
VnmrJ User
Programming

VnmrJ 1.1D Software
Pub. No. 01-999253-00, Rev. A0604

VnmrJ User
Programming

VnmrJ 1.1D Software
Pub. No. 01-999253-00, Rev. A0604

VnmrJ User Programming
VnmrJ 1.1D Software
Pub. No. 01-999253-00, Rev. A0604

Revision history
A0604 – Initial release for VnmrJ 1.1D

Applicability of manual:
UNITYINOVA, MERCURYplus, MERCURY VxWorks Powered (shortened to
MERCURY-Vx throughout this manual), NMR spectrometer systems with VnmrJ 1.1D
software installed.

Technical contributors: Dan Iverson, Frits Vosman, Hung Lin, Debbie Mattiello
Technical writers: Dan Steele, Mike Miller
Technical editor: Dan Steele

Copyright 2004 by Varian, Inc.
3120 Hansen Way, Palo Alto, California 94304
http://www.varianinc.com
1-800-356-4437
All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in
this document are not intended to create any warranty, expressed or implied.
Specifications and performance characteristics of the software described in this manual
may be changed at any time without notice. Varian reserves the right to make changes in
any products herein to improve reliability, function, or design. Varian does not assume
any liability arising out of the application or use of any product or circuit described
herein; neither does it convey any license under its patent rights nor the rights of others.
Inclusion in this document does not imply that any particular feature is standard on the
instrument.

MERCURYplus, UNITYINOVA, VNMR, VnmrJ, MAGICAL II, AutoLock, AutoShim,
AutoPhase, limNET, ASM, and SMS are registered trademarks or trademarks of Varian,
Inc. Sun, Solaris, CDE, Suninstall, Ultra, SPARC, SPARCstation, SunCD, and NFS are
registered trademarks or trademarks of Sun Microsystems, Inc. and SPARC
International. Oxford is a registered trademark of Oxford Instruments LTD.
Ethernet is a registered trademark of Xerox Corporation. VxWORKS and VxWORKS
POWERED are registered trademarks of WindRiver Inc. Other product names in this
document are registered trademarks or trademarks of their respective holders.

01-999253-00 A0604 VnmrJ User Programming 3

Overview of Contents

Chapter 1. MAGICAL II Programming... 17

Chapter 2. Pulse Sequence Programming... 45

Chapter 3. Pulse Sequence Statement Reference....................................... 127

Chapter 4. UNIX-Level Programming ... 257

Chapter 5. Parameters and Data ... 263

Index .. 297

4 VnmrJ User Programming 01-999253-00 A0604

01-999253-00 A0604 VnmrJ User Programming 5

Table of Contents

Chapter 1. MAGICAL II Programming ... 17

1.1 Working with Macros .. 17
Writing a Macro .. 17
Executing a Macro .. 18
Transferring Macro Output ... 20
Loading Macros into Memory .. 20

1.2 Programming with MAGICAL ... 21
Tokens ... 21
Variable Types ... 24
Arrays .. 26
Expressions ... 28
Input Arguments ... 29
Name Replacement ... 29
Conditional Statements ... 30
Loops .. 31
Macro Length and Termination .. 31
Command and Macro Tracing .. 32

1.3 Relevant VnmrJ Commands .. 32
Spectral Analysis Tools ... 32
dres Measure linewidth and digital resolution ... 32
dsn Measure signal-to-noise ... 32
dsnmax Calculate maximum signal-to-noise ... 33
getll Get line frequency and intensity from line list 33
getreg Get frequency limits of a specified region ... 33
integ Find largest integral in specified region ... 33
mark Determine intensity of the spectrum at a point 33
nll Find line frequencies and intensities .. 33
numreg Return the number of regions in a spectrum 33
peak Find tallest peak in specified region .. 34
select Select a spectrum or 2D plane without displaying it 34

Input/Output Tools .. 34
apa Plot parameters automatically .. 34
banner Display message with large characters .. 34
clear Clear a window .. 34
confirm Confirm message using the mouse ... 34
echo Display strings and parameter values in text window 34
flip Flip between graphics and text window ... 34
format Format a real number or convert a string for output 35
input Receive input from keyboard ... 35
lookup Look up and return words and lines from text file 35
nrecords Determine number of lines in a file ... 35
psgset Set up parameters for various pulse sequences 35
vnmr_confirmer Display a confirmer window (UNIX) .. 35
write Write output to various devices ... 36

Table of Contents

6 VnmrJ User Programming 01-999253-00 A0604

Regression and Curve Fitting ... 36
analyze Generalized curve fitting .. 36
autoscale Resume autoscaling after limits set by scalelimits 36
expfit Least-squares fit to exponential or polynomial curve (UNIX) 36
expl Display exponential or polynomial curves ... 36
pexpl Plot exponential or polynomial curves ... 36
poly0 Display mean of the data in the file regression.inp 36
rinput Input data for a regression analysis .. 37
scalelimits Set limits for scales in regression ... 37

Mathematical Functions .. 37
abs Find absolute value of a number .. 37
acos Find arc cosine of a number ... 37
asin Find arc sine of a number ... 37
atan Find arc tangent of a number ... 37
atan2 Find arc tangent of two numbers .. 37
averag Calculate average and standard deviation of input 37
cos Find cosine value of an angle ... 37
exp Find exponential value of a number ... 38
ln Find natural logarithm of a number ... 38
sin Find sine value of an angle .. 38
tan Find tangent value of an angle ... 38

Creating, Modifying, and Displaying Macros .. 38
crcom Create a user macro without using a text editor 38
delcom Delete a user macro .. 38
hidecommand Execute macro instead of command with same name 38
macrocat Display a user macro on the text window .. 38
macrocp Copy a user macro file ... 39
macrodir List user macros ... 39
macroedit Edit a user macro with user-selectable editor 39
macrold Load a macro into memory .. 39
macrorm Remove a user macro ... 39
macrosyscat Display a system macro on the text window 39
macrosyscp Copy a system macro to become a user macro 39
macrosysdir List system macros ... 39
macrosysrm Remove a system macro .. 39
macrovi Edit a user macro with vi text editor .. 39
mstat Display memory usage statistics .. 40
purge Remove a macro from memory ... 40
record Record keyboard entries as a macro .. 40

Miscellaneous Tools .. 40
axis Provide axis labels and scaling factors .. 40
beepoff Turn beeper off ... 40
beepon Turn beeper on ... 40
bootup Macro executed automatically when VnmrJ is started 40
exec Execute a VnmrJ command ... 40
exists Determine if a parameter, file, or macro exists 41
focus Send keyboard focus to VNMR input window 41
gap Find gap in the current spectrum .. 41
getfile Get information about directories and files .. 41
graphis Return the current graphics display status ... 41
length Determine length of a string ... 41
listenoff Disable receipt of messages from send2Vnmr 41
listenon Enable receipt of messages from send2Vnmr 42

Table of Contents

01-999253-00 A0604 VnmrJ User Programming 7

login User macro executed automatically when VnmrJ activated 42
off Make a parameter inactive ... 42
on Make a parameter active or test its state .. 42
readlk Read current lock level .. 42
rtv Retrieve individual parameters .. 42
shell Start a UNIX shell .. 42
solppm Return ppm and peak width of solvent resonances 43
substr Select a substring from a string .. 43
textis Return the current text display status ... 43
unit Define conversion units ... 43

Chapter 2. Pulse Sequence Programming.. 45

2.1 Application Type and Execpars Programming .. 46
apptypes .. 46
execpar Parameters ... 46
Protocol Programming .. 48

2.2 Overview of Pulse Sequence Programming .. 49
Spectrometer Differences .. 49
Pulse Sequence Generation Directory .. 49
Compiling the New Pulse Sequence ... 50
Troubleshooting the New Pulse Sequence .. 51
Creating a Parameter Table for Pulse Sequence Object Code .. 52
C Framework for Pulse Sequences ... 52
Implicit Acquisition .. 54
Acquisition Status Codes .. 54

2.3 Spectrometer Control .. 54
Creating a Time Delay .. 54
Pulsing the Observe Transmitter ... 55
Pulsing the Decoupler Transmitter ... 57
Pulsing Channels Simultaneously ... 59
Setting Transmitter Quadrature Phase Shifts .. 60
Setting Small-Angle Phase Shifts ... 61
Controlling the Offset Frequency ... 63
Controlling Observe and Decoupler Transmitter Power ... 64
Controlling Status and Gating ... 66
Interfacing to External User Devices .. 69

2.4 Pulse Sequence Statements: Phase and Sequence Control .. 70
Real-Time Variables and Constants .. 70
Calculating in Real-Time Using Integer Mathematics ... 71
Controlling a Sequence Using Real-Time Variables ... 72
Real-Time vs. Run-Time—When Do Things Happen? .. 73
Manipulating Acquisition Variables ... 74
Intertransient and Interincrement Delays .. 75
Controlling Pulse Sequence Graphical Display .. 75

2.5 Real-Time AP Tables .. 76
Loading AP Table Statements from UNIX Text Files .. 76
Table Names and Statements .. 77
AP Table Notation ... 77

Table of Contents

8 VnmrJ User Programming 01-999253-00 A0604

Handling AP Tables .. 78
Examples of Using AP Tables .. 80

2.6 Accessing Parameters .. 81
Categories of Parameters .. 82
Looking Up Parameter Values .. 88
Using Parameters in a Pulse Sequence ... 89

2.7 Using Interactive Parameter Adjustment .. 91
General Routines ... 91
Generic Pulse Routine .. 92
Frequency Offset Subroutine .. 93
Generic Delay Routine .. 94
Fine Power Subroutine .. 96

2.8 Hardware Looping and Explicit Acquisition .. 96
Controlling Hardware Looping ... 97
Number of Events in Hardware Loops ... 97
Explicit Acquisition .. 99
Receiver Phase For Explicit Acquisitions .. 100
Multiple FID Acquisition .. 100

2.9 Pulse Sequence Synchronization ... 100
External Time Base ... 101
Controlling Rotor Synchronization ... 101

2.10 Pulse Shaping .. 101
File Specifications ... 102
Performing Shaped Pulses .. 104
Programmable Transmitter Control .. 106
Setting Spin Lock Waveform Control ... 107
Shaped Pulse Calibration .. 108

2.11 Shaped Pulses Using Attenuators .. 108
AP Bus Delay Constants ... 109
Controlling Shaped Pulses Using Attenuators .. 109
Controlling Attenuation .. 111

2.12 Internal Hardware Delays .. 111
Delays from Changing Attenuation .. 111
Delays from Changing Status ... 112
Waveform Generator High-Speed Line Trigger ... 114

2.13 Indirect Detection on Fixed-Frequency Channel .. 115
Fixed-Frequency Decoupler ... 115

2.14 Multidimensional NMR .. 115
Hypercomplex 2D ... 116
Real Mode Phased 2D: TPPI .. 117

2.15 Gradient Control for PFG and Imaging ... 117
Setting the Gradient Current Amplifier Level .. 118
Generating a Gradient Pulse ... 119
Controlling Lock Correction Circuitry ... 120
Programming Microimaging Pulse Sequences ... 120

Table of Contents

01-999253-00 A0604 VnmrJ User Programming 9

2.16 Programming the Performa XYZ PFG Module .. 120
Creating Gradient Tables .. 120
Pulse Sequence Programming .. 121

2.17 Imaging-Related Statements .. 122
Real-time Gradient Statements ... 122
Oblique Gradient Statements .. 124
Global List and Position Statements ... 124
Looping Statements .. 124
Waveform Initialization Statements .. 124
Other Statements ... 124

2.18 User-Customized Pulse Sequence Generation .. 125

Chapter 3. Pulse Sequence Statement Reference ... 127
abort_message Send and error to VnmrJ and abourt the PSG process127
acquire Explicitly acquire data ...127
add Add integer values ...128
apovrride Override internal software AP bus delay ...129
apshaped_decpulse First decoupler pulse shaping via AP bus ..129
apshaped_dec2pulse Second decoupler pulse shaping via AP bus130
apshaped_pulse Observe transmitter pulse shaping via AP bus131
assign Assign integer values ...132
blankingoff Unblank amplifier channels and turn amplifiers on133
blankingon Blank amplifier channels and turn amplifiers off133
blankoff Stop blanking observe or decoupler amplifier (obsolete)133
blankon Start blanking observe or decoupler amplifier (obsolete)133
clearapdatatable Zero all data in acquisition processor memory133
create_delay_list Create table of delays ...134
create_freq_list Create table of frequencies ...135
create_offset_list Create table of frequency offsets ..136
dbl Double an integer value ...138
dcphase Set decoupler phase (obsolete) ...139
dcplrphase Set small-angle phase of 1st decoupler, rf type C or D139
dcplr2phase Set small-angle phase of 2nd decoupler, rf type C or D139
dcplr3phase Set small-angle phase of 3rd decoupler, rf type C or D140
decblank Blank amplifier associated with first decoupler140
dec2blank Blank amplifier associated with second decoupler140
dec3blank Blank amplifier associated with third decoupler141
declvloff Return first decoupler back to “normal” power141
declvlon Turn on first decoupler to full power ...141
decoff Turn off first decoupler ..141
dec2off Turn off second decoupler ..142
dec3off Turn off third decoupler ...142
decoffset Change offset frequency of first decoupler ..142
dec2offset Change offset frequency of second decoupler142
dec3offset Change offset frequency of third decoupler142
dec4offset Change offset frequency of fourth decoupler143
decon Turn on first decoupler ...143
dec2on Turn on second decoupler ..143
dec3on Turn on third decoupler ..144
decphase Set quadrature phase of first decoupler ..144
dec2phase Set quadrature phase of second decoupler ...144
dec3phase Set quadrature phase of third decoupler ...144

Table of Contents

10 VnmrJ User Programming 01-999253-00 A0604

dec4phase Set quadrature phase of fourth decoupler ..145
decpower Change first decoupler power level, linear amp. systems145
dec2power Change second decoupler power level, linear amp. systems145
dec3power Change third decoupler power level, linear amp. systems146
dec4power Change fourth decoupler power level, linear amp. systems146
decprgoff End programmable decoupling on first decoupler146
dec2prgoff End programmable decoupling on second decoupler146
dec3prgoff End programmable decoupling on third decoupler147
decprgon Start programmable decoupling on first decoupler147
dec2prgon Start programmable decoupling on second decoupler147
dec3prgon Start programmable decoupling on third decoupler148
decpulse Pulse first decoupler transmitter with amplifier gating148
decpwr Set first decoupler high-power level, class C amplifier149
decpwrf Set first decoupler fine power ..149
dec2pwrf Set second decoupler fine power ...149
dec3pwrf Set third decoupler fine power ...150
decr Decrement an integer value ..150
decrgpulse Pulse first decoupler with amplifier gating ..150
dec2rgpulse Pulse second decoupler with amplifier gating151
dec3rgpulse Pulse third decoupler with amplifier gating152
dec4rgpulse Pulse fourth decoupler with amplifier gating152
decshaped_pulse Perform shaped pulse on first decoupler ..153
dec2shaped_pulse Perform shaped pulse on second decoupler154
dec3shaped_pulse Perform shaped pulse on third decoupler ...155
decspinlock Set spin lock waveform control on first decoupler156
dec2spinlock Set spin lock waveform control on second decoupler156
dec3spinlock Set spin lock waveform control on third decoupler157
decstepsize Set step size for first decoupler ..158
dec2stepsize Set step size for second decoupler ...158
dec3stepsize Set step size for third decoupler ...158
decunblank Unblank amplifier associated with first decoupler158
dec2unblank Unblank amplifier associated with second decoupler159
dec3unblank Unblank amplifier associated with third decoupler159
delay Delay for a specified time ..159
dhpflag Switch decoupling from low-power to high-power159
divn Divide integer values ...160
dps_off Turn off graphical display of statements ..160
dps_on Turn on graphical display of statements ..160
dps_show Draw delay or pulses in a sequence for graphical display160
dps_skip Skip graphical display of next statement ...163
elsenz Execute succeeding statements if argument is nonzero163
endhardloop End hardware loop ...164
endif End execution started by ifzero or elsenz ..164
endloop End loop ...164
endmsloop End multislice loop ..164
endpeloop End phase-encode loop ..165
gate Device gating (obsolete) ..166
getarray Get arrayed parameter values ...166
getelem Retrieve an element from an AP table ...166
getorientation Read image plane orientation ...167
getstr Look up value of string parameter ...168
getval Look up value of numeric parameter ...168
G_Delay Generic delay routine ...169
G_Offset Frequency offset routine ..169

Table of Contents

01-999253-00 A0604 VnmrJ User Programming 11

G_Power Fine power routine ...169
G_Pulse Generic pulse routine ...169
hdwshiminit Initialize next delay for hardware shimming170
hlv Find half the value of an integer ..170
hsdelay Delay specified time with possible homospoil pulse171
idecpulse Pulse first decoupler transmitter with IPA ...172
idecrgpulse Pulse first decoupler with amplifier gating and IPA172
idelay Delay for a specified time with IPA ...172
ifzero Execute succeeding statements if argument is zero 173
incdelay Set real-time incremental delay ..173
incgradient Generate dynamic variable gradient pulse ...174
incr Increment an integer value ...175
indirect Set indirect detection ..175
init_rfpattern Create rf pattern file ...175
init_gradpattern Create gradient pattern file ...176
init_vscan Initialize real-time variable for vscan statement177
initdelay Initialize incremental delay ..177
initparms_sis Initialize parameters for spectroscopy imaging sequences178
initval Initialize a real-time variable to specified value178
iobspulse Pulse observe transmitter with IPA ..178
ioffset Change offset frequency with IPA ...179
ipulse Pulse observe transmitter with IPA ..179
ipwrf Change transmitter or decoupler fine power with IPA180
ipwrm Change transmitter or decoupler lin. mod. power with IPA180
irgpulse Pulse observe transmitter with IPA ..180
lk_hold Set lock correction circuitry to hold correction181
lk_sample Set lock correction circuitry to sample lock signal181
loadtable Load AP table elements from table text file182
loop Start loop ..182
loop_check Check that number of FIDs is consitent with number of slices, etc. ..183
magradient Simultaneous gradient at the magic angle ..183
magradpulse Gradient pulse at the magic angle ..184
mashapedgradient Simultaneous shaped gradient at the magic angle184
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle185
mod2 Find integer value modulo 2 ..186
mod4 Find integer value modulo 4 ..186
modn Find integer value modulo n ..186
msloop Multislice loop ...187
mult Multiply integer values ..187
obl_gradient Execute an oblique gradient ...188
oblique_gradient Execute an oblique gradient ...188
obl_shapedgradient Execute a shaped oblique gradient ...189
oblique_shapedgradient Execute a shaped oblique gradient ...189
obsblank Blank amplifier associated with observe transmitter191
obsoffset Change offset frequency of observe transmitter191
obspower Change observe transmitter power level, lin. amp. systems191
obsprgoff End programmable control of observe transmitter192
obsprgon Start programmable control of observe transmitter192
obspulse Pulse observe transmitter with amplifier gating192
obspwrf Set observe transmitter fine power ...193
obsstepsize Set step size for observe transmitter ..193
obsunblank Unblank amplifier associated with observe transmitter193
offset Change offset frequency of transmitter or decoupler194
pe_gradient Oblique gradient with phase encode in one axis195

Table of Contents

12 VnmrJ User Programming 01-999253-00 A0604

pe2_gradient Oblique gradient with phase encode in two axes195
pe3_gradient Oblique gradient with phase encode in three axes196
pe_shapedgradient Oblique shaped gradient with phase encode in one axis196
pe2_shapedgradient Oblique shaped gradient with phase encode in two axes197
pe3_shapedgradient Oblique shaped gradient with phase encode in three axes198
peloop Phase-encode loop ..198
phase_encode_gradient Oblique gradient with phase encode in one axis199
phase_encode3_gradient Oblique gradient with phase encode in three axes200
phase_encode_shapedgradient Oblique shaped gradient with PE in one axis200
phase_encode3_shapedgradient Oblique shaped gradient with PE in three axes201
phaseshift Set phase-pulse technique, rf type A or B ..202
poffset Set frequency based on position ...203
poffset_list Set frequency from position list ...203
position_offset Set frequency based on position ...203
position_offset_list Set frequency from position list ...204
power Change power level, linear amplifier systems204
psg_abort Abort the PSG process ...205
pulse Pulse observe transmitter with amplifier gating205
putCmd Send a command to VnmrJ form a pulse sequence206
pwrf Change transmitter or decoupler fine power207
pwrm Change transmitter or decoupler linear modulator power207
rcvroff Turn off receiver gate and amplifier blanking gate208
rcvron Turn on receiver gate and amplifier blanking gate208
readuserap Read input from user AP register ...209
recoff Turn off receiver gate only ...209
recon Turn on receiver gate only ...210
rgpulse Pulse observe transmitter with amplifier gating210
rgradient Set gradient to specified level ..211
rlpower Change power level, linear amplifier systems211
rlpwrf Set transmitter or decoupler fine power (obsolete)212
rlpwrm Set transmitter or decoupler linear modulator power212
rotorperiod Obtain rotor period of MAS rotor ..213
rotorsync Gated pulse sequence delay from MAS rotor position213
setautoincrement Set autoincrement attribute for an AP table214
setdivnfactor Set divn-return attribute and divn-factor for AP table214
setreceiver Associate the receiver phase cycle with an AP table215
setstatus Set status of observe transmitter or decoupler transmitter215
settable Store an array of integers in a real-time AP table216
setuserap Set user AP register ..216
shapedpulse Perform shaped pulse on observe transmitter217
shaped_pulse Perform shaped pulse on observe transmitter217
shapedgradient Generate shaped gradient pulse ...218
shaped2Dgradient Generate arrayed shaped gradient pulse ...219
shapedincgradient Generate dynamic variable gradient pulse ...220
shapedvgradient Generate dynamic variable shaped gradient pulse222
simpulse Pulse observe and decouple channels simultaneously223
sim3pulse Pulse simultaneously on 2 or 3 rf channels ..224
sim4pulse Simultaneous pulse on four channels ...225
simshaped_pulse Perform simultaneous two-pulse shaped pulse225
sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse226
sli Set SLI lines ...227
sp#off Turn off specified spare line ...229
sp#on Turn on specified spare line ...229
spinlock Control spin lock on observe transmitter ...229

Table of Contents

01-999253-00 A0604 VnmrJ User Programming 13

starthardloop Start hardware loop ..230
status Change status of decoupler and homospoil ..231
statusdelay Execute the status statement with a given delay time232
stepsize Set small-angle phase step size, rf type C or D232
sub Subtract integer values ...233
text_error Send a text error message to VnmrJ ...234
text_message Send a message to VnmrJ ..234
tsadd Add an integer to AP table elements ..234
tsdiv Divide an integer into AP table elements ...234
tsmult Multiply an integer with AP table elements235
tssub Subtract an integer from AP table elements235
ttadd Add an AP table to a second table ...235
ttdiv Divide an AP table into a second table ..236
ttmult Multiply an AP table by a second table ...236
ttsub Subtract an AP table from a second table ..237
txphase Set quadrature phase of observe transmitter237
vagradient Variable angle gradient ...238
vagradpulse Variable angle gradient pulse ...239
var_active Checks if the parameter is being used ..239
vashapedgradient Variable angle shaped gradient ..240
vashapedgradpulse Variable angle shaped gradient pulse ...241
vdelay Set delay with fixed timebase and real-time count241
vdelay_list Get delay value from delay list with real-time index242
vfreq Select frequency from table ...243
vgradient Set gradient to a level determined by real-time math243
voffset Select frequency offset from table ...245
vscan Provide dynamic variable scan ..245
vsetuserap Set user AP register using real-time variable246
vsli Set SLI lines from real-time variable ...246
warn_message Send a warning message to VnmrJ ..248
xgate Gate pulse sequence from an external event248
xmtroff Turn off observe transmitter ...248
xmtron Turn on observe transmitter ...248
xmtrphase Set transmitter small-angle phase, rf type C, D249
zero_all_gradients Zero all gradients ...249
zgradpulse Create a gradient pulse on the z channel ..250

Chapter 4. UNIX-Level Programming .. 257

4.1 UNIX and VnmrJ .. 257

4.2 UNIX: A Reference Guide .. 258
Command Entry .. 258
File Names ... 258
File Handling Commands ... 258
Directory Names .. 258
Directory Handling Commands .. 258
Text Commands .. 259
Other Commands ... 259
Special Characters ... 259

4.3 UNIX Commands Accessible from VnmrJ ... 260
Opening a UNIX Text Editor from VnmrJ ... 260
Opening a UNIX Shell from VnmrJ ... 260

Table of Contents

14 VnmrJ User Programming 01-999253-00 A0604

4.4 Background VNMR .. 260
Running VNMR Command as a UNIX Background Task ... 260
Running VNMR Processing in the Background ... 261

4.5 Shell Programming .. 261
Shell Variables and Control Formats .. 262
Shell Scripts .. 262

Chapter 5. Parameters and Data.. 263

5.1 VnmrJ Data Files ... 263
Binary Data Files .. 263
Data File Structures ... 264
VnmrJ Use of Binary Data Files ... 267
Storing Multiple Traces .. 269
Header and Data Display .. 269

5.2 FDF (Flexible Data Format) Files ... 270
File Structures and Naming Conventions ... 270
File Format .. 270
Header Parameters .. 271
Transformations .. 274
Creating FDF Files .. 274
Splitting FDF Files .. 275

5.3 Reformatting Data for Processing ... 275
Standard and Compressed Formats ... 275
Compress or Uncompress Data ... 275
Move and Reverse Data .. 276
Table Convert Data ... 278
Reformatting Spectra .. 278

5.4 Creating and Modifying Parameters ... 278
Parameter Types and Trees ... 278
Tools for Working with Parameter Trees .. 279
Format of a Stored Parameter ... 281

5.5 Modifying Parameter Displays in VNMR .. 284
Display Template .. 284
Conditional and Arrayed Plots .. 285
Output Format ... 286

5.6 User-Written Weighting Functions .. 287
Writing a Weighting Function ... 287
Compiling the Weighting Function ... 288

5.7 User-Written FID Files .. 289

Index.. 297

01-999253-00 A0604 VnmrJ User Programming 15

List of Figures

Figure 1. Amplifier Gating .. 56

Figure 2. Pulse Observe and Decoupler Channels Simultaneously ... 59

Figure 3. Waveform Generator Offset Delay on UNITYINOVA Systems .. 114

Figure 4. Magnet Coordinates as Related to User Coordinates. .. 272

Figure 5. Single-String Display Template with Output ... 284

Figure 6. Multiple-String Display Template .. 285

16 VnmrJ User Programming 01-999253-00 A0604

List of Tables

Table 1. Reserved Words in MAGICAL. .. 22

Table 2. Order of Operator Precedence (Highest First) in MAGICAL ... 23

Table 3. Variable Types in Pulse Sequences .. 53

Table 4. Delay-Related Statements .. 55

Table 5. Observe Transmitter Pulse-Related Statements ... 56

Table 6. Decoupler Transmitter Pulse-Related Statements .. 58

Table 7. Simultaneous Pulses Statements .. 59

Table 8. Transmitter Quadrature Phase Control Statements .. 60

Table 9. Phase Shift Statements ... 61

Table 10. Frequency Control Statements ... 63

Table 11. Power Control Statements .. 64

Table 12. Gating Control Statements ... 67

Table 13. Interfacing to External User Devices ... 69

Table 14. Mapping of User AP Lines .. 69

Table 15. Integer Mathematics Statements .. 71

Table 16. Pulse Sequence Control Statements ... 72

Table 17. Statements for Controlling Graphical Display of a Sequence 76

Table 18. Statements for Handling AP Tables ... 79

Table 19. Parameter Value Lookup Statements ... 81

Table 20. Global PSG Parameters (UnityINOVA) ... 82

Table 21. Imaging Variables .. 84

Table 22. Hardware Looping Related Statements ... 97

Table 23. Number of Events for Statements in a Hardware Loop ... 98

Table 24. Rotor Synchronization Control Statements ... 101

Table 25. Shaped Pulse Statements .. 104

Table 26. Programmable Control Statements .. 106

Table 27. Spin Lock Control Statements ... 107

Table 28. AP Bus Delay Constants ... 110

Table 29. Statements for Pulse Shaping Through the AP Bus .. 111

Table 30. AP Bus Overhead Delays .. 113

Table 31. Example of AP Bus Overhead Delays for status Statement 114

Table 32. Multidimensional PSG Variables ... 116

Table 33. Gradient Control Statements .. 118

Table 34. Delays for Obliquing and Shaped Gradient Statements .. 119

Table 35. Performa XYZ PFG Module Statements ... 121

Table 36. Imaging-Related Statements .. 123

Table 37. Commands for Reformatting Data .. 276

Table 38. Commands for Working with Parameter Trees .. 279

Table 39. Acquisition Status Codes ... 291

01-999253-00 A0604 VnmrJ User Programming 17

Chapter 1. MAGICAL II Programming

Sections in this chapter:

• 1.1 “Working with Macros,” this page

• 1.2 “Programming with MAGICAL,” page 21

• 1.3 “Relevant VnmrJ Commands,” page 32

Many of the actions performed on an NMR spectrometer are performed many times, day
after day. To make these actions easier on the user, VnmrJ software provides macros and a
high-level programming language designed for NMR.

1.1 Working with Macros
A macro is a user-defined command that can duplicate a long series of commands and
parameter changes you would otherwise have to enter one by one. To plot a spectrum, a
scale under the spectrum, and parameters on the page would require a sequence of
commands such as
pl

pscale

hpa

page

It would be possible to define a macro, say, plot, that would be the equivalent of these
commands. Or, perhaps you routinely plot 2D spectra using certain parameters. In this case,
you might define a macro plot_2d as equivalent to the following:
wc=160

sc=20

wc2=160

sc2=20

pcon(10,1.4)

page

But macros in the VnmrJ software are much more than this. Macros are written in Varian's
special high-level “NMR” language, MAGICAL II (MAGnetics Instrument Control and
Analysis Language, version II—usually just called MAGICAL in this chapter). MAGICAL
provides an entire series of programming tools, such as if statements and loops, that can be
used as part of macros. In addition, MAGICAL provides other NMR-related tools that
allow macros to access NMR information like peak heights, integrals, and spectral regions.
Using these two sets of tools, “NMR algorithms” are easily implemented with MAGICAL.

Writing a Macro

Consider the following problem: Find the largest peak in a spectrum in which the peaks
may be positive or negative (such as an APT spectrum) and adjust the vertical scale of the

Chapter 1. MAGICAL II Programming

18 VnmrJ User Programming 01-999253-00 A0604

spectrum so that the tallest peak is 180 mm high. The following macro (or MAGICAL
program) that we call vsadj illustrates how the MAGICAL tools can be used to quickly
and simply find a solution:

As written, the macro vsadj has four lines:

• The material in double-quotation marks (the first line and parts of other lines) are
comments. MAGICAL permits comments, and as is good programming practice, this
example is filled with comments to explain what is happening.

• The second line of the macro (“peak:$height,...”) illustrates the ability of
MAGICAL to extract spectral information. The peak command looks through the
spectrum and returns to the user the height and frequency of the tallest peak in the
spectrum, which are then stored (in this example) in temporary variables named
$height and $frequency.

• The third line of the macro (“if $height<0...”) illustrates that MAGICAL is a
high-level programming language, with conditional statements (e.g., if...
then...), loops, etc. This particular line ensures that the peak height we measure is
always a positive value, which is necessary for the calculation in the next line.

• The last line (“vs=180*vs...”) illustrates the use of NMR parameters (like vs,
which sets the vertical scale) as simple variables in our macro. This line accomplishes
the task of calculating a new value of vs that will make the height of the tallest peak
equal to 180 mm.

Part of the power of the MAGICAL macro language is its ability to build on itself. For
example, we can create first-level macros out of existing commands, second-level macros
out of first-level macros and commands, and so on. Suppose we created a macro plot, for
example, we might also create a macro setuph, another macro acquireh, and yet
another macro processh. Now we might create a “higher-level” macro, H1, which is
equivalent to setuph acquireh processh plot. Perhaps we have created two more
similar macros, C13 and APT. Now we might create yet another higher-level macro
HCAPT, equivalent to H1 C13 APT. At every step of the way, the power of the macro
increases, but without increasing the complexity.

Many macros are part of the standard VnmrJ software. These macros are discussed in the
relevant chapters of the manual Getting Started—processing macros are discussed along
with processing commands, acquisition setup macros along with acquisition setup
commands, etc. Refer to the VnmrJ Command and Parameter Reference for a concise
description of standard macros. The examples used here are instructive examples and do
not necessarily represent standard Varian software.

Executing a Macro

When any program is executed, the command interpreter first checks to see if it is a
standard VnmrJ command. If the program is not a command, the command interpreter then
attempts to find a macro with the program name. Unlike a built-in VnmrJ command, which
is a built-in procedure containing code that normally cannot be changed by users, the code
inside a macro is text that is accessible and can be changed by users as needed.

“vsadj --- Adjust scale of spectrum"

peak:$height,$frequency "Find largest peak"

if $height<0 then $height=-
$height endif

"If negative, make positive"

vs=180*vs/$height "Adjust the vertical scale"

1.1 Working with Macros

01-999253-00 A0604 VnmrJ User Programming 19

If a VnmrJ command and a macro have the same name, the VnmrJ command always takes
precedence over a macro. For example, there is a built-in VnmrJ command named wft. If
someone happens to write a macro also named wft, the macro wft will never get executed
because the VnmrJ command wft takes precedence. To get around this restriction, the
hidecommand command can rename a command so that a macro with the same name as
a command is executed instead of the built-in command. If the user who wrote the wft
macro enters hidecommand('wft'), the command is renamed to Wft (first letter made
upper case) and the macro wft is now executable directly. The new wft macro can access
the hidden wft built-in command by calling it with the name Wft. To go back to executing
the command wft first, enter hidecommand('Wft').

Macro files can reside in four separate locations:

1. In the user’s maclib directory.

2. In the directory pointed to by the maclibpath parameter (if maclibpath is
defined in the user's global parameter file).

3. In the directory pointed to by the sysmaclibpath parameter (if defined).

4. In the system maclib directory.

When macros are executed, the four locations are searched in this order. The first location
found is the one that is used. For example, rt is a standard VNMR macro in the system
maclib. If a user puts a macro named rt in the user’s maclib, the user’s rt macro takes
precedence over the system rt macro.

The which macro can search these locations and display on line 3 the information it finds
about which location contains a macro. For example, entering which('rt') determines
the location of the macro rt.

The system macro directory /vnmr/maclib can be changed by the system operator only,
but changes to it are available to all users. Each user also has their own private macro
directory maclib in the user’s vnmrsys directory. These macros take precedence over
the system macros if a macro of the same name is in both directories. Thus, users can
modify a macro to their own needs without affecting the operation of other users. If the
command interpreter does not find the macro, it displays an error message to the user.

Macros are executed in exactly the same way as normal system commands, including the
possibility of accepting optional arguments (shown by angled brackets “<...>”):
macroname<(argument1<,argument2,...>)>

Arguments passed to commands and macros can be constants (examples are 5.0 and
'apt'), parameters and variables (pw and $ht), or expressions (2*pw+5.0). Recursive
calls to procedures are allowed. Single quotes must be used around constant strings.

Macros can also be executed three other ways:

• When the VnmrJ program is first run, a system macro bootup is run. This macro in
turn runs a user macro named login in the user’s local maclib directory if such a
macro exists.

• When any parameter x is entered, if that parameter has a certain “protection bit” set
(see “Format of a Stored Parameter,” page 281), a macro by the name _x (that is, the
same name as the parameter with an underline as a prefix) is executed. For example,
changing the value of sw executes the macro _sw.

• Whenever parameters are retrieved with the rt, rtp, or rtv commands, a macro
named fixpar is executed.

If the macro needs to know what macro invoked it, that information is stored by the string
parameter macro available in each experiment.

Chapter 1. MAGICAL II Programming

20 VnmrJ User Programming 01-999253-00 A0604

Transferring Macro Output

Output from many commands and macros, in addition to being displayed on the screen or
placed in a file, can also be transferred into any parameter or variable of the same type. To
receive the output of a program of this type, the program name (and arguments, if any) are
followed by a colon (:) and one or more names of variables and parameters that are to take
the output:
macroname<(arg1<,arg2,...>)>:variable1,variable2,...

For example, the command peak (described on page 34) finds the height and frequency of
the tallest peak. Entering the command:
peak:r1,r2

results in r1 containing the height of the tallest peak and r2 its frequency. Therefore,
entering the command
peak:$ht,cr

would set $ht equal to the height of the tallest peak and set the cursor (parameter cr) equal
to its frequency, and thus would be the equivalent of a “tallest line” command (similar to
but different than the command nl to position the cursor at the nearest line).

It is not necessary to receive all of the information. For example, entering
peak:$peakht

puts the height of the tallest peak into the variable $peakht, and does not save the
information about the peak frequency.

The command that displays a line list, dll, also produces one output—the number of lines.
Entering
dll:$n

reads the number of lines into variable $n. dll alone is perfectly acceptable although the
information about the number of lines is then “lost.”

Loading Macros into Memory

Every time a macro is used, it is “parsed” before it is executed. This parsing takes time. If
a macro is used many times or if faster execution speed is desirable, the parsed form of the
macro, user or system, can be loaded into memory by the macrold command. When that
macro is executed, it runs substantially faster. You can even “pre-load” one or more macros
automatically when you start VnmrJ by inserting some macrold commands into your
login macro.

Macros are also loaded into memory when you use the macrovi or macroedit
commands to edit the macro. The only argument in each is the name of the macro file; for
example, enter macrovi('pa') or macroedit('pa') if the macro name is pa.
Which command you use depends on the type of macro and the text editor you want:

• For a user macro from the UNIX vi editor, use macrovi.

• For a user macro from an editor you select, use macroedit.

• To edit a system macro, copy the macro to your personal macro directory and edit it
there with macrovi or macroedit.

To select the editor for macroedit, set the UNIX variable vnmreditor to its name
(vnmreditor is set through the UNIX env command). You must have also a script for
the editor in the bin subdirectory of the VnmrJ system directory. For example, you can
select Emacs by setting vnmreditor=emacs and having a script vnmr_emacs.

Several minor problems need to be considered in loading macros into memory:

1.2 Programming with MAGICAL

01-999253-00 A0604 VnmrJ User Programming 21

• These macros consume a small amount of memory. In memory-critical situations, you
might want to remove one or more macros from memory. This is done with the
purge<(file)> command, where file is the name of a macro file to be removed
from memory. Entering purge with no arguments removes all macros loaded into
memory.

CAUTION: The purge command with no arguments should never be called from
a macro, because it will remove all macros from memory, including the
macro containing purge. Furthermore, purge, where the argument is
the name of the macro containing the purge command, should never
be called.

