up of the following lines:

1. Theparameter hasthe name tof, subtypeis5 (frequency), and basictypeis 1 (real).
To read the next 3 values, we must jump to the protection field. Because the
protection word value is 8202, which is 8192 + 8 + 2, then bit 13 (8192), hit 3 (8),
and bit 1 (2) bitmasks are set. Because bit 13 is set, the maximum size, minimum
size, and stepsize values (each is 7) are indices into the 7th array value in the
parameters parmax, parmin, and parstep, respectively, in thefile conpar.
Because bit 3 is set, this causes amacro to be executed. The bit 1 bitmask (2) isaso
set, which meansthe active/not active status of the parameter cannot be changed. For
theremaining fields, Ggroup is 2 (ACQUISITION), Dgroupis 1 (ACQUISITION),
activeis 1 (ON), and intptr is 64 (not used).

2. Parameter tof has 1 value, the rea number 1160.
3. Parameter tof has0 enumerable values.

The following file is an example of a multielement array character parameter, beatles:
(1) beatles 2 2 8 0 0 2 1 0 1 64
(2) 4 john
3) paul
george
ringo

4 o
Thebeatles fileismade up of thefollowing lines:

1. Theparameter hasthe name of beatles, subtypeis?2 (string), basictypeis 2
(string), 8 0 0ismax min step (not really used for strings), Ggroup is 2 (acquisition),
Dgroupis1 (ALL), protectionisO, activeis 1 (ON), 64 is a terminating number.

2. Therearefour elementsto this variable; therefore, it is arrayed. john isthefirst
element in the array.

3. paul, george, and ringo are the other three elementsin the array.

4. 0 (zero) isthe terminating line.

01-999253-00 A0604 vnmrJ User Programming 283

Chapter 5. Parameters and Data

5.5 Modifying Parameter Displays in VNMR

284

The VNMR plotting commands and macros— ap, pap—are controlled by template
parameters specifying the content and form of the information plotted. The template
parameters have the same name asthe respective command or macro; for example, the plot
created by the ap command is controlled by the parameter ap in the experiment’s current
parameter set.

To modify an existing template parameter, such as ap, enter paramvi ('ap') tousethe
vi text editor, or enter paramedit ('ap') to usethetext editor set by the UNIX
environmental variable vinmreditor.

Display Template

A plot template can have asingle string or multiple strings. The first number on the second
line of a stored parameter indicates the number of string templates. If the number is 1, the
display template is asingle string; otherwise, avalue greater than 1 indicates the template
is multiple strings. Figure 5 shows an exampl e of a single-string display template (actually
the parameter ap) and the resulting plot.

ap22102300416164

1

“1:SAMPLE:date,solvent,file;1: ACQUISITION:sw:1,at:3,np:0,fb:0,bs(bs):0,ss(ss):0,

d1:3,d2(d2):6,nt:0,ct:0; 1. TRANSMITTER:tn,sfrq:3,tof: 1,tpwr:0,pw:3,p1(p1):3;1:DE

COUPLER:dn,dof:1,dm,dmm,dpwr:0,dmf:0;2:SPECIAL :temp:1,gain:0,spin:0,hst:3,p
w90:3,alfa:3;2:FLAGS:il,in,dp,hs; 2:PROCESSING:Ib(Ib):2,sb(sb):3,sbs(sb):3,gf (of):

3,9fs(gf):3,awc(awc):3,Isfid(Isfid):0,Isfrq(Isfrg): 1,phfid(phfid):1,fn:0;2:DISPLAY: sp:

Lwp:1,rfl:1,rfp:1,rp:1,Ip:1;2:PLOT:wc:0,sc:0,vs.0,th:0,aig* ,dcg* ,dmg* ;"

0

Figureb5. Single-String Display Template with Output

Inasingle-string template, the string always starts with adoubl e quote and then repeatsthe
following information for each column in the plot:

® Column number (e.g., 2)

® Condition for plot of column (optional, e.g., “4 (ni)”, see”“Conditional and Arrayed
Plots’ on page 285).

® Colon
® Columntitle (e.g., 2D ACQUISITION)
® Colon

® Parametersto appear in column, separated by commas (for notation, see “ Conditional
and Arrayed Plots’ on page 285)

® Semicolon

At the end of the string is another double quote. Spaces cannot appear anywhere in the
string template except as part of a column title.

Column titles are often in upper case, but need not be, and are limited to 19 characters.
More than one title can appear in the same column (such as shown above, SAMPLE and
DECOUPLING are both in column 2).

VnmrJ User Programming 01-999253-00 A0604

5.5 Modifying Parameter Displays in VNMR

Parameterslisted in“plain” form (e.g., tn, date, math) are printed either asstringsor in
aform in which the number of decimal places plotted varies depending on the value of the
parameter.

To plot a specific number of digits past the decimal place, the desired number is placed
following acolon (e.g., sfrg:3,at:3, sw:0). Extracommas can be inserted to skip
rowswithin acolumn (e.g., math, ,werr, wexp,) .

The maximum number of columnsis4; each column can have 17 lines of output. Sincethis
includes the title(s), fewer than 17 parameters can be displayed in any one column. The
entire template is limited to 1024 characters or less.

Asan dternative to a single-string template, which tends to be difficult to read, atemplate
can written as multiple strings, each enclosed in double quotes. The first number indicates
the number of strings that follow. Each string must start with a column number. Figure 6
contains the plot template for the parameter dg2, which isatypical example of amultiple-
string template

6 "l:lst DECOUPLIMG:dfrg:3.dn.dpwr:0.dof:l.dm,.dmm,.dmf:0.dseq.dres: 1, homos ™
"20numrfch>2) 12nd DECOUPLIMG:dfrg2: 3. dnZ. dpwr2: 0. dof2; 1. dm2. dmmz . dmf2: 0, dsegz. dr
esZil. homoz: "

"Z2inumrfch>3) :3rd DECOUPLING :dfrg3: 3. dn3.dpwr3:0.dof3:l.dseq3. dres3: 1, homo3: "
"3ini2) 30 ACAQUISITION:d3:3,sw2:1.ni2:0,.phase2: 0"

"3(niZy:30 DISPLAY:rpZ:l.1lp=Z:l:”

"4i{ni2}:30 PROCESSIMG: lb2:3.sb2:3.shs2(sh2) 13, gf2:3, 2fs20(aef2) 3, awc2: 3, wtfileZ. p
rocZ, fnZ:0: "

Figure6. Multiple-String Display Template

The conditional statement in thisexample (eg., “(numrfch >2)”)iscoveredin
“Conditional and Arrayed Plots’ on page 285.

Thetitlefield can contain astring variable besides aliteral. If thevariableisareal variable,
or not present, or equal to the null string, the variable itself is used as the title (e.g.,
mystrvar [1]='Example Col 1'andmystrvar[2]='Example Col 2').

Conditional and Arrayed Plots

Use of parentheses allows the conditional plot of an entire column and/or individual
parameters. If the real parameter within parentheses is not present, or is equal to 0 or to
'n ', then the associated parameter or section is not plotted. In the case of string
parameters, if the real number isnot present, or isequal to the NULL string or the character
'n ', then the associated parameter or section is not plotted. The following examples from
the dg template above demonstrate this format:

® pl(pl) :1 meansplot parameter p1 only when p1 is non-zero.
® sbs(sb) :3 meansplot sbs only when sb isactive (not equal to ‘n’).

® 4 (ni):2D PROCESSING: meansplot entire“2D PROCESSING” section only
when parameter ni is active and non-zero.

Notethat if aparameter isarrayed, the plot statusisderived from the first value of the array.
Thus, if p1 isarrayed and thefirst valueis 0, p1 will not appear; if the first value is non-
zero, p1 will appear, with “arrayed” as its parameter value.

Similarly, amultiple variable expression can also be placed within the parentheses for
conditional plot of parameters. Each expression must be avalid MAGICAL Il expression
(see“Programming with MAGICAL” on page 21) and must be written so thereisno space
between the last character of the expression and the closing parenthesis “)”.

01-999253-00 A0604 vnmrJ User Programming 285

Chapter 5. Parameters and Data

286

In summary, if asingle variable expression is placed in the parentheses, it is FALSE under
the following conditions:

® Variable does not exist.
® Variableisreal and equasO or is marked inactive.
® Variableisastring variable equal to the NULL string or equal to the character 'n'.

Multiple variable expressions are evaluated the same asin MAGICAL I1. If avariable does
not exist, it is considered an error.

Examples of multiple parameter expressionsinclude the following:

® 2 (numrfch>2) :2nd DECOUPLING: means plot entire “2nd DECOUPLING”
section only when numr£ch (number of rf channels) is greater than 2.

® 3((myflag <> 'n') or ((myni > ni) and (mysw < sw))) :My
Section: meansplot entire“My Section” section only when myflag isnot equal
to 'n' or when myni isgreater than ni and mysw islessthan sw.

The asterisk (...*) isa“specia parameter” designator that allows the value of a series of
string parametersto be plotted in asingle row without names. Thisis more commonly used
with the parameters aig, dcg, and dmg, for example:

aig*,dcg*,dmg*

For tabular output of arrayed parameters, square brackets ([...]) are used. For example:
1l:Sample Table Output: [pw,pl,dl,d2];

Notice that all parametersin the column must be in the brackets; thus, the following is
illegal:

1:Sample Table Output: [pw,pl,dl],d2;

Since arrayed variables are normally displayed with da, this format israrely needed.

Thefield width and digit field options can be used to clean up the display. Thefirst number
after the colon is the field width. The next colon isthe digit field. For example:
1l:Sample Table Output: [pw:6:2,pl:6:2,d1:10:6,d2:10:6] ;

Here, the parameters pw and p1 are plotted in 6 columns with 2 places after the decimal
point, while d1 and d2 are displayed in 10 columns with 6 places after the decimal point.

Output Format

For plot, each parameter and value occupies 20 characters of space:

® Characters1to 8 are the name of the parameter. Parameters with names longer than 8
characters are permitted within VnmrJ itself but cannot be printed with pap.

® Character 9isaways blank.

® Characters 10 to 18 are used for the parameter value. Any parameter value exceeding
9 characters (a file name is acommon example) is continued on the next line; in this
case, character 19 isatilde “~", which is used to show continuation.

® Character 20 is dways blank.

For printing with the pap command, which usesthe ap parameter template, a“da” listing
isprinted starting in column 3, so that the template will typically specify only two columns
of output. ap can specify morethan two columns, but if any parameter isarrayed, thelisting
of that parameter will overwrite the third column. For printing, the maximum number of
linesin each column is 64.

VnmrJ User Programming 01-999253-00 A0604

5.6 User-Written Weighting Functions

5.6 User-Written Weighting Functions

The parameter wt £11e can be set to the name of the file containing a user-written
weighting function. If the parameter wtfile (or wtfilel or wt£ile2) does not exist,
it can be created with the commands

create ('wtfile', 'flag"')

setgroup ('wtfile', 'processing')

setlimit ('wtfile',15,0,0).

Ifwtfile existsbutwtfile="" (two single quotes), VnmrJdoes not look for thefile:
wtf£ile isinactive. To enable user-written weighting functions, set
wtfile=filename, where £ilename isthe name of the executable weighting
function (enclosed in single quotes) that was created by compiling the weighting function
source code with the UNIX shell script wtgen (a process described in the next section).

VnmrJfirst checksif £ilename existsin wt1ib subdirectory of the user’s private
directory. If the file exists there, VnmrJ then checks if the file filename . wtp, which
may contain the values for up to ten internal weighting parameters, exists in the current
experiment directory. If £ilename . wtp doesnot exist in the current experiment
directory, the ten internal weighting parameters are set to 1.

VnmrJ executes the £ i 1lename program, using the optional filefilename .wtp asthe
source for parameter input. The output of the program isthe binary file filename . wtf
in the current experiment directory. Thisbinary file contains the weighting vector that will
beread in by VnmrJ. The total weighting vector used by VnmrJis avector-vector product
of thisexternal, weighting vector and the internal VnmrJweighting vector, the latter being
calculated from the parameters 1b, gf, gfs, sb, sbs, and awc. The parameter awc still
provides an overall additive contribution to the total weighting vector. Although the
external weighting vector cannot be modified with wt 1, the total weighting vector can be
modified with wti by modifying the internal VnmrJ weighting vector. Note that only a
single weighting vector is provided for both halves of the complex data set—real and
imaginary data points of the complex pair are aways weighted by the same factor.

If the £11ename program doesnot exist in auser'swt 1ib subdirectory, VnmrJlooksfor
atext filein the current experiment directory with the name £ i 1ename. Thisfile contains
the valuesfor the external weighting function in floating point format (for example, 0.025,
but not 2.5e-2) with one value per line. If the number of weighting function valuesin this
fileisless than the number of complex FID data points (that is, np/2), the user-weighting
function is padded out to np/2 points using the last valuein the £i 1ename text file.

Writing a Weighting Function

Weighting functions must follow thisformat, similar to pulse sequence programs:
#include "weight.h"
wtcalc (wtpntr, npoints, delta t)

int npoints; /* number of complex data points */
float *wtpntr, /* pointer to weighting vector */
delta_t; /* dwell time */

{

Thevariable wtpntr isapointer and must be dealt with differently than an ordinary
varisblesuch asdelta_t.wtpntr containsthe addressin memory of thefirst element
of the user-calculated weighting vector; *wtpntr isthevalue of that first element. The

/* user-written part */

01-999253-00 A0604 vnmrJ User Programming 287

Chapter 5. Parameters and Data

statement *wtpntr++=x impliesthat *wtpntr isset equal tox and the pointer wtpntr
is subsequently incremented to the address of the next element in the weighting vector.
Thefollowing examples show using the fi1ename programset by wtfile=filename

® Sourcefilefilename.cinauser'svnmrsys/wtlib directory:
#include "weight.h"
wtcalc (wtpntr, npoints, delta t)

int npoints; /* number of complex data points */
float *wtpntr, /* pointer to weighting vector */
delta_t; /* dwell time */
{
int 1i;
for (i = 0; i < npoints; i++)

*wtpntr++ = (float) (exp(-(delta t*i*wtconst[0]))) ;

/* wtconst[0] to wtconst[9] are 10 internal weighting */
/* parameters with default values of 1 and type float. */

}

® Optional parameter file f£ilename .wtp inthe current experiment directory:

0.35 /* value placed in wtconst[0] */
-2.4 /* value placed in wtconst([1] */

/* etc. */

® Textfile £ilename in the current experiment directory:

0.9879 /* value of first weighting vector element */
0.8876 /* value of second weighting vector element */
-0.2109 /* value of third weighting vector element */
0.4567 /* value of fourth weighting vector element */
- /* etc. */
0.1234 /* value of last weighting vector element */

Compiling the Weighting Function

Themacro/shellscript wtgen isused to compile £ i 1ename asset by parameter wtfile
into an executable program. The sourcefileis filename . c storedinauser’'svnmrsys/
wt 11ib directory. The executablefileisin the same directory and hasthe same name asthe
source file but with no file extension. The syntax isfor wtgen iswtgen (file<.c>)
fromVnmrJor wtgen file<.c> from UNIX.

The wtgen macro alows the compilation of a user-written weighting function that
subsequently can be executed from within VnmrJ. The shellscript wtgen can be run from
within UNIX by typing the name of the shellscript file name, where the . ¢ file extension
isoptional. wtgen can a'so berun from within VnmrJby executing the macro wt gen with
the file name in single quotes.

The following functions are performed by wtgen:

1. Checksfor the existence of thebin subdirectory inthe VnmrJ system directory and
abortsif the directory is not found.

2. Checksfor filesusrwt .o andweight .h inthebin subdirectory and abortsif
either of these two files cannot be found there.

3. Checksfor the existence of the user's directory and creates this directory if it does
not already exist.

288 vnmrJ User Programming 01-999253-00 A0604

5.7 User-Written FID Files

4. Establishesinthewt1ib directory soft linkstousrwt .o andweight.hinthe
directory /vnmr/bin.

5. Compilesthe user-written weighting function, which isstored inthewt1ib
directory, link loadsit with usrwt . o, and places the executable program in the
same directory. Any compilation and/or link loading errors are placed in the file
errmsg inwtlib.

6. Removesthe soft linksto usrwt .o and weight .h inthebin subdirectory of
the VnmrJ system directory.

The name of the executable program isthe same as that for the source file without afile
extension. For example, testwt . c isthe source file for the executable file testwt.

5.7 User-Written FID Files

You can introduce computed data into your experiment by using the command
makefid(input file <,element number, formats>).Theinput file
argument, which isrequired, is the name of afile containing numeric values, two per line.
Thefirst valueisassigned tothe X (or real) channel; the second value on thelineisassigned
totheY (or imaginary) channel. Arguments specifying the element number and the format
are optional and may be entered in either order.

The argument element number isany integer larger than O. If this element already
existsin your FID file, the program will overwrite the old data. If not entered, the default
isthefirst element or FID. format isacharacter string with the precision of the resulting
FID file and can be specified by one of the following:

'dp=n" single precision (16-bit) data
'dp=y"' double precision (32-bit) data
'16-bit" single precision (16-bit) data
132-bit! double precision (32-bit) data

If an FID file already exists, format isthe precision of datain that file. Otherwise, the
default for format is32 bits.

The number of points comes from the number of numeric values read from the file.
Remember it reads only two values per line.

If the current experiment already contains a FID, you will not be able to change either the
format or the number of points from that present in the FID file. Use the command
rm(curexp+'/acqgfil/fid') toremovetheFID.

Themakefid command does not |ook at parameter values when establishing the format
of the data or the number of pointsin an element. Thus, if the FID fileisnot present, it is
possible for makefid towriteaFID filewith aheader that does not match the value of dp
or np. Since the active value isin the processed tree, you will need to usethe setvalue
command if any changes are needed.

Be aware that make f id can modify datareturned to an experiment by the rt command.
To avoid this, enter the following sequence of VnmrJ commands on the saved data before
running makefid:

cp (curexp+'/acqgfil/fid', curexp+'/acqfil/fidtmp')

rm (curexp+'/acqgfil/fid")

mv (curexp+'/acqgfil/fidtmp', curexp+'/acgfil/fid")

01-999253-00 A0604 vnmrJ User Programming 289

Chapter 5. Parameters and Data

Thecommandwritefid (textfile<, element numbers) writesatextfileusing
data from the selected FID element The default element number is 1. The program writes
two values per line—thefirst isthe value from the X (or real) channel, and the second is
the value from the Y (or imaginary) channel.

290 vnmrJ User Programming 01-999253-00 A0604

Appendix A. Status Codes

These codes apply to all systems, except codes marked with an asterisk (*) are not used on

MERCURYplus/-Vx systems. Codes marked with a double asterisk (**) apply only to

UNITYINOVA Whole Body Imaging systems.

Done
codes:

Error
codes:

Table 39. Acquisition Status Codes

11. FID complete

12. Block size complete (error code indicates bs number completed)
13. Soft error

14. Warning

15. Hard error

16. Experiment aborted

17. Setup completed (error code indicates type of setup completed)
101. Experiment complete

102. Experiment started

Warnings

101. Low-noise signal

102. High-noise signal

103. ADC overflow occurred

104. Receiver overflow occurred*

Soft errors

200. Maximum transient completed for single precision data

201. Lost lock during experiment (LOCKLOST)

300. Spinner errors:

301. Samplefailsto spin after 3 attempts to reposition (BUMPFAIL)
302. Spinner did not regulate in the allowed time period (RSPINFAIL)*
303. Spinner went out of regulation during experiment (SPINOUT)*
395. Unknown spinner device specified (SPINUNKNOWN)*

396. Spinner deviceis not powered up (SPINNOPOWER)*

397. RS-232 cable not connected from console to spinner (SPINRS232)*
398. Spinner does not acknowledge commands (SPINTIMEOUT)*
400. VT (variable temperature) errors:

400. VT did not regulate in the given time vt t ime after being set
401. VT went out of regulation during the experiment (VTOUT)
402. VT in manua mode after auto command (see Oxford manua)*
403. VT safety sensor has reached limit (see Oxford manual)*

404. VT cannot turn on cooling gas (see Oxford manual)*

01-999253-00 A0604 VnmrJ User Programming

291

292

Table 39. Acquisition Status Codes (continued)

405. VT main sensor on bottom limit (see Oxford manual)*
406. VT main sensor on top limit (see Oxford manua)*
407. VT sc/ss error (see Oxford manual)*

408. VT oc/ss error (see Oxford manual)*

495. Unknown VT device specified (VTUNKNOWN)*
496. VT device not powered up (VTNOPOWER)*

497. RS-232 cable not connected between console and VT (VTRS232)*
498. VT does not acknowledge commands (VTTIMEOUT)
500. Sample changer errors:

501. Sample changer has no sampleto retrieve

502. Sample changer arm unable to move up during retrieve
503. Sample changer arm unable to move down during retrieve
504. Sample changer arm unable to move sideways during retrieve
505. Invalid sample number during retrieve

506. Invalid temperature during retrieve

507. Gripper abort during retrieve

508. Sample out of range during automatic retrieve

509. lllegal command character during retrieve*

510. Robot arm failed to find home position during retrieve*
511. Sampletray size is not consistent*

512. Sample changer power failure during retrieve*

513. Illegal sample changer command during retrieve*

514. Gripper failed to open during retrieve*

515. Air supply to sample changer failed during retrieve*
525. Tried to insert invalid sample number*

526. Invalid temperature during sample changer insert*

527. Gripper abort during insert*

528. Sample out of range during automatic insert

529. Illegal command character during insert*

530. Robot arm failed to find home position during insert*
531. Sampletray sizeis not consistent*

532. Sample changer power failure during insert*

533. lllegal sample changer command during insert*

534. Gripper failed to open during insert*

535. Air supply to sample changer failed during insert*

593. Failed to remove sample from magnet*

594. Sample failed to spin after automatic insert

595. Sample failed to insert properly

596. Sample changer not turned on

597. Sample changer not connected to RS-232 interface
598. Sample changer not responding*

600. Shimming errors:

601. Shimming user aborted*

602. Lost lock while shimming*

VnmrJ User Programming 01-999253-00 A0604

Table 39. Acquisition Status Codes (continued)

604. Lock saturation while shimming*

608. A shim coil DAC limit hit while shimming*

700. Autolock errors:

701. User aborted (ALKABORT)*

702. Autolock failure in finding resonance of sample (ALKRESFAIL)
703. Autolock failure in lock power adjustment (ALKPOWERFAIL)*
704. Autolock failure in lock phase adjustment (ALK PHASFAIL)*
705. Autolock failure, lost in final gain adjustment (ALKGAINFAIL)*
800. Autogain errors.

801. Autogain failure, gain driven to O, reduce pw (AGAINFAIL)
Hard errors

901. Incorrect PSG version for acquisition

902. Sum-to-memory error, number of points acquired not equal to np
903. FIFO underflow error (a delay too small ?)*

904. Requested number of data points (np) too large for acquisition*
905. Acquisition bus trap (experiment may be lost)*

1000. SCSl errors:

1001. Recoverable SCSI read transfer from consol e*

1002. Recoverable SCSI write transfer from console**

1003. Unrecoverable SCSI read transfer error*

1004. Unrecoverable SCSI write transfer error*

1100. Host disk errors:

1101. Error opening disk file (probably a UNIX permission problem)*
1102. Error on closing disk file*

1103. Error on reading from disk file*

1104. Error on writing to disk file*

1400-1500. RF Monitor errors:

1400. An RF monitor trip occurred but the error statusis OK **

1401. Reserved RF monitor trip A occurred **

1402. Reserved RF monitor trip B occurred **

1404. Excessive reflected power at quad hybrid **

1405. STOP button pressed at operator station **

1406. Power for RF Monitor board (RFM) failed **

1407. Attenuator control or read back failed **

1408. Quad reflected power monitor bypassed **

1409. Power supply monitor for RF Monitor board (RFM) bypassed **
1410. Ran out of memory to report RF monitor errors **

1411. No communication with RF monitor system **

1431. Reserved RF monitor trip A1 occurred on observe channel **
1432. Reserved RF monitor trip B1 occurred on observe channel **
1433. Reserved RF monitor trip C1 occurred on observe channel **
1434. RF Monitor board (PALI/TUSUPI) missing on observe channel **
1435. Excessive reflected power on observe channel **

1436. RF amplifier gating disconnected on observe channel **

01-999253-00 A0604 vnmrJ User Programming 293

1437.
1438.
1439.
1440.
1441.
1442.
1443.
1444.
1445.
1446.
1447.
1448.
1449.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
1458.
1459.
1460.
1461.
1462.
1463.
1464.
1465.
1466.
1467.
1468.
1469.
1501.
1502.
1503.
1504.
1505.
1506.
1507.
1508.
1500.
1510.
1511.
1512.

294 VnmrJ User Programming

Table 39. Acquisition Status Codes (continued)

Excessive power detected by PALI on observe channel **

RF Monitor system (TUSUPI) heartbeat stopped on observe channel **
Power supply for PALI/TUSUPI failed on observe channel **

PALI asserted REQ_ERROR on observe channel (should never occur) **
Excessive power detected by TUSUPI on observe channel **

RF power amp: overdrive on observe channel **

RF power amp: excessive pulse width on observe channel **

RF power amp: maximum duty cycle exceeded on observe channel **
RF power amp: overheated on observe channel **

RF power amp: power supply failed on observe channel **

RF power monitoring disabled on observe channel **

Reflected power monitoring disabled on observe channel **

RF power amp monitoring disabled on observe channel **

Reserved RF monitor trip A2 occurred on decouple channel **
Reserved RF monitor trip B2 occurred on decouple channel **
Reserved RF monitor trip C2 occurred on decouple channel **

RF Monitor board (PALI/TUSUPI) missing on decouple channel **
Excessive reflected power on decouple channel **

RF amplifier gating disconnected on decouple channel **

Excessive power detected by PALI on decouple channel **

RF Monitor system (TUSUPI) heartbeat stopped on decouple channel **
Power supply for PALI/TUSUPI failed on decouple channel **

PALI asserted REQ_ERROR on decouple channel (should never occur) **
Excessive power detected by TUSUPI on decouple channel **

RF power amp: overdrive on decouple channel **

RF power amp: excessive pulse width on decouple channel **

RF power amp: maximum duty cycle exceeded on decouple channel **
RF power amp: overheated on decouple channel **

RF power amp: power supply failed on decouple channel **

RF power monitoring disabled on decouple channel **

Reflected power monitoring disabled on decouple channel **

RF power amp monitoring disabled on decouple channel **

Quad reflected power too high **

RF Power Monitor board not responding **

STOP button pressed on operator’s station **

Cable to Operator’s Station disconnected **

Main gradient coil over temperature limit **

Main gradient coil water is off **

Head gradient coil over temperature limit **

RF limit read back error **

RF Power Monitor Board watchdog error **

RF Power Monitor Board self test failed **

RF Power Monitor Board power supply failed **

RF Power Monitor Board CPU failed **

01-999253-00 A0604

Table 39. Acquisition Status Codes (continued)

1513. IL1 Board power failed **

1514. SDAC duty cycle too high **

1515. IL| Spare #1 trip **

1516. IL| Spare #2 trip **

1517. Quad hybrid reflected power monitor BY PASSED **
1518. SDAC duty cycle limit BY PASSED **

1519. Head Gradient Coil errors BY PASSED **

1520. Main Gradient Coil errors BY PASSED **

1531. Channel 1 RF power exceeds 10s SAR limit **
1532. Channel 1 RF power exceeds 5min SAR limit **
1533. Channel 1 peak RF power exceeds limit **

1534. Channel 1 RF Amp control cable error **

1535. Channel 1 RF Amp reflected power too high **
1536. Channel 1 RF Amp duty cycle limit exceeded **
1537. Channel 1 RF Amp temperature limit exceeded **
1538. Channel 1 RF Amp pulse width limit exceeded **
1539. Channel 1 RF Power Monitoring BY PASSED **
1540. Channel 1 RF Amp errors BY PASSED **

1551. Channel 2 RF power exceeds 10s SAR limit **
1552. Channel 2 RF power exceeds 5 min SAR limit **
1553. Channel 2 peak RF power exceeds limit **

1554. Channel 2 RF Amp control cable error **

1555. Channel 2 RF Amp reflected power too high **
1556. Channel 2 RF Amp duty cycle limit exceeded **
1557. Channel 2 RF Amp temperature limit exceeded **
1558. Channel 2 RF Amp pulse width limit exceeded **
1559. Channel 2 RF Power Monitoring BY PASSED **
1560. Channel 2 RF Amp errors BY PASSED **

01-999253-00 A0604 vnmrJ User Programming 295

296 VnmrJ User Programming 01-999253-00 A0604

Symbols

"..." (double quotes) notation, 18, 23

notation (pulse shaping file), 102

$ (dollar sign) notation, 21, 25

$# special input argument, 29

$0 special input argument, 29

$1, $2,... input arguments, 29

& (ampersand) notation (UNIX), 260
"..." (single quotes) notation, 19, 22

(...) (parentheses) notation, 28

(..)# notetion (AP tablefile), 77

* (asterisk) notation (display template), 286
+ (addition) operator, 23

+=notation (AP tablefile), 78

. (single period) notation (UNIX), 258
.. (double period) notation (UNIX), 258
.cfileextension, 49

fdf file extension, 270

fid file extension, 263

/ notation (UNIX), 258

: (colon) notation, 20

; (semicolon) notation, 52

; (semicolon) notation (UNIX), 258

< notation (UNIX), 259

<...> (angled brackets) notation, 19

> notation (UNIX), 259

>> notation (UNIX), 259

? (question mark) notation (UNIX), 259
[...] notation (display template file), 286
[...] notation (square brackets), 26
[...]# notation (AP tablefile), 77

\ (backdlash) notation, 22

_ X macro name, 19

{...} (curly braces) notation, 29, 52
{..}#notation (AP tablefile), 78

| (vertical bar) notation (UNIX), 259

~ (tilde) notation (UNIX), 258

Numerics

1D datafile, 264

1D display, 268

1D Fourier transform, 268

2D datafile, 269

2D FID display, 268

2D FID storage, 269

2D hypercomplex data, 265

2D phased data storage, 269

2D plane of a3D data set, 34

2D plane selection without display, 34

2D pulse sequence in standard form, creating, 115
2D, 3D, and 4D data sets, 115

3D coefficient text file, 264

3D parameter set, 264

3D pulse sequence in standard form, creating, 115
3D spectral data default directory, 264