• If a macro is loaded in memory and you try to modify the macro from a separate UNIX
window, the copy in memory is not changed, so if you execute the macro again, VNMR
executes the old copy. To avoid this, use macrovi or macroedit to edit the macro,
or if you have already edited the macro from another window, use macrold to replace
the macro loaded in memory with the new version.

• If you wish to create a personal macro with the same name as a system macro already
in memory, you must use purge to clear the system macro from memory so the
version in your personal maclib directory will subsequently be executed.

If one macro calls another macro inside a loop, you might improve performance by having
the calling macro load the called macro before entering the loop, execute the loop, and then
remove the called macro from memory with the purge command.

1.2 Programming with MAGICAL
MAGICAL has many features, including tokens, variables, expressions, conditional
statements, and loops. To program in MAGICAL, you need to know about the main
features described in this section.

Tokens

In a computer language, a token is defined as a character or characters that is taken by the
language as a single “thing” or “unit.” There are five classes of tokens in MAGICAL:
identifiers, reserved words, constants, operators, and separators.

Identifiers

An identifier is the name of a command, macro, parameter, or variable, and is a sequence
of letters, digits, and the characters _ $ #. The underline _ counts as a letter. Upper and
lower case letters are different. The first letter of identifiers, except temporary variable
identifiers, must be a letter. Temporary variable identifiers start with the dollar-sign
($) character. Identifiers can be any length (but be reasonable). Examples of identifiers are
pcon, _pw, or $height.

Reserved Words

The identifiers listed in Table 1 are reserved words and may not be used otherwise.
Reserved words are recognized in both upper and lower case formats (e.g., do not use either
and or AND except as a reserved word).

Chapter 1. MAGICAL II Programming

22 VnmrJ User Programming 01-999253-00 A0604

Constants

Constants can be either floating or string.

• A floating constant consists of an integer part, a decimal point, a fractional part, the
letter E (or e) and, optionally, a signed integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part or the fraction part (but not
both) may be missing; similarly, either the decimal point, or the E (or e) and the
exponent may be missing. Some examples are 1.37E–3, 4e5, .2E2, 1.4, 5.

• A string constant is a sequence of characters surrounded by single-quote characters
('...') or by backward single-quote characters (`...`). 'This is a string' and
`This is a string` are examples of string constants.

To include a single-quote character in a string, place a backslash character (\) before
the single-quote character, for example:

'This string isn\'t permissible without the backslash'

To include a backslash character in the string, place another backslash before the
backslash, such as

'This string includes the backslash \\'

Alternatively, the two styles of single quote characters can be used. If backward single
quotes are used to delimit a string, then single quotes can be placed directly within the
string, for example:

`This isn't a problem`

Or the single-quote styles can be exchanged, for example:

'This isn`t a problem'

The single quote style that initiates the string must also terminate the string.

Operators

Table 2 lists the operators available in MAGICAL. Each operator is placed in a group, and
groups are shown in order of precedence, with the highest group precedence first. Within
each group, operator precedence in expressions is from left to right, except for the logical
group, where the respective members are listed in order of precedence.

There are four “built-in” special operators:

• sqrt returns the square root of a real number.

• trunc truncates real numbers.

• typeof returns an identifier (0, or 1) for the type (real, or string) of an argument. The
typeof operator will abort if the identifier does not exist.

• size returns the number of elements in an arrayed parameter.

Table 1. Reserved Words in MAGICAL.

abort else not trunc

abortoff elseif or typeof

aborton endif repeat then

and endwhile return until

break if size while

do mod sqrt

1.2 Programming with MAGICAL

01-999253-00 A0604 VnmrJ User Programming 23

The unary, multiplicative, and additive operators apply only to real variables. The +
(addition) operator can also be used with string variables to concatenate two strings
together. The mathematical operators can not be used with mixed variable types.

If the variable is an array, the mathematical operators try to do simple matrix arithmetic. If
two matrices of the same size are equated, added, subtracted, multiplied, divided, or one
matrix is taken as a modulus, each element of the first matrix is operated on with the
corresponding element of the second. If two matrices of the same size are compared with
an and operator, the resulting Boolean is the AND of each individual element. If two
matrices of the same size are ORed together, the resulting Boolean is the OR of each
individual element. If the two matrices have unequal sizes, an error results.

An arrayed variable cannot be operated on (added, multiplied, etc.) by a single-valued
constant or variable. For example, if pw is an array of five values, pw=2*pw does not
double the value of each element of the array.

Comments

MAGICAL programming provides three ways to enter comments:

• Create a comment by putting characters between double quotation marks ("..."), except
when the double quotation marks are in a literal string, e.g.,

'The word “and” is a reserved word'

Table 2. Order of Operator Precedence (Highest First) in MAGICAL

Group Operation Description Example

special sqrt() square root a = sqrt(b)

trunc() truncation $3 = trunc(3.6)

typeof() return argument type if typeof('$1') then...

size() return argument size r1 = size('d2')

unary – negative a = –5

multiplicative * multiplication a = 2 * c

/ division b = a / 2

% remainder $1 = 4 % 3

mod modulo $3 = 7 mod 4

additive + addition a = x + 4

– subtraction b = y – sw

relational < less than if a < b then...

> greater than if a > b then...

<= less than or equal to if a <= b then...

>= greater than or equal to if a >= b then...

equality = equal to if a = b then...

<> not equal to if a <> b then...

logical not negation if not (a=b) then...

and logical and if r1 and r2 then...

or logical inclusive or if (r1=2) or (r2=4)
then...

assignment = equal a = 3

Chapter 1. MAGICAL II Programming

24 VnmrJ User Programming 01-999253-00 A0604

Comments based on double quotation marks can appear anywhere—at the beginning,
middle, or end of a line—but cannot span multiple lines. At the end of a comment,
place a second double quotation mark; otherwise, the comment is automatically
terminated when the end of a line occurs.

• Create a single-line comment with two slash marks (//). The comment starts with the
// and ends on the line., e.g.,

// This is a comment

As with the double quotation marks, // in a literal string does not signify a comment.
This type of comment is often used for a brief description of the preceding command,
e.g.,

cdc // clear drift correction

• Create a single-line or multiple-lines comment with a slash and asterisk (/*), which
begins the comment, and an asterisk and a slash (*/), which ends the comment, e.g.,

/* The comment
can span
multiple lines

*/

This type of comment is useful for longer descriptions. It is also useful for
“commenting out” sections of a macro for debugging purposes.

Again, if the /* or */ are in a literal string, they do not serve as comment delimiters.
These comments do not nest; that is, the following construct will fail,

/*
/* Comment does not nest

This will cause an error
*/

*/

In this example, the first /* starts the comment. The second /* is ignored because it is
part of the comment. The first */ terminates the comment, which causes the second
*/ to generate an error.

Separators

Blanks, tabs, new lines, and comments serve to separate tokens and are otherwise ignored.

Variable Types

As with many programming languages, MAGICAL provides two classes of variables:

• Global variables (also called external) that retain their values on a permanent or semi-
permanent basis.

• Local variables (also called temporary and automatic) that are created for the time it
takes to execute the macro in question, after which the variables no longer exist.

Global and local variables can be of two types: real and string. Global real variables are
stored as double-precision (64-bit) floating point numbers. The real(variable)
command creates a real variable without a value, where variable is the name of the
variable to be created.

Although global real variables have potential limits from 1e308 to 1e–308, when such
variables are created, they are given default maximum and minimum values of 1e18 and
–1e18; these can subsequently be changed with the setlimit command. For example,
setlimit('r1',1e99,–1e99,0) sets variable r1 to limits of 1e99 and –1e99.

1.2 Programming with MAGICAL

01-999253-00 A0604 VnmrJ User Programming 25

Local real variables have limits slightly less than 1e18 (9.999999843067e17, to be
precise) and cannot be changed.

String variables can have any number of characters, including a null string that has no
characters. The command string(variable), where variable is the name of the
variable to be created, creates a string variable without a value.

Both real and string variables can have either a single value or a series of values (also called
an array).

Global and local variables have the following set of attributes associated with them:

The variable's attributes are used by programs when manipulating variables.

Global Variables

The most important global variables used in macros are the VnmrJ parameters themselves.
Thus parameters like vs (vertical scale), nt (number of transients), at (acquisition time),
etc., can be used in a MAGICAL macro. Like any variable, they can be used on the left side
of an equation (and hence their value changed) or they can be used on the right side of an
equation (as part of a calculation, perhaps to set another parameter).

The real-value parameters r1, r2, r3, r4, r5, r6, and r7, and the string parameter n1,
n2, and n3 are not NMR variables but can be used by macros. In using these parameters,
it is important to remember that they are experiment-based parameters. If you are in exp1
and a macro changes experiments by using the command jexp3, for example, a new set
of such parameters appears. Similarly, recalling parameters or data with the rt or rtp
commands overwrites the current values of these parameters, just as it overwrites the values
of all other parameters.

Within a single experiment, and assuming that the rt and rtp commands are not used,
however, these parameters do act like global parameters in that all macros can read or write
information into these parameters, and hence information can be passed from one macro to
another in this way. They thus provide a useful place to store information that must be
retained for some time or must be accessed by more than one macro—be sure that some
other macro does not change the value of this variable in the meantime!

Local Variables

Any number of local variables can be created within a macro. These temporary variables
begin with the dollar-sign ($) character, such as $number and $peakht. The type of
variable (real or string) is decided by the first usage—there is no variable declaration, as in
many languages. Therefore, setting, $number=5 and $select='all' establishes
$number as a real variable and $select as a string variable.

A special initialization is required in one situation. When the first use of a string variable is
as the return argument from a procedure, it must be initialized first by setting it to a null
string. For example, a line such as
input('Input Your Name: '):$name

produces an error. Use instead
$name=' ' input('Input Your Name: '):$name.

name group array size

basictype display group enumeration

subtype max./min. values protection status

active step size

Chapter 1. MAGICAL II Programming

26 VnmrJ User Programming 01-999253-00 A0604

By definition, local variables are lost upon completion of the macro. Furthermore, they are
completely local, which means that each macro, even a macro that is being run by another
macro, has its own set of variables. If one macro sets $number=5 and then runs another
macro that sets $number=10, when the second macro completes operation and the
execution of commands returns to the first macro, $number equals 5, not 10. If the first
macro is run again at a later time, $number starts with an undefined value. It is good
practice to use local variables whenever possible.

Local variables can also be created on the command input line. These variables are
automatically created but are not deleted, and hence this is not a recommended practice; use
r1, r2, etc., instead.

Accessing a variable that does not exist displays the error message:
Variable “variable_name” doesn’t exist.

Arrays

Both global and local variables, whether real or string, can be arrayed. Array elements are
referred to by square brackets ([...]), such as pw[1]. Indices for the array can be fixed
numbers (pw[3]), global variables (pw[r1]), or local variables (pw[$i]). Of course,
the index must not exceed the size of the array. You can use the size operator to determine
the array size. For example, the statement r1=size('d2') sets r1 to number of
elements in variable d2. If the variable has only a single value, size returns a 1; if the
variable doesn't exist, it returns a 0.

Some arrays, such as a pulse width array, are user-created by keyboard entry. Other arrays,
such as llfrq and llamp, are created by the software (in this case when a line list is
performed). In both these cases, a macro can refer to any existing element of the array,
pw[4] or llfrq[5], for example.

A MAGICAL macro can also create local variables containing arrayed information by
itself. No dimensioning statement is required; the variable just expands as necessary. The
only constraint is that the array must be created in order: element 1 is first, element 2
second, and so on. The following example shows how an array might be created and all
values initialized to 0:
$i=1

repeat

$newarray[$i]=0

$i=$i+1

until $1>10

Arrays of String Variables

Arrays of string variables are identical in every way to arrays of real variables, except that
the values are strings. If, for example, a user has entered dm='nny','yyy', the
following macro plots each spectrum with the proper label:
$i=1

repeat

select($i)

pl

write('plotter',0,wc2max-10,'Decoupler mode: %s',dm[$i])

page

$i=$i+1

until $i>size('dm')

1.2 Programming with MAGICAL

01-999253-00 A0604 VnmrJ User Programming 27

Arrays of Listed Elements

Arrays can be constructed by simply listing the elements, separated by commas. For
example,
pw=1,2,3,4

creates a pw array with four elements. You can select the initial array element when using
this list mechanism by providing the index in square brackets. For example,
pw[3]=5,6

results in pw having elements 1,2,5,6. You can also extend arrays as in
pw[5]=7,8,9

which yields a pw array or 1,2,5,6,7,8,9. You can change existing values and extend the
array, as in
pw[6]=6,7,8,9,10

which yields a pw array of 1,2,5,6,7,6,7,8,9,10

Comma separated lists can also include expressions. For example,
d2=0,1/sw1,2/sw1,3/sw1

The square brackets can also be used on the right hand side of the equal sign in order to
construct arrays. The [] can enclose a single value or expression or an array of values or
expressions. Any mathematics applied to the [] element will be applied individually to each
element within the [].

Some examples.

You can also use [] to give precedence to expressions, just like ().

There are a couple of limitations if the [] element is used as part of a mathematical
expression. When used in expressions, only a single [] element is allowed. Also, when used
in expressions, the [] element cannot be mixed with the standard comma (,) arraying
element. For example, nt=[1,2]*[3,4] is not allowed. You will get the error message
 "No more than one [--.--]"

nt=1,[2,3,4]*10 is not allowed. You will get the error message
 "Cannot combine , with [--.--]"

Enter Result

nt=[1] nt=1

nt=[1,2,3] nt=1,2,3

nt=[1,2,3]*10 nt=10,20,30

nt=22*[2*3,r2+6,trunc(r3)]+2 nt=22*2*3+2,22*(r2+6)+2,22*trunc(r3)+2

d2=[0,1,2,3]/sw1 d2=0/sw1,1/sw1,2/sw1,3/sw1

Enter Result

nt=[2*[3+4]] nt=14

Chapter 1. MAGICAL II Programming

28 VnmrJ User Programming 01-999253-00 A0604

These restrictions only occur if mathematical operators are used and the [] element itself
contains a comma. Simply listing multiple [] elements, or combining them with the comma
element is okay.

Array Error Messages

Accessing an array element that does not exist displays the error message:
variable_name["index"] index out of bounds

Using a string as an index, rather than an integer, displays the error message:
Index for variable_name['index'] must be numeric

or
Index must be numeric

Finally, using an array as an index displays the error message:
Index for variable_name must be numeric scalar

or
Index must be numeric scalar.

Expressions

An expression is a combination of variables, constants, and operators. Parentheses can be
used to group together a combination of expressions. Multiple nesting of parentheses is
allowed. In making expressions, combine only variables and constants of the same type:

• Real variables and constants only with other real variables and constants.

• String variables and constants only with other string variables and constants.

The type of a local variable (a variable whose name begins with a $) is determined by the
context in which it is first used. The only ambiguity is when a local variable is first used as
a return argument of a command such as input, as discussed in the previous section on
local variables.

If an illegal combination is attempted, an error message is displayed:
Can't assign STRING value "value" to REAL variable \

"variable_name"

or
Can't assign REAL value (value) to STRING variable \

"variable_name"

Mathematical Expressions

Expressions can be classified as mathematical or Boolean. Mathematical expressions can
be used in place of simple numbers or parameters. Expressions can be used in parameter
assignments, such as in pw=0.6*pw90, or as input arguments to commands or macros,
such as in pa(–5+sc,50+vp).

When parameters are changed as a result of expressions, the normal checks and limits on
the entry of that particular parameter are followed. For example, if nt=7, the statement
nt=0.5*nt will end with nt=3, just as directly entering nt=3.5 would have resulted

Enter Result

nt=[1,2],3 nt=1,2,3

nt=[1,2],[3,4] nt=1,2,3,4

1.2 Programming with MAGICAL

01-999253-00 A0604 VnmrJ User Programming 29

in nt=3. Other examples of this include the round-off of fn entries to powers of two,
limitation of various parameters to be positive only, etc.

Boolean Expressions

Boolean expressions have a value of either TRUE or FALSE. Booleans are represented
internally as 0.0 for FALSE and 1.0 for TRUE, although in a Boolean expression any
number other than zero is interpreted as TRUE. Boolean expressions can only compare
quantities of the same type—real numbers with real numbers, or strings with strings. Some
examples of Boolean expressions include pw=10, sw>=10000, at/2<0.05, and
(pw<5) or (pw>10).

The explicit use of the words “TRUE” and “FALSE” is not allowed. All Boolean
expressions are implicit—they are evaluated when used and given a value of TRUE or
FALSE for the purpose of some decision.

Input Arguments

Arguments passed to a macro are referenced by $n, where n is the argument number. An
unlimited number of arguments ($1, $2, and so on) can be passed. The name of the macro
itself may be accessed using the special name $0. For example, if the macro test1 is
running, $0 is given the value test1. A second special variable $# contains the number
of arguments passed and can be used for routines having a variable number of arguments.
$## is the number of return values reguested by the calling macro. Arguments can be either
real or string types, as with all parameters.

An example of using an input arguments such as $1:
"vsmult(multiplier)"

"Multiply vertical scale (vs) by input argument"

vs=$1*vs

Another example, which uses two input arguments:
"offset(arg1,arg2)"

"Increment vertical position (vp) and horizontal position (sc)"

vp=$1+vp

sc=$2+sc

The typeof operator returns a 0 if the variable is real. It returns a 1 if the variable is a
string. It will abort if the variable does not exist. For example, in the conditional statement
if typeof('$1') then ..., the then part is executed only if $1 is a string.

Name Replacement

An identifier surrounded by curly braces ({...}) results in the identifier being replaced by
its value before the full expression is evaluated. If the name replacement is on the left side
of the equal sign, the new name is assigned a value. If the name replacement is on the right
side of the equal sign, the value of the new name is used. The following are examples of
name replacement:

$a = 'pw' "variable $a is set to string 'pw'"

{$a} = 10.3 "pw is set to 10.3"

pw = 20.5 "pw is set to 20.5"

$b = {$a} "variable $b is set to 20.5"

{$a}[2]=5 "pw[2] is set to 5.0"

$b = {$a}[2] "variable $b is set to 5.0"

Chapter 1. MAGICAL II Programming

30 VnmrJ User Programming 01-999253-00 A0604

The use of curly braces for command execution is subject to a number of constraints. In
general, using the VNMR command exec for the purpose of executing an arbitrary
command string is recommended. In this last example, this would be exec($cmd).

Conditional Statements

The following forms of conditional statements are allowed:
if booleanexpression then ... endif

if booleanexpression then ... else ... endif
if booleanexpression then ... {elseif boolianexpression then...
}[else...]endif

The elseif subexpression in braces can be repeated any number of times. The else
subexpression in brackets is optional.)

Any number of statements (including none) can be inserted in place of the ellipses (...). If
booleanexpression is TRUE, the then statements are executed; if
booleanexpression is FALSE, the else statements (if any) are executed instead.
Note that endif is required for both forms and that no other delimiters (such as BEGIN or
END) are used, even when multiple statements are inserted. Nesting of if statements (the
use of if statement as part of another if statement) is allowed, but be sure each if has
a corresponding endif. Nested if...endit statements tend to result in long, confusing
lists of endif keywords. Often, this can be avoided by using the elseif keyword. Any
number of elseif statements can be included in an if...endif expression. Only one
of the if, elseif, or else clauses will be executed.

The following example uses a simple if ... then conditional statement:
"error --- Check for error conditions"

if (pw>100) or (d1>30) or ((tn='H1') and (dhp='y'))

then write('line3','Problem with acquisition parameters')

endif

This example adds an else conditional statement:
"checkpw --- Check pulse width against predefined limits"
if pw<1

then pw=1 write('line3','pw too small')

else if pw>100

then pw=100 write('line3','pw too large')

endif

endif

This example illustrates the use of elseif conditional statements:

if ($1='mon') then
echo('Monday')

elseif ($1 = 'tue') then
echo('Tuesday')

elseif ($1 = 'wed') then
echo('Wednesday')

elseif ($1 = 'thu') then
echo('Thursday')

elseif ($1 = 'fri') then
echo('Friday')

$cmd='wft' "$cmd is set to the string 'wft'"

{$cmd} "execute wft command"

1.2 Programming with MAGICAL

01-999253-00 A0604 VnmrJ User Programming 31

else

echo('Weekend')

enndif

Loops

Two types of loops are available. The while loop has the form:
while booleanexpression do ... endwhile

This type of loop repeats the statements between do and endwhile, as long as
booleanexpression is TRUE (if booleanexpression is FALSE from the start,
the statements are not executed).

The other type of loop is the repeat loop, which has the form:
repeat ... until booleanexpression

This loop repeats statements between repeat and until, until booleanexpression
becomes TRUE (if booleanexpression is TRUE at the start, the statements are
executed once).

The essential difference between repeat and while loops is that the repeat type
always performs the statements at least once, while the while type may never perform the
statements. The following macro is an example of using the repeat loop:
"maxpk(first,last) -- Find tallest peak in a series of spectra"

$first=$1

repeat

select($1) peak:$ht

if $1=$first

then $maxht=$ht

else if $ht>$maxht then $maxht=$ht endif

endif

$1=$1+1

until $1>$2

Both types of loops are often preceded by $n=1, then have a statement like $n=$n+1
inside the loop to increment some looping condition. Beware of endless loops!

Macro Length and Termination

Macros have no restriction on length. Execution of a macro is terminated when the
command return is encountered. This is usually inserted into the macro after testing
some condition, as shown in the example below:
"plotif--Plot a spectrum if tallest peak less than 200 mm"

peak:$ht

if $ht>200 then return else pl endif

The syntax return(expression1,expression2,...) allows the macro to return
values to another calling macro, just as do commands. This information is captured by the
calling macro using the format :argument1,argument2,... Here is an example of
returning a value to the calling macro:
"abs(input):output -- Take absolute value of input"

if $1>0 then return($1) else return(-$1) endif

In nested macros, return terminates the currently operating macro, but not the macro that
called the current macro.

Chapter 1. MAGICAL II Programming

32 VnmrJ User Programming 01-999253-00 A0604

To terminate the action of the calling macro (and all higher levels of nesting), the abort
command is provided. abort can be made to act like return at any particular level by
using the abortoff command. Consider the following sequence:
abortoff macro1 macro2

If macro1 contains an abort command and it is executed, abort terminates macro1;
however, macro2 still will be executed. If the macro sequence did not contain the
abortoff statement, however, execution of an abort command in macro1 would have
prevented the operation of macro2. The aborton command nullifies the operation of
abortoff and restores the normal functioning of abort.

Command and Macro Tracing

In VnmrJ we send the output to any terminal window. In the terminal window type 'tty';
reply is /dev/pts/xx, where xx is a number. Use this on the VnmrJ command line
jFunc(55,'/dev/pts/xx'). Replace xx with the correct number.

The commands debug('c') and debug('C') turn on and off, respectively, VnmrJ
command and macro tracing. When tracing is on, a list of each executed command and
macro is displayed in the Terminal (in CDE) or Command Tool (in OpenWindows) window
from which VnmrJ was started. Nesting of the calls is shown by indentation of the output.
A return status of “returned” or “aborted” can help track down which macro or command
failed.

If VnmrJ is started when the user logs in, or if it started from a drop-down menu or the CDE
tool, the output goes to a Console window. If no Console window is present, the output goes
into a file in the /var/tmp directory. This last option is not recommended.

1.3 Relevant VnmrJ Commands
Many VnmrJ commands are particularly well-suited for use with MAGICAL
programming. This section lists some of those commands with their syntax (if the
command uses arguments) and a short summary taken from the VnmrJ Command and
Parameter Reference. Refer to that publication for more information. (Remember that
string arguments must be enclosed in single quotes.)

Spectral Analysis Tools

dres Measure linewidth and digital resolution

Syntax: dres<(<frequency<,fractional_height>>)> \
:linewidth,resolution

Description: Analyzes line defined by current cursor position (cr) for linewidth and digital
resolution. frequency overrides cr as the line frequency.
fractional_height specifies the height at which linewidth is measured.

dsn Measure signal-to-noise

Syntax: dsn<(low_field,high_field)>:signal_to_noise,noise

Description: Measures signal-to-noise of a spectrum. Noise region can be specified by
supplying low_field and high_field frequencies, in Hz.

1.3 Relevant VnmrJ Commands

01-999253-00 A0604 VnmrJ User Programming 33

dsnmax Calculate maximum signal-to-noise

Syntax: dsnmax<(noise_region)>

Description: Finds best signal-to-noise in a region. noise_region, in Hz, can be
specified, or the cursor difference (delta) can be used by default.

getll Get line frequency and intensity from line list

Syntax: getll(line_number)<:height,frequency>

Description: Returns the height and frequency of the specified line number.

getreg Get frequency limits of a specified region

Syntax: getreg(region_number)<:minimum,maximum>

Description: Returns the minimum and maximum frequencies, in Hz, of the specified region
number.

integ Find largest integral in specified region

Syntax: integ<(highfield,lowfield)><:size,value>

Description: Finds the largest absolute-value integral in the specified region or the total
integral if no reset points are present between the specified limits. The default
values for highfield and lowfield are parameters sp and sp+wp,
respectively.

mark Determine intensity of the spectrum at a point

Syntax: mark<(f1_position)>
mark<(left_edge,region_width)>
mark<(f1_position,f2_position)>
mark<(f1_start,f1_end,f2_start,f2_end)>
mark<('trace',<options>)>
mark('reset')

Description: Functions similarly to the MARK button of ds and dconi. 1D or 2D operations
can be performed in the cursor or box mode for a total of four separate functions.
In the cursor mode, the intensity at a particular point is found. In the box mode,
the integral over a region is calculated. For 2D operations, this is a volume
integral. In addition, the mark command in the box mode finds the maximum
intensity and the coordinate(s) of the maximum intensity.

nll Find line frequencies and intensities

Syntax: nll<('pos'<,noise_mult))><:number_lines>

Description: Returns the number of lines using the current threshold, but does not display or
print the line list.

numreg Return the number of regions in a spectrum

Syntax: numreg:number_regions

Description: Finds the number of regions in a previously divided spectrum.

Chapter 1. MAGICAL II Programming

34 VnmrJ User Programming 01-999253-00 A0604

peak Find tallest peak in specified region

Syntax: peak<(min_frequency,max_frequency)><:height,freq>

Description: Finds the height and frequency of the tallest peak in the selected region.
min_frequency and max_frequency are the frequency limits, in Hz, of
the region to be searched; default values are the parameters sp and sp+wp.

select Select a spectrum or 2D plane without displaying it

Syntax: select<(<'f1f3'|'f2f3'|'f1f2'><,'proj'> \
<'next'|'prev'|plane>)><:index>

Description: Sets future actions to apply to a particular spectrum in an array or to a particular
2D plane of a 3D data set. index is the index number of spectrum or 2D plane.

Input/Output Tools

apa Plot parameters automatically

Description: Selects the appropriate command on different devices to plot the parameter list.

banner Display message with large characters

Syntax: banner(message<,color><,font>)

Description: Displays the text given by message as large-size characters on the VNMR
graphics windows.

clear Clear a window

Syntax: clear<(window_number)>

Description: Clears window given by window_number on the Sun or GraphOn terminal.
With no argument, clears the text screen.

confirm Confirm message using the mouse

Syntax: confirm(message):$response

Description: Displays dialog box with message and two buttons: Confirm and Cancel.
response is 1 if the user clicks the mouse on Confirm; response is 0 if the
user clicks the mouse on Cancel.

echo Display strings and parameter values in text window

Syntax: echo<(<'–n',>string1,string2,....)>

Description: Functionally similar to the UNIX echo command. Arguments to VNMR echo
can be strings or parameter values, such as pw. The '–n' option suppresses
advancing to the next line.

flip Flip between graphics and text window

Syntax: flip<('graphics'|'text' \
<,'off'|'on'|'autooff'|'autoon'>)>

1.3 Relevant VnmrJ Commands

01-999253-00 A0604 VnmrJ User Programming 35

Description: Brings the graphics or text window to the top of the screen. It also controls
whether parameter changes or commands that write to a window cause a
window to appear.

format Format a real number or convert a string for output

Syntax: format(real_number,length,precision):string_var
format(string,'upper'|'lower'|'isreal'):return_var

Description: Using first syntax, takes a real number and formats it into a string with the given
length and precision. Using second syntax, converts a string variable into a
string of characters, all upper case or all lowercase, or tests the first argument to
verify that it satisfies the rules for a real number (1 is returned if the first
argument is a real number, otherwise a zero is returned).

input Receive input from keyboard

Syntax: input<(<prompt><,delimiter>)>:var1,var2,...

Description: Receives characters from the keyboard and stores them into one or more string
variables. prompt is a string that is displayed on the command line. The
default delimiter is a comma.

lookup Look up and return words and lines from text file

Syntax: lookup(options):return1,return2,...,number_returned

Description: Searches a text file for a word and returns to the user subsequent words or lines.
options is one or more keywords ('file',
'seek', 'skip', 'read', 'readline', 'count', and
'delimiter') and other arguments.

nrecords Determine number of lines in a file

Syntax: nrecords(file):$number_lines

Description: Returns the number of “records,” or lines, in the given file.

psgset Set up parameters for various pulse sequences

Syntax: psgset(file,param1,param2,...,paramN)

Description: Sets up parameters for various pulse sequences using information in a file from
the user or system parlib.

vnmr_confirmer Display a confirmer window (UNIX)

Syntax: vnmr_confirmer message <label value>...\
<"-x"posx> <"-y"posy> <"-fn"name>

Description: Displays a confirmer window consisting of a message (a single-line
multicharacter string) and one or more buttons. The default window location
and font can be changed by the arguments posx, posy, and name. Each button
has a unique label (a short string) and value (a number or string) that are set by
arguments label and value. When the user clicks on one of the buttons,
vnmr_confirmer returns a value. Because it is a UNIX command,
vnmr_confirmer cannot be called directly from VNMR; it must be accessed

Chapter 1. MAGICAL II Programming

36 VnmrJ User Programming 01-999253-00 A0604

using the VNMR shell command (e.g., shell('vnmr_confirmer
"This is a test" "Label 1" 1 "Label 2" 2 "Label 3"
3'):$ret displays the message “This is a test” and makes three
buttons available, returning 1, 2, or 3, respectively).

write Write output to various devices

Syntax: write('graphics'|'plotter'<,color|pen> \
<,'reverse'>,x,y<,template>)<:height>

write('alpha'|'printer'|'line3'|'error',template)
write('reset'|'file',file<,template>)

Description: Displays strings and parameter values on various output devices.

Regression and Curve Fitting

analyze Generalized curve fitting

Syntax: (Curve fitting) analyze('expfit',xarray<,options>)
(Regression) analyze('expfit','regression'<,options>)

Description: Provides an interface to the UNIX curve fitting program expfit, supplying
input data in the form of the text file analyze.inp in the current experiment.

autoscale Resume autoscaling after limits set by scalelimits

Description: Returns to autoscaling in which the scale limits are determined by the expl
command such that all the data in the expl input file is displayed.

expfit Least-squares fit to exponential or polynomial curve (UNIX)

Syntax: expfit options <analyze.inp >analyze.list

Description: A UNIX command that takes a least-squares curve fitting to the data supplied
in the file analyze.inp.

expl Display exponential or polynomial curves

Syntax: expl<(<options,>line1,line2,...)>

Description: Displays exponential curves resulting from T1, T2, or kinetic analyses. Also
displays polynomial curves from diffusion or other types of analysis.

pexpl Plot exponential or polynomial curves

Syntax: pexpl<(<options><,line1,line2,...)>

Description: Plots exponential curves from T1, T2, or kinetics analysis. Also plots polynomial
curves from diffusion or other types of analysis.

poly0 Display mean of the data in the file regression.inp

Description: Calculates and displays the mean of data in the file regression.inp.

1.3 Relevant VnmrJ Commands

01-999253-00 A0604 VnmrJ User Programming 37

rinput Input data for a regression analysis

Description: Formats data for regression analysis and places it into the file
regression.inp.

scalelimits Set limits for scales in regression

Syntax: scalelimits(x_start,x_end,y_start,y_end)

Description: Causes the command expl to use typed-in scale limits.

Mathematical Functions

abs Find absolute value of a number

Syntax: abs(number)<:value>

Description: Finds absolute value of a number.

acos Find arc cosine of a number

Syntax: acos(number)<:value>

Description: Finds arc cosine of a number. The optional return value is in radians.

asin Find arc sine of a number

Syntax: asin(number)<:value>

Description: Finds arc sine of a number. The optional return value is in radians.

atan Find arc tangent of a number

Syntax: atan(number)<:value>

Description: Finds arc tangent of a number. The optional return value is in radians.

atan2 Find arc tangent of two numbers

Syntax: atan2(y,x)<:value>

Description: Finds arc tangent of y/x. The optional return argument value is in radians.

averag Calculate average and standard deviation of input

Syntax: averag(num1,num2,...) \
:average,sd,arguments,sum,sum_squares

Description: Finds average, standard deviation, and other characteristics of a series of
numbers.

cos Find cosine value of an angle

Syntax: cos(angle)<:value>

Description: Finds cosine of an angle given in radians.

Chapter 1. MAGICAL II Programming

38 VnmrJ User Programming 01-999253-00 A0604

exp Find exponential value of a number

Syntax: exp(number)<:value>

Description: Finds exponential value (base e) of a number.

ln Find natural logarithm of a number

Syntax: ln(number)<:value>

Description: Finds natural logarithm of a number. To convert to base 10, use
log10x = 0.43429 *ln(x).

sin Find sine value of an angle

Syntax: sin(angle)<:value>

Description: Finds sine an angle given in radians.

tan Find tangent value of an angle

Syntax: tan(angle)<:value>

Description: Finds tangent of an angle given in radians.

Creating, Modifying, and Displaying Macros

crcom Create a user macro without using a text editor

Syntax: crcom(file,actions)

Description: Creates a user macro file in the user's macro directory. The actions string is
the contents of the new macro.

delcom Delete a user macro

Syntax: delcom(file)

Description: Deletes a user macro file in the user's macro directory. The actions string is
the contents of the new macro.

hidecommand Execute macro instead of command with same name

Syntax: hidecommand(command_name)<:$new_name>
hidecommand('?')

Description: Renames a built-in VNMR command so that a macro with the same name as the
built-in command is executed instead of the built-in command.
command_name is the name of the command to be renamed. '?' displays a
list of renamed built-in commands.

macrocat Display a user macro on the text window

Syntax: macrocat(file1<,file2><,...>)

Description: Displays one or more user macro files, where file1, file2,... are names
of macros in the user macro directory.

1.3 Relevant VnmrJ Commands

01-999253-00 A0604 VnmrJ User Programming 39

macrocp Copy a user macro file

Syntax: macrocp(from_file,to_file)

Description: Makes a copy of an existing user macro.

macrodir List user macros

Description: Lists names of user macros.

macroedit Edit a user macro with user-selectable editor

Syntax: macroedit(file)

Description: Modifies an existing user macro or creates a new macro. To edit a system macro,
copy it to a personal macro directory first.

macrold Load a macro into memory

Syntax: macrold(file)<:dummy>

Description: Loads a macro, user or system, into memory. If macro already exists in memory,
it is overwritten by the new macro. Including a return value suppresses the
message on line 3 that the macro is loaded.

macrorm Remove a user macro

Syntax: macrorm(file)

Description: Removes a user macro from the user macro directory.

macrosyscat Display a system macro on the text window

Syntax: macrosyscat(file1<,file2><,...>)

Description: Displays one or more system macro files, where file1, file2,... are
names of macros in the system macro directory.

macrosyscp Copy a system macro to become a user macro

Syntax: macrosyscp(from_file,to_file)

Description: Makes a copy of an existing system macro.

macrosysdir List system macros

Description: Lists names of system macros.

macrosysrm Remove a system macro

Syntax: macrosysrm(file)

Description: Removes a system macro from the macro directory.

macrovi Edit a user macro with vi text editor

Syntax: macrovi(file)

Chapter 1. MAGICAL II Programming

40 VnmrJ User Programming 01-999253-00 A0604

Description: Modifies an existing user macro or creates a new macro using the vi text editor.
To edit a system macro, copy it to a personal macro directory first.

mstat Display memory usage statistics

Syntax: mstat<(program_id)>

Description: Displays memory usage statistics on macros loaded into memory.

purge Remove a macro from memory

Syntax: purge<(file)>

Description: Removes a macro from memory, freeing extra memory space. With no
argument, removes all macros loaded into memory by macrold.

record Record keyboard entries as a macro

Syntax: record<(file|'off')>

Description: Records keyboard entries and stores the entries as a macro file in the user’s
maclib directory.

Miscellaneous Tools

axis Provide axis labels and scaling factors

Syntax: axis('fn'|'fn1'|'fn2')<:$axis_label, \
$frequency_scaling,$factor>

Description: Returns axis labels, the divisor to convert from Hz to units defined by the axis
parameter with any scaling, and a second scaling factor determined by any
scalesw type of parameter. The parameter 'fn'|'fn1'|'fn2' describes
the Fourier number for the axis.

beepoff Turn beeper off

Description: Turns beeper sound off. The default is beeper sound on.

beepon Turn beeper on

Description: Turns beeper sound on. The default is beeper sound on.

bootup Macro executed automatically when VnmrJ is started

Syntax: bootup<(foreground)>

Description: Displays a message, runs a user login macro (if it exists), starts Acqstat and
acqi (spectrometer only), and displays the menu system. bootup and login
can be customized for each user (login is preferred because bootup is
overridden when a new VNMR release is installed). foreground is 0 if
VNMR is being run in foreground; non-zero otherwise.

exec Execute a VnmrJ command

Syntax: exec(command_string)

1.3 Relevant VnmrJ Commands

01-999253-00 A0604 VnmrJ User Programming 41

Description: Takes as an argument a character string constructed from a macro and executes
the VNMR command given by command_string.

exists Determine if a parameter, file, or macro exists

Syntax: exists(name,type):$exists

Description: Checks for the existence of a parameter, file, or macro with the given name.
type is 'parameter', 'file', 'maclib', 'ascii', or
'directory'.

focus Send keyboard focus to VNMR input window

Description: Sends keyboard focus to the VNMR input window.

gap Find gap in the current spectrum

Syntax: gap(gap,height):found,position,width

Description: Looks for a gap between lines of the currently displayed spectrum, where gap
is the width of the desired gap and height is the starting height. found is 1
is search is successful, or 0 if unsuccessful.

getfile Get information about directories and files

Syntax: getfile(directory,file_index):$file,$file_extension
getfile(directory):$number_files

Description: If file_index is specified, the first return argument is the name of the file in
the directory with the index file_index, excluding any extension, and the
second return argument is the extension. If file_index is not specified, the
return argument contains the number of files in the directory (dot files are not
included in the count).

graphis Return the current graphics display status

Syntax: graphis(command):$yes_no
graphis:$display_command

Description: Determines what command currently controls the graphics window. If no
argument is supplied, the name of the currently controlling command is
returned.

length Determine length of a string

Syntax: length(string):$string_length

Description: Determines the length in characters of the given string.

listenoff Disable receipt of messages from send2Vnmr

Description: Deletes file $vnmruser/.talk, disallowing UNIX command send2Vnmr
to send commands to VNMR.

Chapter 1. MAGICAL II Programming

42 VnmrJ User Programming 01-999253-00 A0604

listenon Enable receipt of messages from send2Vnmr

Description: Writes files with VNMR port number that UNIX command send2Vnmr needs
to talk to VNMR. The command then to send commands to VNMR is
/vnmr/bin/send2Vnmr $vnmruser/.talk command
where command is any character string (commands, macros, or if statements)
normally typed into the VNMR input window.

login User macro executed automatically when VnmrJ activated

Description: When VNMR starts, the bootup macro executes, and then, if the login
macro exists, bootup executes the login macro. By creating and
customizing the login macro, a VNMR session can be tailored for an
individual user. The login macro does not exist by default.

off Make a parameter inactive

Syntax: off(parameter|'n'<,tree>)

Description: Makes a parameter inactive. tree is 'current', 'global',
'processed', or 'systemglobal'.

on Make a parameter active or test its state

Syntax: on(parameter|'y'<,tree>)<:$active>

Description: Makes a parameter active or tests the active flag of a parameter. tree is
'current', 'global', 'processed', or 'systemglobal'.

readlk Read current lock level

Syntax: readlk<:lock_level>

Description: Returns the same information as would be displayed on the digital lock display
using the manual shimming window. It cannot be used during acquisition or
manual shimming, but can be used to develop automatic shimming methods
such as shimming via grid searching.

rtv Retrieve individual parameters

Syntax: rtv<(file,par1<,index1<,par2,index2...>>)><:val>

Description: Retrieves one or more parameters from a parameter file to the experiment’s
current tree. If a return argument is added, rtv instead returns values to macro
variables, which avoids creating additional parameters in the current tree. For
arrayed parameters, array index arguments can specify which elements to return
to the macro. The default is the first element.

shell Start a UNIX shell

Syntax: shell<(command)>:$file1,$file2,...

If no argument is given, opens a normal UNIX shell. If a UNIX command is
entered as an argument, shell executes the command. Text lines usually
displayed as a result of the UNIX command given in the argument can be
returned to $file1, $file2, etc. shell calls involving pipes or input
redirection (<) require either an extra pair of parentheses or the addition of

1.3 Relevant VnmrJ Commands

01-999253-00 A0604 VnmrJ User Programming 43

; cat to the shell command string, such as:
shell('ls –t|grep May; cat')

or
shell('(ls –t|grep May))

solppm Return ppm and peak width of solvent resonances

Syntax: solppm:chemical_shift,peak_width

Description: Returns information about the chemical shift in ppm and peak spread of solvent
resonances in various solvents for either 1H or 13C, depending on the observe
nucleus tn and the solvent parameter solvent. This macro is used
“internally” by other macros only.

substr Select a substring from a string

Syntax: substr(string,word_number):substring
substr(string,index,length):substring

Description: Picks a substring out of a string. If two arguments are given, substring
returns the word_number word in string. If three arguments, it returns a
substring from string where index is the number of the character at which
to begin and length is the length of the substring.

textis Return the current text display status

Syntax: textis(command):$yes_no
textis:$display_command

Description: Determines what command currently controls the text window. If no argument
is supplied, the name of the currently controlling command is returned.

unit Define conversion units

Syntax: unit<(suffix,label,m<,tree><,'mult'|'div'>, \
b<,tree><,'add'|'sub'>)>

Description: Defines a linear relationship that can be used to enter parameters with units. The
unit is applied as a suffix to the numerical value (e.g., 10k, 100p). suffix
identifies the name for the unit (e.g., 'k'). label is the name to be displayed
when the axis parameter is set to the value of the suffix (e.g., 'kHz'). m and
b are the slope and intercept, respectively, of the linear relationship. A
convenient place to put unit commands for all users is in the bootup macro.
Put private unit commands in a user’s login macro.

Chapter 1. MAGICAL II Programming

44 VnmrJ User Programming 01-999253-00 A0604

01-999253-00 A0604 VnmrJ User Programming 45

Chapter 2. Pulse Sequence Programming

Sections in this chapter:

• 2.1 “Application Type and Execpars Programming,” page 46

• 2.2 “Overview of Pulse Sequence Programming,” page 49

• 2.3 “Spectrometer Control,” page 54

• 2.4 “Pulse Sequence Statements: Phase and Sequence Control,” page 70

• 2.5 “Real-Time AP Tables,” page 76

• 2.6 “Accessing Parameters,” page 81

• 2.7 “Using Interactive Parameter Adjustment,” page 91

• 2.8 “Hardware Looping and Explicit Acquisition,” page 96

• 2.9 “Pulse Sequence Synchronization,” page 100

• 2.10 “Pulse Shaping,” page 101

• 2.11 “Shaped Pulses Using Attenuators,” page 108

• 2.12 “Internal Hardware Delays,” page 111

• 2.13 “Indirect Detection on Fixed-Frequency Channel,” page 115

• 2.14 “Multidimensional NMR,” page 115

• 2.15 “Gradient Control for PFG and Imaging,” page 117

• 2.16 “Programming the Performa XYZ PFG Module,” page 120

• 2.17 “Imaging-Related Statements,” page 122

• 2.18 “User-Customized Pulse Sequence Generation,” page 125

An NMR protocol is a specific set of parameters and methods used to acquire, process, plot,
and store NMR data. The parameters also specify the pulse sequence used to acquire the
data. NMR protocols can be grouped into classes or types of applications, which often share
many of the parameters and methods needed by individual protocols.

VnmrJ uses protocols and application types (apptype) to systematize the development of
new NMR protocols. The next section describes how protocols and application types are
programmed. The remainder of this chapter describes how to program pulse sequences
using the traditional C language. To use the SpinCAD interface for creating pulse
sequences, refer to the SpinCAD manual.

Chapter 2. Pulse Sequence Programming

46 VnmrJ User Programming 01-999253-00 A0604

2.1 Application Type and Execpars Programming
The application type concept provides preparation, prescan, processing, and plotting
customization based on the type of NMR data.

apptypes

Each apptype has a corresponding macro, which has the same name as the apptype. These
macros handle the customization required for that apptype.

Liquids apptypes

Imaging apptypes

execpar Parameters

Five execpar parameters control the execution of the apptype macros: execsetup,
execprep, execprescan, execprocess, and execplot. The following two
examples show how the execpar parameters are set for st1d and im2D apptypes.

These parameters should not be set to specific actions, such as 'ni=256' or 'pcon
page'. They should only call the apptype macro with appropriate arguments, which
avoids problems if someone wants to change the behavior. Instead of fixing all the old
parameter sets, you only need to update one macro.

apptype representative protocols

std1d Proton, Carbon, Phosphorus, Presat, Apt, Dept

homo2d Cosy, Dqcosy, Gcosy, Gdqcosy, Noesy

hetero2d Cigar, Cigar2j3j, Ghmbc, Ghmqc, Ghmqctoxy, Ghsqc, Ghsqctoxy, Hmbc, Hmqc,
Hmqctoxy, Hsqc, Hsqctoxy

apptype representative protocols

im1D press isis steam

im1Dcsi presscsi steamcsi

im1Dglobal spuls

im2D angio gems mems sems semsdw

im2Dcsi csi2d

im2Dfse fsems

im3D ct3d, ge3d, ge3dangio, se3d

im3Dfse fse3d

imEPI epidw epimss epimssn

imFM fastestmap

std1d apptype im2D apptype

execsetup = `std1d('setup')`
execprep = ``
execprescan = ``
execprocess = `std1d('process')`
execplot = `std1d('plot`)

execsetup = `im2D('prep')`
execprep = `im2D('prep')`
execprescan = `im2D('prescan')`
execprocess = `im2D('proc')`
execplot = ``

2.1 Application Type and Execpars Programming

01-999253-00 A0604 VnmrJ User Programming 47

Files containing these execpar parameters are saved in the /vnmr/execpars directory.
You can have private execpar parameters in a /userdir/execpars directory. The
Configure EXEC parameters window (under the Utilities menu) allows you to create and
update these parameters. Behind the scenes, the execpars macro handles these
parameter files. It can read the execpars into the current parameter set, save execpars, create
default execpars, or delete execpars.

Standard macros execute the execpar strings. The rules for executing these strings, based
on the execpar parameters, are as follows. If the parameter does not exist, or is set to
inactive, the execpar string is not executed. Otherwise, the execpar string is executed. Some
macros include default behavior. In these cases, if the execpar is set to inactive, the default
behavior will occur. If the execpar is set to active and the value is '', no action, including no
default action will occur. An example might clarify this. The process macro provides
default NMR processing tools. At the beginning of this macro is the execpars handling.
on('execprocess'):$e
if ($e > 0.5) then

exec(execprocess)
return

endif

The on command tests whether the execprocess exists and is active. If it does not exist or
is inactive, the $e will be less than 0.5 and the exec command and return command
will not be executed. The rest of the process macro will be executed, giving default
behavior. If the parameter is active, the exec command will be executed. Now, if
execprocess='', the exec command will return without executing anything. This is
followed by return, which exits the process macro, avoiding any default processing.

When a protocol is brought into a work space or study queue, the cqexp (for liquids) or
sqexp (for imaging) macro is called. These check if the execsetup parameter exists.
If it does not, it runs execpars to read the execpars for that apptype. Using the rules
above, it might execute the execsetup string.

The execpars parameters are executed by several other standard macros:

As a consequence of the execpars scheme, the usergo and go_seqfil macros are no
longer used. This customization should be handled in the 'setup' or 'prep' section of
the apptype macros.

The apptype macros should use the template shown in Listing 1. If there is a first argument,
it should be prep, proc, prescan, or plot. Additional arguments can be used (setup,
process, plot).

Macro execpar string executed, using above rules

acquire execprep

prep execprep

settime execprep

prescan_gain execprescan

process execprocess

plot execplot

Chapter 2. Pulse Sequence Programming

48 VnmrJ User Programming 01-999253-00 A0604

Listing 1. apptype Macro Template

The execseq macro constructs a macro name as
 $macro = seqfil + '_' + $1

and will execute it if it exists. If no argument is given, it defaults to 'prep'. This allows
for sequence specific behavior.

Protocol Programming

A protocol is made by defining its parameters and specifying its apptype. The New Protocol
window (Utilities->Make a New Protocol) will save the current parameters for that
protocol, construct the necessary file so that the protocol is available from the Locator and
the Experiment selector, and create a macro which can be used to setup that protocol. For
liquids, the macro calls the cqexp macro with the protocol name and apptype as the two
arguments. For example, the macro for the Proton protocol is
 cqexp('Proton','std1d')

// ******** Parse input ********

$action = 'prep'
$do = ''
if ($# > 0) then

$action = $1
if ($# > 1) then

$do = $2
endif

endif

isvnmrj:$vj

// ******** Setup ********

if ($action = 'prep') then
// apptype preparatory customization

execseq('prep') // Execute any sequence specific preparation
// additional apptype preparatory customization

// ******** Processing & Display ********

elseif ($action = 'proc') then
// apptype processing customization

execseq('proc') // Execute any sequence specific processing
// additional apptype processing customization

// ******** Prescan ********

elseif ($action = 'prescan') then
// apptype prescan customization

execseq('prescan') // Execute any sequence specific prescan
// additional apptype prescan customization

// ******** Plot ********

elseif ($action = 'plot') then
// apptype plot customization

execseq('plot') // Execute any sequence specific plot
// additional plot prescan customization

endif

2.2 Overview of Pulse Sequence Programming

01-999253-00 A0604 VnmrJ User Programming 49

With this information, the cqexp macro reads in the execpars for the std1d apptype. It then
executes macro defined by the execsetup parameter. In this case,
execsetup=`std1d('setup')`.

The std1d macro gets called with the 'setup' argument. Before calling the command
specified by the execsetup parameter, the cqexp macro set the parameter macro to its
first argument.

The first argument is the name of the specific protocol, so that, in this case,
macro='Proton'. The apptype macros, (e.g., std1d) typically use the macro
parameter in order to decide which parameter set should be used.

2.2 Overview of Pulse Sequence Programming
Pulse sequences are written in C, a high-level programming language that allows
considerable sophistication in the way pulse sequences are created and executed. New
pulse sequences are added to the software by writing and compiling a short C procedure.
This process is greatly simplified, however, and need not be thought of as programming if
you prefer not to.

Spectrometer Differences

This manual contains information on how to write pulse sequences for UNITYINOVA and
MERCURYplus/-Vx spectrometers. Each spectrometer has different capabilities, so not all
statements may be executed on all platforms.

For example, because MERCURYplus/-Vx hardware differs significantly from UNITYINOVA
hardware, sections in this manual covering waveform generators and imaging are not
applicable to the MERCURYplus/-Vx even though the pulse sequence programming
language is the same. Pay careful attention to comments in the text regarding the system
applicability of the pulse sequence statement or technique.

Pulse Sequence Generation Directory

Pulse sequence generation (PSG) text files (like hom2dj.c in Listing 2) are stored in a
directory named psglib. There are many such psglib directories, including the system
/vnmr/psglib directory and a psglib directory that belongs to each user.

The user psglib is stored in the user’s private directory system (e.g., for user vnmr1, in
/export/home/vnmr1/vnmrsys/psglib). Some systems use /space and Linux
uses /home. All pulse sequence files stored in these directories are given the extension .c
to indicate that the file contains C language source code. For instance, the homonuclear-
2D-J sequence that you may have written as an example was automatically stored in your
private pulse sequence directory and thus has a name like /export/home/vnmr1/
vnmrsys/psglib/hom2dj.c

You may find that a pulse sequence you need is already available. Numerous sequences are
in the standard Varian-supplied directory /vnmr/psglib and in the user library directory
/vnmr/userlib/psglib, or you can program a sequence using any of the standard
text editors such as vi or textedit. Once a pulse sequence exists, it can subsequently
be modified as desired, again using one of a number of text editors.

Chapter 2. Pulse Sequence Programming

50 VnmrJ User Programming 01-999253-00 A0604

Compiling the New Pulse Sequence

After a pulse sequence is written, the source code is compiled by one of these methods:

• By entering seqgen(file<.c>) on the VnmrJ command line.

• By entering seqgen file<.c> from a UNIX shell.

For example, entering seqgen('hom2dj') compiles the hom2dj.c sequence in
VnmrJ and entering seqgen hom2dj does the same in UNIX. Note that a full path, such
as ('/export/home/vnmr1/vnmrsys/psglib/hom2dj.c') or even
seqgen('hom2dj.c') is not necessary or possible—the seqgen command knows
where to look to find the source code file and knows that it will have a .c extension.

During compilation, the system performs the following steps:

1. If the program dps_ps_gen is present in /vnmr/bin, extensions are added to
the pulse sequence to allow a graphical display of the sequence by entering the dps
command. Statements dps_off, dps_on, dps_skip, and dps_show can be
inserted in the pulse sequence to control the dps display.

2. The source code is passed through the UNIX program lint to check for variable
consistency, correct usage of functions, and other program details.

3. The source code is converted into object code.

4. If the conversion is successful, the object code is combined with the necessary
system psg object libraries (libparam.so and libpsglib.so), in a
procedure called link loading, to produce the executable pulse sequence code. This
is actually done at run-time. If compilation of the pulse sequence with the dps
extensions fails, the pulse sequence is recompiled without the dps extensions.

If the executable pulse sequence code is successfully produced, it is stored in the user
seqlib directory (e.g., /export/home/vnmr1/vnmrsys/seqlib). If the user
does not have a seqlib directory, it is automatically created.

Like psglib, different seqlib directories exist, including the system directory and each
user’s directory. The user’s vnmrsys directory should have directories psglib and

#include <standard.h>
pulsesequence()
{

initval(4.0,v9); divn(ct,v9,v8);
status(A);
hsdelay(d1);
status(B);
add(zero,v8,v1); pulse(pw,v1);
delay(d2/2.0);
mod4(ct,v1); add(v1,v8,v1); pulse(p1,v1);
delay(d2/2.0);
status(C);
mod2(ct,oph); dbl(oph,oph); add(oph,v8,oph);

}

Listing 2. Simplified Text File for hom2dj.c Pulse Sequence Listing

2.2 Overview of Pulse Sequence Programming

01-999253-00 A0604 VnmrJ User Programming 51

seqlib. Whenever a user attempts to run a pulse sequence, the software looks first in the
user's personal directory for a pulse sequence by that name, then in the system directory.

A number of sequences are supplied in /vnmr/seqlib, compiled and ready to use. The
source code for each of these sequences is found in /vnmr/psglib. To compile one of
these sequences, or to modify a sequence in /vnmr/psglib, copy the sequence into the
user’s psglib, make any desired modifications, then compile the sequence using
seqgen. (seqgen will not compile sequences directly in /vnmr/psglib). All
sequences in /vnmr/psglib have an appropriate macro to use them.

Troubleshooting the New Pulse Sequence

During the process of pulse sequence generation (PSG) with the seqgen command, the
user-written C procedure is passed through a utility to identify incorrect C syntax or to hint
at potential coding problems. If an error occurs, a number of messages usually are
displayed. Somewhere among them are these statements:
Pulse Sequence did not compile.
The following errors can also be found in the
file /home/vnmr1/vnmrsys/psglib/errmsg:

As a rule of thumb, focus on the lines in the errmsg text file that begin with the name of
the pulse sequence enclosed in double quotes followed by the line number and those that
begin with a line number in parentheses. In both cases, a brief description of the problem
is also displayed. If the line of code looks correct, often the preceding line of code is the
culprit. Note that a large number of error messages can be generated from the same coding
error.

If a warning occurs, the following message appears:
Pulse Sequence did compile but may not function properly.
The following comments can also be found in the
file /home/vnmr1/vnmrsys/psglib/errmsg:

This message means that although the pulse sequence has some inconsistent C code that
may produce run-time errors, the pulse sequence did compile. Three warnings to watch for
are the following:
warning: conversion from long may lose accuracy
warning: parameter_name may be used before set
warning: parameter_name redefinition hides earlier one

The first warning may be generated by less than optimum usage of the ix variable:
conversion from long may lose accuracy

An example can be found in a few of the earlier pulse sequences implementing TPPI. The
following construct, which was taken from an older version of hmqc.c, generates the
warning:
if (iphase == 3)
{

t1_counter = ((int) (ix - 1)) / (arraydim / ni);
initval((double) (t1_counter), v14);

}

Changing these lines to
if (iphase == 3)

initval((double) ((int)((ix - 1) / (arraydim / ni) \
+1e-6)), v14);

avoids the warning and also provides for roundoff of the floating point expression to give
proper TPPI phase increments.

Chapter 2. Pulse Sequence Programming

52 VnmrJ User Programming 01-999253-00 A0604

Even the above expression can fail under some circumstances. That construction will not
work for 3D and 4D experiments. With the availability of increment counters such as id2,
id3, and id4, and the predefined phase1 variable, this example can be rewritten as
if (phase1 == 3)

assign(id2,v14);

The second warning generally suggests an uninitialized variable:
parameter_name may be used before set

This should be corrected; otherwise, unpredictable execution of the pulse sequence is
likely. A common cause is the use of a user variable without first using a getval or
getstr statement on the variable.

The third warning generally suggests that a variable is defined within the pulse sequence
that has the same name as one of the standard PSG variables.
parameter_name redefinition hides earlier one

This warning is normally avoided by renaming the variable in the pulse sequence or, if the
variable corresponds to a standard PSG variable, by removing the variable definition and
initialization from the pulse sequence and just using the standard PSG variable. A list of the
standard PSG variable names is given in “Accessing Parameters,” page 81.

Finally, if the pulse sequence program is syntactically correct, the following message is
displayed:
Done! Pulse sequence now ready to use.

Creating a Parameter Table for Pulse Sequence Object Code

The ability to modify or customize acquisition parameters to fit a given user-created pulse
sequence is provided by a small number of commands. These commands make it possible
to perform the following operations on an existing parameter table:

• Create new parameters

• Control the display and enterability of parameters

• Control the limits of the parameter

• Create a parameter table for two-dimensional experiments

The commands that enable the creation and modification of parameters are discussed in
Chapter 5 of this manual.

C Framework for Pulse Sequences

Each pulse sequence is built onto a framework written in the C programming language.
Look again at the hom2dj sequence in Listing 2. The absolutely essential elements of this
framework are these:
#include <standard.h>

pulsesequence()
{

}

This framework must be included exactly as shown. Between the two curly braces ({}) are
placed pulse sequence statements, each statement ending with a semicolon.

The majority of pulse sequence statements allow the user to control pulses, delays,
frequencies, and all functions necessary to generate pulse sequences. Most are in the
general form statement(argument1,argument2,...), where statement is the

2.2 Overview of Pulse Sequence Programming

01-999253-00 A0604 VnmrJ User Programming 53

name of the particular pulse sequence statement, and argument1, argument2,... is the
information needed by that statement in order to function.

Many of these arguments are listed as real number. Because of the flexibility of C, a real-
number argument can take three different forms: variable (e.g., d1), constant (e.g., 3.4,
20.0e–6), or expression (e.g., 2.0*pw, 1.0–d2).

Times, whether delays or pulses, are determined by the type of acquisition controller board
used on the system:

• On Data Acquisition Controller boards, times can be specified in increments as small
as 12.5 ns with a minimum of 100 ns.

• On Output boards and the MERCURYplus/-Vx, times can be specified in increments as
small as 0.1 µs. The smallest possible time interval in all other cases is 0.2 µs, or 0.

Any pulse widths or delays less than the minimum generate a warning message and are then
eliminated internally from the sequence. (Note that time constants within a pulse sequence
are always expressed in seconds.)

A series of internal, real-time variables named v1, v2, ..., v14 are provided to perform
calculations in real-time (by the acquisition computer) while the pulse sequence is
executing. Real-time variables are discussed in detail later in this chapter. For now, note
that all of the phases, and a small number of the other arguments to the pulse sequence
statements discussed here, must be real-time variables. A real-time variable must appear as
a simple argument (e.g., v1), and cannot be replaced by anything else, including an integer,
a real number, a “regular” variable such as d1, or an expression such as v1+v2.

Any variables you choose to use in writing a pulse sequence must be declared. Most
variables will be of type double, while integers will be of type int, and strings, such as
dmm, are of type char with dimension MAXSTR. Table 3 lists the length of these basic
types on the Sun computer. Many variables that refer to parameters used in an experiment
are already declared (see “Accessing Parameters,” page 81).

Real-time variables are of type codeint (int on MERCURYplus, MERCURY-Vx, and
UNITYINOVA, 32 bits), whose size is 16 bits—you will probably not be declaring new
variables of this type. A framework including variable declarations of the main types might
look like this:
#include <standard.h>

pulsesequence()

{

double delta; /* declare delta as double */

char xpolar[MAXSTR]; /* declare xpolar as char */

...

}

Table 3. Variable Types in Pulse Sequences

Type Description Length (bits)

char character 8

short short integer 16

int integer 32

long long integer 32

float floating point 32

double double-precision floating point 64

Chapter 2. Pulse Sequence Programming

54 VnmrJ User Programming 01-999253-00 A0604

Implicit Acquisition

The hom2dj.c pulse sequence listing in Listing 2 on page 50 has one notable omission—
data acquisition. In most pulse sequences, the sequence of events consists of a series of
pulses and delays, followed at the very end by the acquisition of an FID; the entire process
is then repeated for the desired number of transients, and then again (for arrayed and nD
experiments) for subsequent elements of the arrayed or nD experiment.

In all these cases, pulse sequences use implicit acquisition, that is, following the pulse
sequence as written by the user, an FID is automatically (implicitly) acquired. This
acquisition is preceded by a delay that combines the parameter alfa with a delay based on
the type of filter and the filter bandwidth. In addition, the phase of all channels of the
spectrometer (except the receiver) is set to zero at this time.

Some pulse sequences are not described by this simple model; many solids NMR sequences
are in this category, for example. These sequences use explicit acquisition, in which the
preacquisition and acquisition steps must be explicitly programmed by the user. This
method is described further in “Hardware Looping and Explicit Acquisition,” page 96.

Acquisition Status Codes

Whenever wbs, wnt, wexp, or werr processing occurs, the acquisition condition that
initiated that processing is available from the parameter acqstatus. This acquisition
condition is represented by two numbers, a “done” code and an “error” code. The done code
is set in acqstatus[1] and the error code is set in acqstatus[2]. Macros can take
different actions depending on the acquisition condition.

The done codes and error codes are listed in Table 39 and in the file acq_errors in
/vnmr/manual. For example, a werr command could specify special processing if the
maximum number of transients is accumulated. The appropriate test would be the
following:
if (acqstatus[2] = 200) then
“do special processing, e.g. dp='y' au”
endif

2.3 Spectrometer Control
More than 200 pulse sequence statements are available for pulse sequence generation
(PSG). This section starts the discussion of each statement by covering statements intended
primarily for spectrometer control. For discussion purposes, the statements in this section
are divided into categories: delay-related, observe transmitter pulse-related, decoupler
transmitter pulse-related, simultaneous pulses, transmitter phase control, small-angle phase
shift, frequency control, power control, and gating control.

Creating a Time Delay

The statements related to time delays are delay, hsdelay, idelay, vdelay,
initdelay, and incdelay. Table 4 summarizes these statements.

The main statement to create a delay in a pulse sequence for a specified time is the
statement delay(time), where time is a real number (e.g., delay(d1)). The
hsdelay and idelay statements are variations of delay:

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 55

• To add a possible homospoil pulse to the delay, use hsdelay(time). If the
homospoil parameter hs is set to 'y', then at the beginning of the delay, hsdelay
inserts a homospoil pulse of length hst seconds.

• To cause interactive parameter adjustment (IPA) information to be generated when gf
or go('acqi') is entered, use idelay(time,string), where string is the
label used in acqi. If go is entered, idelay is the same as delay. See “Using
Interactive Parameter Adjustment,” page 91, for details on IPA. IPA and idelay are
not available on the MERCURYplus/-Vx.

To set a delay to the product of a fixed timebase and a real-time count, use
vdelay(timebase,count), where timebase is NSEC (defined below), USEC
(microseconds), MSEC (milliseconds), or SEC (seconds) and count is one of the real-time
variables (v1 to v14). For predictable acquisition, the real-time variable should have a
value of 2 or more. If timebase is set to NSEC, the delay depends on the type of
acquisition controller board in the system:

On systems with a Data Acquisition Controller board, the minimum delay is a count of 0
(100 ns), and a count of n corresponds to a delay of (100 + (12.5*n)) ns.

The vdelay statement is not available on the MERCURYplus/-Vx.

Use initdelay(time_increment,index) or incdelay(count,index) to
enable a real-time incremental delay. A maximum of five incremental delays (set by
index) can be defined in one pulse sequence. The following steps are required to set up
an incremental delay (initdelay and incdelay are not available on the
MERCURYplus/-Vx):

1. Enter initdelay(time_increment,index) to initialize the time increment
and delay.

The argument time_increment is the time increment that will be multiplied by
the count (a real-time variable) for the delay time, and index is one of the indices
DELAY1, DELAY2, ..., DELAY5 (e.g., initdelay(1.0/sw,DELAY1) or
initdelay(1.0/sw1,DELAY2)).

2. Set the increment delay by specifying its index and the multiplier count using
incdelay(count,index) (e.g., for incdelay(v3,DELAY2), when v3=0,
the delay is 0*(1/sw1)).

Pulsing the Observe Transmitter

Statements related to pulsing the observe transmitter are rgpulse, irgpulse, pulse,
ipulse, obspulse, and iobspulse. Table 5 summarizes these statements.

Use rgpulse(width,phase,RG1,RG2) as the main statement to pulse the observe
transmitter in a sequence, where width is the pulse width, phase (a real-time variable)
is the pulse phase, and RG1 and RG2 are defined according to system type:

Table 4. Delay-Related Statements

delay(time) Delay specified time
hsdelay(time) Delay specified time with possible hs pulse
idelay(time,string) Delay specified time with IPA
incdelay(count,index) Set real-time incremental delay
initdelay(time_increment,index) Initialize incremental delay
vdelay(timebase,count) Set delay with fixed timebase and real-time count

Chapter 2. Pulse Sequence Programming

56 VnmrJ User Programming 01-999253-00 A0604

• On the UNITYINOVA, RG1 is the delay during which the linear amplifier is gated on and
then allowed to stabilize prior to executing the rf pulse, and RG2 is the delay after the
pulse after gating off the amplifier. Thus, receiver gating is a misnomer: RG1 and RG2
set amplifier gating, as shown in Figure 1. The receiver is off during execution of the
pulses and is only gated on immediately before acquisition.

• On the MERCURYplus/-Vx, the receiver and amplifiers are tied together such that when
the amplifier is on, the receiver is automatically turned off and when the receiver is on,
the amplifier is off.

Some further information about RG1 and RG2:

• Typically, RG1 is 5 µs for 1H/19F and 5 µs for other nuclei. A typical value for RG2 is
5 µs.

• The phase of the pulse is set at the beginning of RG1. The phase requires about 0.2 µs
to settle on UNITYINOVA and on MERCURYplus/-Vx.

• A transmitter gate is also switched during RG1. The switching time for this gate is
100 ns for UNITYINOVA systems.

For systems with linear amplifiers, an rf pulse can be unexpectedly curtailed if the amplifier
goes into thermal shutdown. Thermal shutdown can be brought about if the amplifier duty
cycle becomes too large for the average power output. The 1 ms limit for MERCURYplus/
-Vx systems was eliminated with VnmrJ 1.1D.

The remaining statements for pulsing the observe transmitter are variations of rgpulse:

• To pulse the observe transmitter the same as rgpulse but with RG1 and RG2 set to
the parameters rof1 and rof2, respectively, use pulse(width,phase). Thus,
pulse(width,phase) and rgpulse(width,phase,rof1,rof2) are
exactly equivalent.

• To pulse the observe transmitter the same as pulse but with width preset to pw and
phase preset to oph, use obspulse(). Thus, obspulse() is exactly equivalent
to rgpulse(pw,oph,rof1,rof2).

Table 5. Observe Transmitter Pulse-Related Statements

iobspulse(string) Pulse observe transmitter with IPA
ipulse(width,phase,string) Pulse observe transmitter with IPA
irgpulse(width,phase,RG1,RG2,string) Pulse observe transmitter with IPA
obspulse() Pulse observe transmitter with amp. gating
pulse(width,phase). Pulse observe transmitter with amp. gating
rgpulse(width,phase,RG1,RG2) Pulse observe transmitter with amp. gating

Figure 1. Amplifier Gating

On

Off

On

Off

Width

RG2RG1

Transmitter

gating

Amplifier
gating

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 57

• To pulse the observe transmitter with rgpulse, pulse, or obspulse, but generate
interactive parameter adjustment (IPA) information when gf or go('acqi') is
entered, use irgpulse(width,phase,RG1,RG2,string),
ipulse(width,phase,string), or iobspulse(string), respectively.
The string argument is used as a label in acqi. If go is entered, the IPA
information is not generated. For details on IPA, see “Using Interactive Parameter
Adjustment,” page 91. IPA is not available on MERCURYplus/-Vx systems.

On UNITYINOVA systems, the ampmode parameter gives override capability over the default
selection of amplifier modes. Unless overridden, the observe channel is set to the pulse
mode, other used channels are set to the CW (continuous wave) mode, and any unused
channels are set to the idle mode. By using values of d, p, c, and i for the default, pulse,
CW, and idle modes, respectively, ampmode can override the default modes. For example,
ampmode='ddp' selects default behavior for the first two amplifiers and forces the third
channel amplifier into the pulse mode.

The selection of rf channels on UNITYINOVA systems also can be independently controlled
with the rfchannel parameter. You do not need rfchannel if you have a single-
channel broadband system and you set up a normal HMQC experiment (tn='H1',
dn='C13'). The software recognizes that you cannot do this experiment and swaps the
two channels automatically to make the experiment possible.

The rfchannel parameter becomes important if, for example, you have a three-channel
spectrometer and you want to do an HMQC experiment with the decoupler running through
channel 3. Instead of rewriting the pulse sequence, you can create rfchannel (by
entering create('rfchannel','flag')), and then set, for example,
rfchannel='132'. Now channels 2 and 3 are effectively swapped, without any
changes in the sequence.

Similarly, if you want simply to observe on channel 2, you just run S2PUL with
rfchannel='21'.

The rfchannel mechanism only works for pulse sequences that eliminate all references
to the constants TODEV, DODEV, DO2DEV, and DO3DEV. To take advantage of
rfchannel, you must remove statements, such as power and offset, that use these
constants and replace them with the corresponding statements, such as obspower and
decoffset, that do not contain the constants.

On UNITYINOVA, all standard pulse sequences have been edited to take advantage of the rf
channel independence afforded by the rfchannel parameter. This parameter makes it a
simple matter to redirect, for example, the dn nucleus to use the third or fourth rf channel.

On MERCURYplus/-Vx, there are only two channels. The software automatically
determines which channel is observe or decouple based on tn and dn.

Pulsing the Decoupler Transmitter

Statements related to decoupler pulsing are decpulse, decrgpulse, idecpulse,
idecrgpulse, dec2rgpulse, and dec3rgpulse. Table 6 summarizes these
statements.

Use decpulse(width,phase) to pulse the decoupler in the pulse sequence at its
current power level. width is the time of the pulse, in seconds, and phase is a real-time
variable for the phase of the pulse (e.g., decpulse(pp,v3)).

The amplifier is gated on during decoupler pulses as it is during observe pulses. The
amplifier gating times (see RG1 and RG2 for decrgpulse below) are internally set to

Chapter 2. Pulse Sequence Programming

58 VnmrJ User Programming 01-999253-00 A0604

zero. The decoupler modulation mode parameter dmm should be 'c' during any period of
time in which decoupler pulses occur.

To pulse the decoupler at its current power level and have user-settable amplifier gating
times, use decrgpulse(width,phase,RG1,RG2), where width and phase are
the same as used with decpulse, and RG1 and RG2 are the same as used with the
rgpulse statement for observe transmitter pulses. In fact, decrgpulse is syntactically
equivalent to rgpulse and functionally equivalent with two exceptions:

• The decoupler is pulsed at its current power level (instead of the transmitter).

• If homo='n', the slow gate (100 ns switching time on UNITYINOVA, on the decoupler
board is always open and therefore need not be switched open during RG1. In contrast,
if homo='y', the slow gate on the decoupler board is normally closed and must
therefore be allowed sufficient time during RG1 to switch open (homo is not used on
the MERCURYplus/-Vx).

For systems with linear amplifiers, RG1 for a decoupler pulse is important from the
standpoint of amplifier stabilization under either of the following conditions:

• When tn and dn both equal 3H, 1H, or 19F (high-band nuclei).

• When tn and dn are less than or equal to 31P (low-band nuclei).

For these conditions, the “decoupler” amplifier module is placed in the pulse mode, in
which it remains blanked between pulses. In this mode, RG1 must be sufficiently long to
allow the amplifier to stabilize after blanking is removed: 5 µs is typically right.

If the tn nucleus and the dn nucleus are in different bands, such as tn is 1H and dn is 13C,
the “decoupler” amplifier module is placed in the continuous wave (CW) mode, in which
it is always unblanked regardless of the state of the receiver. In this mode, RG1 is
unimportant with respect to amplifier stabilization prior to the decoupler pulse, but with
respect to phase setting, it must be set.

The remaining decoupler transmitter pulse-related statements are variations of decpulse
and decrgpulse:

• To pulse the decoupler the same as decpulse or decrgpulse, but generate
interactive parameter adjustment (IPA) information when gf or go('acqi') is
entered, use idecpulse(width,phase,string) or
idecrgpulse(width,phase,RG1,RG2,string), respectively, where
string is used as a label in acqi. If go is entered instead, the IPA information is not
generated. For details on IPA, see “Using Interactive Parameter Adjustment,” page 91.
IPA is not available on MERCURYplus/-Vx systems.

• To pulse the second decoupler, use dec2rgpulse(width,phase,RG1,RG2).
To pulse the third decoupler, use dec3rgpulse(width,phase,RG1,RG2). To
pulse UNITYINOVA systems with a deuterium decoupler installed as the fifth channel,

Table 6. Decoupler Transmitter Pulse-Related Statements

decpulse(width,phase) Pulse decoupler transmitter with amp. gating
decrgpulse(width,phase,RG1,RG2) Pulse first decoupler with amplifier gating
dec2rgpulse(width,phase,RG1,RG2) Pulse second decoupler with amplifier gating
dec3rgpulse(width,phase,RG1,RG2) Pulse third decoupler with amplifier gating
dec4rgpulse(width,phase,RG1,RG2) Pulse deuterium decoupler with amplifier gating
idecpulse(width,phase,string) Pulse first decoupler transmitter with IPA
idecrgpulse* Pulse first decoupler with amplifier gating and IPA
* idecrgpulse(width,phase,RG1,RG2,string)

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 59

use dec4rgpulse(width,phase,RG1,RG2). The width, phase, RG1, and
RG2 arguments have the same meaning as used with decrgpulse and rgpulse.
The homo parameter has no effect on the gating on the second decoupler board. On
UNITYINOVA systems only, homo2 controls the homodecoupler gating of the second
decoupler, homo3 does the same on the third decoupler, and homo4 does the same on
the fourth decoupler when it is used as a deuterium channel (on the MERCURYplus/-
Vx, dec2rgpulse, dec3rgpulse, and dec4rgpulse have no meaning and
homo is not used).

Pulsing Channels Simultaneously

Statements for controlling simultaneous, non-shaped pulses are simpulse, sim3pulse,
and sim4pulse. Table 7 summarizes these statements. Simultaneous pulses statements
using shaped pulses are covered in a later section.

Use simpulse(obswidth,decwidth,obsphase,decphase,RG1,RG2) to
simultaneously pulse the observe and first decoupler rf channels with amplifier gating (e.g.,
simpulse(pw,pp,v1,v2,0.0,rof2)).