4D pulse sequence in standard form, creating, 115
63-dB attenuator, 64, 108

79-dB attenuator, 64, 109

01-999253-00 A0604

Index

A

abort command, 32
abort current process (UNIX), 260
abortoff command, 32
aborton command, 32
abs command, 37
abs macro, 31
A-codes, 73
acos command, 37
acq_errorsfile, 54
acqi command, 40, 91, 95
Acqgstat command, 40
acgstatus parameter, 54
acquire data explicitly, 127
acquire data points, 99
acquire statement, 98, 99, 113, 127
acquisition bus trap, 293
Acquisition codes, 73
Acquisition Controller boards, 128
acquisition CPU, 114
acquisition phase (AP) tables. See AP table
acquisition processor memory, 133
acquisition statements, 54
acquisition status codes, 54
acquisition time, 88
Acquisition window, 91, 95
active parameter test, 42
ADC overflow warning, 291
add AP table to second AP table, 235
add integer to AP table, 234
add integer values, 128
add statement, 71, 128
alfa parameter, 54
alias (UNIX), 258
ampersand (&) character, 260
amplifier blanking gate, 208
amplifier modes, 57
amplifiers
blanking channels, 133
duty cycle, 56
gating, 56
turn off, 133
turnon, 133
ampmode parameter, 57
analyze command, 36
analyze.inp file, 36
and operator, 23
angled brackets (< or >) notation, 19
AP bus commands, 66
AP busdeay, 64, 114, 129
AP bus delay constants, 109
AP businstruction, 111
AP bus pulse shaping, 129, 130, 131
AP busregisters, 69, 209, 216, 246
ap command, 284
ap parameter, 284, 286
AP table, 76
add integer to elements, 234
add to another table, 235
autoincrement attribute, 79, 214
divide by second AP table, 236
divide integer into elements, 234
divn-factor, 79
filelocation, 77

VnmrJ User Programming 297

Index

load from file, 78, 182
loading statements, 76
multiply by a second AP table, 236
multiply integer with elements, 235
receiver phase cycle, 215
receiver variable, 79
retrieve element, 79, 166
scalar operations, 79
set divn-return and divn-factor, 214
statement format, 77
store integer array, 78, 216
subtract from second AP table, 237
subtract integer from elements, 235
table handling statements, 78
vector operations, 80
apacommand, 34
apdelay.hfile, 112, 114
apovrride statement, 66, 112, 129
applicability of statements, 49
apshaped_dec2pulse statement, 130
apshaped_decpul se statement, 129
apshaped_pulse statement, 131
arc cosine of anumber, 37
arc sine of anumber, 37
arc tangent of anumber, 37
arc tangent of two numbers, 37
argument number, 29
arguments passed to commands and macros, 19
array defined, 25
arraydim parameter, 116, 269
arrayed experiment, 269
arrayed parameter values, 166
arrayed shaped gradient generation, 219
arrayed string variables, 26
arrayed variables, 23, 26
arraying acquisition parameters, 115
ASCII format, 263
asin command, 37
assign integer values, 132
assign statement, 71, 132
asterisk (*) character, 259, 286
asynchronous decoupling, 216
at parameter, 88
atan command, 37
atan2 command, 37
attenuators-based shaped pulses, 108
attributes of parameter, 281
attributes of variables, 25
auto file, 264
Autogain, see automatic gain
autoincrement attribute, 77, 78, 79, 214
Autolock, see automatic lock
automatic execution of macros, 282
automatic gain
errors, 293
automatic lock
errors, 293
automatic macro execution, 20
automatic variables, 24
automation file, 264
autoscale command, 36
autoscaling, 36
average command, 37
average value of input, 37

298 VnmrJ User Programming

awc parameter, 287

awk command (UNIX), 259
axis command, 40
axislabels, 40

axis parameter, 40

B

background process (UNIX), 259
background processing, 261
backslash (\) notation, 22
backward single-quote ("..."), 22
bandinfo macro, 108

banner command, 34

beeper sound, 40

beepoff command, 40

beepon command, 40

binary files, 263

binary information file, 264

blanking amplifiers, 68, 133, 140, 191

blankingoff statement, 133
blankingon statement, 133
blankoff statement, 68, 133
blankon statement, 68, 133
block size complete, 291
block size counter, 70

block size variable, 74
Boolean expressions, 29
Boolean operations, 23
bootup macro, 19, 40, 42

box mode, 33

Breakout panel, 69, 209

bs parameter, 70, 74, 291
bsctr real-time variable, 70, 74
bsval red-timevariable, 71, 74
buffering in memory, 264

C

C loop, 109
C programming language, 49

C programming language framework, 52

cat command (UNIX), 259

cd command (UNIX), 259

cf parameter, 100

change current directory, 259
channel control, 115

channel identifiers, 115
channel selection, 57

char-type variables, 53
checkpw macro, 30

checksum of FDF file data, 274
chemical shift, 43

chmod command (UNIX), 259
clear command, 34
clearapdatatable statement, 99, 133
clearing awindow, 34

cmp command (UNIX), 259
coarse attenuators, 64
codetable, 73

codeint-type variables, 53

coef file, 264

01-999253-00 A0604

coherence transfer selective phase cycling, 63
colon (:) notation, 20
command entry, 258
command interpreter, 18
command output to variables, 20
command tracing, 32
comments, 23
in macros, 18
comparing two files (UNIX), 259
compilation error messages, 51
compiling source code, 50
completed transient counter, 70
complex pair of FID data, 267
compressed acquisitions, 122
compressed data format, 275
compressed files, 270
compressed loop, 187, 198
Compressed-compressed data format, 275
compressed-compressed image sequences, 245
concatenate and display files (UNIX), 259
concatenate strings, 23
conditional execution, 164, 173
conditional statements, 18, 30
config command, 279
confirm command, 34
confirm message with mouse, 34
confirmer window, 35
conpar file, 279, 281
constant delay time for changing the status, 75
constant phases, 71
constant strings, 19
congtants, 22
continuous decoupling caution, 65
continuous wave (CW) modulation, 58, 215
conversion units, 43
copying files (UNIX), 258, 259
copying macros, 39
cos command, 37
cosine value of an angle, 37
COSY-NOESY sequence, 100
cp command (UNIX), 258, 259
cp parameter, 70
cr parameter, 32
crcom command, 38
create command, 279, 281
create delay list statement, 124, 134
create freq list statement, 124, 135
create offset_list statement, 124, 136
creategtable macro, 120
creating
directories (UNIX), 259
FDF files, 274
new parameter, 279
dider in Acquisition window, 95
user macros, 38
variable without value, 24
ct variable, 70, 77
curly braces ({...}) notation, 29, 52
curpar file, 264, 267, 279
current experiment files, 264
current parameter tree, 279
current parameters text file, 264
current-type parameter tree, 279
cursor mode, 33

01-999253-00 A0604

Index

cursor position, 32
curvefitting, 36

D

dO parameter, 75

d2 parameter, 71, 115

d3 parameter, 71, 115

d4 parameter, 71, 115

DANTE sequence, 109, 111

Data Acquisition Controller boards, 53, 128
data acquisition statements, 54
datablock, 264

data block header, 264

data buffers, 264

data directory, 264

datafile, 264, 268, 269

datafile header, 264

datafilein current experiment, 269
data point acquisition, 99

data portion of FDF file, 271

data transposition, 269

datah file, 265

datablockhead structure, 266

datadir3d directory, 264

datafilehead structure, 265

date command (UNIX), 259

dbl statement, 71, 138

dc drift correction, 268

dcphase statement, 113, 139
dcplr2phase statement, 62, 98, 113, 139
dcplr3phase statement, 62, 98, 113, 140
dcplrphase statement, 62, 98, 113, 139
ddf command, 269

ddff command, 269

ddfp command, 269

debug command, 32

DEC file suffix, 102

dec2blank statement, 68, 141

dec20off statement, 68, 142

dec2offset statement, 64, 142

dec2on statement, 68, 143

dec2phase statement, 98, 144
dec2power statement, 65, 98, 113, 145
dec2prgoff statement, 107, 113, 146
dec2prgon statement, 68, 107, 113, 147
dec2pwrf statement, 65, 98, 113, 149
dec2rgpulse statement, 58, 98, 151
dec2shaped_pulse statement, 105, 110, 113, 154
dec2spinlock statement, 108, 113, 156
dec2stepsize statement, 62, 158
dec2unblank statement, 68, 159
dec3blank statement, 68, 141

dec3off statement, 68, 142

dec3offset statement, 64, 142

dec3on statement, 68, 144

dec3phase statement, 60, 98, 144
dec3power power, 113

dec3power statement, 65, 98, 146
dec3prgoff statement, 107, 113, 147
dec3prgon program, 107

dec3prgon statement, 68, 113, 148
dec3pwrf statement, 98, 113, 150

VnmrJ User Programming 299

Index

dec3rgpul se statement, 58, 98, 152
dec3shaped_pulse statement, 105, 113, 155
dec3spinlock statement, 108, 113, 157
dec3stepsize statement, 62, 158
dec3unblank statement, 68, 159
decdoffset statement, 143
decdphase statement, 145
dec4power statement, 146
dec4rgpul se statement, 153
decblank statement, 68, 140
DECch, DEC2ch, DEC3ch devices, 135, 136
declaring variables, 25, 53
declvloff statement, 66, 98, 141
declvlon statement, 66, 98, 141
decoff statement, 68, 141
decoffset statement, 64, 142
decon statement, 68, 143
decoupler
blank associated amplifier, 68, 140
fine power, 149, 207, 212
fine power adjustment, 65
fine power with IPA, 180
full power, 141
gate channel, 223
gating, 66, 68, 231
high-power level, 149
linear modulator power, 207, 212
linear modulator power with IPA, 180
modes, 66
modulation mode, 66
normal power, 141
offset frequency, 63, 64, 142, 194
pattern type, 102
phase, 61, 139
phase control, 62
power adjustment, 64
power level, 66, 145, 205, 211
power level switching, 64
programmabl e decoupling, 146, 147
pulse shaping via AP bus, 129
pulsewith IPA, 172
pulse with receiver gating, 148, 150
pulse-related statements, 57
quadrature phase, 144
set status, 215
shaped pulse, 153
simultaneous pulses, 59
small-angle phase, 139
small-angle phase step size, 232
spin lock waveform control, 156
status, 231
step size, 158
turn off, 141
turn on, 143
two-pulse shaped pulse, 105
unblank amplifier, 158
WALTZ decoupling, 61
waveforms, 103
decoupler mode, 215
decoupling, switching, 159
decphase statement, 60, 61, 98, 144
decpower statement, 65, 98, 113, 145
decprgoff statement, 104, 107, 113, 146
decprgon statement, 68, 104, 107, 113, 147