Figure 2 illustrates the action of simpulse

The shorter of the two pulses is centered on the longer pulse, while the amplifier gating
occurs before the start of the longer pulse (even if it is the decoupler pulse) and after the
end of the longer pulse. The absolute difference in the two pulse widths must be greater than
or equal to 0.2 µs (0.4 µs on the MERCURYplus/-Vx); otherwise, a timed event of less than

Table 7. Simultaneous Pulses Statements

simpulse* Pulse observe and decoupler channels simultaneously
sim3pulse* Pulse simultaneously on two or three rf channels
sim4pulse* Simultaneous pulse on four channels
* sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2)

sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2)
sim4pulse(pw1,pw2,pw3,pw4,phase1,phase2,phase3,phase4,RG1,RG2)

Transmitter
gating

Decoupler
gating

obswidth

Decoupler
gating

Transmitter
gating

Amplifier
gating

Amplifier
gating

RG1 RG2 RG1 RG2

Figure 2. Pulse Observe and Decoupler Channels Simultaneously

Decoupler pulse > Observe pulseObserve pulse > Decoupler pulse

decwidth

decwidth obswidth

Chapter 2. Pulse Sequence Programming

60 VnmrJ User Programming 01-999253-00 A0604

the minimum value (0.1 µs on UNITYINOVA, 0.2 µs on MERCURYplus/-Vx systems) would
be produced. In such cases, a short time (0.2 µs on UNITYINOVA, 0.4 µs on MERCURYplus/
-Vx systems) is added to the longer of the two pulse widths to remedy the problem, or the
pulses are made the same if the difference is less than half the minimum (less than 0.1 µs
on UNITYINOVA, less than 0.2 µs on MERCURYplus/-Vx systems).

sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2) performs a
simultaneous, three-pulse pulse on three independent rf channels, where pw1, pw2, and
pw3 are the pulse durations on the observe transmitter, first decoupler, and second
decoupler, respectively. phase1, phase2, and phase3 are real-time variables for the
phases of the corresponding pulses, for example, sim3pulse(pw,p1,p2,oph,
v10,v1,rof1,rof2).

A simultaneous, two-pulse pulse on the observe transmitter and the second decoupler can
be achieved by setting the pulse length for the first decoupler to 0.0; for example,
sim3pulse(pw,0.0,p2,oph,v10,v1,rof1,rof2).(sim3pulse has no
meaning on MERCURYplus/-Vx).

Use sim4pulse(pw1,pw2,pw3,pw4,phase1,phase2,phase3,phase4,
RG1,RG2) to perform simultaneous pulses on as many as four different rf channels.
Except for the added arguments pw4 and phase4 for a third decoupler, the arguments in
sim4pulse are defined the same as sim3pulse. If any pulse is set to 0.0, no pulse is
executed on that channel (sim4pulse has no meaning on MERCURYplus/-Vx).

Setting Transmitter Quadrature Phase Shifts

The statements txphase, decphase, dec2phase, dec3phase, dec4phase
control transmitter quadrature phase (multiple of 90°). Table 8 summarizes these
statements.

To set the transmitter phase, use txphase(phase), where phase is a real-time variable
(v1 to v14, etc.) or a real-time constant (zero, one, etc.) that references the desired
phase. This enables changing the transmitter phase independently from a pulse.

For example, knowing that the transmitter phase takes a finite time to shift (about 1 µs on
a MERCURYplus/-Vx, less than 200 ns for Inova, you may wish to “preset” the transmitter
phase at the beginning of a delay that precedes a particular pulse. The “normal” pulse
sequences use an rof1 time preceding the pulse to change the transmitter phase and do not
need to “preset” the phase. The phase change will occur at the start of the next event in the
pulse sequence.

The other phase control statements are variations of txphase:

• To set the decoupler phase, use decphase(phase). The decphase statement is
syntactically and functionally equivalent to txphase. decphase is useful for a
decoupler pulse in all cases where txphase is useful for a transmitter pulse.

• To set the quadrature phase of the second decoupler rf or third decoupler rf, use
dec2phase(phase) or dec3phase(phase), respectively.

Table 8. Transmitter Quadrature Phase Control Statements

decphase(phase) Set quadrature phase of first decoupler
dec2phase(phase) Set quadrature phase of second decoupler
dec3phase(phase) Set quadrature phase of third decoupler
dec4phase(phase) Set quadrature phase of fourth decoupler
txphase(phase) Set quadrature phase of observe transmitter

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 61

The hardware WALTZ decoupling lines are XORed with the decoupler phase control. The
performance of the WALTZ decoupling should not be affected by the decoupler phase
setting.

When using pulse sequences with implicit acquisition, the decoupler phase is set to 0
automatically (within the test4acq procedure in the module hwlooping.c in /
vnmr/psg), so under most circumstances no problems are seen. But if you are using
explicit acquisition or if you are trying to perform WALTZ decoupling during a period other
than acquisition, you must use a decphase(zero) statement in the pulse sequence
before the relevant time period.

Setting Small-Angle Phase Shifts

Setting the small-angle phase of rf pulses is implemented by three different methods:

• Fixed 90° settings

• Direct synthesis hardware control

• Phase-pulse phase shifting

The statements related to these methods are summarized in Table 9.

Fixed 90° Settings

The first method is the hardwired 90° (or quadrature) phase setting. For both the observe
and the decoupler transmitters, phases of 0°, 90°, 180°, and 270° are invoked
instantaneously using the obspulse, pulse, rgpulse, simpulse, decpulse,
decrgpulse, dec2rgpulse, dec3rgpulse, dec4rgpulse, txphase,
decphase, dec2phase, dec3phase, and dec4phase statements.

The receiver phase is actually fixed but is “shifted” by setting the oph variable, which
changes the “mode” of the receiver. A 180° receiver “phase” sets the system to subtract
instead of add the data—a 90° receiver phase swaps the two channels of the receiver.

Hardware Control

A second method of small-angle phase selection is implemented only on spectrometers
with direct synthesis. This method uses hardware that sets transmitter phase in 0.25°
increments on UNITYINOVA systems, or 1.41° on MERCURYplus/-Vx systems, independently
of the phase of the receiver. This method is an absolute technique (e.g., if a phase of 60° is
invoked twice, the second phase selection does nothing).

Table 9. Phase Shift Statements

dcplrphase(multiplier) Set small-angle phase of first decoupler, rf type C or D
dcplr2phase(multiplier) Set small-angle phase of second decoupler, rf type C or D
dcplr3phase(multiplier) Set small-angle phase of third decoupler, rf type C or D
decstepsize(base) Set step size of first decoupler
dec2stepsize(base) Set step size of second decoupler
dec3stepsize(base) Set step size of third decoupler
obsstepsize(base) Set step size of observe transmitter
phaseshift* Set phase-pulse technique, rf type A or B
stepsize(base,device) Set small-angle phase step size, rf type C or D
xmtrphase(multiplier) Set small-angle phase of observe transmitter, rf type C
* phaseshift(base,multiplier,device)

Chapter 2. Pulse Sequence Programming

62 VnmrJ User Programming 01-999253-00 A0604

The obsstepsize(base) statement sets the step size of the small-angle phase
increment to base for the observe transmitter. Similarly, decstepsize(base),
dec2stepsize(base), and dec3stepsize(base) set the step size of the
small-angle phase increment to base for the first decoupler, second decoupler, and third
decoupler, respectively (assuming that system is equipped with appropriate hardware). The
base argument is a real number or variable.

The base phase shift selected is active only for the xmtrphase statement if the
transmitter is the requested device, only for the dcplrphase statement if the decoupler
is the requested device, only for the dcplr2phase statement if the second decoupler is
the requested device, or only for the dcplr3phase if the third decoupler is the required
device, that is, every transmitter has its own “base” phase shift. Phase information into
pulse, rgpulse, decpulse, decrgpulse, dec2rgpulse, dec3rgpulse, and
simpulse is still expressed in units of 90°.

The statements xmtrphase(multiplier), dcplrphase(multiplier),
dcplr2phase(multiplier), and dcplr3phase(multiplier) set the phase of
transmitter, first decoupler, second decoupler, or third decoupler, respectively, in units set
by stepsize. If stepsize has not been used, the default step size is 90°. The argument
multiplier is a small-angle phaseshift multiplier. The small-angle phaseshift is a
product of the multiplier and the preset stepsize for the rf device (observe transmitter,
first decoupler, second decoupler, or third decoupler). multiplier must be an real-time
variable.

The decstepsize, dec2stepsize, dec3stepsize, and obsstepsize
statements are similar to the stepsize statement but have the channel selection fixed.
Each of the following pairs of statements are functionally the same:

• obsstepsize(base) and stepsize(base,OBSch).

• decstepsize(base) and stepsize(base,DECch).

• dec2stepsize(base) and stepsize(base,DEC2ch).

• dec3stepsize(base) and stepsize(base,DEC3ch).

On systems with Output boards only, if the product of the base and multiplier is
greater than 90°, the sub-90° part is set by the xmtrphase, dcplrphase,
dcplr2phase, or dcplr3phase statements. Carryovers that are multiples of 90° are
automatically saved and added in at the time of the next 90° phase selection (e.g., at the
time of the next pulse or decpulse). This is true even if stepsize has not been used
and base is at its default value of 90°. The following example may help you to understand
this question of “carryovers”:
obsstepsize(60.0); /* set 60° step size for obs. xmtr*/
initval(6.0,v1); modn(ct,v1,v2); /* v2=012345012345 */

xmtrphase(v2); /* phase=0,60,120,180,240,300 */

/* small-angle part=0,60,30,0,60,30 */

/* carry-over=0,0,90,180,180,270 */

mod4(ct,v3);pulse(pw,v3); /* specified phase=0,90,180,270 */

/* 90° phase shift actually used */
/* = 0,90,270,450,180,360 */

/* = specified + carry-over */

If xmtrphase, dcplrphase, dcplr2phase, or dcplr3phase is used to set the
phase for some pulses in a pulse sequence, it is often necessary to use
xmtrphase(zero), dcplrphase(zero), dcplr2phase(zero), or
dcplr3phase(zero) preceding other pulses to ensure that the phase specified by a

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 63

previous xmtrphase, dcplrphase, dcplr2phase, or dcplr3phase does not
carry-over into an unwanted pulse or decpulse statement.

Phases specified in txphase, pulse, rgpulse, decphase, decpulse,
decrgpulse, dec2phase, dec2rgpulse, dec3rgpulse, and dec4rgpulse
statements change the 90° portion of the phase shift only. This feature provides a separation
between the small-angle phase shift and the 90° phase shifts, and facilitates programming
phase cycles or additional coherence transfer selective phase cycling “on top of” small-
angle phase shifts.

Be sure to distinguish xmtrphase from txphase. txphase is optional and rarely
needed; xmtrphase is needed any time the transmitter phase shift is to be set to a value
not a multiple of 90°. The same distinction can be made between dcplrphase and
decphase, dcplr2phase and dec2phase, and dcplr3phase and dec3phase.

Controlling the Offset Frequency

Statements for frequency control are decoffset, dec2offset, dec3offset,
dec4offset, obsoffset, offset, and ioffset. Table 10 summarizes these
statements.

The main statement to set the offset frequency of the observe transmitter (parameter tof),
first decoupler (dof), second decoupler (dof2), or third decoupler (dof3) is the statement
offset(frequency,device), where frequency is the new value of the
appropriate parameter and device is OBSch (observe transmitter), DECch (first
decoupler), DEC2ch (second decoupler), or DEC3ch (third decoupler). For example, use
offset(to2,OBSch) to set the observe transmitter offset frequency. DEC2ch can be
used only on systems with three rf channels. Likewise, DEC3ch is used only on systems
with four rf channels.

• For systems with rf type D, the frequency shift time is 14.95 µs (latching with or
without over-range). No 100-µs delay is inserted into the sequence by the offset
statement. Offset frequencies are not returned automatically to their “normal” values
before acquisition; this must be done explicitly, as in the example below.

• For UNITYINOVA systems, the frequency shift time is 4 µs.

• For MERCURYplus/-Vx systems, the setup time is 86.4 µs and the shift time is 1 µs.

Other frequency control statements are variations of offset:

• To set the offset frequency of the observe transmitter the same as offset but generate
interactive parameter adjustment (IPA) information when gf or go('acqi') is
entered, use ioffset(frequency,device,string), where string is used
as a label for the slider in acqi. If go is entered instead, the IPA information is not
generated. For details on IPA, see “Using Interactive Parameter Adjustment,” page 91.
IPA is not available on MERCURYplus/-Vx systems.

Table 10. Frequency Control Statements

decoffset(frequency) Change offset frequency of first decoupler
dec2offset(frequency) Change offset frequency of second decoupler
dec3offset(frequency) Change offset frequency of third decoupler
dec4offset(frequency) Change offset frequency of fourth decoupler
obsoffset(frequency) Change offset frequency of observe transmitter
offset(frequency,device) Change offset frequency of transmitter or decoupler
ioffset(frequency,device,string) Change offset frequency with IPA

Chapter 2. Pulse Sequence Programming

64 VnmrJ User Programming 01-999253-00 A0604

• To set the offset frequency of the observe transmitter (parameter tof), use
obsoffset(frequency), which functions the same as
offset(frequency,OBSch).

• To set the offset frequency of the first decoupler (parameter dof), use
decoffset(frequency), which functions the same as
offset(frequency,DECch).

• To set the offset frequency of the second decoupler (parameter dof2), use
dec2offset(frequency), which functions the same as
offset(frequency,DEC2ch).

• To set the offset frequency of the third decoupler (parameter dof3), use
dec3offset(frequency), which functions the same as
offset(frequency,DEC3ch).

• To set the offset frequency of the deuterium decoupler used as the fifth channel
(parameter dof4), use dec4offset(frequency), which functions the same as
offset(frequency,DEC4ch)

Controlling Observe and Decoupler Transmitter Power

Statements to control power by adjusting the coarse attenuators on linear amplifier systems
are power, obspower, decpower, dec2power, dec3power, and dec4power.
Statements to control fine power are pwrf, pwrm, rlpwrm, obspwrf, decpwrf,
dec2pwrf, and dec3pwrf. Statements to control decoupler power level switching are
declvlon, declvloff, and decpwr. The apovrride statement overrides an AP bus
delay (the delay before AP bus access). Table 11 summarizes these statements.

Coarse Attenuator Control

On UNITYINOVA systems with linear amplifiers, the statement power(value,device)
changes transmitter or decoupler power by adjusting the coarse attenuators from 0
(minimum power) to 63 (maximum power) on channels with a 63-dB attenuator, or from –
16 (minimum power) to 63 (maximum power) on channels with a 79-dB attenuator.

Table 11. Power Control Statements

apovrride() Override internal software AP bus delay
declvloff() Return first decoupler back to “normal” power
declvlon() Turn on first decoupler to full power
decpower(value) Change first decoupler power, linear amplifier
dec2power(value) Change second decoupler power, linear amplifier
dec3power(value) Change third decoupler power, linear amplifier
dec4power(value) Change deuterium decoupler power, linear amplifier
decpwr(level) Set decoupler high-power level, class C amplifier
decpwrf(value) Set first decoupler fine power
dec2pwrf(value) Set second decoupler fine power
dec3pwrf(value) Set third decoupler fine power
ipwrf(value,device,string) Change transmitter or decoupler fine power with IPA
ipwrm(value,device,string) Change transmitter or decoupler linear mod. with IPA
obspower(value) Change observe transmitter power, linear amplifier
obspwrf(value) Set observe transmitter fine power
power(value,device) Change transmitter or decoupler power, linear amplifier
pwrf(value,device) Change transmitter or decoupler fine power
pwrm(value,device) Change transmitter or decoupler linear mod. power
rlpwrm(rlvalue,device) Set transmitter or decoupler linear mod. power

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 65

• value must be stored in a real-time variable such as v2; the actual value cannot be
placed directly in the power statement. This allows the attenuators to be changed in
real-time or from pulse to pulse.

• device is OBSch to change the transmitter power, DECch to change the first
decoupler power, DEC2ch to change the second decoupler power, or DEC3ch to
change the third decoupler power (e.g., power(v2,OBSch)).

To avoid using a real-time variable, the fixed-channel statements obspower(value),
decpower(value), dec2power(value), and dec3power(value) can be used
in place of the power statement, for example, obspower(63.0). For all of these
statements, value is either a real number or a variable.

The power and associated fixed-channel statements allow configurations such as the use
of the transmitter at a low power level for presaturation followed by a higher power for
uniform excitation. The phase of the transmitter is specified as being constant to within 5°
over the whole range of transmitter power. Therefore, if you pulse at low power with a
certain phase and later at high power with the same phase, the two phases are the “same”
to within 5° (at any one power level, the phase is constant to considerably better than 0.5°).
The time of the power change is specified in Table 30.

On systems with an Output board only, the power and associated statements are preceded
internally by a 0.2 µs delay by default (see the apovrride pulse statement for more
details).

CAUTION: On systems with linear amplifiers, be careful when using values of
power, obspower, decpower, dec2poser, and dec3power greater than
49 (about 2 watts). Performing continuous decoupling or long pulses
at power levels greater than this can result in damage to the probe.
Use config to set a safety maximum for the tpwr, dpwr, dpwr2, and
dpwr3 parameters.

Fine-Power Control

To change the fine power of a transmitter or decoupler by adjusting the optional linear fine
attenuators, use pwrf(value,device) or pwrm(value,device). The value
argument is real-time variable, which means it cannot be placed directly in the pwrf or
pwrm statement, and can range from 0 to 4095 (60 dB on UNITYINOVA, about 6 dB on other
systems). device is OBSch (for the observe transmitter) or DECch (first decoupler). On
UNITYINOVA only, device can also be DEC2ch (second decoupler) or DEC3ch (third
decoupler). MERCURYplus/-Vx systems do not support pwrf and pwrm with real-time
parameters but support all other parameters.

You can use the fixed-channel statement obspwrf(value), decpwrf(value),
dec2pwrf(value), and dec3pwrf, or rlpwrm(value,device) to avoid
arguments using real-time variables. These statements change transmitter or decoupler
power on systems with linear amplifiers, but value is either a real number or a variable
and is stored in a C variable of type double.

The ipwrf(value,device,string) and ipwrm(value,device,string)
statement changes interactively the transmitter or decoupler fine power or linear
modulators by adjusting the optional fine attenuators. The value and device arguments
are the same as pwrf. string can be any string; the first six letters are used in acqi.
This statement will generate interactive parameter adjustment (IPA) information only when
the command gf or go('acqi') is typed. When the command go is typed, this
statement is ignored by the pulse sequence. Use the pwrf pulse statement for this purpose.

Chapter 2. Pulse Sequence Programming

66 VnmrJ User Programming 01-999253-00 A0604

Do not execute pwrf and ipwrf in the same pulse sequence, as they cancel each other's
effect.

On systems with an Output board only, a 0.2 µs delay internally precedes the AP (analog
port) bus statements power, obspower, decpower, and dec2power. The
apovrride() statement prevents this 0.2 µs delay from being inserted prior to the next
(and only the next) occurrence of one of the these AP bus statements.

Decoupler Power-Level Switching

On UNITYINOVA systems with class C or linear amplifiers, declvlon() and
declvloff() switch the decoupler power level between the power level set by the high-
power parameter(s) to the full output of the decoupler. The statement declvlon() gives
full power on the decoupler channel; declvloff switches the decoupler to the power
level set by the appropriate parameters defined by the amplifier type: dhp for class C
amplifiers or dpwr for a linear amplifiers. If dhp='n', these statements do not have any
effect on systems with class C amplifiers, but still function for systems with linear
amplifiers.

If declvlon is used, make sure declvloff is used prior to time periods in which
normal, controllable power levels are desired, for example, prior to acquisition. Full
decoupler power should only be used for decoupler pulses or for solids applications.

MERCURYplus/-Vx systems do not use declvlon or declvloff.

Controlling Status and Gating

Statements to control decoupler and homospoil status are status and setstatus.
Explicit transmitter and receiver gating control statements are xmtroff, xmtron,
decoff, decon, dec2off, dec2on, dec3off, dec3on, rcvroff, and rcvron.
Statements for amplifier blanking and unblanking are obsblank, obsunblank,
decblank, decunblank, dec2blank, dec2unblank, dec3blank,
dec3unblank, blankingoff, and blankingon. Finally, statements for user-
dedicated lines are sp#off and sp#on. Table 12 summarizes these statements.

Gating States

Use status(state) to control decoupler and homospoil gating in a pulse sequence,
where state is A to Z (e.g., status(A) or status(B)). Parameters controlled by
status are dm (first decoupler mode), dmm (first decoupler modulation mode), and hs
(homospoil). For systems with a third or fourth rf channel, dm2 and dm3 (second and third
decoupler modes) and dmm2 and dmm3 (second and third decoupler modulation mode) are
also under status control. For systems with a deuterium decoupler channel as the fourth
decoupler, dm4 and dmm4 are under status control.

Each of these parameters can have multiple states: status(A) sets each parameter to the
state described by the first letter of its value, status(B) uses the second letter, etc. If a
pulse sequence has more status statements than there are status modes for a particular
parameter, control reverts to the last letter of the parameter value. Thus, if dm='ny',
status(C) will look for the third letter, find none, and then use the second letter (y) and
turn the decoupler on.

Use setstatus(channel,on,mode,sync,mod_freq)to control decoupler
gating as well as decoupler modulation modes (GARP, CW, WALTZ, etc.). channel is
OBSch, DECch, DEC2ch, or DEC3ch, on is TRUE or FALSE, mode is a decoupler mode
('c', 'g', 'p', etc.), sync is TRUE or FALSE, and mod_freq is the modulation

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 67

frequency (e.g., setstatus(DECch,TRUE,'w',FALSE,dmf). (The setstatus
statement is not available on the MERCURYplus/-Vx.)

setstatus provides a way to set transmitters independent of the parameters, one channel
at a time. For example, setstatus(OBSch,TRUE,'g',TRUE,obs_mf), turns the
observe transmitter (OBSch) on (TRUE), using GARP modulation ('g') in synchronized
mode (TRUE) with a modulation frequency of obs_mf. (The obs_mf parameter will need
to be calculated from a parameter set with an appropriate getval statement.)

Note: Be sure to set the power to a safe level before calling setstatus.

Timing for setstatus is the same as for the status statement except that only one
channel needs to be taken into account. To ensure that the timing is constant for the status,
use the statusdelay statement (e.g., statusdelay(A,2.0e-5)).

Homospoil gating is treated somewhat differently than decoupler gating. If a particular
homospoil code letter is 'y', delays coded as hsdelay that occur when the status
corresponds to that code letter will begin with a homospoil pulse, the duration of which is
determined by the parameter hst. Thus if hs='ny', all hsdelay delays that occur
during status(B) will begin with a homospoil pulse. The final status always occurs
during acquisition, at which time a homospoil pulse is not permitted. Thus, if a particular
pulse sequence uses status(A), status(B), and status(C), dm and other
decoupler parameters may have up to three letters, but hs will only have two, since
hs='y' during status(C) would be meaningless and is ignored.

Table 12. Gating Control Statements

blankingoff() Unblank amplifier channels and turn amplifiers on
blankingon() Blank amplifier channels and turn amplifiers off
decblank() Blank amplifier associated with the 1st decoupler
dec2blank() Blank amplifier associated with the 2nd decoupler
dec3blank() Blank amplifier associated with the 3rd decoupler
decoff() Turn off first decoupler
dec2off() Turn off second decoupler
dec3off() Turn off third decoupler
decon() Turn on first decoupler
dec2on() Turn on second decoupler
dec3on() Turn on third decoupler
decunblank() Unblank amplifier associated with the 1st decoupler
dec2unblank() Unblank amplifier associated with the 2nd decoupler
dec3unblank() Unblank amplifier associated with the 3rd decoupler
dhpflag=TRUE|FALSE Switch decoupling between high- and low-power levels
initparms_sis() Initialize parameters for spectroscopy imaging sequences
obsblank() Blank amplifier associated with observe transmitter
obsunblank() Explicitly enables the amplifier for the observe transmitter
rcvroff() Turn off receiver gate and amplifier blanking gate
rcvron() Turn on receiver gate and amplifier blanking gate
recoff() Turn off receiver gate only
recon() Turn on receiver gate only
setstatus* Set status of observe transmitter or decoupler transmitter
status(state) Change status of decoupler and homospoil
statusdelay(state,time) Execute status statement with given delay time
xmtroff() Turn off observe transmitter
xmtron() Turn on observe transmitter
* setstatus(channel,on,mode,sync,mod_freq)

Chapter 2. Pulse Sequence Programming

68 VnmrJ User Programming 01-999253-00 A0604

Transmitter Gating

On all systems, transmitter gating is handled as follows:

• Explicit transmitter gating in the pulse sequence is provided by xmtroff() and
xmtron(). Transmitter gating is handled automatically by obspulse, pulse,
rgpulse, simpulse, sim3pulse, shaped_pulse, simshaped_pulse,
sim3shaped_pulse, and spinlock. The obsprgon statement should
generally be enabled with an explicit xmtron statement, followed by xmtroff.

• Explicit gating of the first decoupler in the pulse sequence is provided by decoff()
and decon(). First decoupler gating is handled automatically by decpulse,
decrgpulse, declvlon, declvloff, simpulse, sim3pulse,
decshaped_pulse, simshaped_pulse, sim3shaped_pulse, and
decspinlock. The decprgon function should generally be enabled with explicit
decon statement and followed by a decoff call.

• Explicit gating of the second decoupler in the pulse sequence is provided by dec2off
and dec2on. Second decoupler gating is handled automatically by dec2pulse,
dec2rgpulse, sim3pulse, dec2shaped_pulse, sim3shaped_pulse,
and dec2spinlock. The dec2prgon function should generally be enabled with
an explicit d2con statement, followed by dec2off.

• Likewise, explicit gating of the third decoupler in the pulse sequence is provided by
dec3off and dec3on. Third decoupler gating is handled automatically by
dec3pulse, dec3rgpulse, dec3shaped_pulse, and dec3spinlock. The
dec3prgon function should generally be enabled with an explicit dec3con
statement, followed by dec3off.

Receiver Gating

Explicit receiver gating in the pulse sequence is provided by the rcvroff(),
rcvron(), recoff(), and recon() statements. These statements control the receiver
gates except when pulsing the observe channel (in which case the receiver is off) or during
acquisition (in which case the receiver is on). The recoff and recon statements
(available only on UNITYINOVA systems) affect the receiver gate only and do not affect the
amplifier blanking gate, which is the role of rcvroff and rcvron.

• On UNITYINOVA, the receiver is on only during acquisition except for certain imaging
pulse sequences that have explicit acquires (such as SEMS, MEMS, and FLASH), and
for the initparms_sis() statement that defaults the receiver gate to on.

• On MERCURYplus/-Vx, receiver gating is tied to the amplifier blanking and is
normally controlled automatically by the pulse statements rgpulse, pulse,
obspulse, decrgpulse, decpulse, and dec2rgpulse.

Amplifier Channel Blanking and Unblanking

Amplifier channel blanking and unblanking methods depend on the system.

• On UNITYINOVA, the receiver and amplifiers are not linked. To explicitly blank and
unblank amplifiers, the following statements are provided:

For the amplifier associated with the observe transmitter:
obsblank() and obsunblank().

For the amplifiers associated with the first, second, and third decouplers:
decblank() and decunblank(), dec2blank()and dec2unblank(),
and dec3blank()and dec3unblank(), respectively.

These statements replace blankon and blankoff, no longer in VnmrJ.

2.3 Spectrometer Control

01-999253-00 A0604 VnmrJ User Programming 69

• On MERCURYplus/-Vx, the receiver and amplifier are linked. At the end of each pulse
statement, the receiver is automatically turned back on and the amplifier blanked.
Immediately prior to data acquisition, the receiver is implicitly turned back on.

Interfacing to External User Devices

All Inova consoles provide some means of interfacing to external user devices. Table 13
lists the statements available for this feature.

User-Dedicated Spare Lines

One or more user-dedicated spare lines are available for high-speed device control:

• UNITYINOVA consoles have five spare lines in the Breakout panel on the rear of the left
cabinet. Each spare line is a BNC connector. The sp#on() and sp#off()
statements control specified SPARE lines.

User AP (Analog Port) Lines
UNITYINOVA consoles have two 24-pin user AP connectors, J8212 and J8213, in the
Breakout panel on the rear of the left cabinet. Each connector has 16 user-controllable lines
coinciding with two 8-bit AP bus registers. All four of the AP bus registers are writeable
but only one register is readable.

Table 14 shows the mapping of the
user AP lines. On both connectors,
lines 17 to 25 are ground lines.

User AP lines allow the
synchronous access by users to
external services while running a
pulse sequence. The statements
setuserap(value,reg),
vsetuserap(rtvar,reg),
and readuserap(rtvar) provide access to these lines.

The setuserap and vsetuserap statements enable writing 8-bit information to one of
four registers. Each write takes one AP bus cycle, which is 0.5 µs for the UNITYINOVA. The
only difference between setuserap and vsetuserap is that vsetuserap uses a
real-time variable to set the value.

The readuserap statement lets you read 8-bit information from the register into a real-
time variable. You can then act on this information using real-time math and real-time
control statements while the pulse sequence is running; however, because the system has to
wait for the data to be read before it can continue parsing and stuffing the FIFO, a
significant amount of overhead is involved in servicing the read and refilling the FIFO. The
readuserap statement takes 500 µs to execute. The readuserap statement puts in a
500 µs delay immediately after reading the user AP lines in order for the parser to parse and
stuff more words into the FIFO before it underflows. However, this time may not be long

Table 13. Interfacing to External User Devices

readuserap(rtvalue) Read input from user AP register
setuserap(value,nreg) Set user AP register
sp#off(), sp#on() Turn off and on specified spare line
vsetuserap(rtvalue,nreg) Set user AP register using real-time variable

Table 14. Mapping of User AP Lines

Register Connector Lines Function

0 J8213 9 to 16 output

1 J8213 1 to 8 output

2 J8212 9 to 16 output

3 J8212 1 to 8 input/output

Chapter 2. Pulse Sequence Programming

70 VnmrJ User Programming 01-999253-00 A0604

enough and you may want to pad this time with a delay immediately following the
readuserap statement to avoid FIFO underflow. Depending on the actions in the pulse
sequence, your delay may need to be a number of milliseconds. If there is an error in the
read, a warning message is sent to the host and a –1 is returned to the real-time variable.

2.4 Pulse Sequence Statements: Phase and Sequence Control
As explained previously, a series of internal variables, named v1, v2, ..., v14, are provided
to perform calculations during “real-time” (while the pulse sequence is executing). All real-
time variables are pointers to particular memory locations in the acquisition computer. You
do not change a real-time variable, rather you change the value in the memory location to
which that real-time variable points.

For example, when we speak of v1 being set equal to 1, what we really means is that the
value in the memory location pointed to by the real-time variable v1 is 1. The actual value
of v1, a pointer, is not changed. The two ideas are interchangeable as long as we recognize
exactly what is happening at the level of the acquisition computer.

These internal, real-time variables can be used for a number of purposes, but the two most
important are control of the pulse sequence execution (for looping and conditional
execution, for example) and calculation of phases. For each pulse in the sequence, the phase
is calculated dynamically (at the start of each transient) rather than entirely at the start of
this experiment. This allows phase cycles to attain essentially unlimited length, because
only one number must be calculated for each phase during each transient. By contrast,
attempting to calculate in advance a phase cycle with a cycle of 256 transients and different
phases for each of 5 different pulses would require storing 256 × 5 or 1280 different phases.

Real-Time Variables and Constants

The following variables and constants can be used for real-time calculations:

v1 to v14 Real-time variables, used for calculations of loops, phases, etc. They
are at the complete disposal of the user. The variables point to 16-bit
integers, which can hold values of –32768 to +32767.

ct Completed transient counter, points to a 32-bit integer that is
incremented after each transient, starting with a value of 0 prior to the
first experiment. This pattern (0,1,2,3,4, ...) is the basis for most
calculations. Steady-state transients, invoked by the ss parameter, do
not change ct.

bsctr Block size counter, points to a 16-bit integer that is decremented from
bs to 1 during each block of transients. After completing the last
transient in the block, bsctr is set back to a value of bs. Thus if
bs=8, bsctr has successive values of 8,7,6,5,4,3,2,1,8,7,

oph Real-time variable that controls the phase of the receiver in 90°
increments (0=0°, 1=90°, 2=180°, and 3=270°). Prior to the execution
of the pulse sequence itself, oph is set to 0 if parameter cp is set to
'n', or to the successive values 0,1,2,3,0,1,2,3,... if cp is set
to 'y'. The value of oph can be changed explicitly in the pulse
sequence by any of the real-time math statements described in the next
section (assign, add, etc.) and is also changed by the
setreceiver statement.

2.4 Pulse Sequence Statements: Phase and Sequence Control

01-999253-00 A0604 VnmrJ User Programming 71

Calculating in Real-Time Using Integer Mathematics

A series of special integer mathematical statements are provided that are fast enough to
execute in real-time: add, assign, dbl, decr, divn, hlv, incr, mod2, mod4, modn,
mult, and sub. These statements are summarized in Table 15.

Remember that integer mathematics does not include fractions. If a fraction appears in a
result, the value is truncated; thus, one-half of 3 is 1, not 1.5.

Integer statements also use the modulo, which is the number that remains after the modulo
number is divided into the original number. For example, the value of 8 modulo 2 (often
abbreviated “8 mod 2”) is found by dividing 2 into 8, giving an answer of 4 with a
remainder of 0, so 8 mod 2 is 0. Similarly, 9 mod 2 is 1, since 2 into 9 gives 4 with a
remainder of 1. The modulus of a negative number is not defined in VnmrJ software and
should not be used.

Each statement performs one calculation at a time. For example, hlv(ct,v1) takes half
the current value of ct and places it in the variable v1. Before each transient, ct has a
given value (e.g., 7), and after this calculation, v1 has a certain value (e.g., 3 if ct was 7).

To visualize the action of a statement over the course of a number of transients, pulse
sequences typically document this action explicitly as part of their comments. The
comment v1=0,0,1,1, (or v1=001122...) means that v1 assumes a value of 0
during the first transient, 0 during the second, 1 during the third, etc.

zero, one,
two, three

Pointers to constants set to select constant phases of 0°, 90°, 180°, and
270°. They cannot be replaced by numbers 0, 1, 2, and 3.

ssval,
ssctr,
bsval

Real-time variables described in “Manipulating Acquisition
Variables,” page 74.

id2,id3,id4 Pointers (or indexes) to constants identifying the current increment in
multidimensional experiments. id2 is the current d2 increment. Its
value ranges from 0 to the size of the d2 array minus 1, which is
typically 0 to (ni–1). id3 corresponds to current index of the d3
array in a 3D experiment. Its range is 0 to
(ni2-1). id4 corresponds to the current index of the d4 array. Its
range is 0 to (ni3-1). Only MERCURYplus/-Vx support id2.

Table 15. Integer Mathematics Statements

add(vi,vj,vk) Add integer values: set vk equal to vi + vj
assign(vi,vj) Assign integer values: set vj equal to vi
dbl(vi,vj) Double an integer value: set vj equal to 2•vi
decr(vi) Decrement an integer value: set vi equal to vi –1
divn(vi,vj,vk) Divide integer values: set vk equal to vi div vj
hlv(vi,vj) Find half the value of an integer: set vj to integer part of 0.5•vi
incr(vi) Increment an integer value: set vi equal to vi + 1
mod2(vi,vj) Find integer value modulo 2: set vj equal to vi modulo 2
mod4(vi,vj) Find integer value modulo 4: set vj equal to vi modulo 4
modn(vi,vj,vk) Find integer value modulo n: set vk equal to vi modulo vj
mult(vi,vj,vk) Multiply integer values: set vk equal to vi•vj
sub(vi,vj,vk) Subtract integer values: set vk equal to vi – vj

Chapter 2. Pulse Sequence Programming

72 VnmrJ User Programming 01-999253-00 A0604

The following series of examples illustrates the action of integer mathematics statements
and how comments are typically used:
hlv(ct,v1); /* v1=0011223344... */

dbl(v1,v1); /* v1=0022446688... */

mod4(v1,v1); /* v1=0022002200... */

mod2(ct,v2); /* v2=010101... */

dbl(v2,v3); /* v3=020202... */

/* v1=00112233... */

hlv(v1,v2); /* v2=00001111.... */

dbl(v1,v1); /* v1=00224466.... */

add(v1,v2,v3); /* v3=00225577.... */

mod4(v3,oph); /* oph=00221133...,receiver phase cycle */

Note that the same variable can be used as the input and output of a particular statement
(e.g., dbl(v1,v1) is fine so it is not necessary to use dbl(v1,v2)). Note also that
although the mod4 statement is used in several cases, it is never necessary to include it,
even if appropriate, because an implicit modulo 4 is always performed on all phases (except
when setting small-angle phase shifts).

The division provided by the divn statement is integer division, thus remainders are
ignored. vj in each case must be a real-time variable and not a real number (like 6.0) or
even an integer constant (like 6). To perform, for example, a modulo 6 operation, something
like the following is required:
initval(6.0,v1);

modn(v2,v1,v7); /* v7 is v2 modulo 6 */

Controlling a Sequence Using Real-Time Variables

In addition to being used for phase calculations, real-time variables can also be used for
pulse sequence control. Table 16 lists pulse sequence control statements.

By placing pulse sequence statements between a loop(count,index) statement and
an endloop(index) statement, the enclosed statements can be executed repeatedly.
The count argument used with loop is a real-time variable that specifies the number of
times to execute the enclosed statements. count can be any positive number, including
zero. index is a real-time variable used as a temporary counter to keep track of the number
of times through the enclosed statements, and must not be altered by any of the statements.
An example of using loop and endloop is the following:
mod4(ct,v5); /* times through loop: v5=01230123... */

loop(v5,v3); /* v3 is a dummy to keep track of count */

delay(d3); /* variable delay depending on the ct */

endloop(v3);

Table 16. Pulse Sequence Control Statements

elsenz(vi) Execute succeeding statements if argument is nonzero
endif(vi) End ifzero statement
endloop(index) End loop
ifzero(vi) Execute succeeding statements if argument is zero
initval(realnumber,vi) Initialize a real-time variable to specified value
loop(count,index) Start loop

2.4 Pulse Sequence Statements: Phase and Sequence Control

01-999253-00 A0604 VnmrJ User Programming 73

Statements within the pulse sequence can be executed conditionally by being enclosed
within ifzero(vi), elsenz(vi), and endif(vi) statements. vi is a real-time
variable used as a test variable, to be tested for either being zero or non-zero. The elsenz
statement may be omitted if it is not desired. It is also not necessary for any statements to
appear between the ifzero and the elsenz or the elsenz and the endif statements.
The following code is an example of a conditional construction:
mod2(ct,v1); /* v1=010101... */

ifzero(v1); /* test if v1 is zero */

pulse(pw,v2); /* execute these statements */

delay(d3); /* if v1 is zero */

elsenz(v1); /* test if v1 is non-zero */

pulse(2.0*pw,v2); /* execute these statements */

delay(d3/2.0); /* if v1 is non-zero */

endif(v1);

If numbers other than those easily accessible in integer math (such as ct, oph, three) are
needed, any variable can be initialized to a value with the initval(number,vi)
statement (e.g., initval(4.0,v9). The real number input is rounded off and placed in
the variable vi. This statement, unlike the statements such as add and sub described
above, is executed once and only once at the start of a non-arrayed 1D experiment or at the
start of each increment in a 2D experiment or an arrayed 1D experiment, not at the start of
each transient.

Real-Time vs. Run-Time—When Do Things Happen?

It may help to explain the pulse sequence execution process in more detail. When you enter
go, the go program is executed. This program looks up the various parameters, examines
the name of the current pulse sequence, and looks in seqlib for a file of that name. The
file in seqlib is a compiled C program, which was compiled with the seqgen command.
This program, which is run by the go program, combines the parameters supplied to it by
go together with a series of instructions that form the pulse sequence.

The output of the pulse sequence program in seqlib is a table of numbers, known as the
code table (generally referred to as Acodes or Acquisition codes), which contains
instructions for executing a pulse sequence in a special language. The pulse sequence
program sends a message to the acquisition computer to begin operation, informing it
where the code table is stored. This code table is downloaded into the acquisition computer
and processed by an interpreter, which is executing in the acquisition computer and which
controls operation during acquisition. If after entering go or su, etc., the message that PSG
aborted abnormally appears, run the psg macro to help identify the problem.

A pulse sequence can intermix statements involving C, such as d2=1.0/(2.0*J), with
special statements, such as hlv(ct,v2). These two statements are fundamentally
different kinds of operations. When you enter go, all higher-level expressions are
evaluated, once for each increment. Thus in d2=1.0/(2.0*J), the value of J is looked
up, d2 is calculated as one divided by 2*J, and the value of d2 is fixed. Statements in this
category are called run-time, since they are executed when go is run. The hlv statement,
however, is executed every transient. Before each transient, the system examines the
current value of ct, performs the integer hlv operation, and sets the variable v2 (used for
phases, etc.) to that value. On successive transients, v2 has values of 0,0,1,1,2,2, etc.
Statements like these are called real-time, because they execute during the real-time
operation of the pulse sequence.

Run-time statements, then, are statements that are evaluated and executed in the host
computer by the pulse sequence program in seqlib when you enter go. Real-time

Chapter 2. Pulse Sequence Programming

74 VnmrJ User Programming 01-999253-00 A0604

statements are statements that are repeatedly (every transient) executed by the code
program run in the acquisition computer. Therefore, it is not possible to include a statement
like d2=1.0+0.33*ct. The variable ct is a real-time variable (it is actually an integer
pointer variable), while “C-type” mathematics are a run-time operation. Only the special
real-time statements included in this section can be executed on a transient-by-transient
basis.

Manipulating Acquisition Variables

Certain acquisition parameters, such as ss (steady-state pulses) and bs (block size), cannot
be changed in a pulse sequence with a simple C statement. The reason is that by the time
the pulsesequence function is executed, the values of these variables are already stored
in a region of the host computer memory that will subsequently form the “low-core” portion
of the acquisition code in the acquisition computer. These memory locations can be
accessed and modified, however, by using real-time math functions with the appropriate
real-time variables.

The value of ss in low core is associated with real-time variables ssval and ssctr:

• ssval is never modified by the acquisition computer unless specifically instructed by
statements within the pulse sequence.

• ssctr is automatically initialized to ssval.

For the first increment only, if ssval is greater than zero, or else before every increment
in a arrayed 1D or 2D experiment, ssctr is decremented after each steady-state transient
until it reaches 0. When ssctr is 0, all subsequent transients are collected as data.

The value of bs in low core is associated with real-time variables bsval and bsctr:

• bsval is never modified by the acquisition computer unless specifically instructed by
statements within the pulse sequence.

• bsctr is automatically initialized to bsval after each block of transients has been
completed.

During the acquisition of a block of transients, bsctr is decremented after each transient.
If bsval is non-zero, a zero value for bsctr signals that the block of transients is
complete.

The ability within a pulse sequence to modify the values of these low core acquisition
variables can be used to add various capabilities to pulse sequences. As an example, the
following pulse sequence illustrates the cycling of pulse and receiver phases during steady-
state pulses:
#include <standard.h>

pulsesequence()

{

/* Implement steady-state phase cycling */

sub(ct,ssctr,v10);

initval(16.0,v9);

add(v10,v9,v10);

/* Phase calculation statements follow,

using v10 in place of ct as the starting point */

/* Actual pulse sequence goes here */

}

2.4 Pulse Sequence Statements: Phase and Sequence Control

01-999253-00 A0604 VnmrJ User Programming 75

Intertransient and Interincrement Delays

When running arrayed or multidimensional experiments (using ni, ni2, etc.), certain
operations are done preceding and following the pulse sequence for every array element,
the same as there are operations preceding and following the pulse sequence for every
transient. These overhead operations take up time that may need to be accounted for when
running a pulse sequence. This might be especially important if the repetition time of a
pulse sequence has to be maintained across every element and every scan during an arrayed
or multidimensional experiment.

These overhead times between increments (array elements) and transients are deterministic
(i.e., both known and constant); however, the time between increments, which we will call
x, is longer than the time between transients, which we will call y. Also, the time between
increments will change depending on the number of rf channels.

To maintain a constant repetition time for UNITYINOVA systems, a parameter called d0 (for
d-zero) can be created so that x=y+d0. Because the interincrement overhead time will
differ with different system configurations—and to keep the d0 delay consistent across
systems—if d0 is set greater than the overhead delay, the inter-FID delay x is padded such
that y+d0=x+(d0-(x-y)). In other words, d0 is used to set a standard delay so the
interincrement delay and the intertransient delay are the same when executing transient
scans within an array element. The delay is inserted at the beginning of each scan of a FID
after the first scan has completed. The d0 delay can be set by the user or computed by PSG
(if d0 is set to 'n'). When d0 does not exist, no delay is inserted.

Another factor to consider when keeping a consistent timing in the pulse sequence is the
status statement. The timing of this statement varies depending on the number of
channels and the type of decoupler modulation. To keep this timing constant, UnityINOVA has
the pulse sequence statement statusdelay that allows the user to set a constant delay
time for changing the status. For this to work, the delay time has to be longer than the time
it takes to set the status. For timing and more information, see the description of
statusdelay in Chapter 3.

The overhead operations preceding every transient are resetting the DTM (data-to-
memory) control information. The overhead operations following every transient are error
detection for number of points and data overflow; detection for blocksize, end of scan, and
stop acquisition; and resetting the decoupler status. d0 does not take these delays into
account.

The overhead operations preceding every array element are initializing the rf channel
settings (frequency, power, etc.), initializing the high-speed (HS) lines, initializing the
DTM, and if arrayed, setting the receiver gain. d0 does not take into account arraying of
decoupler status shims, VT, or spinning speed.

Controlling Pulse Sequence Graphical Display

The dps_off, dps_on, dps_skip, and dps_show statements, summarized in Table
17, can be inserted into a pulse sequence to control the graphical display of the pulse
sequence statements by the dps command:

• To turn off dps display of statements, insert dps_off() into the sequence. All pulse
sequences following dps_off will not be shown.

• To turn on dps display of statements, insert dps_on() into the sequence. All pulse
sequences following dps_on will be shown.

• To skip dps display of the next statement, insert dps_skip() into the sequence. The
next pulse sequence statement will not be displayed.

Chapter 2. Pulse Sequence Programming

76 VnmrJ User Programming 01-999253-00 A0604

• To draw pulses for dps display, insert dps_show(options) statements into the
pulse sequence. The pulses will appear in the graphical display of the sequence.

Many options to dps_show are available. These options enable drawing a line to
represent a delay, drawing a pulse picture and displaying the channel name below the
picture, drawing shaped pulses with labels, drawing observe and decoupler pulses at
the same time, and much more. Refer to Chapter 3, “Pulse Sequence Statement
Reference,” for a full description of dps_show, including examples.

2.5 Real-Time AP Tables
Real-time acquisition phase (AP) tables can be created under pulse sequence control on all
UnityInova and MERCURYplus/-Vx systems. These tables can store phase cycles, an array of
attenuator values, etc. In the pulse sequence, the tables are associated with variables t1,
t2, ... t60.

The following pulse sequence statements accept the table variables t1 to t60 at any place
where a simple AP variable, such as v1, can be used:

For example, the statement rgpulse(pw,t1,rof1,rof2) performs an observe
transmitter pulse whose phase is specified by a particular statement in the real-time AP
table t1, whereas rgpulse(pw,v1,rof1,rof2) performs the same pulse whose
phase is specified by the real-time variable v1. The real-time math functions add(),
assign(), etc. listed in Table 15 cannot be used with tables t1-t60. The appropriate
functions to use are given in Table 18.

Statements using a table can occur anywhere in a pulse sequence except in the statements
enclosed by an ifzero-endif pair.

Loading AP Table Statements from UNIX Text Files

Table statements can be loaded from an external UNIX text file with the loadtable
statement or can be set directly within the pulse sequence with the settable statement.

pulse rgpulse decpulse

decrgpulse dec2rgpulse dec3rgpulse

simpulse txphase decphase

dec2phase dec3phase xmtrphase

dcplrphase dcplr2phase dcplr3phase

phaseshift spinlock decspinlock

dec2spinlock dec3spinlock shaped_pulse

decshaped_pulse dec2shaped_pulse dec3shaped_pulse

simshaped_pulse sim3shaped_pulse power

pwrf

Table 17. Statements for Controlling Graphical Display of a Sequence

dps_off() Turn off graphical display of statements
dps_on() Turn on graphical display of statements
dps_show(options)* Draw delay or pulses in a sequence for graphical display
dps_skip() Skip graphical display of next statement
* dps_show has many options. See Chapter 3, “Pulse Sequence Statement Reference,”

for the syntax and examples of use.

2.5 Real-Time AP Tables

01-999253-00 A0604 VnmrJ User Programming 77

The values stored must be integral and must lie within the 16-bit integer range of –32768
to 32767.

The AP table file must be placed in the user’s private directory tablib, which might be,
for example, /home/vnmr1/vnmrsys/tablib, or in the system directory for table
files, /vnmr/tablib. The software looks first in the user's personal tablib directory
for a table of the specified name, then in the system directory. The format for the table file
is quite flexible, comments are allowed, and several special notations are available.

Table Names and Statements

Entries in the table file are referred to as table names. Each table name must come from the
set t1 to t60 (e.g., t14 is a table name). A table name may be used only once within the
table file. If a table name is used twice within the table file, an error message is displayed
and pulse sequence generation (PSG) aborts.

Each table statement must be written as an integer number and separated from the next
statement by some form of “white” space, such as a blank space, tab, or carriage return. The
maximum number of statements per table is 8192. For the average pulse sequence, the
maximum number of table statements per experiment is approximately 10,000.

The table name is separated from the table statements by an = or a += sign (the += sign is
explained on page 78), and there must be a space between the table name and either of these
two signs. For example, if a table file contains the table name t1 with statements 0, 1, 2,
3, 2, 3, 0, 1, it would be written as t1 = 0 1 2 3 2 3 0 1.

The index into a table can range from 0 to 1 less than the number of statements in the table.
Note that an index of 0 will access the first statement in the table. Unless the autoincrement
attribute (described on page 78) is imparted to the table, the index into the table is given by
ct, the completed transient counter.

If the number of transients exceeds the length of the table, access to the table begins again
at the beginning of the table. Thus, given a table of length n with statements numbered
0 through n–1 (this numbering is strictly a way to think about the numbering and does not
imply the statements are actually numbered), then when the transient number is ct, the
number of the statement of the table that will be used is ct mod n (remember that ct starts
at 0 on the first transient, since ct represents the number of completed transients).

AP Table Notation

Special notation is available within the table file to simplify entering the table statements
and to impart specific attributes to any table within that file:

(...)# Indicates the table segment within the parentheses is to be replicated in its
entirety # times (where # ranges from 1 to 64) before preceding to any
succeeding statements or segments. Do not include any space after “)”.
For example,
t1=(0 1 2)3 /* t1 table=012012012 */.

[...]# Indicates each statement in the table segment within square brackets is to
be replicated # times (where # ranges from 1 to 64) before going to the
next statement in that segment. Do not include any space after “]”. For
example,
t1=[0 1 2]3 /* t1 table=000111222 */.

Chapter 2. Pulse Sequence Programming

78 VnmrJ User Programming 01-999253-00 A0604

The (...)# and [...]# notations are expanded by PSG at run-time and, therefore, offer
no degree of table compaction to the acquisition processor. Nesting of (...) and [...]
expressions is not allowed.The autoincrement += attribute can be used in conjunction with
the divn-return attribute and with the (...) and [...] notations.

Multiple {...} expressions within one table are not allowed, but (...) and [...]
expressions can be placed within a {...} expression.

The following examples illustrate combining the notation:
t2 = [0 1 2 3]4 (0 0 2 2)4

/* t2 table = 00001111222233330022002200220022 */

t3 = {0 1 (0 2)2 0 2 [3 1]4}4

/* t3 table = 0102020233331111 with divn-factor = 4;

i.e., 00001111000022220000222200002222 ... */

t4 += {0 1 2 3}8

/* t4 table with autoincrement and divn-factor = 8

i.e., 00000000111111112222222233333333 with index

incremented at each reference to table, not at each ct */

Handling AP Tables

Table 18 lists statements for handling AP tables. None of these statements apply to
GEMINI 2000 systems.

The loadtable(file) statement loads AP table statements from table text file. file
specifies the name of the table file (a UNIX text file) in the user's personal tablib
directory or in the VnmrJ system tablib directory. loadtable can be called multiple
times within a pulse sequence. Care should be taken to ensure that the same table name is
not used more than once by the pulse sequence.

The settable(tablename,numelements,intarray) statement stores an array
of integers in a real-time AP table. tablename specifies the name of the table (t1 to
t60). numelements specifies the size of the table. intarray is a C array that contains
the table elements. These elements can range from –32768 to 32767. The user must
predefine and predimension this array in the pulse sequence using C language statements
prior to calling settable.

{...}# Imparts the “divn-return” attribute to the table and indicates that the actual
index into the table is to be the index divided by the number # (where #
ranges from 1 to 64). # is called the divn factor and can be explicitly set
within a sequence for any table (see setdivnfactor). This attribute
provides a #-fold level of table compaction to the acquisition processor.
The {} notation must enclose all of the table statements for a given table.
This notation should not be used if this table will be subject to table
operations such as ttadd (see page 80)—in this case use []#, which is
equivalent except for table compression. In entering the { }# notation,
do not include any space after “}”.

+= Indicates that the index into the table starts at 0 for each new FID in an
array or 2D experiment, is incremented after each access of the table and
is therefore independent of ct. This is the autoincrement attribute, which
can delimit the table name from the table statements. It can be explicitly
set within a pulse sequence for any table (see setautoincrement).
Tables using the autoincrement feature cannot be accessed within a
hardware loop.

2.5 Real-Time AP Tables

01-999253-00 A0604 VnmrJ User Programming 79

The getelem(tablename,APindex,APdest) statement retrieves an element from
an AP table. tablename specifies the name of the Table (t1 to t60). APindex is an
AP variable (v1 to v14, oph, ct, bsctr, or ssctr) that contains the index of the desired
table element. Note that the first element of an AP table has an index of 0. APdest is also
an AP variable (v1 to v14 and oph) into which the retrieved table element is placed. For
tables for which the autoincrement feature is set, APindex, the second argument to
getelem, is ignored and can be set to any AP variable name; each element in such a table
is by definition always accessed sequentially.

The setautoincrement(tablename) statement sets the autoincrement attribute for
an AP table. tablename specifies the name of the table (t1 to t60). The index into the
table is set to 0 at the start of an FID acquisition and is incremented after each access into
the table. Tables using the autoincrement feature cannot be accessed within a hardware
loop.

The setdivnfactor(tablename,divnfactor) statement sets the divn-return
attribute and the divn-factor for an AP table. tablename specifies the name of the table
(t1 to t60). The actual index into the table is now set to (index/divnfactor). {0 1}2
is therefore translated by the acquisition processor, not by pulse sequence generation
(PSG), into 0 0 1 1. The divn-return attribute results in a divn-factor-fold compression
of the AP table at the level of the acquisition processor.

The setreceiver(tablename) statement assigns the ctth element of the AP table
tablename to the receiver variable oph. If multiple setreceiver statements are used
in a pulse sequence, or if the value of oph is changed by real-time math statements such as
assign, add, etc., the last value of oph prior to the acquisition of data determines the
value of the receiver phase.

To perform run-time scalar operations of an integer with AP table elements, use the
following statements:
tsadd(tablename,scalarval,moduloval)

tssub(tablename,scalarval,moduloval)

tsmult(tablename,scalarval,moduloval)

Table 18. Statements for Handling AP Tables

getelem(tablename,APindes,APdest) Retrieve an element from an AP table
loadtable(file) Load AP table elements from table text file
setautoincrement(tablename) Set autoincrement attribute for an AP table
setdivnfactor(tablename,divnfactor) Set divn-return attribute and divn-factor
setreceiver(tablename) Associate rcvr. phase cycle with AP table
settable* Store array of integers in real-time AP table
tsadd(tablename,scalarval,moduloval) Add an integer to AP table elements
tsdiv(tablename,scalarval,moduloval) Divide an AP table into a second table
tsmult(tablename,scalarval,moduloval) Multiply an integer with AP table elements
tssub(tablename,scalarval,moduloval) Subtract an integer from AP table elements
ttadd* Add an AP table to a second table
ttdiv* Divide an AP table into a second table
ttmult* Multiply an AP table by a second table
ttsub* Subtract an AP table from a second table
* settable(tablename,numelements,intarray)

ttadd(tablenamedest,tablenamemod,moduloval)
ttdiv(tablenamedest,tablenamemod,moduloval)
ttmult(tablenamedest,tablenamemod,moduloval)
ttdiv(tablenamedest,tablenamemod,moduloval)

Chapter 2. Pulse Sequence Programming

80 VnmrJ User Programming 01-999253-00 A0604

tsdiv(tablename,scalarval,moduloval)

where tablename specifies the name of the table (t1 to t60) and scalarval is added
to, subtracted from, multiplied with, or divided into each element of the table. The result of
the operation is taken modulo moduloval (if moduloval is greater than 0). tsdiv
requires that scalarval is not equal to 0; otherwise, an error is displayed and PSG
aborts.

To perform run-time vector operations of one AP table with a second table, use the
following table-to-table statements:
ttadd(tablenamedest,tablenamemod,moduloval)

ttsub(tablenamedest, tablenamemod, moduloval)

ttmult(tablenamedest,tablenamemod,moduloval)

ttdiv(tablenamedest, tablenamemod,moduloval)

where tablenamedest and tablenamemod are the names of tables (t1 to t60). Each
element in tablenamedest is modified by the corresponding element in
tablenamemod. The result, stored in tablenamedest, is taken modulo moduloval
(if moduloval is greater than 0). The number of elements in tablenamedest must be
greater than or equal to the number of elements in tablenamemod. ttdiv requires that
no element in tablenamemod equal 0.

Examples of Using AP Tables

This section contains a two-pulse sequence and a homonuclear J-resolved experiment as
examples of using AP tables.

Two-Pulse Sequence

Listing 3 is the contents of the files /home/vnmr1/vnmrsys/psglib/t2pul.c and
/home/vnmr1/vnmrsys/tablib/t2pul associated with a hypothetical two-pulse
sequence T2PUL.

Notice that t2 and t3 are identical. The pulse sequence could have used just one phase for
both the observe pulse and the receiver, but using two separate phases in this way provides
more flexibility for allowing run-time modification of all phases independently (e.g., a
cancellation experiment can be run by changing line 2 in the tablib file to t2 = 0 or by
changing line 3 to t3 = 0).

#include <standard.h>

pulsesequence()
{

loadtable("t2pul");
status(A);

hsdelay(d1);
status(B);

pulse(p1,t1);
hsdelay(d2);

status(C);
pulse(pw,t2);
setreceiver(t3);

}

t1 = 0
/* 0000 */

t2 = 0 2 1 3
/* 0213 */

t3 = 0 2 1 3
/* 0213 */

Listing 3. Two-Pulse Sequence t2pul.c with Phase Tables

2.6 Accessing Parameters

01-999253-00 A0604 VnmrJ User Programming 81

Homonuclear J-Resolved Experiment

Listing 4 lists files /export/home/vnmr1/vnmrsys/psglib/hom2djt.c and /
export/home/vnmr1/vnmrsys/tablib/hom2djt associated with a hypothetical
homonuclear J-resolved sequence HOM2DJT.

This sequence uses “conventional” phase cycling, completely different than the pulse
cycling in the standard HOM2DJ sequence found in psglib. The phase cycling,
contained here in t4, is added to the phases by the pulse sequence itself with the series of
three ttadd statements. This can also be done in the table itself, for example, by replacing
the t2 line in the tablib file with t2 = 1 2 3 0 3 0 1 2 2 3 0 1 0 1 2 3,
which is the completely “spelled out” phase cycle for the second pulse.

When using a table to be referenced with a ttadd statement, you cannot compress the
table by using t4 = {0 2 1 3}4. You must use square brackets, which are exactly
equivalent to the curly brackets but without achieving table compression at the level of the
acquisition processor.

2.6 Accessing Parameters
The getval and getstr statement look up the value of parameters, providing access to
parameters. Table 19 summarizes these statements.

Parameters are defined by the user in particular experiment files (exp1, exp2, etc.) in
which the operation is occurring. These parameters are not the same as the parameters that
are accessible to the pulse sequence during its execution, although they are at least
potentially the same.

#include <standard.h>
pulsesequence()
{

loadtable("hom2djt");
ttadd(t1,t4,4);
ttadd(t2,t4,4);
ttadd(t3,t4,4);
status(A);

hsdelay(d1);
status(B);

pulse(pw,t1);
delay(d2/2);
pulse(p1,t2);
delay(d2/2);

status(C);
setreceiver(t3);

}

t1 = [0]16
/*0000000000000000 */

t2 = (1 2 3 0)4
/*1230123012301230 */

t3 = (0 2)8
/*0202020202020202 */

t4 = [0 2 1 3]4
/* 0000222211113333 */

Listing 4. Homonuclear J-Resolved Sequence hom2djt.c with Phase Tables

Table 19. Parameter Value Lookup Statements

getstr(parametername,internalname) Look up value of string parameter
internalname=getval(parametername) Look up value of numeric parameter

Chapter 2. Pulse Sequence Programming

82 VnmrJ User Programming 01-999253-00 A0604

Categories of Parameters

Parameters can be divided into three categories:

• Parameters used in a pulse sequence exactly as in the parameter set; in other words, the
name of the parameter (d1, for example) is the same in both places. Thus, a statement
like delay(d1); is legitimate. Table 20 lists VnmrJ parameter names and
corresponding pulse sequence generation (PSG) variable names and types.Table 20 is
for quick reference only. For the most current listing, go to /vnmr/psg/
acqparms.h (unityINOVA) or /vnmr/pss/acqparms2.h (Mercuryplus/Vx).
Table 21 summarizes VnmrJ parameter names used primarily for imaging.

Table 20. Global PSG Parameters (UnityINOVA)

Acquisition

extern char il[MAXSTR] interleaved acquisition parameter,'y','n',o

extern double inc2D t1 dwell time in a 3D/4D experiment

extern double inc3D t2 dwell time in a 3D/4D experiment

extern double sw Sweep width

extern double nf Number of FIDs in pulse sequence /

extern double np Number of data points to acquire

extern double nt Number of transients

extern double sfrq Transmitter frequency mix

extern double dfrq Decoupler frequency MHz

extern double dfrq2 2nd decoupler frequency MHz

extern double dfrq3 3rd decoupler frequency MHz

extern double dfrq4 4th decoupler frequency MHz

extern double fb Filter bandwidth

extern double bs Block size

extern double tof Transmitter offset

extern double dof Decoupler offset

extern double dof2 2nd decoupler offset

extern double dof3 3rd decoupler offset

extern double dof4 4th decoupler offset

extern double gain Receiver gain value, or 'n' for autogain

extern double dlp Decoupler low power value

extern double dhp Decoupler low power value

extern double tpwr Transmitter pulse power

extern double tpwrf Transmitter fine linear attenuator for pulse

extern double dpwr Decoupler pulse power

extern double dpwrf Decoupler fine linear attenuator for pulse

extern double dpwrf2 2nd decoupler fine linear attenuator

extern double dpwrf3 3rd decoupler fine linear attenuator

extern double dpwrf4 4th decoupler fine linear attenuator

extern double dpwr2 2nd decoupler pulse power

extern double dpwr3 3rd decoupler pulse power

extern double dpwr4 4th decoupler pulse power

extern double filter Pulse amp filter setting

extern double xmf Transmitter modulation frequency

2.6 Accessing Parameters

01-999253-00 A0604 VnmrJ User Programming 83

extern double dmf Decoupler modulation frequency

extern double dmf2 Decoupler modulation frequency

extern double fb Filter bandwidth

extern double vttemp VT temperature setting

extern double vtwait VT temperature time-out setting

extern double vtc VT temperature cooling gas setting

extern double cpflag Phase cycling; 1=no cycling, 0=quad detect

extern double dhpflag Decoupler high power flag

Pulse Widths

extern double pw Transmitter modulation frequency

extern double p1 A pulse width

extern double pw90 90° pulse width

extern double hst Time homospoil is active

Delays

extern double alfa Time after receiver is turned on that acquisition begins

extern double beta Audio filter time constant

extern double d1 Delay

extern double d2 A delay, used in 2D experiments

extern double d3 A delay, used in 3D experiments

extern double d4 A delay, used in 4D experiments

extern double pad Preacquisition delay

extern double padactive Preacquisition delay active parameter flag

extern double rof1 Time receiver is turned off before pulse

extern double rof2 Time receiver is turned on before receiver is turned on

Total Time of Experiment

extern double totaltime Total timer events for an experiment duration estimate

extern int phase1 2D acquisition mode

extern int phase2 3D acquisition mode

extern int phase3 4D acquisition mode

extern int d2_index d2 increment (from 0 to ni−1)

extern int d3_index d3 increment (from 0 to ni2−1)

extern int d4_index d4 increment (from 0 to ni3−1)

Programmable Decoupling Sequences

extern char xseq[MAXSTR]

extern char dseq[MAXSTR]

extern char dseq2[MAXSTR]

extern char dseq3[MAXSTR]

extern char dseq4[MAXSTR]

extern double xres Digit resolution prg dec

extern double dres Digit resolution prg dec

extern double dres2 Digit resolution prg dec

Table 20. Global PSG Parameters (UnityINOVA) (continued)

Chapter 2. Pulse Sequence Programming

84 VnmrJ User Programming 01-999253-00 A0604

extern double dres3 Digit resolution prg dec

extern double dres4 Digit resolution prg dec

Status Control

extern char xm[MAXSTR] Transmitter status control

extern char xmm[MAXSTR] Transmitter modulation type control

extern char dm[MAXSTR] 1st decoupler status control

extern char dmm[MAXSTR] 1st decoupler modulation type control

extern char dm2[MAXSTR] 2nd decoupler status control

extern char dmm2[MAXSTR] 2nd decoupler modulation type control

extern char dm3[MAXSTR] 3rd decoupler status control

extern char dmm3[MAXSTR] 3rd decoupler modulation type control

extern char dm4[MAXSTR] 4th decoupler status control

extern char dmm4[MAXSTR] 4th decoupler modulation type control

extern char homo[MAXSTR] 1st decoupler homo mode control

extern char homo2[MAXSTR] 2nd decoupler homo mode control

extern char homo3[MAXSTR] 3rd decoupler homo mode control

extern char homo4[MAXSTR] 4th decoupler homo mode control

extern int xmsize Number of characters in xm

extern int xmmsize Number of characters in xmm

extern int dmsize Number of characters in dm

extern int dmmsize Number of characters in dmm

extern int dm2size Number of characters in dm2

extern int dmm2size Number of characters in dmm2

extern int dm3msize Number of characters in dm3

extern int dmm3msize Number of characters in dmm3

extern int dm4size Number of characters in dm4

extern int dmm4msize Number of characters in dmm4

extern int homosize Number of characters in homo

extern int homo2size Number of characters in homo2

extern int homo3size Number of characters in homo3

extern int homo4size Number of characters in homo4

extern int hssize Number of characters in hs

Table 21. Imaging Variables

RF Pulses

extern double p2 Pulse length

extern double p3 Pulse length

extern double p4 Pulse length

extern double p5 Pulse length

extern double pi Inversion pulse length

extern double psat Saturation pulse length

extern double pmt Magnetization transfer pulse length

Table 20. Global PSG Parameters (UnityINOVA) (continued)

2.6 Accessing Parameters

01-999253-00 A0604 VnmrJ User Programming 85

extern double pwx X-nucleus pulse length

extern double pwx2 X-nucleus pulse length

extern double ps1 Spin-lock pulse length

extern char pwpat[MAXSTR] Pattern for pw, tpwr

extern char pw1pat[MAXSTR] Pattern for p1, tpwr1

extern char pw2pat[MAXSTR] Pattern for p2, tpwr2

extern char pw3pat[MAXSTR] Pattern for pw3, tpwr3

extern char pw4pat[MAXSTR] Pattern for pw4, tpwr4

extern char pw5pat[MAXSTR] Pattern for pw5, tpwr5

extern char pipat[MAXSTR] Pattern for pi, tpwri

extern char satpat[MAXSTR] Pattern for pw, tpwr

extern char mtpat[MAXSTR] Pattern for psat, satpat

extern char ps1pat[MAXSTR] Pattern for spin-lock

extern double tpwr1 Transmitter pulse power

extern double tpwr2 Transmitter pulse power

extern double tpwr3 Transmitter pulse power

extern double tpwr4 Transmitter pulse power

extern double tpwr5 Transmitter pulse power

extern double tpwri Inversion pulse power

extern double satpwr Saturation pulse power

extern double mtpwr Magnetization transfer pulse power

extern double pwxlvl pwx pulse level

extern double pwxlvl2 pwx2 power level

extern double tpwrs1 Spin-lock power level

RF Decoupler Pulses

extern char decpat[MAXSTR] Pattern for decoupler pulse

extern char decpat1[MAXSTR] Pattern for decoupler pulse

extern char decpat2[MAXSTR] Pattern for decoupler pulse

extern char decpat3[MAXSTR] Pattern for decoupler pulse

extern char decpat4[MAXSTR] Pattern for decoupler pulse

extern char decpat5[MAXSTR] Pattern for decoupler pulse

extern char dpwr1 Decoupler pulse power

extern char dpwr4 Decoupler pulse power

extern char dpwr5 Decoupler pulse power

Gradients

extern double gro, gro2, gro3 Readout gradient strength

extern double gpe, gpe2, gpe3 Phase encode for 2D, 3D, and 4D

extern double gss, gss2, gss3 Slice-select gradients

extern double gror Readout focus

extern double gssr Slice-select refocus

extern double grof Readout refocus fraction

extern double gssf Slice-select refocus fraction

extern double g0, g1, ... g9 Numbered levels

Table 21. Imaging Variables (continued)

Chapter 2. Pulse Sequence Programming

86 VnmrJ User Programming 01-999253-00 A0604

extern double gx, gy, gz X, Y, and Z levels

extern double gvox1, gvox2, gvox3 Voxel selection

extern double gdiff Diffusion encode

extern double gflow Flow encode

extern double gspoil, gspoil2 Spoiler gradient levels

extern double gcrush, gcrush2 Crusher gradient levels

extern double gtrim, gtrim2 Trim gradient levels

extern double gramp, gramp2 Ramp gradient levels

extern double gpemult Shaped phase encode multiplier

extern double gradstepsz Positive steps in the gradient DAC

extern double gradunit Dimensional conversion factor

extern double gmax Maximum gradient value (G/cm)

extern double gxmax X maximum gradient value (G/cm)

extern double gymax Y maximum gradient value (G/cm)

extern double gzmax Z maximum gradient value (G/cm)

extern double gtotlimit Limit combined gradient values (G/cm)

extern double gxlimit Safety limit for X gradient (G/cm)

extern double gylimit Safety limit for Y gradient (G/cm)

extern double gzlimit Safety limit for Z gradient (G/cm)

extern double gxscale X scaling factor for gmax

extern double gyscale Y scaling factor for gmax

extern double gzscale Z scaling factor for gmax

extern char gpatup[MAXSTR] Gradient ramp-up pattern

extern char gpatdown[MAXSTR] Gradient ramp-down pattern

extern char gropat[MAXSTR] Readout gradient pattern

extern char gpepat[MAXSTR] Phase encode gradient pattern

extern char gsspat[MAXSTR] Slice gradient pattern

extern char gpat[MAXSTR] General gradient pattern

extern char gpat1[MAXSTR] General gradient pattern

extern char gpat2[MAXSTR] General gradient pattern

extern char gpat3[MAXSTR] General gradient pattern

extern char gpat4[MAXSTR] General gradient pattern

extern char gpat5[MAXSTR] General gradient pattern

Delays

extern double tr Repetition time per scan

extern double te Primary echo time

extern double ti Inversion time

extern double tm Mid-delay for STE

extern double at Acquisition time

extern double tpe, tpe2, tpe3 Phase encode durations for 2D to 4D

extern double tcrush Crusher gradient duration

extern double tdiff Diffusion encode duration

extern double tdelta Diffusion encode duration

extern double tDELTA Diffusion gradient separation

Table 21. Imaging Variables (continued)

2.6 Accessing Parameters

01-999253-00 A0604 VnmrJ User Programming 87

extern double tflow Flow encode duration

extern double tspoil Spoiler duration

extern double hold Physiological trigger hold off

extern double trise Gradient coil rise time: sec

extern double satdly Saturation time

extern double tau General use delay

extern double runtime User variable for total experiment time

Frequencies

extern double resto Reference frequency offset

extern double wsfrq Water suppression offset

extern double chessfrq Chemical shift selection offset

extern double satfrq Saturation offset

extern double mtfrq Magnetization transfer offset

Physical Sizes and Positions (for slices, voxels, and FOV)

extern double pro FOV position in readout

extern double ppe, ppe2, ppe3 FOV position in phase encode

extern double pos1, pos2, pos3 Voxel position

extern double pss[MAXSLICE] Slice position array

extern double lro Readout FOV

extern double lpe, lpe2, lpe3 Phase encode FOV

extern double lss Dimension of multislice range

extern double vox1, vox2, vox3 Voxel size

extern double thk Slice or slab thickness

extern double lpe, lpe2, lpe3 Phase encode FOV

extern double fovunit Dimensional conversion factor

extern double thkunit Dimensional conversion factor

Bandwidths

extern double sw1, sw2, sw3 Phase encode bandwidths

Counts and Flags

extern double nD Experiment dimensionality

extern double ns Number of slices

extern double ne Number of echoes

extern double ni Number of standard increments

extern double nv, nv2, nv3 Number phase encode views

extern double ssc Compressed ss transients

extern double ticks External trigger counter

extern char ir[MAXSTR] Inversion recovery flag

extern char ws[MAXSTR] Water suppression flag

extern char mt[MAXSTR] Magnetization flag

extern char pilot[MAXSTR] Auto gradient balance flag

extern char seqcon[MAXSTR] Acquisition loop control flag

Table 21. Imaging Variables (continued)

Chapter 2. Pulse Sequence Programming

88 VnmrJ User Programming 01-999253-00 A0604

• Parameters used in the pulse sequence derived from those in the parameter set.

• Parameters unknown to the pulse sequence. This includes parameters created by the
user for a particular pulse sequence (such as J or mix) as well as a few surprises, such
as at, the acquisition time (the pulse sequence does not know this). The statements
getval and getstr are provided for this category.

Looking Up Parameter Values

The statement internalname=getval(parametername) allows the pulse
sequence to look up the value of any numeric parameter that it otherwise does not know
(parametername) and introduce it into the pulse sequence in the variable
internalname. internalname can be any legitimate C variable name that has been
defined as type double at the beginning of the pulse sequence (even if it is created as type
integer). If parametername is not found in the current experiment parameter list,
internalname is set to zero, and PSG produces a warning message. For example,
double j;

...

j=getval("j");

The getstr(parametername,internalname) statement is used to look up the
value of the string parameter parametername in the current experiment parameter list
and introduce it into the pulse sequence in the variable internalname.
internalname can be any legitimate C variable name that has been defined as array of
type char with dimension MAXSTR at the beginning of the pulse sequence. If the string
parameter parametername is not found in the current experiment parameter list,
internalname is set to the null string, and PSG produces a warning message. For
example:
char coil[MAXSTR];

...

extern char petable[MAXSTR] Name for phase encode table

extern char acqtype[MAXSTR] Example: “full” or “half” echo

extern char exptype[MAXSTR] Example: “se” or “fid” in CSI

extern char apptype[MAXSTR] Keyword for parameter init, e.g, “imaging”

extern char seqfile[MAXSTR] Pulse sequence name

extern char rfspoil[MAXSTR] rf spoiling flag

extern char satmode[MAXSTR] Presentation mode

extern char verbose[MAXSTR] Verbose mode for sequences and psg

Miscellaneous

extern double rfphase rf phase shift

extern double B0 Static magnetic field level

extern double slcto Slice selection offset

extern double delto Slice spacing frequency

extern double tox Transmitter offset

extern double toy Transmitter offset

extern double toz Transmitter offset

extern double griserate Gradient rise rate

Table 21. Imaging Variables (continued)

2.6 Accessing Parameters

01-999253-00 A0604 VnmrJ User Programming 89

getstr("sysgcoil",coil);

Using Parameters in a Pulse Sequence

As an example of using parameters in a pulse sequence, suppose you wish to create a new
pulse sequence with new variable names and have it fully functional from VnmrJ. Usually,
the best way to compose a new pulse sequence is to start from a known good pulse sequence
and from a known good parameter set. For many pulse sequences, s2pul.c in /vnmr/
psglib and s2pul.par in /vnmr/parlib are a good place to start.

To create a new pulse sequence similar to s2pul but with new variable names and using
a shaped pulse, do the following steps:

1. In a shell window, enter cd ~/vnmrsys/psglib.

2. Use a text editor such as vi to create the file newpul.c shown in Listing 5.

3. After newpul.c is created, in a shell window, enter seqgen newpul.

The following lines are displayed during pulse sequence generation:

/* newpul.c - new pulse sequence */
#include <standard.h>

static int ph2[4] = {0,1,2,3};

pulsesequence()
{
 double d1new, d2new, p1new, pwnew;
 char patnew[MAXSTR];
 d1new = getval("d1new");
 d2new = getval("d2new");
 p1new = getval("p1new");
 pwnew= getval("pwnew");
 getstr("patnew",patnew);

assign(zero,v1);
settable(t2,4,ph2);
getelem(t2,ct,v2);

 /* equilibrium period */
 status(A);
 hsdelay(d1new);

 /* --- tau delay --- */
 status(B);
 pulse(p1new,v1);
 hsdelay(d2new);

 /* --- observe period --- */
 status(C);
 shaped_pulse(patnew,pwnew,v2,rof1,rof2);

/* If you don’t have a waveform generator, */
/* use the following line: */
/* apshaped_pulse(patnew,pwnew,v2,t4,t5,rof1,rof2); */

}

Listing 5. File newpul.c for a New Pulse Sequence

Chapter 2. Pulse Sequence Programming

90 VnmrJ User Programming 01-999253-00 A0604

Beginning Pulse Sequence Generation Process...