300 VnmrJ User Programming

decpulse statement, 57, 98, 148
decpwr statement, 149
decpwrf statement, 65, 98, 113, 149
decr statement, 71, 150
decrement integer value, 150
decrgpulse statement, 58, 98, 150
decshaped_pulse statement, 105, 110, 113, 153
decspinlock statement, 108, 113, 156
decstepsi ze statement, 62, 158
decunblank statement, 68, 158
delay
create delaystable, 134
for synchronizing sample rotor, 213
initialize, 177
interincrement, 75
intertransient, 75
parameter type, 278
real-time incremental, 173
routine, 169
specified time, 159
specified time with IPA, 172
timebase fixed and rea-time count, 241
with possible homospoil pulse, 171
delay statement, 54, 95, 98, 159
delay-related statements, 54
delays
initializing next for hardware shimming, 170
delcom command, 38
deleting files (UNIX), 258
deleting user macros, 38
destroy command, 281
destroygroup command, 281
device gating, 166
dg2 parameter, 285
Dgroup field, 282
Dgroup of a parameter, 280
dhp parameter, 66, 141
diff command (UNIX), 259
differentialy compare files (UNIX), 259
diffusion analysis, 36
digital resolution measurement, 32
dimensioning statement, 26
directory information, 41
disk blocks, 265
disk cache buffering, 264
disk file errors, 293
display command, 281
displaying
confirmer window, 35
controlling pul se sequence graphical display, 75
date and time (UNIX), 259
FID file, 269
file headers, 269
macros, 38
memory usage, 270
part of file (UNIX), 259
pulse sequences, 75
dividing an AP tableinto a second AP table, 236
dividing an integer into AP table elements, 234
dividing integer values, 160
divn factor, 78, 79, 214
divn statement, 160
divn-return attribute, 78, 79, 214
dll command, 20

01-999253-00 A0604

dm parameter, 66

dm2 parameter, 66

dm3 parameter, 66

dmm parameter, 58, 66, 112, 114, 215

dmm2 parameter, 66, 112

dmma3 parameter, 66, 112

DODEV, DO2DEV, DO3DEV constants, 57

dof parameter, 63

dof2 parameter, 63

dof 3 parameter, 63

dollar-sign (?) notation, 21, 25

done codes, 54, 291

doubleinteger value, 138

double quotation marks ("...") notation, 23

double-precision, 24

double-type variables, 53

dp parameter, 263

dps command, 50, 75, 160

dps_off statement, 75, 160

dps_on statement, 75, 160

dps_ps_gen command, 50

dps_show statement, 160

dps_skip statement, 163

dpwr parameter, 65, 66, 111, 141

dpwr2 parameter, 65

dpwr3 parameter, 65

draw pulses for graphical display, 160

dres command, 32

ds command, 268

dsn command, 32

dsnmax command, 33

du command (UNIX), 259

duty cycle, 56

dynamic range of shaped pulse, 109

dynamic variablegradient pulsegeneration, 174, 220

dynamic variable scan, 245

dynamic variable shaped gradient pulse generation,
222

E

echo command, 34
echo command (UNIX), 34
ed command (UNIX), 259, 260
edit command, 260
editing
macros, 20, 39
parameter attributes, 280
text files, 259
effective transient counter, 117
elsenz statement, 73, 163
Emacs editor, 20
end hardware loop, 164
end ifzero statement, 164
end |oop started by loop, 164
end of file (UNIX), 260
endhardloop statement, 97, 164
endif statement, 73, 76, 164
endloop statement, 72, 96, 164, 165
endmsloop statement, 164
endpel oop statement, 165
enumeral values of a parameter, 282
env command (UNIX), 20

01-999253-00 A0604

Index

errmsg text file, 51
error codes, 54, 291
error during acquisition, 291
error macro, 30
Euler angles, 124
event in a hardware loop, 97
exec command, 30, 40
executable pul se sequence code, 50
execute statements conditionally, 73
execute statements repeatedly, 72
execute succeeding statements

if argument nonzero, 163

if argument zero, 173
executing aVNMR command, 40
execution of macros and commands, 19
exists command, 41
exp command, 38
experiment files, 81
experiment increment pointers, 71
experiment-based parameters, 25
expfit command (UNIX), 36
expl command, 36
explicit acquisition, 54, 99, 127
expn directory file, 264
exponential curves, 36
exponential value of anumber, 38
expressions, 28
external deviceinterface, 124
external event gating, 248
external timebase, 101
external user devices, 69
external variables, 24
extr directory, 264
extracted 2D planes, 264

F

f3file, 264

FAL SE Boolean value, 29

FDF files
attach header to datafile, 274
creating, 274
directory naming convention, 270
format, 270
header format, 271
magic number, 271
splitting data and header parts, 275
transformations of data, 274
why developed, 270

fdf files, 270

fdfgluer command, 274

fdfsplit command, 275

FID complete, 291

FID data, 267

fidfile, 264, 267

fid file extension, 263

FID files, 263, 269, 289

FIFO underflow error, 293

file
binary format, 263
existence test, 41
header of binary file, 263
information, 41

VnmrJ User Programming 301

Index

protection mode (UNIX), 259
text format, 263
fine attenuators, 65
fine power, 180, 207, 212
control, 64
decoupler, 149
transmitter, 193
fine power routine, 96, 169
fine-grained pulse shaping, 110
first point correction, 268
fixpar macro, 19
flag of a parameter test, 42
flag-type parameter, 278
FLASH pulse sequence, 68
flashc command, 275
flexible dataformat files. See FDF files
flip between graphics and text windows, 34
flip command, 34
floating constant, 22
floating point, 24
float-type variables, 53
flush command, 264, 268
fm-fm modulation, 216
fn parameter, 268
focus command, 41
format command, 35
format of weighting function, 287
formatting for output, 35
forward dlash notation (UNIX), 258
Fourier transform process, 267
fourth decoupler
offset frequency, 143
power level, 146
pulse with receiver gating, 152
quadrature phase, 145
fractions in integer mathematics, 71
framework for pulse sequences, 52
fread command, 281
frequency
control, 63
create frequenciestable, 135
offsetstable, 136
set based on position, 203
set from position list, 203, 204
set on position, 203
table indexing, 243
frequency and intensity from line list, 33
frequency limits of region, 33
frequency lists, 135
frequency offset lists, 245
frequency offset routine, 93, 169
frequency-type parameter, 278
fsave command, 264, 281
ft command, 267
ft3d command, 264

G

G_Delay general routine, 91, 94, 169
G_Offset generad routine, 91, 93, 169
G_Power generd routine, 91, 96, 169
G_Pulse general routine, 91, 92, 95, 169
gap command, 41

302 VnmrJ User Programming

GARP modulation, 216
gate pulse sequence from an externa event, 248
gate statement, 166

gating control statements, 66
Gaussian pulse, 109

gcoil parameter, 120

generic delay routine, 94, 169
generic pulseroutine, 92, 169
getarray statement, 124, 166
getelem statement, 79, 166
getfile command, 41

getll command, 33
getorientation statement, 167
getreg command, 33

getstr statement, 52, 88, 168
getva statement, 52, 88, 168
getvaue command, 280
Ggroup, 280, 282

global file, 279

global list, 135, 136

statements, 124

global PSG parameters, 82
global variables, 24, 25
global-type parameter tree, 279
go command, 73

gradaxis parameter, 121
gradient

control, 117

set to specified level, 211

simultaneous shaped, 184

variable angle, 238

variable angle gradient pulse, 239
variable angle shaped gradient, 240
variable angle shaped gradient pulse, 241
waveforms, 102, 104

zero all gradients, 249

gradient function, 174

gradient level set by real-time math, 243
gradient pattern file, 176

gradient pulse, 119

generation, 220
on z channel, 250
simultaneous shaped, 185

gradient statement, 122

gradtables directory, 120

gradtype parameter, 113, 117
graphical display of asequence, 50
graphical display of pulse sequences, 75
graphical display of statements, 160
graphics display status, 41

graphics window, 34

graphis command, 41

GRD file suffix, 102

grep command (UNIX), 259
gripper abort, 292

group of parameters, 280
groupcopy command, 281

H

half value of integer, 170
half-transformed spectra, 268
hardloop nesting, 99

01-999253-00 A0604

hardware loop, 96, 164

end of loop, 164

start of loop, 230
hardware phase control, 61
hardware shimming

iniitializing next delay, 170
hardware WALTZ decoupling, 61
hardwired 90° phase, 61
head command (UNIX), 259
header of FDF file, 271
HET2DJ pulse sequence, 116
hidden delay, 111
hidecommand command, 38
high-band nuclei, 58
high-noise signal, 291
high-speed device control, 69
high-speed line propagation delay, 114
hlv statement, 71, 73, 170
HMQC experiment, 57
hom2dj.c sequence listing, 50
HOM2DJT pulse sequence, 81
home directory for user (UNIX), 258
homo parameter, 58, 59
homo2 parameter, 59
homo3 parameter, 59
homodecoupler gating, 59
homonuclear Jresolved pulse sequence, 81
homonuclear-2D-J pul se sequence, 49
homospoil gating, 66, 67, 231
homospoil pulse, 55, 171
host disk errors, 293
hs parameter, 55, 66
hsdelay statement, 55, 67, 98, 171
hst parameter, 55, 67
hwlooping.c module, 61
hypercmplxbhead structure, 266
hypercomplex 2D, 116

i2pul.c pulse sequence, 91

id2 pointer, 52, 71, 117

id3 pointer, 52, 71

id4 pointer, 52, 71

idecpulse statement, 58, 172
idecrgpulse statement, 58, 172
idelay statement, 55, 172
identifier, 21, 29

if, then, else, endif conditional form, 30
ifzero statement, 73, 76, 173
image file names, 270

image plane orientation, 167
imaginary component of FID data, 267
imaging module, 117
imaging-related statements, 122
implicit acquisition, 54

implicit expressions, 29
implicitly arrayed delay, 115
inactive parameter, 42

incdelay statement, 55, 173
incgradient statement, 122, 174
incr statement, 71, 175
increment an integer value, 175

01-999253-00 A0604

Index

increment counts, 52
increment index, 117
incremental delay, 55, 173, 177
incrementing aloop, 31
index out of bounds, 28
indices of an array, 26
indirect detection, 175
indirect detection experiments, 115
indirect statement, 175
info directory, 264
init_gradpattern statement, 124, 176
init_rfpattern statement, 124, 175
init_vscan statement, 124, 177
initdelay statement, 55, 177
initialize incremental delay, 177
initialize parameters for imaging sequences, 178
initialize real-time variable, 177, 178
initialize string variable, 25
initparms_sis statement, 68
initval statement, 73, 178
input arguments, 29
input command, 35
input tools, 34
integ command, 33
integer array stored in AP table, 216
integer mathematical statements, 71
integer values
add, 128
assign, 132
decrement, 150
divide, 160
double, 138
half value, 170
increment, 175
modulo 2, 186
modulo 4, 186
modulo n, 186
multiply, 187
subtract, 233
integer-type parameter, 279
intensity of spectrum at a point, 33
interactive parameter adjustment (IPA), 91
change fine power, 180
change linear modulator power, 180
change offset frequency, 179
delay specified time, 55, 172
fine power control, 65
pulse decoupler, 58, 172
pulse transmitter, 57, 178, 179, 180
interferograms, 268
interincrement delays, 75
internal hardware delays, 111
interna variables, 70
intertransient delays, 75
int-type variables, 53
iobspul se statement, 57, 178
ioffset statement, 63, 179
IPA, Seeinteractive parameter adjustment (IPA)
ipulse statement, 57, 179
ipwrf statement, 65, 180
ipwrm statement, 65, 180
irgpulse statement, 57, 180
ix variable, 51

VnmrJ User Programming 303

Index

J

jexp command, 25

K

keyboard entries recording, 40

keyboard focus to VNMR input window, 41

keyboard input, 35
kill command (UNIX), 259
kinetic analyses, 36

L
largest integral in region, 33

last used parameters text file, 264
latching, on PTS synthesizers, 109

length command, 41

length of macros, 31

lib directory, 125

libparam.a object library, 50
libpsglib.a directory, 50, 125
library directory, 125

line frequencies and intensities, 33

linelist, 26, 33

linear amplifier systems
decoupler power, 145
power control, 64
power level, 204, 211
stabilization, 58

transmitter power level, 191
linear attenuator used for pulse shaping, 105

linear modulator power, 212
linear modulators, 65
linesin afile, 35

linewidth measurement, 32
link loading, 50

lint command (UNIX), 50

list filesin adirectory (UNIX), 258

listenoff command, 41
listenon command, 42
listing names of macros, 39
lists
frequency, 135
global, 135, 136
offset, 136
Ik_hold statement, 98, 120, 181

Ik_sample statement, 98, 120, 181, 183

Ilamp parameter, 26
IIfrq parameter, 26
In command, 38, 258

loading AP table elements from file, 78, 182

loading AP table statements, 76

loading macros into memory, 20, 39

loadtable statement, 76, 78, 182
local variables, 24, 25, 26, 28
lock correction circuitry, 120
set to hold, 181
set to sample, 181
lock feedback loop, 120
lock level, 42
log directory, 264
log files, 261, 264

304 VnmrJ User Programming

logarithm of a number, 38
logical frame, 124
login command, 42
login command (UNIX), 259
login macro, 19, 20, 40
login procedure, 257
logout (UNIX), 260
long-type variables, 53
lookup command, 35
loop
end, 164
multislice end, 164
multislice start, 187
phase-encode end, 165
phase-encode start, 198
start, 182
statements, 124
types, 31
loop statement, 72, 96, 109, 182
low-band nuclel, 58
low-core acquisition variables, 74
lower shell script, 262
low-noise signal, 291
Ip command (UNIX), 259
Is command (UNIX), 258

M

maclib directory, 19
maclibpath parameter, 19
macro
automatic execution, 20, 282
calling amacro in aloop, 21
clear system macro, 21
concept, 17
defined, 17
directory, 19
editing, 20
execution, 19
existence test, 41
faster execution, 20
files, 19
loading into memory, 20
output to variables, 20
parsing, 20
passing information, 25
remove from memory, 21
VNMR activation, 42
macro name list, 39
macro parameter, 19
macro tracing, 32
macrocat command, 38, 39
macrocp command, 39
macrodir command, 39
macroedit macro, 20, 39
macrold command, 20, 21, 39
macrorm command, 39
macros.h file, 92
macrosyscat command, 39
macrosyscp command, 39
macrosysdir command, 39
macrosysrm command, 39
macrovi command, 20, 39

01-999253-00 A0604

magic number, 271

MAGICAL language defined, 17
MAGICAL language features, 21
magradient statement, 183
magradpulse statement, 121, 122, 184
mail command (UNIX), 259

makefid command, 289

man command (UNIX), 259

manual directory, 54

manual entry (UNIX), 259

MARK button, 33

mark command, 33

MAS rotor, 213

mashapedgradient statement, 122, 184
mashapedgradpul se statement, 185
mathematical expression, 28
mathematical functions, 37

matrix arithmetic, 23

matrix transposition, 269

maximum value of parameter, 281
maxpk macro, 31

MAXSTR dimension, 53

mean of datain regression.inp, 36
memory usage by VNMR commands, 270
memory usage statistics, 40

MEMS pulse sequence, 68

memsize parameter (UNIX), 264
message confirmation by mouse, 34
message display with large characters, 34
mf command, 276

mfblk command, 276

mfdata command, 276

mftrace command, 276

microimaging pulse sequences, 120
minimum value of parameter, 281
mkdir command (UNIX), 258
MLEV-16 modulation, 216

mod2 statement, 71, 186

mod4 statement, 71, 186

modn statement, 71, 186

modulation frequency, 216
modulation frequency change delay, 112
modulation mode change delays, 112
modulo 2 integer value, 186

modulo 4 integer value, 186

modulo ninteger value, 186

modulo number, 71

move datain FID file, 276

move FID commands, 276

moving filesinto adirectory, 259
MREV -type sequences, 99

msloop statement, 124, 187

mstat command, 40, 270

mult statement, 71, 187
multidimensional NMR, 115

multiple command separator (UNIX), 258
multiple FID acquisition, 100

multiple trace or arrayed experiments, 269

multiply AP table by second AP table, 236

multiply integer values, 187

multiply integer with AP table elements, 235

multislice loops, 124, 187
multiuser protection, 261
mv command (UNIX), 258, 259

01-999253-00 A0604

Index

N

nl-n3 parameters, 25

name replacement, 29

natural logarithm of a number, 38
nested macros, 31

nested multiple hardloops, 99

nf parameter, 100

ni parameter, 71

ni2 parameter, 71

ni3 parameter, 71

nll command, 33

NMR algorithms, 17

NMR language, 17

noise modulation, 216

np parameter, 293

nrecords command, 35

nth2D variable, 198

null string, 25

number of arguments, 29
numeric parameter value lookup, 88, 168
numreg command, 33

O

object code, 50

object file, 125

object libraries, 50

obl_gradient statement, 188

obl_shapedgradient statement, 189

oblique gradient, 188

oblique gradient statements, 124

oblique gradient with phase encode in 1 axis, 195,
199

oblique gradient with phase encode in 2 axes, 195

oblique gradient with phase encode in 3 axes, 196,
200

oblique shaped gradient with phase encodein 1 axis,
196, 200

oblique shaped gradient with phase encodein 2 axes,
197

oblique shaped gradient with phase encodein 3 axes,
198, 201

oblique_gradient statement, 124, 188

oblique_shapedgradient statement, 189

obs mf parameter, 67

obsblank statement, 191

OBSch device, 135, 136

observe channel gating, 223

observe transmitter modulation, 215

observe transmitter power, 191

observe transmitter pulse, 55

obsoffset statement, 64, 191

obspower statement, 65, 98, 191

obsprgoff statement, 113, 192

obsprgon statement, 68, 107, 113, 192

obspulse statement, 56, 93, 98, 192

obspwrf statement, 65, 98, 113, 193

obsstepsi ze statement, 62, 193

obsunblank statement, 193

off command, 42

offset frequency, 142, 179, 191

offset lists, 136

offset macro, 29

VnmrJ User Programming 305

Index

offset statement, 63, 94, 98, 113, 194
offset table, 245

on command, 42

one pointer, 71

operators, 22

oph variable, 61, 70, 100

order of precedence, 22

orientation of image plane, 167

Output boards, 53, 103, 128

output from commands and macros, 20
output to various devices, 36

output tools, 34

overhead delays, 122

overhead operations, 75

override internal software AP bus delay, 129

P

pap command, 286
par2d macro, 115
par3d macro, 115
par4d macro, 115
paramedit command, 280, 284
parameter
attributes, 281
create new parameter, 279
enumerable values, 282
maximum value, 281
minimum value, 281
table, 52
template, 284
trees, 278
typical parameter file, 282
values, 282
parameters
accessing the value, 280
arrayed parameter values, 166
as global variables, 25
asvariables, 18
categories, 82
change type, 280
conditional display, 285
display field width, 286
display formats, 286
display valuesin text window, 34
editing attributes, 280
existence test, 41
get value, 280
global PSG parameters, 82
look up value, 88
plotting automatically, 34
protection bit, 19
protection bits, 280
set up for pulse sequence, 35
spectroscopy imaging sequences, 178
step size, 282
types, 278
user created, 88
parameters retrieved from a parameter file, 42
paramvi command, 280, 281, 284
parent directory (UNIX), 258
parentheses (...) notation, 28
parlib directory, 35