Adding DPS extensions to Pulse Sequence...

Lint Check of Sequence...

Compiling Sequence...

Link Loading...

Done! Pulse sequence newpul now ready to use.

4. To use the pulse sequence in VnmrJ, add new parameters starting from a known
good parameter set (e.g. s2pul.par) by entering from the VnmrJ command line:
s2pul

seqfil='newpul'

create('d1new','delay') d1new=1

create('d2new','delay') d2new=.001

create('p1new','pulse') p1new=0

create('pwnew','pulse') pwnew=40

create('patnew','string') patnew='square'

5. The parameters need to be saved as newpul.par in parlib so you can easily
retrieve them the next time you run the pulse sequence. Enter:
cd

cd('vnmrsys/parlib')

svp('newpul')

6. To access the new parameters and pulse sequence, create a macro by entering, for
example:
 editmac('newpul')

7. In the pop-up editor window, type editmac('newpul') to enter the insert mode
and add the line:

Save the macro and exit. This macro requires the file newpul.par to be present in
parlib.

You can now enter newpul in the VnmrJ command line any time you wish to use your new
pulse sequence. Most of the pulse sequences in /vnmr/psglib are set up in a similar
fashion, and so are easily accessible.

The newpul.c pulse sequence also contains examples of phase cycling. There are two
basic ways to perform arbitrary user-defined phase cycling:

• Use the real-time variables v1-v14, oph, zero, one, two, and three, and
perform math integer operations on them using functions in Table 15.

• Use the real-time AP tables t1-t60, which may be assigned either by static variable
declarations and using settable(), or by loading in a table from tablib using
loadtable() (see Table 18).

An example of using the real-time variable v1 is given in newpul.c used by assign()
and pulse(). An example of using real-time AP tables is given using ph2 and t2. We
could also replace v2 with t2 in the shaped_pulse() statement in this particular pulse
sequence. In some cases, however, it is necessary to perform further integer math
operations on the phase cycle, which is easier to perform on real-time variables than on AP
tables, so we give the example using getelem() to assign the table t2 to variable v2.
For other examples of phase cycling calculations, see the pulse sequences in /vnmr/
psglib.

To add 2D parameters to the newpul.c pulse sequence, make the following changes:

• In step 2, change d2new to d2.

psgset('newpul','array','dg','d1new','d2new','p1new','pwnew','patnew')

2.7 Using Interactive Parameter Adjustment

01-999253-00 A0604 VnmrJ User Programming 91

• In step 4, enter par2d set2d('newpul') p1new=40.

• In step 7, add par2d set2d('newpul') to the newpul macro after the psgset
line.

Also, see the cosyps.c pulse sequence in /vnmr/psglib, section 2.14
“Multidimensional NMR,” page 115, and the chapter on Multidimensional NMR in the
VnmrJ Liquids NMR manual.

2.7 Using Interactive Parameter Adjustment
The section “Spectrometer Control,” page 54 included statements for interactive parameter
adjustment (IPA). Such routines start with the letter i (e.g., idelay, irgpulse). For
users who need added flexibility in programming, this section explains IPA and these
routines in more detail. IPA is available on all systems except MERCURYplus/-Vx.

General Routines

In addition to the statements previously described, PSG has four general routines:

• G_Pulse for generic pulse control

• G_Offset for adjustment of the offset frequency

• G_Delay for generic delay control

• G_Power for fine power control.

Each of these routines is called with an argument list (see page 92) specified with
attribute-value pairs, terminated by a mandatory zero. The terminating zero is mandatory.
If the zero is left out, the results are unpredictable and can include a core dump of PSG.

Each attribute has a default value—a pulse can be specified simply as G_Pulse(0),
which would produce a transmitter pulse of size pw with rof1 and rof2 set the same as
the experiment parameters and phase cycled with the parameter oph.

The attribute SLIDER_LABEL determines whether output is generated for the Acquisition
window (opened by the acqi command). If no label is specified, no IPA information is
generated by the subroutine. The use of the SLIDER_LABEL with the same value for
delays or pulses allows multiple delays or pulses to be controlled via one slider. This is
covered later in this section.

As an example of a pulse sequence using the general routines, Listing 6 shows the source
code of i2pul.c, which can be compiled and run like S2PUL, but when go('acqi')
is typed, IPA information is generated in /vnmr/acqqueue/acqi.IPA.

The command acqi can be used to adjust the pulses and delays in the sequence. Note that
G_Pulse covers the statements obspulse, pulse, decpulse, etc.

Macro definitions have been written to cover these:
#define obspulse() G_Pulse(0)

#define decpulse(decpulse,phaseptr) \

G_Pulse (PULSE_DEVICE, DODEV, \

PULSE_WIDTH, decpulse, \

PULSE_PHASE, phaseptr, \

PULSE_PRE_ROFF, 0.0, \

PULSE_POST_ROFF, 0.0, \

0)

Chapter 2. Pulse Sequence Programming

92 VnmrJ User Programming 01-999253-00 A0604

See the file /vnmr/psg/macros.h for a complete list. This file is automatically
included when the file standard.h is included in a pulse sequence. Note also that the
same pulse sequence can be used to execute go as well as go('acqi'); however, IPA
information is only generated when go('acqi') is used.

Interactive adjustment of simultaneous pulses is not supported. A limit of 10 has been set
on the number of calls with a label. This limits the number of parameters that can be
adjusted within one pulse sequence. Note that a subroutine call within a hardware loop is
still only one label.

Parameters are adjusted at the end of a sweep. Since this takes a finite amount of time,
steady state may be affected. Of course, changing any parameter value also affects the
steady state, so this should be of little or no consequence.

Generic Pulse Routine

The G_Pulse generic pulse routine has the following syntax:
G_Pulse(PULSE_WIDTH, pw,

PULSE_PRE_ROFF, rof1,

PULSE_POST_ROFF, rof2,

PULSE_DEVICE, TODEV,

SLIDER_LABEL, NULL,

/* I2PUL - interactive two-pulse sequence */
#include <standard.h>
static int phasecycle[4]={0,2,1,3};
pulsesequence()
{

/* equilibrium period */
settable(t1,4,phasecycle);
status(A);
hsdelay(d1);
/* --- tau delay --- */
status(B);
ipulse(p1,zero,"p1");
/*
* This ipulse statement is equivalent to
* the following general pulse statement.
* G_Pulse(PULSE_WIDTH, p1,
* PULSE_PHASE, zero,
* SLIDER_LABEL, "p1",
* 0);
*/
G_Delay(DELAY_TIME, d2,

SLIDER_LABEL, "d2",
SLIDER_MAX, 10,
0);

/* --- observe period --- */
status(C);
ipulse(pw,t1,"pw");
setreceiver(t1);

}

Listing 6. Pulse Sequence Listing of File i2pul.c

2.7 Using Interactive Parameter Adjustment

01-999253-00 A0604 VnmrJ User Programming 93

SLIDER_SCALE, 1,

SLIDER_MAX, 1000,

SLIDER_MIN, 0,

SLIDER_UNITS, 1e–6,

PULSE_PHASE, oph,

0);

The following table describes the attributes used with G_Pulse:

Examples of using G_Pulse:
G_Pulse(0); /* equals obspulse(); */

G_Pulse(PULSE_WIDTH, pw, /* equals pulse(pw,v1); */

PULSE_PHASE, v1,

0); /* required terminating zero */

Frequency Offset Subroutine

The G_Offset routine adjusts the offset frequency. It has the following syntax:
G_Offset(OFFSET_DEVICE, TODEV,

OFFSET_FREQ, tof,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 0,

SLIDER_MAX, 1000,

SLIDER_MIN, –1000,

SLIDER_UNITS, 0,

0);

Attribute Type Default Description

PULSE_WIDTH double pw As specified in parameter set

PULSE_PRE_ROFF double rof1 As specified in parameter se.

PULSE_POST_ROFF double rof2 As specified in parameter set

PULSE_DEVICE int TODEV TODEV for observe channel or DODEV
for 1st decoupler. Also DO2DEV or
DO3DEV for 2nd/3rd decoupler

SLIDER_LABEL char * NULL Label (1- 6 characters) for acqi or
NULL for no output to acqi.

SLIDER_SCALE int 1 Decimal places (0 to 3) on slider

SLIDER_MAX int 100 Maximum value on the slider

SLIDER_MIN int 0 Minimum value on the slider

SLIDER_UNITS double 1e–6 Pulses are in µs, scale factor

PULSE_PHASE int oph Real-time variable

Chapter 2. Pulse Sequence Programming

94 VnmrJ User Programming 01-999253-00 A0604

The following table describes the attributes used with G_Offset:

* Default value is described in the description column for this attribute.

Examples of using G_Offset:
G_Offset(OFFSET_DEVICE, TODEV, /* equivalent to */

OFFSET_FREQ, tof, /* offset(tof,TODEV); */

0); /* required terminating zero */

G_Offset(OFFSET_DEVICE, TODEV, /* basic interactive */

OFFSET_FREQ, tof, /* offset statement */

SLIDER_LABEL, “TOF”,/* for fine adjustment of */

0); /* transmitter frequency */

Generic Delay Routine

The G_Delay generic delay routine has the following syntax:
G_Delay(DELAY_TIME, d1,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 1,

SLIDER_MAX, 60,

SLIDER_MIN, 0,

SLIDER_UNITS, 1.0,

0);

Attribute Type Default Description

OFFSET_DEVICE int none Device (or rf channel) to receive frequency
offset. This is required! Thus,
G_Offset(0) not allowed. TODEV for
transmitter channel or DODEV for first
decoupler channel. On UNITYplus, DO2DEV
for 2nd decoupler channel, or DO3DEV for 3rd
decoupler channel.

OFFSET_FREQ double * Offset frequency for selected channel. Default
is offset frequency parameter (tof, dof,
dof2, dof3) of associated channel.

SLIDER_LABEL char * NULL If no slider label selected, offset cannot be
changed in acqi. Otherwise, becomes the
label (1-6 characters) in acqi.

SLIDER_SCALE int 0 Number of decimal places displayed in acqi.
Default is 0 because default range is 2000 Hz,
so a resolution finer than 1 Hz is not necessary.

SLIDER_MAX int * Maximum value on the slider. Default is 1000
Hz more than the offset frequency.

SLIDER_MIN int * Minimum value on the slider. Default is 1000
Hz less than the offset frequency.

SLIDER_UNITS double 1.0 Frequencies are in Hz.

2.7 Using Interactive Parameter Adjustment

01-999253-00 A0604 VnmrJ User Programming 95

The following table describes the attributes used with G_Delay:

Examples of using G_Delay:
G_Delay(0); /* equals delay(d1); */

G_Delay(DELAY_TIME, d2, /* equals delay(d2); */

0); /* required terminating zero */

IPA allows one slider to control more than one delay or pulse. The maximum number of
delays or pulses a slider can control is 32. This multiple control is obtained whenever
multiple calls to G_Pulse or G_Delay have the same value for the SLIDER_LABEL
attribute.

The first call to G_Pulse in a pulse sequence sets the initial value, the maximum and
minimum of the slider, and the scale. Later calls to G_Pulse within that pulse sequence
do not alter these. The SLIDER_UNITS attribute are unique to each call to G_Pulse.
This allows changing the value seen by a particular event by some multiplication factor. For
example, the following two statements create a single slider in the Acquisition window
(opened by the acqi command) labeled PW that will control two separate pulses.
G_Pulse(PULSE_DEVICE, TODEV,

PULSE_WIDTH, pw,

SLIDER_LABEL, "PW",

SLIDER_SCALE, 1,

SLIDER_MAX, 1000,

SLIDER_MIN, 0,

SLIDER_UNITS, 1.0e-6,

0);

G_Pulse(PULSE_DEVICE, TODEV,

PULSE_WIDTH, pw*2.0,

SLIDER_LABEL, "PW",

SLIDER_UNITS, 2.0e-6,

0);

The width of the first pulse will initially be pw, as set by the PULSE_WIDTH attribute for
the first G_Pulse call. The width of the second pulse will initially be pw*2.0, as set by
the PULSE_WIDTH attribute for the second G_Pulse call.

When the slider is changed in acqi, the amount that the actual pulse width changes is
determined by the product of the slider change and the respective multiplicative factors
specified by the attribute SLIDER_UNITS. For example, if the slider increased by 3 units,
the first pulse width would by increased by 3 * 1.0e-6 seconds and the second pulse would
be increased by 3 * 2.0e-6 seconds. In this way, the initial 1 to 2 ratio in pulse widths is
maintained while the slider is changed.

Attribute Type Default Description

DELAY_TIME double d1 As specified in parameter set.

SLIDER_LABEL char * NULL Label (1 to 6 characters) for acqi or
NULL for no output to acqi.

SLIDER_SCALE int 1 Decimal places (0 to 3) displayed.

SLIDER_MAX int 60 Maximum value on the slider.

SLIDER_MIN int 0 Minimum value on the slider.

SLIDER_UNITS double 1.0 Delays are in seconds.

Chapter 2. Pulse Sequence Programming

96 VnmrJ User Programming 01-999253-00 A0604

Fine Power Subroutine

The G_Power subroutine is used on systems with the optional linear fine attenuators. It
has the following syntax:
G_Power(POWER_VALUE, tpwrf,

POWER_DEVICE, TODEV,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 1,

SLIDER_MAX, 4095,

SLIDER_MIN, 0,

SLIDER_UNITS, 1.0,

0);

The following table describes the attributes used with G_Power:

Examples of using G_Power:
G_Power(0);

G_Power(POWER_VALUE, dpwrf,

POWER_DEVICE, DODEV,

0); /* required terminating zero */

2.8 Hardware Looping and Explicit Acquisition
The loop and endloop statements described previously generate a soft loop, which
means that they force the acquisition computer to repeatedly place the information
contained within the loop into the pulse program buffer (a FIFO). If this loop must run
extremely fast, a condition may arise in which the acquisition computer is not able to
provide input to the pulse program buffer as fast as the sequence is required to operate, and
this technique does not work.

Because of this problem, a different mode of looping known as hardware looping is
supported in certain UNITYINOVA and MERCURYplus/-Vx systems. In this mode, the pulse
program buffer provides its own looping, and the speed can be at the maximum possible
rate, with the only limitation being the number of events that can occur during each
repetition of the loop. Table 22 lists statements related to hardware looping.

Attribute Type Default Description

POWER_VALUE double tpwrf As specified in parameter set.

POWER_DEVICE int TODEV TODEV for transmitter channel or
DODEV for decoupler channel. On
UNITYplus also DO2DEV and DO3DEV
for 2nd and 3rd decoupler channels.

SLIDER_LABEL char * NULL Label (1 to 6 characters) for acqi or
NULL for no output to acqi.

SLIDER_SCALE int 1 Decimal places (0 to 3) on slider.

SLIDER_MAX int 4095 Maximum value on the slider.

SLIDER_MIN int 0 Minimum value on the slider.

SLIDER_UNITS double 1.0 Power in arbitrary units.

2.8 Hardware Looping and Explicit Acquisition

01-999253-00 A0604 VnmrJ User Programming 97

Controlling Hardware Looping

Use the starthardloop(numrepetitions) and endhardloop() statements
start and end a hardware loop. The numrepetitions argument to starthardloop
must be a real-time integer variable, such as v2, and not a regular integer, a real number,
or a variable. The number of repetitions of the hardware loop must be two or more. If the
number of repetitions is 1, the hardware looping feature itself is not activated. A hardware
loop with a count equal to 0 is not permitted and will generate an error. Depending on the
pulse sequence, additional code may be needed to trap for this condition and skip the
starthardloop and endhardloop statements if the count is 0.

Only instructions that require no further intervention by the acquisition computer (pulses,
delays, acquires, and other scattered instructions) are allowed in a hard loop. Most notably,
no real-time math statements are allowed, thereby precluding any phase cycle calculations.
Also, no AP table with the autoincrement feature set can be used within a hard loop.
The number of events included in the hard loop, including the total number of data points
if acquisition is performed, must be as follows:

2048 or less for the MERCURYplus/-Vx STM/Output board, or Data Acquisition
Controller board.

In all cases, the number of events must be greater than 1. No nesting of hard loops is
allowed.

Note: Jut 1 is not enough.

For MERCURYplus/-Vx STM/Output boards, Data Acquisition Controller boards, There
are no timing restrictions between multiple, back-to-back hard loops. There is one subtle
restriction placed on the actual duration of a hard loop if back-to-back hard loops are
encountered: the duration of the ith hard loop must be N(i+1) * 0.4 ms, where N(i+1) is the
number of events occurring in the (i+1)th hard loop.

Number of Events in Hardware Loops

As indicated above, a limit of 2048 events for the MERCURYplus/-Vx STM/Output and the
Data Acquisition Controller with a requirement in all cases that the number of events be
greater than 1. But what is meant by “an event”?

An event is a single activation of the timing circuitry. Pulses, delays, phase shifts, etc., set
or reset various gate lines to turn on and off pulses, phase shift lines, etc. but activate the
timing circuitry in the same way. Timing is accomplished as follows:

• The Data Acquisition Controller board uses one time base of 12.5 ns.

• MERCURYplus/-Vx systems use two time bases: 0.1 µs and 1 ms. As many events as
needed are used. Delays greater than 96 seconds use a hard loop.

Therefore, larger timer words may produce multiple events. The final point to understand
is that some things that look like one event may actually be more. Consider, for example,
the statement rgpulse(pw,v1,rof1,rof2). Does this generate a single event? No,

Table 22. Hardware Looping Related Statements

acquire(num_points,sampling_interval Explicitly acquire data
clearapdatatable() Zero data in acquisition processor memory
endhardloop() End hardware loop
starthardloop(num_repetitions) Start hardware loop

Chapter 2. Pulse Sequence Programming

98 VnmrJ User Programming 01-999253-00 A0604

it generates at least three (or more depending on the length of the events). That is because
we generate first a time of rof1 with the amplifier unblanked but transmitter off, then a
time of pw with the transmitter on, and then a time rof2 with the transmitter off but the
amplifier unblanked. Times that are zero generate no events, however. For example,
rgpulse(5.0e–6,v1,0.0,0.0) generates only a single event.

Although pulses, delays, and data point acquisitions are the most common things to be in a
hardware loop, other choices are possible. Table 23 lists the number of events that may be
generated by each statement.

On MERCURYplus/-Vx systems, any delay (pulse, delay, decrgpulse, etc.) is
limited to 96 seconds within a hardware loop. In practice, this is not a restriction.

Table 23. Number of Events for Statements in a Hardware Loop

Statement UNITYINOVA MERCURYplus/-Vx

acquire (Data Acq. Controller board) 1 to 2048 —

acquire (Pulse Seq. Controller board) — —

acquire (Acq.
Controller board)

— —

acquire (Output board) — —

dcplrphase,
dcplr2phase, dcplr3phase

1 6

declvlon,
declvloff

1 —

decphase,
dec2phase, dec3phase

0 0

decpulse 0 1 or 2

decrgpulse,
dec2rgpulse, dec3rgpulse

0 3 to 6

delay 1 1 to 5

hsdelay 1 1 to 5

lk_hold,
lk_sample

1 3

obspulse 3 3 to 6

offset 9 72

power, obspower,
decpower,
dec2power,
dec3power

1 3

pwrf, obspwrf,
decpwrf, dec2pwrf, dec3pwrf

1 —

pulse,rgpulse 3 3 to 6

simpulse 3 to 5 3 to 15

sim3pulse 3 to 7 —

status 0 to 5 times
number of
channels

0 to 12

txphase 0 0

xmtrphase 1 6

2.8 Hardware Looping and Explicit Acquisition

01-999253-00 A0604 VnmrJ User Programming 99

Explicit Acquisition

Closely related to hardware looping is the explicit acquisition feature—the acquisition of
one or more pairs of data points explicitly by the pulse sequence. This feature lets you
intersperse pulses and data acquisition, and allows coding pulse sequences that acquire
multiple FIDs during the course of a pulse sequence (such as COCONOSY). It also allows
pulse sequences that acquire a single FID one or more points at a time (such as MREV-type
sequences).

The acquire(number_points,sampling_interval) statement explicitly
acquires data points at the specified sampling interval, where the sequence of events is
acquire a pair of points for 200 ns, delay for sampling_interval less 200 ns, then
repeat number_points/2 times. For example, acquiring an FID would use
acquire(np,1.0/sw).

Both arguments to the acquire statement must be real numbers or variables. If an
acquire statement occurs outside a hardware loop, the number of complex points to be
acquired must be a multiple of 2 for Data Acquisition Controller, and STM/Output boards.
Inside a hardware loop, Data Acquisition Controller and STM/Output boards can accept a
maximum of 2048 complex points, number_points must be a multiple of 2, because
only pairs of points can be acquired.

UNITYINOVA and MERCURYplus/-Vx systems include small overhead delays before and
after the acquire statement. The pre-acquire delay takes into account setting the
receiver phase (oph) and enabling data overflow detection. Disabling data overflow
detection creates a post-acquire delay. These overhead delays and associated functions
are placed outside the hardware loop when acquire statements are within a hardware
loop, and before the first acquire and after the last acquire, when more than one
acquire statement is used to acquire a FID.

Once an explicit acquisition is invoked, even if for one pair of data points, the standard
“implicit” acquisition is turned off, and the user is responsible for acquiring the full number
of data points. Failure to acquire the correct number of data points before the end of the
pulse sequence generates an error. The total number of data points acquired before the end
of the sequence must equal the specified number (np). An example of the programming
necessary to program a simple explicit acquisition, analogous to the normal implicit
acquisition, would look like this:
rcvron();

txphase(zero);

decphase(zero);

delay(alfa+(1.0/(beta*fb)));

acquire(np,1.0/sw);

Although generally not needed, the clearapdatatable() statement is available to
zero the acquired data table at times other than at the start of the execution of a pulse
sequence, when the data table is automatically zeroed.

The limitation that multiple hardloops cannot be nested has consequences for the use of the
acquire statement inside a hardloop. Depending on its arguments and how it is built into
a pulse sequence, the acquire statement may internally be done as a hardloop by itself.
However, a construct like the following does not work:
initval(np/2.0, v14);

starthardloop(v14);

acquire(2.0, 1.0/sw);

endhardloop();

A hardloop that consists of a single acquire call are not permitted, but such constructs
are not needed because a single statement can be used instead:

Chapter 2. Pulse Sequence Programming

100 VnmrJ User Programming 01-999253-00 A0604

acquire(np,1.0/sw);

This statement is not equivalent to the first construct because the acquire statement will
sample more than just two points (i.e., a complex data point) per loop cycle, thus allowing
for np greater than 2.0 × (maximum number of hardloop cycles). Note that the hardloop
uses a 16-bit loop counter. Therefore, the maximum number of cycles is 32767 (the largest
possible 16-bit number).

On the other hand, a hardloop that contains acquire together with other pulse sequence
events works fine as long as the number of complex points to be acquired plus the number
of extra FIFO words per loop cycle does not exceed the total number of words in the loop
FIFO:
initval(np/2.0, v14);

starthardloop(v14);

acquire(2.0, 1.0/sw - (rof1 + pw + rof2));

rgpulse(pw, v1, rof1, rofr2);

endhardloop;

Explicit hardloops with acquire calls are a standard feature in multipulse solids
sequences.

Receiver Phase For Explicit Acquisitions

Receiver phase can be changed for explicit acquisitions, the same as for implicit
acquisitions, by changing oph or by using the setreceiver statement. The value of
oph at the time of the acquisition of the first data point is the value that determines the
receiver phase setting for the duration of that particular “scan”—the receiver cannot be
changed after acquiring some data points and before acquiring the rest.

Multiple FID Acquisition

Explicit acquisition of data can also be used to acquire more than one FID per pulse
sequence (simultaneous COSY-NOESY for example). This can be done for 1D or 2D
experiments. The parameter nf, for number of FIDs, controls this if it is created and set.
To perform such an experiment, enter create('nf','integer') to create nf and
then set nf equal to an integer such as 2.

Once the data have been acquired, a second new parameter cf (current FID), which must
also be created, is used to identify the FID to manipulate. Setting cf=2, for example, would
recognize the second FID in the COSY-NOESY experiment (and hence would produce a
NOESY spectrum after Fourier transformation). Note that this is distinct from the standard
array capability and is, in fact, compatible with the standard arrays. Thus, you can acquire
an array of ten experiments, with each consisting of three FIDs that are generated during
each pulse sequence. To display the second FID of the seventh experiment, for example,
you would type cf=2 dfid(7).

2.9 Pulse Sequence Synchronization
If broken down to its fundamental elements, a pulse sequence is just a set of accurately
timed delays in which the appropriate hardware is turned on or off.

2.10 Pulse Shaping

01-999253-00 A0604 VnmrJ User Programming 101

External Time Base

For purposes of synchronization, an external timebase halts the pulse sequence until the
number of external events in the count field have occurred. The source of events or ticks of
this external timebase is up to the user. See your system technical reference for specifics.
This feature is not available on MERCURYplus/-Vx systems.

Controlling Rotor Synchronization

Statements for rotor control on Inova systems with solids rotor synchronization hardware
are rotorperiod, rotorsync, and xgate. Table 24 summarizes these statements.

• To obtain the rotor period, use rotorperiod(period), where period is a real-
time variable into which is the rotor period is placed (e.g., rotorperiod(v5)). The
period is placed into the referenced variable as an integer in units of 100 ns.

• To insert a variable-length delay, use rotorsync(rotations), where
rotations is a real-time variable that points to the number of rotations to delay, for
example, rotorsync(v6). The delay allows synchronizing the execution of the
pulse sequence with a particular orientation of the sample rotor. When the
rotorsync statement is encountered, the pulse sequence is stopped until the number
of rotor rotations has occurred as referenced by the real-time variable given.

• To halt the pulse sequence from an external event, use xgate(events), where
events is a double variable (e.g., xgate(2.0)). When the number of external
events has occurred, the pulse sequence continues.

Both rotorsync and xgate can be used, but there is a very important distinction
between the two—rotorsync synchronizes to the exact position of the rotor, whereas
xgate synchronizes to the zero degree position of rotation. For example, if the rotor is at
90°, then for xgate(1.0), the pulse sequence will begin when the rotor is at zero
degrees, a rotation of 270°; however, for the equivalent rotorsync, the pulse sequence
will begin when the rotor is at 90°, or 360° rotation.

2.10 Pulse Shaping
Waveform generators are optional on UNITYINOVA for controlling rf pulse shapes on one or
more rf channels, programmed decoupling patterns, and gradient shapes for imaging
applications. For MERCURYplus/-Vx, the shapes are Dante style pulses. Shaped decupling
is not possible on MERCURYplus/-Vx systems. For pulse shaping programming using
Pbox, see the manual VnmrJ Liquids NMR.

Pulse control of the waveform generators consists of two separate parts:

• A text file describing the shape of a waveform.

• A pulse sequence statement applying that waveform in an appropriate manner.

The power of rf shape or decoupler pattern is controlled by the standard power and fine
power control statements for that rf channel. For example, obspower and obspwrf will

Table 24. Rotor Synchronization Control Statements

rotorperiod(period) Obtain rotor period of high-speed rotor

rotorsync(rotations) Gated pulse sequence delay from MAS rotor position

xgate(events) Gate pulse sequence from an external event

Chapter 2. Pulse Sequence Programming

102 VnmrJ User Programming 01-999253-00 A0604

scale the overall power of a shape on the observe channel. For MERCURYplus/-Vx only
coarse power is used.

File Specifications

The macro sh2pul sets up a shaped two-pulse (SH2PUL) experiment. This sequence
behaves like the standard two-pulse sequence S2PUL except that the normal hard pulses
are changed into shaped pulses from the waveform generator.

To find pulse shape definitions, the pulse sequence generation (PSG) software looks in a
user’s vnmrsys/shapelib directory and then in the system's shapelib. Each
shapelib directory contains files specifying the defined shapes for rf pulses, decoupling,
and gradient waveforms. To differentiate the files in a shapelib directory, each type uses
a different suffix:

Each pattern file is a set of element specifications with one element per line. Therefore, a
67 element pattern contains 67 lines. Any blank lines and comments (characters after a #
sign on a line) in a specification are ignored.

Shapes can be created by macro, by programs, or by hand. The UnityInova specifications for
each kind of pattern are listed in the following table (if a field is not specified, the default
given is used). As an example, an slightly modified excerpt from a file in the system
directory shapelib is also shown.

RF Patterns

For example, the first 8 elements (after the comment lines) of the file sinc.RF:
0.000 0.000 1.000000

0.000 8.000 1.000000

0.000 16.000 1.000000

0.000 24.000 1.000000

0.000 32.000 1.000000

0.000 40.000 1.000000

0.000 48.000 1.000000

0.000 56.000 1.000000

In using the .RF patterns, the actual values for the amplitude are treated as relative values,
not as absolute values. All of the amplitudes in the rf shape file are divided by the largest
amplitude in the shape file and then multiplied by 1023.0. The net result is that shapes

Pattern Type Suffix Example

rf pulses .RF gauss.RF

decoupling .DEC mlev16.DEC

gradient .GRD hard.GRD

Column Description Limits Default

1 Phase angle (in degrees)
Phase limits

0.5° resolution
No limit on magnitude

Required

2 Amplitude 0 to scalable max max

3 Relative duration 0, or 1 to 255 1

4 Transmitter gate 0, 1 1 (gate on)

2.10 Pulse Shaping

01-999253-00 A0604 VnmrJ User Programming 103

with values of the amplitudes between 0 to 10.0, or between 0 to 1023.0, or between 0
to 100000.0, are effectively all the same shape.

To implement .RF patterns with absolute values for amplitudes, you can use a shape
element with 0 duration to fix the scaling factor for the shape. Here is a simple example:

A shape with elements
0.00 10.0 1.0

0.00 100.0 1.0

0.00 20.0 1.0

will result in an actual shape of
0.00 1023.0*10.0/100.0 1.0 0.00 102.30 1.0

0.00 1023.0*100.0/100.0 1.0 or 0.00 1023.0 1.0

0.00 1023.0*20.0/100.0 1.0 0.00 204.60 1.0

A shape with elements
0.00 1023.0 0.0

0.00 10.0 1.0

0.00 100.0 1.0

0.00 20.0 1.0

will result in an actual shape of
0.00 1023.0*10.0/1023.0 1.0 0.00 10.0 1.0

0.00 1023.0*100.0/1023.0 1.0 or 0.00 100.0 1.0

0.00 1023.0*20.0/1023.0 1.0 0.00 20.0 1.0

Decoupler Patterns (UnityINOVA Only)

For example, the first 8 elements (after the comment lines) of the file waltz16.DEC:
270.0 180.0

360.0 0.0

180.0 180.0

270.0 0.0

90.0 180.0

180.0 0.0

360.0 180.0

180.0 0.0

In using the gate field in .DEC patterns, note the following:

• The waveform generator gate is OR’ed with the output board gate. This means that any
time the output board gate is on, the transmitter is on, irrespective of any waveform
generator gate.

• If a decoupler pattern is activated under status control (using dmm='p'), an implicit
output board gate statement is added. In this situation, any 0s or 1s in the gate field of
the .DEC pattern are irrelevant because they are overridden (as indicated above).

Column Description Limits Default

1 Tip angle per element (in degrees)
Phase limits

0° to 500°, 1° resolution
No limit on magnitude

Required

2 RF phase (in degrees) 0.5° resolution Required

3 Amplitude 0 to scalable max max

4 Transmitter gate 0, 1 0 (gate off)

Chapter 2. Pulse Sequence Programming

104 VnmrJ User Programming 01-999253-00 A0604

• If a decoupler pattern is activated by the decprgon statement, the waveform
generator gate is the controlling factor. If this gate is specified as 0s or 1s in the .DEC
file, that gating will occur. If there is no gate field in the .DEC file, the default
occurs—the gate is set to 0 and the decoupler is off. An alternate is to follow the
decprgon statement with some kind of gate statement (e.g., decon) to turn on the
output board gate (overriding the default of the gate set to 0 from the waveform
generator) and to proceed the decprgoff statement with a statement to turn the gate
off (for example, decoff).

Gradient Patterns

For example, the first 8 elements (after the comment lines) of the file trap.GRD:
1024 1

2048 1

3072 1

4096 1

5120 1

6144 1

7168 1

8192 1

Performing Shaped Pulses

Statements to perform shaped pulses on MERCURYplus/-Vx and UNITYINOVA systems with
optional waveform generators are decshaped_pulse, dec2shaped_pulse,
dec3shaped_pulse, shaped_pulse. UnityINOVA also has simshaped_pulse,
and sim3shaped_pulse. Table 25 provides a summary of these statements.

Shaped Pulse on Observe Transmitter or Decouplers

To perform a shaped pulse on the observe transmitter, use
shaped_pulse(shape,width,phase,RG1,RG2), where shape is the name of a
text file in shapelib that stores the rf pattern (leave off the .RF file extension), width

Column Description Limits Default

1 Output amplitude –32767 to 32767, 1 unit resolution Required

2 Relative duration 1 to 255 1

Table 25. Shaped Pulse Statements

decshaped_pulse* Perform shaped pulse on first decoupler
dec2shaped_pulse* Perform shaped pulse on second decoupler
dec3shaped_pulse* Perform shaped pulse on third decoupler
shaped_pulse* Perform shaped pulse on observe transmitter
simshaped_pulse* Perform simultaneous two-pulse shaped pulse
sim3shaped_pulse* Perform a simultaneous three-pulse shaped pulse
* decshaped_pulse(shape,width,phase,RG1,RG2)

dec2shaped_pulse(shape,width,phase,RG1,RG2
dec3shaped_pulse(shape,width,phase,RG1,RG2)
simshaped_pulse(obsshape,decshape,obswidth,decwidth,

obsphase,decphase,RG1,RG2)
sim3shaped_pulse(obsshape,decshape,dec2shape,obswidth,

decwidth,dec2width,obsphase,decphase,dec2phase,RG1,RG2)

2.10 Pulse Shaping

01-999253-00 A0604 VnmrJ User Programming 105

is the duration of the pulse; phase is the phase of the pulse (it must be a real-time
variable); RG1 is the delay between unblanking the amplifier and gating on the transmitter
(the phase shift occurs at the beginning of this delay); and RG2 is the delay between gating
off the transmitter and blanking the amplifier (e.g.,
shaped_pulse("gauss",pw,v1,rof1,rof2)).

If a rf channel does not have a waveform generator, the statements shaped_pulse,
decshaped_pulse, and dec2shaped_pulse provide pulse shaping through the
linear attenuator and the small-angle phase shifter on the AP bus. This type of pulse shaping
is available only on UNITYINOVA systems. AP tables for the attenuation and phase values are
created on the fly, and the real-time variables v12 and v13 are used to control the
execution of the shape. On previous versions of VNMR, this pulse shaping through the AP
bus was exclusively controlled by the statements apshaped_pulse,
apshaped_decpulse, and apshaped_dec2pulse.

For shaped pulses under waveform generator control, the minimum pulse length is 0.2 µs.
The overhead at the beginning and end of the shaped pulse varies with the system and the
type of acquisition controller board:

• On UNITYINOVA: 0.95 µs at start, 0 at end.

• On systems with an Acquisition Controller board: 10.75 µs at start, 4.3 µs at end.

• On systems with an Output board: 10.95 µs at start, 4.5 µs at end.

If the length is less than 0.2 µs, the pulse is not executed and there is no overhead.

The decshaped_pulse, dec2shaped_pulse, and dec3shaped_pulse
statements allow a shaped pulse to be performed on the first, second, and third decoupler,
respectively. The arguments and overhead used for each is the same as shaped_pulse,
except they apply to the decoupler controlled by the statement.

Simultaneous Two-Pulse Shaped Pulse

On UnityINOVA, simshaped_pulse (obsshape, decshape, obswidth,
decwidth, obsphase,decphase,RG1,RG2) performs a simultaneous, two-pulse
shaped pulse on the observe transmitter and the first decoupler under waveform generator
control. obsshape is the name of the text file that contains the rf pattern to be executed
on the observe transmitter; decshape is the name of the text file that contains the rf
pattern to be executed on the first decoupler; obswidth is the duration of the pulse on the
observe transmitter; decwidth is the duration of the pulse on the first decoupler;
obsphase is the phase of the pulse on the observe transmitter (it must be a real-time
variable); decphase is the phase of the pulse on the first decoupler (it must be a real-time
variable); RG1 is the delay between unblanking the amplifier and gating on the first rf
transmitter (all phase shifts occur at the beginning of this delay); and RG2 is the delay
between gating off the final rf transmitter and blanking the amplifier; for example:
simshaped_pulse("gauss","hrm180",pw,p1,v2,v5,rof1,rof2)

The overhead at the beginning and end of the simultaneous two-pulse shaped pulse varies
with the system and acquisition controller board:

• On UNITYINOVA: 1.45 µs at start, 0 at end.

• On systems with an Acquisition Controller board: 21.5 µs at start, 8.6 µs at end.

• On systems with an Output board: 21.7 µs at start, 8.8 µs at end.

These values hold regardless of the values for obswidth and decwidth.

If either obswidth or decwidth is 0.0, no pulse occurs on the corresponding channel.
If both obswidth and decwidth are non-zero and either obsshape or decshape is

Chapter 2. Pulse Sequence Programming

106 VnmrJ User Programming 01-999253-00 A0604

set to the null string (''), then a hard pulse occurs on the channel with the null shape name.
If either the pulse width is zero or the shape name is the null string, then a waveform
generator is not required on that channel.

Simultaneous Three-Pulse Shaped Pulse

The sim3shaped_pulse statement performs a simultaneous, three-pulse shaped pulse
under waveform generator control on three independent rf channels. The arguments to
sim3shaped are the same as defined previously for simshaped_pulse, except that
dec2shape is the name of the text file that contains the rf pattern to be executed on the
second decoupler, dec2width is the duration of the pulse on the second decoupler, and
dec2phase is the phase (a real-time variable) of the pulse on the second decoupler (e.g.,
sim3shaped_pulse("gauss","hrm180","sinc",pw,p1,v2,v5,v6,
rof1,rof2)).

The overhead at the beginning and end of the simultaneous three-pulse shaped pulse varies
with the system and acquisition controller board:

• On UNITYINOVA: 1.95 µs at start, 0 at end.

• On systems with an Acquisition Controller board: 32.25 µs at start, 12.9 µs at end.

• On systems with an Output board: 32.45 µs at start, 13.1 µs at end.

These values hold regardless of the values for obswidth, decwidth, and dec2width.

By setting one of the pulse lengths to the value 0.0, sim3shaped_pulse can also
perform a simultaneous two-pulse shaped pulse on any combination of three rf channels.
(e.g., to perform simultaneous shaped pulses on the first decoupler and second decoupler,
but not the observe transmitter, set the obswidth argument to 0.0).

If any of the shape names are set to the null string (''), a hard pulse occurs on the channel
with the null shape name. If either the pulse width is zero or the shape name is the null
string, a waveform generator is not required on that channel.