306 VnmrJ User Programming

parmax parameter, 281

parmin parameter, 281

parsing macros, 20

parstep parameter, 282

pattern scanning and processing (UNIX), 259
Pbox, 101

pe_gradient statement, 124, 195
pe_shapedgradient statement, 196
pe2_gradient statement, 195
pe2_shapedgradient statement, 197
pe3_gradient statement, 196
pe3_shapedgradient statement, 198
peak command, 18, 20, 34

peak width of solvent resonances, 43
peloop statement, 124, 198
Performa XY Z PFG module, 120

pexpl command, 36

PFG (pulsed field gradient), 120

phase angle, 102

phase calculation, 70

phase carryover, 62

phase control, 70

phase cycle storage, 76

phase cycling, 81

phase encode loops, 124

phase file in the current experiment, 269
phase parameter, 116

phase step size, 232
phase_encode_gradient statement, 124, 199
phase_encode_shapedgradient statement, 200
phase_encode3_gradient statement, 200
phase_encode3_shapedgradient statement, 201
phasel integer, 116

phasel variable, 52

phase2 parameter, 116

phase3 parameter, 116

phased 2D data storage, 269

phased spectral information, 264
phased spectrum, 268

phase-encode loop, 165, 198
phasefilefile, 264, 268, 269
phase-pul se technique, 202
phase-related statements, 60
phase-sensitive 2D NMR, 116, 267
phaseshift statement, 202

phi angle, 122

phi parameter, 124, 189

pipe, 259

plotif macro, 31

plotting curves, 36

pmode parameter, 264

poffset statement, 124, 203

poffset_list statement, 124, 203

pointer to memory, 70

pointers to constants, 71

poly0 command, 36

polynomial curves, 36

position list, 203, 204

position statements, 124
position_offset statement, 124, 203
position_offset_list statement, 124, 204
position-based frequency, 203

power control statements, 64

power level of shaped pulse, 109

01-999253-00 A0604

Index

power statement, 64, 65, 98, 109, 111, 113, 204 pulse shape definitions, 102
ppm of solvent resonances, 43 pulse shaping programming, 101
preacquisition and acquisition steps, 54 pulse shaping through AP bus, 105
precedence of operators, 22 pulse shaping via AP bus, 110, 130, 131
presaturation, 65 pulse statement, 56, 93, 98, 205
print files (UNIX), 259 pulse transmitter with IPA, 178, 179, 180
probe damage caution, 65 pulse transmitter with receiver gating, 192, 205, 210
procdat file, 264 pulse width array, 26
process status (UNIX), 259 Pulsed Field Gradient module, 117
processed-type parameter tree, 279 pulsed field gradient module, 120
procpar file, 264, 267, 270, 271, 279 pulseinfo macro, 108
procpar3d file, 264 pulseseguence function, 52, 74
program execution, 18 pulseseguence.o file, 125
programmabl e control of transmitter, 192 pulse-type parameter, 279
programmabl e control statements, 106 pulsing channels simultaneously, 59
programmabl e decoupling pulsing the decoupler transmitter, 57
ending, 146 purge command, 21, 40
starting, 147 pw parameter, 56, 293
programmabl e phase and amplitude control, 107 pwd command, 259
programmabl e pulse modul ation, 216 pwrf statement, 65, 98, 109, 113, 207
programming pwrm statement, 65, 109, 207
imaging pulse sequences, 120 pwsadj macro, 107

Performa XY Z PFG module, 120
prompt for user input, 35

propagation delay, 114

protection bits, 19, 280, 282 Q

prune command, 281 quadrature detection, 267

ps command (UNIX), 259 quadrature phase, 61

psg directory, 125 quadrature phase of decoupler, 144, 145
psg macro, 73 quadrature phase of transmitter, 237
psggen shell script, 125 quadrature phase shift, 60

psglib directory, 49 question mark (?) character, 259

psgset command, 35 quotation mark ("...") notation, 18

psi parameter, 124, 189
PTS synthesizers with latching, 109

pulse channels simultaneously, 223, 224 R
pulse control, 101
pulse decoupler, 148 rl, r2, ... r7 parameters, 25, 26
pulse decoupler with IPA, 172 revroff statement, 68, 208
pulse decoupler with receiver gating, 150 rcvron statement, 68, 208
pulse four channels simultaneously, 225 read parameters from afile, 281
pulseinterval time, 107 readlk command, 42
pulse observe transmitter, 55 readuserap statement, 69
pulse program buffer, 96 real command, 24
pulse routine, 169 real component of FID data, 267
pulse sequence control statements, 72 real number formatting for output, 35
Pulse Sequence Controller board, 128 real parameters, 25
pul se sequence gated from external event, 248 real-number arguments, 53
pul se sequence generation (PSG), 51 real-time gradient statements, 122
directory, 49 real-time incremental delay, 55, 173
statement categories, 54 real-time statements, 73
pul se sequences real-time variables, 53, 70, 72, 178
compiling, 50 real-type parameter, 278, 280
execution control, 70 real-type variables, 24
files, 49 receiver
general form, 52 default state, 178
graphical display, 50, 75 gating, 56, 68, 192, 205, 210
imaging, 120 mode, 61
internal hardware delays, 111 phase, 61
object code, 52 phase control, 70
object file, 125 phase cycle, 215
parameter set up, 35 turn off, 209
programming, 49 turn on, 208
synchronization, 100 receiver gate, 208, 210

01-999253-00 A0604 vnmrJ User Programming 307

Index

receiver overflow warning, 291
recoff statement, 209

recon statement, 210

record macro, 40

recordsinfile, 35

rectangular pulse, 109

recursive calls, 19

redefinition warning, 52

reference to statements, 127
reformatting data for processing, 275
reformatting spectra, 278

regions in spectrum, 33

regression analysis, 36, 37
regression.inp file, 36

removing an empty directory (UNIX), 258
removing macros, 39

removing macros from memory, 40
renaming a directory (UNIX), 258
renaming afile (UNIX), 258
repeat, until loop, 31

reserved words, 21

resto parameter, 203

retrieve element from AP table, 79, 166
retrieving individua parameters, 42
return command, 31

returning avalue, 31

reverse a spectrum, 278

reverse FID commands, 276
reverse order of data, 276

rf channels control, 115

RF file suffix, 102

RF monitor errors, 293

rf pattern file, 175

rf pulse shapes, 101

rf pulses waveforms, 102

rf shapefile, 102

rfblk command, 276

rfchannel parameter, 57, 115
rfdata command, 276

rftrace command, 276

RG1 and RG2 delays, 55, 58
rgpulse statement, 55, 76, 97, 98, 210
rgradient statement, 113, 118, 120, 121, 211
rinput command, 37

rlpower statement, 211

rlpwrm statement, 65, 109, 212

rm command (UNIX), 258

rmdir command (UNIX), 258

rof1 parameter, 56

rof2 parameter, 56

root directory (UNIX), 258

rotor control statements, 101

rotor period, 101, 213

rotor position, 213

rotorperiod statement, 101, 213
rotorsync statement, 101, 213
RS-232 cable, 291

rsapply command, 278

rt command, 19, 25, 289

rtp command, 19, 25

rtv command, 19, 42

run program in background, 260
run-time statements, 73

308 VnmrJ User Programming

S

sample changer
errors, 292
saved display file, 264
scalelimits macro, 36, 37
scalesw parameter, 40
scaling factors for axis, 40
SCSl errors, 293
searching atext file, 35
searching files for a pattern (UNIX), 259
second decoupler
blank associated amplifier, 140
fine power, 149
fine power adjustment, 65
gating, 68
homodecoupler gating, 59
offset frequency, 63, 64, 142
phase control, 62
power adjustment, 65
power level, 145
programmable decoupling, 146, 147
pulse shaping via AP bus, 130
pulse with receiver gating, 151
quadrature phase, 144
shaped pulse, 154
simultaneous pulses, 60
small-angle phase, 139
spin lock waveform control, 156
step size, 158
turn off, 142
turnon, 143
unblank decoupler, 159
select command, 34
semicolon (;) notation, 52
semicolon (;) notation (UNIX), 258
SEMS pulse sequence, 68
send mail to other users (UNIX), 259
send2Vnmr command (UNIX), 42
separators, 24
seqcon parameter, 124, 187
seqgen command, 50, 51, 73
seqgen command (UNIX), 50
seqlib directory, 50, 73
set2d macro, 115
set3dproc command, 264
setautoincrement statement, 79, 214
setdgroup command, 280
setdivnfactor statement, 79, 214
setenumeral command, 278, 280
setgroup command, 280
setlimit command, 24, 280
setprotect command, 280
setreceiver statement, 70, 79, 100, 215
setstatus statement, 66, 67, 112, 215
settable statement, 76, 78, 216
settype command, 280
setuserap statement, 69
setuserpsg shell script, 125
setval ue command, 280, 289
sh2pul macro, 102
shaped gradient, 241
pulse generation, 218, 219, 222
variable angle, 240
shaped oblique gradient, 189

01-999253-00 A0604

shaped pulse
decoupler, 153

delays, 114
information, 108
on transmitter, 217
simultaneous three-pulse, 226
simultaneous two-pulse, 225
time truncation error, 107
using attenuators, 108
waveform generator control, 105
shaped two-pul se experiment, 102
shaped_pulse statement, 104, 110, 113, 217
shaped2Dgradient statement, 219
shapedgradient statement, 119, 122, 218
shapedincgradient statement, 122, 220
shapedvgradient statement, 122, 222
shapelib directory, 102, 129, 218
shell command, 42, 260, 261
shell scripts, 261
shimming
errors, 292
short-type variables, 53
signal-to-noise measurement, 32, 33
sim3pulse statement, 60, 98, 224
sim3shaped_pulse statement, 106, 113, 226
simdpulse statement, 60, 225
simpul se statement, 59, 98, 223
simshaped_pulse statement, 113, 225
simultaneous gradient, 183
simultaneous pulses, 59, 60
simultaneous shaped gradient, 184
simultaneous shaped gradient pulse, 185
sin command, 38
sine value of angle, 38
single period notation (UNIX), 258
single quotes ('...") notation, 19, 22
size operator, 22, 26
SLI board, 227, 246
SLI lines
set from real-time variable, 246
setting lines, 227
di statement, 124, 227
dider action, 95
SLIDER_LABEL attribute, 91, 95
small-angle phase increment, 62
small-angle phase of decoupler, 139, 140
small-angle phase of transmitter, 249
small-angle phase shifts, 61
small-angle phase step size, 232
sn file, 264
soft loop, 96, 109
solppm command, 43
solvent resonances, 43
sort command (UNIX), 258
sort files (UNIX), 258
source code, 49, 125
sp#off statement, 69, 229
sp#Hon statement, 69, 229
SPARE 1 connector, 69
spare line gating, 229
spare lines, 69
spectral analysistools, 32
spectrometer control statements, 54
spectrometer differences, 49