Programmable Transmitter Control

Statements related to programmable transmitter control on UNITYINOVA systems with
optional waveform generators are obsprgoff and obsprgon for the observe
transmitter, decprgoff and decprgon for the first decoupler, dec2prgoff and
dec2prgon for the second decoupler, and dec3prgoffand dec3prgon for the third
decoupler. Table 26 provides a summary of these statements.

Table 26. Programmable Control Statements

decprgoff() End programmable decoupling on first decoupler
dec2prgoff() End programmable decoupling on second decoupler
dec3prgoff() End programmable decoupling on third decoupler
decprgon* Start programmable decoupling on first decoupler
dec2prgon* Start programmable decoupling on second decoupler
dec3prgon* Start programmable decoupling on third decoupler
obsprgoff() End programmable control of observe transmitter
obsprgon* Start programmable control of observe transmitter
* decprgon(name,90_pulselength,tipangle_resoln)

dec2prgon(name,90_pulselength,tipangle_resoln)
dec3prgon(name,90_pulselength,tipangle_resoln)
obsprgon(name,90_pulselength,tipangle_resoln)

2.10 Pulse Shaping

01-999253-00 A0604 VnmrJ User Programming 107

Programmable Control of Observe Transmitter

Use obsprgon(name,90_pulselength,tipangle_resoln) to set
programmable phase and amplitude control of the observe transmitter. name is the name
of the file in shapelib that stores the decoupling pattern, 90_pulselength is the
pulse duration for a 90° tip angle, and tipangle_resoln is the resolution in tip-angle
degrees to which the decoupling pattern is stored in the waveform generator (e.g.,
obsprgon("waltz16",pw90,90.0)).

The obsprgon statement returns the number of 50-ns ticks (as an integer value) in one
cycle of the decoupling pattern. Explicit gating of the observe transmitter with xmtron
and xmtroff is generally required.

To terminate any programmable phase and amplitude control on the observe transmitter
under waveform generator control, use obsprgoff().

Programmable Control of Decouplers

The decprgon, dec2prgon, and dec3prgon statements set programming decoupling
on the first, second, and third decouplers, respectively. The arguments for each statement
are the same as obsprgon, except they apply to the decoupler controlled by the statement.
Each statement returns the number of 50 ns ticks (as an integer value) in one cycle of the
decoupling pattern. Similarly, explicit gating of the selected decoupler is generally
required, and termination of the control is done by the decprgoff(), dec2prgoff(),
and dec3prgoff() statements, respectively.

Arguments to obsprgon, decprgon, dec2prgon, and dec3prgon can be variables
(which need the appropriate getval and getstr statements) to permit changes via
parameters.

The macro pwsadj(shape_file,pulse_parameter) adjusts the pulse interval
time so that the pulse interval for the shape specified by shape_file (a file from
shapelib) is an integral multiple of 100 ns. This eliminates a time truncation error in the
execution of the shaped pulse by the programmable pulse modulators.
pulse_parameter is a string containing the adjusted pulse interval time.

Setting Spin Lock Waveform Control

Statements for spin lock control on UNITYINOVA systems with optional waveform generators
are spinlock, decspinlock, dec2spinlock, and dec3spinlock for the
observe transmitter, first decoupler, second decoupler, and third decoupler, respectively.
Table 27 provides a summary of these statements.

Table 27. Spin Lock Control Statements

decspinlock* Set spin lock waveform control on first decoupler
dec2spinlock* Set spin lock waveform control on second decoupler
dec3spinlock* Set spin lock waveform control on third decoupler
spinlock* Set spin lock waveform control on observe transmitter
* decspinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)

decs2pinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)
decs3pinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)
spinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)

Chapter 2. Pulse Sequence Programming

108 VnmrJ User Programming 01-999253-00 A0604

Spin Lock Waveform Control on Observe Transmitter

To execute a waveform-generator-controlled spin lock on the observe transmitter, use
spinlock(name,90_pulselength,tipangle_resoln,phase,ncycles),
name is the name of the file in shapelib that stores the decoupling pattern (leave off
the .DEC file extension); 90_pulselength is the pulse duration for a 90° tip angle;
tipangle_resoln is the resolution in tip-angle degrees to which the decoupling pattern
is stored in the waveform generator; phase is the phase angle of the spin lock (it must be
a real-time variable); and ncycles is the number of times that the spin-lock pattern is to
be executed (e.g., spinlock('mlev16',pw90,90.0,v1,50)).

Both rf gating and the mixing delay are handled within this statement.

Spin Lock Waveform Control on Decouplers

The decspinlock, dec2spinlock, and dec3spinlock set spin lock waveform
control on the first, second, and third decouplers, respectively. The arguments are the same
as used with spinlock, except that 90_pulselength is the pulse duration for a 90° tip
angle on the decoupler controlled by the statement.

Arguments to spinlock, decspinlock, dec2spinlock, and dec3spinlock can
be variables (which would need the appropriate getval and getstr statements) to
permit changes via parameters.

Shaped Pulse Calibration

Macros bandinfo and pulseinfo can be run interactively (without arguments) to give
a table with shaped pulse information for calibration. bandinfo takes the name of the
shape and the bandwidth desired for the pulse and gives a table containing the duration of
that pulse and a predicted 90° pulse power setting. pulseinfo takes the name of the
shape and the duration of the pulse and gives the bandwidth of that pulse and a predicted
90° pulse power setting. Both macros can also be called from another macro. For more
information, refer to the Command and Parameter Reference.

2.11 Shaped Pulses Using Attenuators
UNITYINOVA and MERCURYplus/-Vx systems are equipped with computer-controlled
attenuators (0 dB to 79 dB on UNITYINOVA, 0 dB to 63 dB on (MERCURYplus/-Vx) on the
observe and decouple channels, linear amplifiers, and T/R (transmit/receive) switch
preamplifiers that allow low-level transmitter signals to be generated and pass unperturbed
into the probe. The combination of these elements means that the capability for performing
shaped pulse experiments is inherent in the systems and does not require the more
sophisticated waveform generation capability of the optional waveform generators.

Hardware differences must be considered between systems, with and without the waveform
generators. The attenuators have more limited dynamic range, slower switching time, and
fewer pulse programming steps available. Nonetheless, the capability still allows
significant experiments using only attenuators.

Three issues affect all shaped pulses, but particularly attenuator-based pulses:

• Number of steps – The more steps used, the closer the shape approximates a continuous
shape. At what level does this become overkill? For the most common shape,
Gaussian, as few as 19 steps have been shown to be completely acceptable.

2.11 Shaped Pulses Using Attenuators

01-999253-00 A0604 VnmrJ User Programming 109

• Dynamic range – How much dynamic range is required within a shape for proper
results. For a Gaussian shape it has been shown that 33 dB is a useful limit; little or no
improvement is achieved with more. With a single 63-dB attenuator, then, a Gaussian
pulse with 33 dB dynamic range can be superimposed on a level ranging from 0- to 30-
dB, more with a 79-dB attenuator.

• Overall power level of the shape – A Gaussian pulse has an effective power
approximately 8 dB lower than a rectangular pulse with an identical peak power. This
means that given a full-power rectangular pulse of, say, 25 kHz, a Gaussian pulse with
the same peak power has approximately a 10 kHz strength. Using instead a Gaussian
pulse with only 33 dB dynamic range and a peak power 30 dB lower results in a shaped
pulse of approximately 312 Hz, which is useful for some applications, like exciting the
NH region of a spectrum, but too strong for others.

To increase the dynamic range (and decrease the strength of the shaped pulse) further, we
can use one of three approaches:

• Replace the 63-dB attenuator with a 79-dB unit. This adds 16 dB of dynamic range,
producing shaped pulses in the range of 50 Hz, suitable for multiplet excitation.

• Add an additional 63-dB attenuator in series with the first. If you use the entire 63 dB
of the second attenuator to control the level of the pulse and use the first attenuator only
for the shape, you still produce a pulse whose power is (for a Gaussian) 71 dB (63 + 8)
below that of the hard pulse. This would produce a 7 Hz pulse, about as weak a pulse
as one ever needs (and which could be reduced 30 dB further by only using 33 dB of
the first attenuator for the shape). It is possible to use this control to create shaped
pulses without a waveform generator.

• Use a time-sharing or “DANTE” approach, applying the shaped pulse in such a way
that it is switched on and off with a particular duty cycle during the course of the shape.
A 10% duty cycle, for example, reduces the power by a factor of ten.

On UNITYINOVA systems, both the phase and linear attenuator on each transmitter can be
controlled through pulse sequence statements (see pwrf, obspwrf, decpwrf,
dec2pwrf, dec3pwrf, pwrm, rlpwrm, and dcplrphase) so it is possible to create
shaped pulses without a waveform generator.

AP Bus Delay Constants

Table 28 lists the most important AP bus delay “constants” (C macros). The list is
incomplete, but a complete list can be found at the bottom of the text file
/vnmr/psg/apdelay.h.

The constants OFFSET_DELAY and OFFSET_LTCH_DELAY are applicable only to
UNITYINOVA systems that use PTS synthesizers with latching on the input. Although the
constants are identical, use only OFFSET_DELAY on these systems.

Controlling Shaped Pulses Using Attenuators

The statements power, obspower, decpower, dec2power, dec3power, and
(optionally) pwrf, obspwrf, decpwrf, dec2pwrf, dec3pwrf, pwrm, and rlpwrm
are used to change the attenuation (and hence the power level) of either the transmitter or
decouplers. A pulse sequence in which one of these statements is placed in a loop and
repeatedly executed with different values for the amount of attenuation therefore results in
a shaped pulse. This can be a C loop or a “soft” loop (using the loop statement), but not a
“hard” loop. The successive values for the power may be calculated in real-time, read from
a table (assuming that only positive numbers are involved), or set up from a static C

Chapter 2. Pulse Sequence Programming

110 VnmrJ User Programming 01-999253-00 A0604

variable. Although no standard pulse sequences exist that implement this feature, several
contributions to the user library provide excellent examples of how to do this.

The statements shaped_pulse, decshaped_pulse, and dec2shaped_pulse
provide fine-grained “waveform generator-type” pulse shaping through the AP bus. If an
rf channel does not have a waveform generator configured, this is the same type of pulse
shaping that statements apshaped_pulse, apshaped_decpulse, and
apshaped_dec2pulse provide, and is a simpler implementation.

The apshaped_pulse, apshaped_decpulse, and apshaped_dec2pulse pulse
statements use table variables to define the amplitude and phase tables, whereas the
standard shaped_pulse, decshaped_pulse, and dec2shaped_pulse
statements create and use these tables on the fly. Both types of AP bus waveshaping
statements use real-time variables v12 and v13 to control shape execution. Table 29
summarizes the statements described in this section.

Table 28. AP Bus Delay Constants

Constant Indicates Duration of

ACQUIRE_START_DELAY* Overhead at start of acquisition

ACQUIRE_STOP_DELAY* Overhead at end of acquisition

DECMODFREQ_DELAY Overhead for setting modulator frequency

GRADIENT_DELAY rgradient, zgradpulse (two times)

OBLIQUEGRADIENT_DELAY oblique_gradient (applicable only to imaging)

OFFSET_DELAY** decoffset, dec2offset, obsoffset, offset

OFFSET_LTCH_DELAY*** decoffset, dec2offset, obsoffset, offset

POWER_DELAY decpower, dec2power, obspower, power, rlpower, etc.

PRG_OFFSET_DELAY Time shift of WFG output with obsprgon, etc.

PRG_START_DELAY decprgon, dec2prgon, obsprgon, etc.

PRG_STOP_DELAY decprgoff, dec2prgoff, obsprgoff, etc.

PWRF_DELAY decpwrf, dec2pwrf, obspwrf, pwrf

SAPS_DELAY dcplrphase, dcplr2phase, dcplr3phase,
xmtrphase

SETDECMOD_DELAY Overhead for setting modulator mode

SPNLCK_START_DELAY Overhead at start of decspinlock, spinlock, etc.

SPNLCK_STOP_DELAY Overhead at end of decspinlock, spinlock, etc.

VAGRADIENT_DELAY vagradpulse (two times)

WFG_OFFSET_DELAY Time shift of WFG output

WFG_START_DELAY Overhead at start of decshaped_pulse, shaped_pulse

WFG_STOP_DELAY**** Overhead at end of decshaped_pulse, shaped_pulse

WFG2_START_DELAY Overhead at start of simshaped_pulse, etc.

WFG2_STOP_DELAY**** Overhead at end of simshaped_pulse, etc.

WFG3_START_DELAY Overhead at start of sim3shaped_pulse, etc.

WFG3_STOP_DELAY**** Overhead at end of sim3shaped_pulse, etc.

* On UNITYINOVA systems; on other systems, this constant is zero (no support for FSQ).
** Use OFFSET_DELAY only on UNITYINOVA systems.
*** Only on systems that use PTS synthesizers with latching.
**** On UNITYplus systems only, this constant is zero.

2.12 Internal Hardware Delays

01-999253-00 A0604 VnmrJ User Programming 111

MERCURYplus/-Vx systems support the shaped_pulse and decshaped_pulse.
However, shapes are created using DANTE style pulses, not using a waveform generator.
Furthermore, the apshaped_pulse is supported. However, only power level is
controlled, not phase, which makes gauss.RF the only usuable shape.

Controlling Attenuation

On systems with two attenuators, connect the two existing attenuators in series, leaving one
channel without computer-controlled attenuation. This is often acceptable in homonuclear
experiments, while in heteronuclear experiments and some homonuclear experiments it
may be desirable to insert a simple fixed attenuator in-line in the channel that isn’t being
shaped.

If you take this approach, the tpwr and dpwr parameters (or, equivalently, the
power(...,OBSch) and power(...,DECch) pulse sequence statements) control the two
attenuators. The simplest approach is to use one of the two attenuators to control the shape,
while using the second to set the overall level of the pulse. Assuming that there are also
hard pulses in the pulse sequence, you’ll also need to remember to write your pulse
sequence to return both attenuators to values suitable for the hard pulse.

2.12 Internal Hardware Delays
Many pulse sequence statements result in “hidden” delays. These delays are not intrinsic to
pulse sequence generation (PSG) software but are rather internal to the hardware.

Each AP bus instruction is considered a FIFO event and incurs the following delay, which
is the time it takes to set the hardware on the AP bus:

• On UNITYINOVA, 0.5-µs delay (except PFG, which has a 1.0-µs delay).

• On MERCURYplus/-Vx, 1.2 µs delay.

Delays from Changing Attenuation

The pulse sequence statement power, which is used to change the level of attenuation
produced by a 63-dB rf attenuator in the system, leads to the following values:

Table 29. Statements for Pulse Shaping Through the AP Bus

apshaped_decpulse* First decoupler pulse shaping via the AP bus
apshaped_dec2pulse* Second decoupler pulse shaping via the AP bus
apshaped_pulse* Observe transmitter pulse shaping via the AP bus
decshaped_pulse* Perform shaped pulse on first decoupler
dec2shaped_pulse* Perform shaped pulse on second decoupler
shaped_pulse* Perform shaped pulse on observe transmitter
* apshaped_decpulse(shape,pulse_width,pulse_phase,

power_table,phase_table,RG1,RG2)
apshaped_dec2pulse(shape,pulse_width,pulse_phase,

power_table,phase_table,RG1,RG2)
apshaped_pulse(shape,pulse_width,pulse_phase,power_table,

phase_table,RG1,RG2)
decshaped_pulse(shape,width,phase,RG1,RG2)
dec2shaped_pulse(shape,width,phase,RG1,RG2)
dec3shaped_pulse(shape,width,phase,RG1,RG2)
shaped_pulse(shape,width,phase,RG1,RG2)

Chapter 2. Pulse Sequence Programming

112 VnmrJ User Programming 01-999253-00 A0604

• On UNITYINOVA, 1 AP bus instruction, 0.5-µs concomitant internal delay (WFG start
takes 1 AP bus instructions at 0.5 µs and extra board delay of 0.75 µs, total 1.25 µs).

• On MERCURYplus/-Vx, 4 AP bus instructions, 4.8-µs concomitant internal delay.

Table 30 lists all pulse sequence statements that lead to an internal delay and the magnitude
of this delay. Similar information to the table is contained in the PSG header file
apdelay.h, which resides in the VnmrJ system PSG directory.

On systems with the Output board, Table 30 indicates that the pulse sequence statement
power incurs a 4.5 µs internal delay, not a 4.3 µs delay as previously stated. Of the 4.5 µs
delay, 0.2 µs is to allow any high-speed line, (for example, the transmitter gate control line)
that has been turned off in PSG at the end of the preceding delay to actually turn off in
hardware before the AP bus instructions have been issued from the FIFO. Otherwise, any
such high-speed line would not be turned off in hardware until the end of the series of AP
bus instructions. This extra 0.2 µs delay can be avoided with the apovrride statement.

Delays from Changing Status

Other delays can be incurred with the status and setstatus statements. The first
occurrence of the status statement always incurs the full delay. On subsequent
occurrences of status, the delay depends on values of the parameters dmm, dmm2, and
dmm3. There are three parts that contribute to this delay:

• Modulation mode – On UNITYINOVA, if and only if the modulation mode changes, 1.0
µs is added to the delay, and the first occurrence of 's' in the dm string (or dm2 or
dm3) adds an extra 1.0 µs. On systems with apinterface=3, if and only if the
modulation mode changes. Note that the waveform generator (mode 'p') needs CW
modulation (mode 'c').

• Waveform generator – Starting a waveform generator adds 1.25 µs on UNITYINOVA and
10.75 µs on other systems. Stopping a waveform generator adds 1 µs on the
UNITYINOVA and 4.3 µs on other systems. (The modulation mode is to or from 'p'.)
The waveform generator also has an offset or propagation delay, which is discussed on
page 114.

• Modulation frequency – If the modulation frequency changes, 1 µs is added on the
UNITYINOVA and 6.45 µs on other systems. Note that for the UNITYINOVA, this is different
for a shaped pulse. The modulation frequency can change if the statement
setstatus is called with a modulation frequency different from the parameter
corresponding to the transmitter set, or if the modulation mode changes to or from 'g'
and 'r'. If the change is to 'g' and 'r', the modulation frequency is internally
scaled, changing the frequency.

Finally, these delays are added up for each channel, and this becomes the delay incurred for
status or setstatus. For example, if dm='nnnss', dmm='cpfwp', and
dm2='y', then dmm2='cccpc', Table 31 summarizes the internal intervals, assuming
status(A) is the initial state.

To keep the status timing constant, use the statusdelay statement. This statement
allows the user to specify a defined period of time for the status statement to execute.
For example, if statusdelay('B',2.0e-5) is used, as long as the time it takes to
execute status for state B is less than 20 microseconds, the statement will always take
20 microseconds. If the time to execute state B is greater than 20 microseconds, the
statement still executes, but a warning message is generated.

2.12 Internal Hardware Delays

01-999253-00 A0604 VnmrJ User Programming 113

Table 30. AP Bus Overhead Delays

Internal Delay (µs)

Pulse Sequence Statements UNITYINOVA MERCURYplus/-Vx
Output Board
Systems

acquire 1.0 pre
0.5 post

— —

xmtrphase
dcphase
dcplrphase
dcplr2phase
dcplr3phase

0.5 7.2 2.35

power, obspower
decpower
dec2power
dec3power

0.5 4.8 4.5

pwrf, obspwrf
decpwrf
dec2pwrf
dec3pwrf

0.5 — —

offset (S=standard
L=latching)

4.0 86.4 15.25 S
21.7 L

shaped_pulse
decshaped_pulse
dec2shaped_pulse
dec3shaped_pulse

1.25 pre
0.5 post

— 15.45

simshaped_pulse * — 30.50

sim3shaped_pulse ** — 45.55

obsprgon
decprgon
dec2prgon
dec3prgon

1.25 — 10.95

obsprgoff
decprgoff
dec2prgoff
dec3prgoff

0.5 — 4.5

spinlock
decspinlock
dec2spinlock
dec3spinlock

1.25 pre
0.5 post

— 15.45

rgradient and
vgradient with
gradtype='p'

4.0 — Not an
option

rgradient and
vgradient with
gradtype='w'

0.5 — Not an
option

zgradpulse
gradtype='p'

delay
+ 8.0

— Not an
option

zgradpulse
gradtype='w'

delay
+ 1.0

— Not an
option

* simshaped_pulse: 1.75 pre, 0.5 post
** sim3shaped_pulse: 2.25 pre, 0.5 post

Chapter 2. Pulse Sequence Programming

114 VnmrJ User Programming 01-999253-00 A0604

Waveform Generator High-Speed Line Trigger

Along with the AP bus overhead delay, the waveform generator has an offset delay as a
result of high-speed line (WFG) propagation delay. This shifts the rf pattern beyond the AP
bus delay. Figure 3 illustrates the delay for UNITYINOVA. The time overhead for the AP bus
is 1.25 µs (this includes a 0.5-µs AP bus delay and a 0.75-µs board delay). The offset delay
is an additional 0.45 µs, for a total delay of 1.70 µs. The UNITYINOVA WFG also has a post
pulse overhead delay.

Note that if the shaped pulse is followed by a delay, say d3, then the end of the delay is at
1.7+pshape+0.5+d3. To obtain the proper offset delay, available in apdelay.h. are
macros WFG_OFFSET_DELAY, WFG2_OFFSET_DELAY, and WFG3_OFFSET_DELAY.

At the end of data collection, 3.5 ms is inserted to give the acquisition computer time to
check lock, temperature, spin, etc. The UNITYINOVA has a 0.004-ms delay at the start of a
transient to initialize the data collection hardware, and a 2.006-ms delay at the end of a
transient for data collection error detection. For systems with gradients, the end of scan
delays do not include the times to turn off gradients, which is done at the end of every scan.

Table 31. Example of AP Bus Overhead Delays for status Statement

Statement
Delay (µs)
UNITY INOVA

Delay (µs)
apinterface=3

Reason

status(B) 0 0 dmm from 'c' to 'p', WFG not
started because dm='n' in B

status(C) 1.0 4.3 dmm from 'p' to 'f', no WFG to
stop

status(D) 1.0+1.25 4.3+10.75 dmm from 'f' to 'w', UNITYINOVA
synchronize, dmm2 from 'c' to 'p'

status(E) 1.75+0.5 15.05+4.3 dmm from 'w' to 'p' (='c') and
start WFG, dmm2 from 'p' to 'c',
only stop WFG

 1.25 µs + 0.45 µs

RF

XMTR

WFG

HS line

HS line

1.25 µs

0.45 µs

RF out

Figure 3. Waveform Generator Offset Delay on UNITYINOVA Systems

2.13 Indirect Detection on Fixed-Frequency Channel

01-999253-00 A0604 VnmrJ User Programming 115

2.13 Indirect Detection on Fixed-Frequency Channel
Indirect detection experiments, in which the observe nucleus is 1H and the decouple
nucleus is a low-frequency nucleus, usually 13C, are easily done on systems with two
broadband channels. Systems with a fixed-frequency decoupler depend on the type of
system.

Fixed-Frequency Decoupler

A UNITYINOVA system with the label Type of RF set to U+ H1 Only in the CONFIG window,
or any MERCURYplus/-Vx broadband system, can use the same parameter sets and pulse
sequences as a dual-broadband system (e.g., HMQC) as long as the pulse statements in a
sequence do not use the channel identifiers TODEV, DODEV, DO2DEV, and DO3DEV. This
restriction is negligible because statements obspower, decpower, dec2power, and
dec3power are available that specify an rf channel without requiring the these channel
identifiers. Each of these statements require only the power level and can be remapped to
different rf channels. The rfchannel parameter enables remapping rf channel selection.
Refer to the description of rfchannel in the Command and Parameter Reference for
details.

MERCURYplus/-Vx support automatic channel swapping as well.

2.14 Multidimensional NMR
A standard feature of all pulse sequences is the ability to array acquisition parameters and
automatically acquire an array of the corresponding FIDs. For example, arraying the pw
parameter and viewing the resulting array of spectra is one way to estimate the 90-degree
pulse width. This explicit array feature is automatic, whenever a parameter is set to multiple
values, such as pw=5,6,7,8,9,10.

A separate type of arrayed data set are the 2D, 3D, and 4D data sets. The distinguishing
feature of this type of data set is that the arrayed element has a uniform, automatically
calculated increment between values. The ni parameter is set to the number of increments
desired in the first indirect dimension of a multidimensional data set. The inverse of the
parameter sw1 defines the increment in successive values of the implicitly arrayed delay
d2. For example, if ni=8, an implicit d2 array with values d2=0, 1/sw1, 2/sw1, 3/
sw1, 4/sw1, 5/sw1, 6/sw1, 7/sw1 is generated. Eight FIDs, each using the
corresponding d2 delay, will be acquired.

For the second indirect dimension, the analogous parameters are ni2, sw2, and d3. For
the third indirect dimension, the analogous parameters are ni3, sw3, and d4.

When creating a new 2D pulse sequence in standard form, the pulse sequence should
contain a d2 delay. To create the appropriate parameters, use the par2d macro. It is
usually convenient to call par2d from within the macro used to set up the pulse sequence,
and to set the parameters to appropriate values with the set2d macro. Examples of 2D
pulse sequences are given in the standard software in /vnmr/psglib and /vnmr/
maclib.

When creating a new 3D pulse sequence in standard form, the pulse sequence should
contain the delays d2 and d3, and parameters can be created with the par3d macro.
Similarly, a 4D pulse sequence should contain the delays d2, d3, and d4, with parameters
created by the par4d macro.

Chapter 2. Pulse Sequence Programming

116 VnmrJ User Programming 01-999253-00 A0604

Each indirect dimension of data can be acquired in a phase-sensitive mode. Examples of
this include the hypercomplex method and the TPPI method (see the chapter on
multidimensional NMR in VnmrJ Liquids NMR manual for more details).

For each indirect dimension, a phase parameter selects the type of acquisition. For the first
indirect dimension, the corresponding phase parameter is phase. For the second indirect
dimension, the parameter is phase2. For the third indirect dimension, the parameter is
phase3. The total number of FIDs in a given multidimensional data set is stored in the
parameter arraydim. For a 2D experiment, arraydim is equal to ni*(number of
elements of the phase parameter).

When programming the multidimensional pulse sequences, it is convenient to have access
to the current increment in a particular indirect dimension, and to know what the phase
element is. Table 32 lists these PSG variables (see Table 20 for the full list of Vnmr
parameters and their corresponding PSG variable names and types).

Some pulse sequences, such as heteronuclear 2D-J (HET2DJ), can be used “as is” for
phase-sensitive 2D NMR; however, the hypercomplex and TPPI experiments require more
information compared to “normal” pulse sequences, and this is presented here.

Hypercomplex 2D

Hypercomplex 2D (States, Haberkorn, Ruben) requires only that a pulse sequence be run
using an arrayed parameter that generates the two required experiments. While this can be
any parameter, for consistency we recommend the use of a parameter phase, which can
be set by the user to 0 (to give a non-phase-sensitive experiment) or to an array (as in
phase=1,2) to generate the two desired experiments. The parameter phase is
automatically made available to a pulse sequence as the integer phase1. Typical code as
part of the pulse sequence might look like this:
pulsesequence()

Table 32. Multidimensional PSG Variables

PSG Variable PSG type VnmrJ parameter Description

d2_index int 0 to (ni-1) Current index of the d2 array

id2 real-time 0 to (ni-1) Current real-time index of the d2 array

inc2D double 1.0/sw1 Dwell time for first indirect dimension

phase1 int phase Acquisition mode for first indirect dimension

d3_index int 0 to (ni2-1) Current index of the d3 array

id3 real-time 0 to (ni2-1) Current real-time index of the d3 array

inc3D double 1.0/sw2 Dwell time for second indirect dimension

phase2 int phase2 Acquisition mode for second indirect dimension

d4_index int 0 to (ni3-1) Current index of the d4 array

id4 real-time 0 to (ni3-1) Current real-time index of the d4 array

inc4D double 1.0/sw3 Dwell time for third indirect dimension

phase3 int phase3 Acquisition mode for third indirect dimension

ix int 1 to arraydim Current element of an arrayed experiment

2.15 Gradient Control for PFG and Imaging

01-999253-00 A0604 VnmrJ User Programming 117

{

if (phase1==0)

{ /* Phase calculation for */

... /* 'normal' experiment */

}

else if (phase1==1)

{ /* Phase calculation for */

... /* first of two arrays */

}

else if (phase1==2)

{ /* Phase calculation for */

... /* second of two arrays */

}

}

This code usually can be condensed because the phases are obviously related in the three
experiments, and three separate phase calculations are not needed. One possibility is to
write down the phase cycle for the entire experiment, interspersing the “real” and
“imaginary” experiments, then generate an “effective transient counter” as follows:
if (phase1==0) assign(ct,v10); /* v10=01234... */

else /* phase1=1 */ dbl(ct,v10); /* v10=02468... */

if (phase1==2) incr(v10); /* v10=13579... */

Now a single phase cycle can be derived from v10 instead of from ct. If phase1=0, each
element of this phase cycle is selected. If phase1=1, only the odd elements are selected
(the first, third, fifth, etc. transients for which ct=0,2,4,...). If phase1=2, the even
elements only are selected (ct odd).

Real Mode Phased 2D: TPPI

For TPPI experiments, the increment index is typically needed at some point in the phase
calculation. The simplest way to obtain the index is to use the built-in real-time constant
id2. This can be used in a construction such as
if (phase1==3)

add(v11,id2,v11);

which adds the increment value (which starts at 0) to the phase contained in v11.

2.15 Gradient Control for PFG and Imaging
UNITYINOVA and MERCURYplus/-Vx systems support gradient control for applications
using the optional pulsed field gradient (PFG) and imaging. The configuration parameter
gradtype, set by the config program, specifies the presence of gradient hardware and
its capabilities. The available gradient control statements are listed in Table 33.
MERCURYplus/-Vx systems use rgradient and vagradient, and the lk_sample
and lk_hold statements

Table 34 lists delays for shaped gradient statements on systems with gradient waveform
generators (gradtype='w' or gradtype='q'). The times for the three-axis gradient
statements (obl_gradient, oblique_gradient, pe2_gradient,
phase_encode3_gradient, etc.) are the overhead times for setting all three
gradients. The gradients are always set in sequential 'x', 'y', 'z' order.

Some gradient statements use DAC values to set the gradient levels and others use values
in gauss/cm. The lower level gradient statements (gradient, rgradient,

Chapter 2. Pulse Sequence Programming

118 VnmrJ User Programming 01-999253-00 A0604

shapedgradient, etc.) use DAC values, and the obliquing and variable-angle gradient
statements use gauss/cm. The gradient statements associated with DAC values are used in
single-axis PFG pulse sequences and microimaging pulse sequences, while the gradient
statements associated with gauss/cm are used in imaging pulse sequences and triple-axis
PFG pulse sequences.

Setting the Gradient Current Amplifier Level

To set the gradient current amplifier level, use rgradient(channel,value), where
channel is 'X', 'x', 'Y', 'y', 'Z', or 'z' (only 'Z' or 'z' is supported on
MERCURYplus/-Vx) and value is a real number for the amplifier level
(e.g, rgradient('z',1327.0)). For the Performa I PFG module, value must be
from 2048 to 2047; for Performa II, value must be from –32768.0 to 32767.0.

To set the gradient current amplifier level but determine the value instead by real-time
math, use vgradient(channel,intercept,slope,rtval), where channel
is used the same as in rgradient, and amplifier level is determined by intercept +
slope * rtval (e.g., vgradient('z',–5000.0,2500.0,v10). This statement
not available on the Performa I PFG module.

Table 33. Gradient Control Statements

lk_hold() Set lock correction circuitry to hold
lk_sample() Set lock correction circuitry to sample
obl_gradient* Execute an oblique gradient
oblique_gradient* Execute an oblique gradient
obl_shapedgradient* Execute a shaped oblique gradient
oblique_shapedgradient* Execute a shaped oblique gradient
pe_gradient* Oblique gradient with PE in 1 axis
pe2_gradient* Oblique gradient with PE in 2 axes
pe3_gradient* Oblique gradient with PE in 3 axes
pe_shapedgradient* Oblique shaped gradient with PE in 1 axis
pe2_shapedgradient* Oblique shaped gradient with PE in 2 axes
pe3_shapedgradient* Oblique shaped gradient with PE in 3 axes
phase_encode_gradient* Oblique gradient with PE in 1 axis
phase_encode3_gradient* Oblique gradient with PE in 3 axes
phase_encode_shapedgradient* Oblique shaped gradient with PE in 1 axis
phase_encode3_shapedgradient* Oblique shaped gradient with PE in 3 axes
rgradient(channel,value) Set gradient to specified level
shapedgradient* Shaped gradient pulse
shaped2Dgradient* Arrayed shaped gradient function
shapedincgradient* Dynamic variable gradient function
shapedvgradient* Dynamic variable shaped gradient function
vgradient* Set gradient to level determined by real-time math
vagradient* Variable angle gradient
vagradpulse* Pulse controlled variable angle gradient
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle pulse controlled shaped gradient
zgradpulse(value,delay) Create a gradient pulse on the z channel
zero_all_gradients* Set all gradients to zero
* For the argument list, refer to the statement reference in Chapter 3

2.15 Gradient Control for PFG and Imaging

01-999253-00 A0604 VnmrJ User Programming 119

Generating a Gradient Pulse

To create a gradient pulse on the z channel with given amplitude and duration, use
zgradpulse(value,delay), where value is used the same as in rgradient and
delay is any delay parameter (e.g., zgradpulse(1234.0,d2)).

shapedgradient(pattern,width,amp,channel,loops,wait) generates a
shaped gradient, where pattern is a file in shapelib, width is the pulse length, amp
is a value that scales the amplitude of the pulse, channel is the same as used with
rgradient, loops is the number of times (1 to 255) to loop the waveform, and wait
is WAIT or NOWAIT for whether or not a delay is inserted to wait until the gradient is
completed before executing the next statement (e.g.,
shapedgradient("hsine",0.02,32676,'y',1,NOWAIT))

This statement is only available on the Perform II PFG module.

Table 34. Delays for Obliquing and Shaped Gradient Statements

 Delay (µs)

Pulse Sequence Statements UNITYINOVA

shapedgradient 0.5

shapedvgradient 1.5

shapedincgradient 1.5

incgradient (gradtype='p',
gradtype='q')

4.0

incgradient (gradtype='w') 0.5

obl_gradient, oblique_gradient,
pe_gradient,
phase_encode_gradient
(gradtype='p', gradtype='q')

12.0

obl_gradient, oblique_gradient,
pe_gradient,
phase_encode_gradient
(gradtype='w')

1.5

pe2_gradient,
phase_encode3_gradient
(gradtype='p', gradtype='q')

12.0

pe2_gradient,
phase_encode3_gradient
(gradtype='w')

1.5

obl_shapedgradient,
oblique_shapedgradient

1.5

pe_shapedgradient,
phase_encode_shapedgradient

4.5

pe2_shapedgradient,
pe3_shapedgradient,
phase_encode3_shapedgradient

4.5

Chapter 2. Pulse Sequence Programming

120 VnmrJ User Programming 01-999253-00 A0604

Controlling Lock Correction Circuitry

On MERCURYplus/-Vx and UNITYINOVA systems, lk_sample() and lk_hold() are
provided to control the lock correction circuitry. If during the course of a pulse sequence
the lock signal is disturbed—for instance, with a gradient pulse or pulses at the 2H
frequency—the lock circuitry might not be able to hold on to the lock. When this is the case,
the correction added in the feedback loop that holds the lock can be held constant by calling
lk_hold(). At some time after the disturbance has passed (how long depends on the type
of disturbance), the statement lk_sample() should be called to allow the circuitry to
correct for disturbances external to the experiment.

Programming Microimaging Pulse Sequences

The procedures for programming microimaging pulse sequences are the same as those used
in the programming of spectroscopy sequences, with the exception that additional pulse
sequence statements have been added to define the amplitude and timing of the gradient
pulses and the shaped rf pulses. For example, in the statement
rgradient(name,value) to set a gradient, the argument name is either X, Y, or Z (or
alternatively with the connection through the parameter orient, gread, gphase, or
gslice) and value is the desired gradient strength in DAC units at the time the
statement is to be implemented.

The basic imaging sequences included with the VnmrJ software are sequences for which
the image data can be acquired, processed, and displayed with essentially the same software
tools that are used with 2D spectra. These sequences have been written in a form that
provides a great deal of flexibility in adapting them to the different modes of imaging and
include the capabilities of multislice and multiecho imaging. Many of the spectroscopic
preparation pulse sequences can be linked to the standard imaging sequences to limit the
spin population type that is imaged, to provide greater contrast in the image, or to remove
artifacts from the image.

2.16 Programming the Performa XYZ PFG Module
The Performa XYZ pulsed field gradient (PFG) module adds new capabilities to high-
resolution liquids experiments on Varian spectrometers. The module applies gradients in B0
along three distinct axes at different times during the course of the pulse sequence. These
gradients can perform many functions, including solvent suppression and coherence
pathway selection. This section describes pulse sequence programming of the module.

Creating Gradient Tables

In order for the software to have the necessary information on all three axes to convert
between gauss/cm and DAC values, the XYZ PFG probe and amplifier combination can be
calibrated using the creategtable macro and a gradient table made in
/vnmr/imaging/gradtables.

The macro first prompts the user to see if the gradient axes are set to the same gradient
strength (horizontal-bore imaging system) or if the axes have different gradient strengths
(vertical-bore PFG gradients). Next, the user is prompted for a name for the gradient coil,
and that name is then used in the gcoil and sysgcoil parameters in order to correctly
translate between DAC and gauss/cm values. Finally, the macro prompts the user for the
boresize of the magnet (51 mm), the gradient rise time (40 µs), and the maximum gradient

2.16 Programming the Performa XYZ PFG Module

01-999253-00 A0604 VnmrJ User Programming 121

strength obtainable for each axis. Note that the gradient strengths are not equal and the
amplifier does not limit the combined output.

If the parameter gcoil does not exist in a parameter set and must be created, you must set
the protection bit that causes the macro _gcoil to be executed when the value for gcoil
is changed. Setting the protection bit can be done two ways:

• Use the macro updtgcoil, which will create the gcoil parameter if it does not
exist.

• Create gcoil with the following commands:
create('gcoil','string')
setprotect('gcoil','set',9)

In an experiment that uses gradient coils, the sysgcoil parameter can be set to the coil
name specified with the creategtable macro and then the updtgcoil macro can be
run to update the local gcoil parameter from the global sysgcoil parameter. When the
local gcoil parameter is updated, the local gxmax, gymax, gzmax, trise and
boresize parameters are also updated. Refer to the Command and Parameter Reference
and the VnmrJ Imaging User Guide for additional information about creategtable.