01-999253-00 A0604

Index

spectroscopy imaging sequences, 178
spectrum gap, 41
spectrum intensity at a point, 33
spectrum selection without display, 34
spell command (UNIX), 259
spelling errors check (UNIX), 259
spin lock control on transmitter, 229
spin lock control statements, 107
spin lock waveform control on decoupler, 156
spinlock statement, 108, 113, 229
spinner errors, 291
sqgrt operator, 22
square brackets ([...]) notation, 26
square brackets notation, 286
square root, 22
square wave modulation, 216
ss parameter, 70, 74
ssctr real-time variable, 71, 74
ssval real-time variable, 71, 74
standard data format, 275
standard deviation of input, 37
standard PSG variables, 52
standard.h file, 52, 92
start loop, 182
starthardloop statement, 97, 230
status of transmitter or decoupler, 215
status statement, 66, 75, 98, 112, 114, 231
statusdelay statement, 67, 75
steady-state phase cycling, 74
steady-state pulses, 74
step size

decoupler, 158

parameters, 282

transmitter, 193
steps in shaped pulse, 108
stepsize statement, 139, 232
store array in AP table, 78
stored format of a parameter, 281
storing multiple traces, 269
string command, 25
string constant, 22
string formatting for output, 35
string length, 41
string parameter vaue lookup, 88, 168
string parameters, 25
string template, 284
string variables, 24, 25
strings displayed in text window, 34
string-type parameter, 278, 280
sub statement, 71, 233
substr command, 43
substring from astring, 43
subtract AP table from second AP table, 237
subtract integer from AP table elements, 235
subtract integer values, 233
sum of integer values, 128
sum-to-memory error, 293
Sun manuals, 257
svfdf macro, 274
svib macro, 274
svsis macro, 274
swapping rf channels, 57
swept-square wave modulation, 216
synchronization of a pulse sequence, 101

VnmrJ User Programming 309

Index

synchronous decoupling, 216

Synchronous Line Interface (SLI) board, 124, 227,
246

sysgcoil parameter, 120

sysmaclibpath parameter, 19

system identification, 259

system macro, 39

system macro library, 19

systemglobal-type parameter tree, 279

T

T, analyses, 36

t1-t60 table names, 77

T, analyses, 36

T2PUL pulse sequence, 80

tabc command, 278

table names, 77

table of delays, 134

table of frequencies, 135

table of frequency offsets, 136

tablib directory, 77

tail command (UNIX), 259

tallest peak in region, 34

tan command, 38

tangent value of angle, 38

tape backup (UNIX), 258

tar command (UNIX), 258

tcapply command, 278

template parameters, 284

temporary variables, 18, 21, 24, 25

terminating a calling macro, 32

terminating zero, 91

testdacq procedure, 61

text display status, 43

text editor, 260

text file, 264

text file lookup, 35

text format files, 263

text window, 34

textedit command (UNIX), 259, 260

textis command, 43

thermal shutdown, 56

thetaangle, 122

theta parameter, 124, 189

third decoupler
blank associated amplifier, 141
fine power, 150
fine power adjustment, 65
gating, 68
homodecoupler gating, 59
offset frequency, 63, 64, 142
phase control, 62
power adjustment, 65
power level, 146
programmabl e decoupling, 147, 148
pulse with receiver gating, 152
quadrature phase, 144
shaped pulse, 155
simultaneous pulses, 60
small-angle phase, 140
spin lock waveform control, 157
step size, 158

310 VnmrJ User Programming

turn off, 142
turnon, 144
unblank amplifier, 159
three pointer, 71
three-pulse pulse, 60
three-pulse shaped pulse, 106, 226
tilde character notation (display templates), 286
tilde character notation (UNIX), 258
time increments, 53
time-sharing pul se shaping, 109
timing in a pulse sequence, 75
tip angle, 103
TODEV constant, 57
tof parameter, 63
token defined, 21
total weighting vector, 287
TPPI experiments, 117
TPPI phase increments, 51
tpwr parameter, 65, 111
transformations of FDF datafiles, 274
transformed complex spectrum storage file, 264
transformed phased spectrum storage file, 264
transformed spectra storage files, 263
transient blocks, 70
transmitter
blanking, 191
fine power, 193, 207, 212
fine power adjustment, 65
fine power with IPA, 180
gating, 68, 103, 248
hardware control of phase, 61
linear modulator power, 207, 212
linear modulator power with IPA, 180
offset frequency, 63, 191, 194
phase control, 60, 62
power adjustment, 64
power level, 191, 205, 211
programmable control, 107, 192
pulse shaping via AP bus, 131
pulse with IPA, 178, 179, 180
pulse with receiver gating, 192, 205, 210
pulse-related statements, 55
quadrature phase, 237
set status, 215
shaped pulse, 104, 217
simultaneous pulses, 59
small-angle phase, 249
small-angle phase step size, 232
spin lock control, 108, 229
step size, 193
unblank, 193
troubleshooting
acquisition status codes, 54
troubl eshooting a new sequence, 51
TRUE Boolean value, 29
trunc operator, 22
truncate real number, 22
tsadd statement, 79, 234
tsdiv statement, 80, 234
tsmult statement, 79, 235
tssub statement, 79, 235
ttadd statement, 80, 81, 235
ttdiv statement, 80, 236
ttmult statement, 80, 236

01-999253-00 A0604

ttsub statement, 80, 237

two attenuators system, 111

two periods notation (UNIX), 258
two pointer, 71

two-pulse pulse, 60

two-pulse sequence T2PUL, 80
two-pulse shaped pulse, 105, 225, 227
txphase statement, 60, 63, 98, 237, 239
type of parameter, 280

typeof operator, 22, 29

types of parameters, 278, 281

U

U+ H1 Only label, 115
uname command (UNIX), 259
unblank amplifier, 68, 158
underline prefix, 19
uniform excitation, 65
uninitialized variable, 52
unit command, 43
units command (UNIX), 259
UNIX
commands, 258
file names, 258
manuals, 257
operating system, 257
shell, 260
shell programming, 262
shell startup, 42
text commands, 259
text editor, 260
tools, 257
updtgcoil macro, 121
user AP lines, 69
user AP register, 209, 216, 246
user device interfacing, 69
user library, 49, 110
user macro, 38
user macro directory, 19
user-created parameters, 88
user-customized pulse sequence generation, 125
user-written weighting function, 287

\%

vl, v2, ... vl4 real-time variables, 53, 70
vagradient statement, 238

vagradpul se statement, 121, 122, 239
values of a parameter, 282

variable angle gradient, 238

variable angle gradient pulse, 239
variable angle shaped gradient, 240
variable angle shaped gradient pulse, 241
variable declaration, 25, 53

variable gradient pulse generation, 220
variable scan, 245

variable shaped gradient pulse generation, 222
variable types, 24

variables using parameters, 18
vashapedgradient statement, 122, 240
vashapedgradpul se statement, 122, 241

01-999253-00 A0604

Index

vbg shell script (UNIX), 261
vdelay statement, 55, 241
vdelay_list statement, 124, 242
vertical bar notation (UNIX), 259
vfreq statement, 124, 243
vgradient statement, 113, 118, 122, 243
vi command (UNIX), 259, 260
vi command (VNMR), 260
vi text editor, 280
VNMR
macros executed at startup, 40, 42
software package, 257
source code license, 265
Vnmr command (UNIX), 260
VNMR Command and Parameter Reference manual,
18
vnmr_confirmer command, 35
vnmreditor variable (UNIX), 20
VnmrJ
background processing, 261
vnmrsys directory, 19, 50
voffset statement, 124, 245
vsadj macro, 18
vscan statement, 124, 245
initialize variable, 177
vsetuserap statement, 69
vsli statement, 124, 246
vsmult macro, 29
VT errors, 291
vttime parameter, 291

W

w command, 260

w command (UNIX), 259

WALTZ decoupling, 61

WALTZ-16 modulation, 216

warning error codes, 291

warning messages, 51

waveform generation, 216

waveform generator control, 105, 106, 107
waveform generator delays, 112
waveform generator gate, 103
waveform generators, 101

waveform initialization statements, 124
whbs command, 54

weighting function, 268, 287

werr command, 54

wexp command, 54
WFG_OFFSET_DELAY macro, 114
WFG2_OFFSET_DELAY macro, 114
WFG3_OFFSET_DELAY macro, 114
which macro, 19

while, do, endwhile loop, 31

who ison the system (UNIX), 259
wildcard character (UNIX), 259

wnt command, 54

working directory (UNIX), 258

write command, 36

writing parameter buffersinto disk files, 264
wtcalc function, 287

witf file extension, 287

witfile parameter, 287, 288

VnmrJ User Programming 311

Index

wtfilel parameter, 287
wifile2 parameter, 287
wtgen shell script, 287, 288
wti command, 287

wtlib directory, 287, 288
wtp file extension, 287

X

X channel, 267

Xgate statement, 101, 248

xmtroff statement, 68, 248

xmtron statement, 68, 248

xmtrphase statement, 62, 63, 98, 113, 249
XY 32 modulation, 216

Y
Y channel, 267

4

z channel gradient pulse, 250

zero acquired data table, 99

zero all gradients, 249

zero data in acquisition processor memory, 133
zero fill data, 268

zero pointer, 71

zero_all_gradients statement, 249

zgradpul se statement, 113, 119, 121, 250

312 vnmrJ User Programming 01-999253-00 A0604

	Online Menu

	Overview of Contents
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. MAGICAL II Programming
	1.1 Working with Macros
	1.2 Programming with MAGICAL
	1.3 Relevant VnmrJ Commands

	Chapter 2. Pulse Sequence Programming
	2.1 Application Type and Execpars Programming
	2.2 Overview of Pulse Sequence Programming
	2.3 Spectrometer Control
	2.4 Pulse Sequence Statements: Phase and Sequence Control
	2.5 Real-Time AP Tables
	2.6 Accessing Parameters
	2.7 Using Interactive Parameter Adjustment
	2.8 Hardware Looping and Explicit Acquisition
	2.9 Pulse Sequence Synchronization
	2.10 Pulse Shaping
	2.11 Shaped Pulses Using Attenuators
	2.12 Internal Hardware Delays
	2.13 Indirect Detection on Fixed-Frequency Channel
	2.14 Multidimensional NMR
	2.15 Gradient Control for PFG and Imaging
	2.16 Programming the Performa XYZ PFG Module
	2.17 Imaging-Related Statements
	2.18 User-Customized Pulse Sequence Generation

	Chapter 3. Pulse Sequence Statement Reference
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X
	Z

	Chapter 4. UNIX-Level Programming
	4.1 UNIX and VnmrJ
	4.2 UNIX: A Reference Guide
	4.3 UNIX Commands Accessible from VnmrJ
	4.4 Background VNMR
	4.5 Shell Programming

	Chapter 5. Parameters and Data
	5.1 VnmrJ Data Files
	5.2 FDF (Flexible Data Format) Files
	5.3 Reformatting Data for Processing
	5.4 Creating and Modifying Parameters
	5.5 Modifying Parameter Displays in VNMR
	5.6 User-Written Weighting Functions
	5.7 User-Written FID Files

	Appendix A. Status Codes
	Index