Pulse Sequence Programming

Table 35 lists the pulse sequence statements related to the XYZ PFG module.The system
can be programmed by using the statements rgradient(channel,value) and
zgradpulse(value,delay). Pulse sequences g2pul.c and profile.c in
/vnmr/psglib are examples of using the gradaxis parameter and the rgradient
statement.

To produce a gradient at any angle by the combination of two or more gradients, the
vagradpulse(gradlvl,gradtime,theta,phi) statement can be used, and to
produce three equal and simultaneous gradients, such that an effective gradient is produced
at the magic angle, the magradpulse(gradlvl,gradtime) statement is available.
The statements vagradpulse and magradpulse are structured so that the software
does all of the calculations to produce the effective gradient desired. Both statements take
the argument for the gradient level (gradlvl) in gauss/cm. This is distinctly different
from the rgradient and zgradpulse statements, which take the argument for the
gradient level (value) in DAC.

Table 35. Performa XYZ PFG Module Statements

magradient(gradlvl) Simultaneous gradient at the magic angle
magradpulse(gradlvl,gradtime) Simultaneous gradient pulse at the magic angle
mashapedgradient* Simultaneous shaped gradient at the magic angle
mashapedgradpulse* Simultaneous shaped gradient pulse at the magic angle
rgradient(axis,value) Set gradient to specified level
vagradpulse* Variable angle gradient pulse
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle shaped gradient
zgradpulse(value,delay) Create a gradient pulse on the z channel
* mashapedgradient(pattern,gradlvl,gradtime,theta,phi,loops,wait)

mashapedgradpulse(pattern,gradlvl,gradtime,theta,phi)
vagradpulse(gradlvl,gradtime,theta,phi)
vashapedgradient(pattern,gradlvl,gradtime,theta,phi,loops,wait)
vashapedgradpulse(pattern,gradlvl,gradtime,theta,phi)

Chapter 2. Pulse Sequence Programming

122 VnmrJ User Programming 01-999253-00 A0604

With these statements, the gcoil and sysgcoil parameters are required for the software
to calculate the correct DAC value for each channel in order to produce the requested
effective gradient. After the gradients have each been calibrated and a gradtable has
been constructed with the creategtable macro, as described above, then the
sysgcoil parameter can be set to that coil name used. The updtgcoil macro can then
update the local gcoil parameter from the global sysgcoil parameter.

The vagradpulse statement uses the theta and phi angles to produce an effective
gradient at any arbitrary angle. For example, using vagradpulse with theta=54.7
and phi=0.0, an effective gradient is produced at the magic angle by the correct
combination of the Z gradient and the Y gradient. Whereas, if theta=54.7 and phi=90,
an effective gradient is produced at the magic angle by the correct combination of the Z
gradient and the X gradient. Variations on the vagradpulse statement include the
capability of shaping the gradient waveform with the vashapedgradient and the
vashapedgradpulse statements. For more information about these statements, see
their descriptions in Chapter 3.

In addition, the magradpulse statement produces equal and simultaneous gradients on
all three axes in order to produce an effective gradient at the magic angle. Variations on the
magradpulse statement include the capability of shaping the gradient waveform with
the mashapedgradient and the mashapedgradpulse statements. Again, for more
information, refer to Chapter 3.

2.17 Imaging-Related Statements
Table 36 summarizes the PSG statements related to imaging.

Statements related to imaging can be grouped as follows:

• Real-time gradient statements

• Oblique gradient statements

• Global list and position statements

• Looping statements

• Waveform initialization statements

• Other statements

These statements were developed to support oblique imaging using standard units (gauss/
cm) to set the gradient values and to support the use of real-time variables and loops when
constructing imaging sequences. Using real-time variables and loops resulting in
“compressed” acquisitions, instead of standard acquisition arrays, reduces the number of
acodes sets needed to run the experiment, cutting down significantly on the start-up time of
the experiment and removing any inter-FID and intertransient overhead delays. This is not
really a problem on UNITYINOVA systems, because its small overhead delays and d0
parameter make the inter-FID and intertransient delays consistent, but may make a
difference in some applications.

Real-time Gradient Statements

Real-time gradient statements consist of additions to the standard gradient and
shapedgradient statements, which provide real-time variable control for the gradient
amplitudes. Real-time statements include shapedvgradient, which provides real-time
control on one axis, incgradient and shapedincgradient, which support real-
time control over three axes. The vgradient statement also belongs to this group.

2.17 Imaging-Related Statements

01-999253-00 A0604 VnmrJ User Programming 123

Table 36. Imaging-Related Statements

create_delay_list* Create table of delays
create_freq_list* Create table of frequencies
create_offset_list* Create table of frequency offsets
endmsloop*/endpeloop* Ends a loop started by the msloop/peloop
getarray* Retrieves all values of arrayed parameter
getorientation* Read image plane orientation
incgradient* Dynamic variable gradient function
init_rfpattern* Create rf pattern file
init_gradpattern* Create gradient pattern file
init_vscan* Initialize real-time variable for vscan
obl_gradient* Execute an oblique gradient
oblique_gradient* Execute an oblique gradient
obl_shapedgradient* Execute a shaped oblique gradient
oblique_shapedgradient* Execute a shaped oblique gradient
msloop*/peloop* Provides a sequence-switchable loop
pe_gradient* Oblique gradient with PE in 1 axis
pe2_gradient* Oblique gradient with PE in 2 axes
pe3_gradient* Oblique gradient with PE in 3 axes
pe_shapedgradient* Oblique shaped gradient with PE in 1 axis
pe2_shapedgradient* Oblique shaped gradient with PE in 2 axes
pe3_shapedgradient* Oblique shaped gradient with PE in 3 axes
phase_encode_gradient* Oblique gradient with PE in 1 axis
phase_encode3_gradient* Oblique gradient with PE in 3 axes
phase_encode_shapedgradient* Oblique shaped gradient with PE in 1 axis
phase_encode3_shapedgradient* Oblique shaped gradient with PE in 3 axes
poffset*/position_offset* Set frequency based on position
poffset_list* Set frequency from position list
position_offset_list* Set frequency from position list
shapedgradient* Provide shaped gradient pulse
shaped2Dgradient* Arrayed shaped gradient function
shapedincgradient* Dynamic variable gradient function
shapedvgradient* Dynamic variable shaped gradient function
sli* Set SLI lines
vagradient* Variable angle gradient
vagradpulse* Pulse controlled variable angle gradient
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle pulse controlled shaped gradient
vdelay* Select delay from table
vdelay_list* Get delay value from delay list with real-time index
vfreq* Select frequency from table
vgradient* Dynamic variable gradient
voffset* Select frequency offset from table
vscan* Dynamic variable scan function
vsli* Set SLI lines from real-time variable
zero_all_gradients* Sets all gradients to zero
* For the argument list, refer to the statement reference in Chapter 3

Chapter 2. Pulse Sequence Programming

124 VnmrJ User Programming 01-999253-00 A0604

Oblique Gradient Statements

To support oblique imaging and the imaging interface, oblique gradient statements include
oblique_gradient, phase_encode_gradient, pe_gradient, and all of their
variations. The inputs to these statements are amplitudes and phases. Amplitudes are
expressed in gauss/cm and correspond to the read-out, phase-encode, and slice-select axis
in the logical frame. Phase angles correspond to Euler angles psi, phi, and theta and
describe the coordinate rotation applied to the input amplitudes. For more information on
use, see the manual VnmrJ Imaging User Guide.

Global List and Position Statements

The global list statements support real-time selection of frequencies, offsets, and delays.
Global lists are different from AP tables in that the lists are sent down to the acquisition
console when the experiment starts up and remain accessible until the experiments
completes. The lists can be arrayed parameters (with a protection bit set to prevent an
arrayed acquisition) read into the pulse sequence using the getarray statement or
standard C language arrays calculated within the pulsesequence. The lists are initialized
with the statements create_freq_list, create_offset_list, and
create_delay_list, and then selected and set using the vfreq, voffset, and
vdelay_list statements; which use a real-time parameter as an index into the list.

The position statements set the rf frequency from a given position or an array of positions.
These statements are poffset, poffset_list, position_offset, and
position_offset_list. The position list statements use global lists, which initialize
the list and select and set the position in a single statement.

When creating global list parameters, create them as acquisition parameters and set
protection bit 8 (value 256) or else PSG tries to array them as standard arrayed acquisitions.

Looping Statements

The looping statements msloop and peloop define multislice and phase encode loops
when creating imaging pulse sequences. The looping statements also allow selection of a
standard “arrayed” acquisition or a “compressed” acquisition using the seqcon parameter.

Waveform Initialization Statements

The waveform initialization statements init_rfpattern and init_gradpattern
are available to all configurations and allow the user to calculate and create gradient and rf
patterns in PSG.

Other Statements

The init_vscan and vscan statements are used to provide a dynamic scan capability.
The sli and vsli statements are used with the Synchronized Line Interface board, which
is a SIS specific hardware device used to support interfacing to external devices. The sli
and vsli statements are not supported on UNITYINOVA. UNITYINOVA support for interfacing
to an external device is included in the AP User interface.

2.18 User-Customized Pulse Sequence Generation

01-999253-00 A0604 VnmrJ User Programming 125

2.18 User-Customized Pulse Sequence Generation
The complete pulse sequence generation (PSG) source code is supplied in the VnmrJ
system psg directory. This code enables users to create their own libpsglib.so PSG
directory for link loading with the pulse sequence object file pulsesequence.o.

The UNIX shell script setuserpsg in the system directory creates the directory
vnmrsys/psg for a user, if it does not already exist, and initializes this user PSG
directory with the appropriate object libraries from the system PSG directory. The script
setuserpsg should only have to be run once by each separate user. setuserpsg
places the file libpsglib.a in the user’s psg directory.

The UNIX shell script psggen compiles files in the user PSG object directory and places
the files in the user PSG directory. When executed, seqgen looks first for the user PSG
library ~/vnmrsys/psg in the user PSG directory, and then in the system library
directory /vnmr/lib.

Modifying a PSG source file and subsequently recompiling the user PSG object directory
is done as follows:

1. Enter setuserpsg from a UNIX shell (done only once).

Typical output from this command is as follows:
Creating user PSG directory...

Copying User PSG library from system directory...

2. Copy the desired PSG source file(s) from $vnmrsystem/psg to
$vnmruser/psg.

3. Modify the PSG source files(s) in the user PSG directory.

4. Enter psggen from a UNIX shell or from within Vnmr.

Typical output from this command is as follows:
Creating additional source links...

Compiling PSG Library...

PSG Library Complete.

Chapter 2. Pulse Sequence Programming

126 VnmrJ User Programming 01-999253-00 A0604

01-999253-00 A0604 VnmrJ User Programming 127

Chapter 3. Pulse Sequence Statement Reference

This chapter contains a detailed reference to the statements used in VnmrJ pulse sequence
programming.

A

abort_message Send and error to VnmrJ and abourt the PSG process

Syntax: abort_message(char *format, ...)

Description: abort_message sends the specified error message to VnmrJ and then aborts
the PSG process.

acquire Explicitly acquire data

Applicability: UNITYINOVA systems.

Syntax: acquire(number_points,sampling_interval)
double number_points; /* points to acquire */
double sampling_interval; /* dwell time in sec */

Description: Acquire data points where the sequence of events is to acquire a pair of points
for 200 ns, delay for sampling_interval minus 200 ns, then repeat for
number_points/2 times.

For UNITYINOVA systems, there are small overhead delays before and after the
acquire. The pre-acquire delay takes into account setting the receiver phase with
oph and enabling data overflow detection. The post-acquire delay is for
disabling data overflow detection. When using acquire statements within a

A B C D E G H I L M O P R S T V W X Z

abort_message Send and error to VnmrJ and abourt the PSG process

abort Do not use abort, see psg_abort

acquire Explicitly acquire data

add Add integer values

apovrride Override internal software AP bus delay

apshaped_decpulse First decoupler pulse shaping via AP bus

apshaped_dec2pulse Second decoupler pulse shaping via AP bus

apshaped_pulse Observe transmitter pulse shaping via AP bus

assign Assign integer values

128 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

hardware loop these overhead delays and the functions associated with them are
placed outside the hardware loop. When using multiple acquire statements
outside a hardware loop in a pulse sequence setting, the phase and enabling data
overflow detection is done before the first acquire statement. Disabling
overflow detection is done after the last acquire, so there is no overhead time
between acquire statements.

If an acquire statement occurs outside a hardware loop, the number of
complex points to be acquired must be a multiple of 2 on systems with a Digital
Acquisition Controller board, an Acquisition Controller board, or a Pulse
Sequence Controller board, or must be a multiple of 32 on systems with a
Output board (see page 128 for descriptions of each board).

Inside a hardware loop, systems with a Digital Acquisition Controller board or
a Pulse Sequence Controller board can accept a maximum of 2048 complex
points, systems with an Acquisition Controller board can accept a maximum of
1024 complex points, and systems with an Output board can accept a maximum
of 63 complex points.

The following list identifies the acquisition controller boards used on Varian
NMR spectrometer systems:

• Data Acquisition Controller boards, Part No. 01-902010-00. Started
shipping in mid-1995 with the introduction of the UNITYINOVA system.

• Pulse Sequence Controller boards, Part No. 00-992560-00. Started
shipping in early 1993 with the introduction of the UNITYplus system.

• Acquisition Controller boards, Part No. 00-969204-00 or 00-990640-00.
Started shipping 00-969204-00 in late 1988 as a replacement for the Output
boards. Part No. 00-990640-00 replaced 00-969204-00 in mid-1990.

• Output boards, Part No. 00-953520-0#, where # is an integer. Shipped with
systems prior to 1988.

Arguments: number_points is the number of data point to be acquired.

sampling_interval is the length, in seconds, of the sampling interval.

Examples: acquire(np,1.0/sw);

add Add integer values

Syntax: add(vi,vj,vk)
codeint vi; /* real-time variable vi for addend */
codeint vj; /* real-time variable vj for addend */
codeint vk; /* real-time variable vk for sum */

Description: Sets vk equal to the sum of integer values of vi and vj.

Arguments: vi, vj, and vk are real-time variables (v1 to v14, oph, etc.).

Examples: add(v1,v2,v3);

Related: endhardloop End hardware loop
starthardloop Start hardware loop

Related: assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2

01-999253-00 A0604 VnmrJ User Programming 129

Chapter 3. Pulse Sequence Statement Reference –

apovrride Override internal software AP bus delay

Applicability: Systems with the 63-step Output board (Part No. 00-953520-0#, where # is an
integer). This board shipped prior to 1988.

Syntax: apovrride()

Description: Systems with the 63-step Output board can use this statement to prevent a delay
of 0.2 µs from being inserted prior to the next (and only the next) occurrence of
one of the AP (analog port) bus statements dcplrphase, dcplr2phase,
dcplr3phase, decprgoff, dec2prgoff, dec3prgoff, decprgon,
dec2prgon, dec3prgon, decshaped_pulse, dec2shaped_pulse,
dec3shaped_pulse, decspinlock, dec2spinlock,
dec3spinlock, obsprgoff, obsprgon, power, rlpower,
shaped_pulse, simshaped_pulse, sim3shaped_pulse,
spinlock, and xmtrphase.

apshaped_decpulse First decoupler pulse shaping via AP bus

Applicability: UNITYINOVA systems. On MERCURYplus/-Vx, only shapes with no phase shifts
are supported.

Syntax: apshaped_decpulse(shape,pulse_width,pulse_phase,
power_table,phase_table,RG1,RG2)
char *shape; /* name of .RF shape file */
double pulse_width; /* pulse width in sec */
codeint pulse_phase; /* real-time phase of pulse */
codeint power_table; /* table variable to store power */
codeint phase_table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides first decoupler fine-grained “waveform generator-type” pulse shaping
through the AP bus. A pulse shape file for the waveform generator (/vnmr/
shapelib/*.RF) is used. This statement overrides any existing small-angle
phase shifting (i.e., a preceding dcplrphase) and step size setting on the first
decoupler channel. After apshaped_decpulse, first decoupler channel
small-angle phase shifting is reset to zero and the step size is set to 0.25 degrees.

apshaped_decpulse capability is now integrated into the statement
decshaped_pulse. The decshaped_pulse statement calls
apshaped_decpulse without table variables if a waveform generator is not
configured on the decoupler channel. decshaped_pulse creates AP tables
on the fly for amplitude and phase, and does not use the AP tables allocated for
users. It still uses real-time variables v12 and v13.

Arguments: shape is a shape file (without the .RF extension) in /vnmr/shapelib or
in ~/vnmrsys/shapelib. The amplitude and phase fields of the shape file
are used. The relative duration field (field 3) should be left at the default value
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used
because the transmitter is switched on throughout the shape. On
MERCURYplus/-Vx systems, no phase is changed or set.

mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

130 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

pulse_width is the total pulse width, in seconds, excluding the amplifier
gating delays around the pulse.

pulse_phase is the 90° phase shift of the pulse. For small-angle phase
shifting, note that apshaped_decpulse sets the phase step size to the
minimum on the one channel that is used.

power_table and phase_table are two table variables (t1 to t60) used
as intermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped_decpulse is called more than once, different
table names should be used in each call.

RG1 is the amplifier gating time, in seconds, before the pulse.

RG2 is the amplifier gating time, in seconds, after the pulse.

Examples: apshaped_decpulse("gauss",pw,v1,rof1,rof2);

apshaped_dec2pulse Second decoupler pulse shaping via AP bus

Applicability: UNITYINOVA systems.

Syntax: apshaped_dec2pulse(shape,pulse_width,pulse_phase,
power_table,phase_table,RG1,RG2)

char *shape; /* name of .RF shape file */
double pulse_width; /* pulse width in sec */
codeint pulse_phase; /* real-time phase of pulse */
codeint power_table; /* table variable to store power */
codeint phase_table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides second decoupler fine-grained “waveform generator-type” pulse
shaping through the AP bus. A pulse shape file for the waveform generator (/
vnmr/shapelib/*.RF) is used. Note that the real-time variables v12 and
v13 are used by this statement. apshaped_dec2pulse overrides any
existing small-angle phase shifting (i.e., a preceding dcplr2phase) and step
size setting on the second decoupler channel.

After apshaped_dec2pulse, second decoupler channel small-angle phase
shifting is reset to zero and the step size is set to 0.25 degrees.

apshaped_dec2pulse capability is now integrated into the statement
dec2shaped_pulse. The dec2shaped_pulse statement calls
apshaped_dec2pulse without table variables if a waveform generator is
not configured on the decoupler channel. dec2shaped_pulse creates AP
tables on the fly for amplitude and phase, and does not use the AP tables
allocated for users.It still uses real-time variables v12 and v13.

Arguments: shape is a shape file (without the .RF extension) in /vnmr/shapelib or
in ~/vnmrsys/shapelib. The amplitude and phase fields of the shape file
are used. The relative duration field (field 3) should be left at the default value
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used
because the transmitter is switched on throughout the shape.

pulse_width is the total pulse width, in seconds, excluding the amplifier
gating delays around the pulse.

Related: apshaped_dec2pulse Second decoupler pulse shaping via the AP bus
apshaped_pulse Observe transmitter pulse shaping via the AP bus
dcplrphase Set small-angle phase of first decoupler, rf type C or D
decshaped_pulse Perform shaped pulse on first decoupler

01-999253-00 A0604 VnmrJ User Programming 131

Chapter 3. Pulse Sequence Statement Reference –

pulse_phase is the 90° phase shift of the pulse. For small-angle phase
shifting, note that apshaped_dec2pulse sets the phase step size to the
minimum on the one channel that is used.

power_table and phase_table are two table variables (t1 to t60) used
as intermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped_dec2pulse is called more than once, different
table names should be used in each call.

RG1 is the amplifier gating time, in seconds, before the pulse.

RG2 is the amplifier gating time, in seconds, after the pulse.

Examples: apshaped_dec2pulse("gauss",pw,v1,t10,t11,rof1,rof2);

apshaped_pulse Observe transmitter pulse shaping via AP bus

Applicability: UNITYINOVA systems. On MERCURYplus/-Vx systems, only shapes with no
phase shifts are supported.

Syntax: apshaped_pulse(shape,pulse_width,pulse_phase,
power_table,phase_table,RG1,RG2)

char *shape; /* name of .RF shape file */
double pulse_width; /* pulse width in sec */
codeint pulse_phase; /* real-time phase of pulse */
codeint power_table; /* table variable to store power */
codeint phase_table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides observe transmitter fine-grained “waveform generator-type” pulse
shaping through the AP bus. A pulse shape file for the waveform generator (/
vnmr/shapelib/*.RF) is used. This statement overrides any existing
small-angle phase shifting (i.e., a preceding xmtrphase) and step size setting
on the observe transmitter channel. After apshaped_pulse, observe
transmitter channel small-angle phase shifting is reset to zero and the step size
is set to 0.25 degrees.

apshaped_pulse capability is now integrated into the shaped_pulse
statement. The shaped_pulse statement calls apshaped_pulse without
table variables if a waveform generator is not configured on the decoupler
channel. shaped_pulse creates AP tables on the fly for amplitude and phase,
and does not use the AP tables allocated for users. It still uses real-time variables
v12 and v13.

Arguments: pattern is a shape file (without the .RF extension) in /vnmr/shapelib
or in ~/vnmrsys/shapelib. The amplitude and phase fields of the shape
file are used. The relative duration field (field 3) should be left at the default
value of 1.0 or at least small numbers, and the gate field (field 4) is currently not
used because the transmitter is switched on throughout the shape. On
MERCURYplus/-Vx systems, no phase is changed or set.

pulse_width is the total pulse width, in seconds, excluding amplifier gating
delays around the pulse.

Related: apshaped_decpulse First decoupler pulse shaping via the AP bus
apshaped_pulse Observe transmitter pulse shaping via the AP bus
dcplr2phase Set small-angle phase of 2nd decoupler, rf type C or D
dec2shaped_pulse Perform shaped pulse on second decoupler

132 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

pulse_phase is the 90° phase shift of the pulse. For small-angle phase
shifting, note that apshaped_pulse sets the phase step size to the minimum
on the one channel that is used.

power_table and phase_table are two table variables (t1 to t60) used
as intermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped_pulse is called more than once, different table
names should be used in each call.

RG1 is the amplifier gating time, in seconds, before the pulse.

RG2 is the amplifier gating time, in seconds, after the pulse.

Examples: apshaped_pulse("gauss",pw,v1,rof1,rof2);

assign Assign integer values

Syntax: assign(vi,vj)
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for assigned value */

Description: Sets vj equal to the integer value vi.

Arguments: vi and vj are real-time variables (v1 to v14, oph, etc.).

Examples: assign(v3,v2);

B

Related: apshaped_decpulse First decoupler pulse shaping via the AP bus
apshaped_dec2pulse Second decoupler pulse shaping via the AP bus
shaped_pulse Perform shaped pulse on observe transmitter
xmtrphase Set small-angle phase of observe transmitter, rf C or D

Related: add Add integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

A B C D E G H I L M O P R S T V W X Z

blankingoff Unblank amplifier channels and turn amplifiers on

blankingon Blank amplifier channels and turn amplifiers off

blankoff Stop blanking observe or decoupler amplifier (obsolete)

blankon Start blanking observe or decoupler amplifier (obsolete)

01-999253-00 A0604 VnmrJ User Programming 133

Chapter 3. Pulse Sequence Statement Reference –

blankingoff Unblank amplifier channels and turn amplifiers on

Applicability: MERCURYplus/-Vx systems only.

Syntax: blankingoff()

Description: Unblanks, or enables, both amplifier channels.

blankingon Blank amplifier channels and turn amplifiers off

Applicability: MERCURYplus/-Vx systems only.

Syntax: blankingon()

Description: Blanks, or disables, both amplifier channels.

blankoff Stop blanking observe or decoupler amplifier (obsolete)

Description: No longer in VnmrJ. The blankoff statement is replaced by the statements
obsunblank, decunblank, dec2unblank, and dec3unblank.

blankon Start blanking observe or decoupler amplifier (obsolete)

Description: No longer in VnmrJ. The blankon statement is replaced by the statements
obsblank, decblank, dec2blank, and dec3blank.

C

clearapdatatable Zero all data in acquisition processor memory

Applicability: UNITYINOVA systems.

Syntax: clearapdatatable()

Related: blankingon Blank amplifier channels and turn amplifiers off

Related: blankingoff Unblank amplifier channels and turn amplifiers on

Related: decunblank Unblank amplifier associated with first decoupler
dec2unblank Unblank amplifier associated with second decoupler
dec3unblank Unblank amplifier associated with third decoupler
obsunblank Unblank amplifier associated with observe transmitter

Related: decblank Blank amplifier associated with first decoupler
dec2blank Blank amplifier associated with second decoupler
dec3blank Blank amplifier associated with third decoupler
obsblank Blank amplifier associated with observe transmitter

A B C D E G H I L M O P R S T V W X Z

clearapdatatable Zero all data in acquisition processor memory

create_delay_list Create table of delays

create_freq_list Create table of frequencies

create_offset_list Create table of frequency offsets

134 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: Zeroes the acquired data table at times other than at the start of the execution of
a pulse sequence, when the data table is automatically zeroed. This statement is
generally not needed.

create_delay_list Create table of delays

Applicability: UNITYINOVA systems.

Syntax: create_delay_list(list,nvals,list_number)
double *list; /* pointer to list of delays */
int nvals; /* number of values in list */
int list_number; /* number 0–255 for each list */

Description: Stores global lists of delays that can be accessed with a real-time variable or
table element for dynamic setting in pulse sequences. The lists need to be
created in order starting from 0 using the list_number argument, or by
setting the list_number argument to –1, which makes the software allocate
and create the next free list and give the list number as a return value. Each list
must have a unique and sequential list_number. There can be a maximum
of 256 lists, depending on the size of the lists. The lists are stored in data
memory and compete for space with the acquisition data for each array element.
If a list is created, the return value is the number of the list (0 to 255); if an error
occurs, the return value is negative.

create_delay_list creates what is called a global list. Global lists are
different from AP tables in that the lists are sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a –1 in
the list_number argument because a list will be created for each array
element. In this case, a list parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
use the getarray statement. To ensure that the list is only created once, check
the global array counter variable ix, and only call create_delay_list to
create the list when it equals 1 (as shown in the example).

Arguments: list is a pointer to a list of delays.

nvals is the number of values in the list.

list_number –1 or a unique number from 0 to 255 for each list.

Examples: pulsesequence()
{

/* Declare static to save between calls */
static int list1, list2;
int i, n;
double delay1[1024], delay2[1024];

n = 1024;
if (ix == 1) {

for (i=0; i<n; i++) {
... /* Initialize delay1 & delay2 arrays */

}
/* First, list1 is set to 0 */
list1 = create_delay_list(delay1,n,0);
/* This is list #1 */
create_freq_list(freqs,nfreqs,OBSch,1);
/* This is list #2 */
create_offset_list(freqs,nfreqs,OBSch,2);

01-999253-00 A0604 VnmrJ User Programming 135

Chapter 3. Pulse Sequence Statement Reference –

/* Next, list2 is set to 3 */
list2 = create_delay_list(delay2,n,-1);

}
...
vdelay_list(list2,v5); /* Use v5 from list2 */
vfreq(1,v2); /* Use v2 from list #1 */
voffset(2,v1); /* Use v1 from list #2 */
vdelay_list(list1,v1); /* Use v1 from list1 */
...

}

create_freq_list Create table of frequencies

Applicability: UNITYINOVA systems.

Syntax: create_freq_list(list,nvals,device,list_number)
double *list; /* pointer to list of frequencies */
int nvals; /* number of values in list */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list_number; /* number 0–255 for each list */

Description: Stores global lists of frequencies that can be accessed with a real-time variable
or table element for dynamic setting of frequencies. Frequency lists use
frequencies in MHz (such as from sfrq, dfrq). The lists need to be created in
order starting from 0 using the list_number argument, or by setting the
list_number argument to –1, which makes the software allocate and create
the next free list and give the list number as a return value. Each list must have
a unique and sequential list_number. There can be a maximum of 256 lists
depending on the size of the lists. The lists are stored in data memory and
compete for space with the acquisition data for each array element. If a list is
created, the return value is the number of the list (0 to 255); if an error occurs,
the return value is negative.

create_freq_list creates what is called a global list. Global lists are
different from AP tables in that the lists are sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a –1 in
the list_number argument because a list will be created for each array
element. In this case, a list parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
use the getarray statement. To ensure that the list is only created once, check
the global array counter variable ix, and only call create_freq_list to
create the list when it equals 1. An example is shown in the entry for the
create_delay_list statement.

Arguments: list is a pointer to a list of frequencies.

nvals is the number of values in the list.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

Related: create_freq_list Create table of frequencies
create_offset_list Create table of frequency offsets
delay Delay for a specified time
getarray Retrieves all values of an arrayed parameter
vdelay Select delay from table

136 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

list_number is –1 or a unique number from 0 to 255 for each list created.

Examples: See the example for the create_delay_list statement.

create_offset_list Create table of frequency offsets

Applicability: UNITYINOVA systems.

Syntax: create_offset_list(list,nvals,device,list_number)
double *list; /* pointer to list of frequency offsets */
int nvals; /* number of values in list */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list_number; /* number 0–255 for each list */

Description: Stores global lists of frequencies that can be accessed with a real-time variable
or table element for dynamic setting of frequency offsets. Offset lists define lists
of frequency offsets in Hz (such as from tof, dof). Imaging pulse sequences
typically use offset lists, not frequency lists. The lists need to be created in order
starting from 0 using the list_number argument, or by setting the
list_number argument to –1, which makes the software allocate and create
the next free list and give the list number as a return value. Each list must have
a unique and sequential list_number. There can be a maximum of 256 lists
depending on the size of the lists. The lists are stored in data memory and
compete for space with the acquisition data for each array element. If a list is
created, the return value is the number of the list (0 to 255); if an error occurs,
the return value is negative.

create_offset_list creates what is called a global list. Global lists are
different from AP tables in that the lists are sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a –1 in
the list_number argument because a list will be created for each array
element. In this case, a list parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
use the getarray statement. To ensure that the list is only created once, check
the global array counter variable ix, and only call create_offset_list
to create the list when it equals 1. An example is shown in the entry for the
create_delay_list statement.

Arguments: list is a pointer to a list of frequency offsets.

nvals is the number of values in the list.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

list_number is –1 or a unique number from 0 to 255 for each list created.

Examples: See the example for the create_delay_list statement.

Related: create_delay_list Create table of delays
create_offset_list Create table of frequency offsets
getarray Retrieves all values of an arrayed parameter
delay Delay for a specified time
vfreq Select frequency from table

Related: create_delay_list Create table of delays
create_freq_list Create table of frequencies
getarray Retrieves all values of an arrayed parameter

01-999253-00 A0604 VnmrJ User Programming 137

Chapter 3. Pulse Sequence Statement Reference –

D

delay Delay for a specified time
voffset Select frequency offset from table

A B C D E G H I L M O P R S T V W X Z

dbl Double an integer value

dcphase Set decoupler phase (obsolete)

dcplrphase Set small-angle phase of 1st decoupler, rf type C or D

dcplr2phase Set small-angle phase of 2nd decoupler, rf type C or D

dcplr3phase Set small-angle phase of 3rd decoupler, rf type C or D

decblank Blank amplifier associated with first decoupler

dec2blank Blank amplifier associated with second decoupler

dec3blank Blank amplifier associated with third decoupler

declvloff Return first decoupler back to “normal” power

declvlon Turn on first decoupler to full power

decoff Turn off first decoupler

dec2off Turn off second decoupler

dec3off Turn off third decoupler

decoffset Change offset frequency of first decoupler

dec2offset Change offset frequency of second decoupler

dec3offset Change offset frequency of third decoupler

dec4offset Change offset frequency of fourth decoupler

decon Turn on first decoupler

dec2on Turn on second decoupler

dec3on Turn on third decoupler

decphase Set quadrature phase of first decoupler

dec2phase Set quadrature phase of second decoupler

dec3phase Set quadrature phase of third decoupler

dec4phase Set quadrature phase of fourth decoupler

decpower Change first decoupler power level, linear amp. systems

dec2power Change second decoupler power level, linear amp. systems

dec3power Change third decoupler power level, linear amp. systems

dec4power Change fourth decoupler power level, linear amp. systems

decprgoff End programmable decoupling on first decoupler

dec2prgoff End programmable decoupling on second decoupler

dec3prgoff End programmable decoupling on third decoupler

decprgon Start programmable decoupling on first decoupler

dec2prgon Start programmable decoupling on second decoupler

dec3prgon Start programmable decoupling on third decoupler

decpulse Pulse first decoupler transmitter with amplifier gating

decpwr Set first decoupler high-power level, class C amplifier

decpwrf Set first decoupler fine power

138 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

dbl Double an integer value

Syntax: dbl(vi,vj)
codeint vi; /* variable for starting value */
codeint vj; /* variable for twice starting value */

Description: Sets vj equal to twice the integer value of vi.

Arguments: vi and vj are real-time variables (v1 to v14, oph, etc.).

Examples: dbl(v1,v2);

dec2pwrf Set second decoupler fine power

dec3pwrf Set third decoupler fine power

decr Decrement an integer value

decrgpulse Pulse first decoupler with amplifier gating

dec2rgpulse Pulse second decoupler with amplifier gating

dec3rgpulse Pulse third decoupler with amplifier gating

dec4rgpulse Pulse fourth decoupler with amplifier gating

decshaped_pulse Perform shaped pulse on first decoupler

dec2shaped_pulse Perform shaped pulse on second decoupler

dec3shaped_pulse Perform shaped pulse on third decoupler

decspinlock Set spin lock waveform control on first decoupler

dec2spinlock Set spin lock waveform control on second decoupler

dec3spinlock Set spin lock waveform control on third decoupler

decstepsize Set step size for first decoupler

dec2stepsize Set step size for second decoupler

dec3stepsize Set step size for third decoupler

decunblank Unblank amplifier associated with first decoupler

dec2unblank Unblank amplifier associated with second decoupler

dec3unblank Unblank amplifier associated with third decoupler

delay Delay for a specified time

dhpflag Switch decoupling from low-power to high-power

divn Divide integer values

dps_off Turn off graphical display of statements

dps_on Turn on graphical display of statements

dps_show Draw delay or pulses in a sequence for graphical display

dps_skip Skip graphical display of next statement

Related: add Add integer values
assign Assign integer values
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

01-999253-00 A0604 VnmrJ User Programming 139

Chapter 3. Pulse Sequence Statement Reference –

dcphase Set decoupler phase (obsolete)

Description: No longer supported. Replace dcphase statements with the decphase
statement.

dcplrphase Set small-angle phase of 1st decoupler, rf type C or D

Applicability: Systems using a first decoupler with rf type C or D and MERCURYplus/-Vx.

Syntax: dcplrphase(multiplier)
codeint multiplier; /* real-time phase step multiplier */

Description: Sets first decoupler phase in step size units set by the stepsize statement.
The small-angle phaseshift is a product of multiplier and the step size. If
stepsize has not been used, default step size is 90°.

If the product of the step size set by the stepsize statement and
multiplier is greater than 90°, the sub-90° part is set by dcplrphase.
Only on systems with an Output board are carryovers that are multiples of 90°
automatically saved and added in at the time of the next 90° phase selection
(such as at the time of the next pulse or decpulse). On systems with a Data
Acquisition Controller board, a Pulse Sequence Controller board, or an
Acquisition Controller board, this is done by dcplrphase (see the description
section of the acquire statement for further information about these boards).

Unlike decphase, dcplrphase is needed any time the first decoupler
phase shift is to be set to a value not a multiple of 90°. decphase sets
quadrature phase shift only, which is rarely needed.

Arguments: multiplier is a small-angle phaseshift multiplier for the first decoupler. The
value must be a real-time variable (v1 to v14, oph, etc.) or real-time constant
(zero, one, etc.).

Examples: dcplrphase(zero);

dcplr2phase Set small-angle phase of 2nd decoupler, rf type C or D

Applicability: Systems using a second decoupler with rf type C or D.

Syntax: dcplr2phase(multiplier)
codeint multiplier; /* real-time phase step multiplier */

Description: Sets second decoupler phase in step size units set by the stepsize statement.
The small-angle phaseshift is a product of multiplier and the step size. If
stepsize has not been used, the default step size is 90°.

If the product of the step size set by the stepsize statement and
multiplier is greater than 90°, the sub-90° part is set by dcplr2phase.
Only on systems with an Output board are carryovers that are multiples of 90°
are automatically saved and added in at the time of the next 90° phase selection
(such as at the time of the next pulse or dec2pulse). On systems with a
Data Acquisition Controller board, a Pulse Sequence Controller board, or an
Acquisition Controller board, this is done by dcplr2phase (see the

Related: decphase Set phase of first decoupler

Related: dcplr2phase Set small-angle phase of second decoupler, rf type C or D
dcplr3phase Set small-angle phase of third decoupler, rf type C or D
decphase Set quadrature phase of first decoupler
stepsize Set small-angle phase step size, rf type C or D
xmtrphase Set small-angle phase of obs. transmitter, rf type C

140 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

description section of the acquire statement for further information about
these boards).

Unlike dec2phase, dcplr2phase is needed any time the second decoupler
phase shift is to be set to a value that is not a multiple of 90°. dec2phase sets
quadrature phase shift only, which is rarely need.

Arguments: multiplier is a small-angle phaseshift multiplier for the second decoupler.
The value must be a real-time variable (v1 to v14, oph, etc.) or real-time
constant (zero, one, etc.).

Examples: dcplr2phase(zero);

dcplr3phase Set small-angle phase of 3rd decoupler, rf type C or D

Applicability: Systems using a third decoupler with rf type C or D.

Syntax: dcplr3phase(multiplier)
codeint multiplier; /* multiplies phase step */

Description: Sets the third decoupler phase in units set by the stepsize statement. If
stepsize has not been used, the default step size is 90°. The small-angle
phaseshift is a product of multiplier and the preset stepsize. The full
small-angle phase is set by dcplr3phase.

Unlike dec3phase, dcplr3phase is needed any time the third decoupler
phase shift is to be set to a value that is not a multiple of 90°. dec3phase sets
quadrature phase shift only, which is rarely needed.

Arguments: multiplier is a small-angle phaseshift multiplier for the third decoupler.
The value must be a real-time variable (v1 to v14, oph, etc.) or real-time
constant (zero, one, etc.).

Examples: dcplr2phase(zero);

decblank Blank amplifier associated with first decoupler

Applicability: UNITYINOVA systems.

Syntax: decblank()

Description: Disables the amplifier for the first decoupler. This is generally used after a call
to decunblank.

dec2blank Blank amplifier associated with second decoupler

Applicability: All systems with linear amplifiers.

Related: dcplrphase Set small-angle phase of first decoupler, rf type C or D
dec2phase Set quadrature phase of second decoupler
stepsize Set small-angle phase step size, rf type C or D
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Related: dcplrphase Set small-angle phase of first decoupler, rf type C or D
dec3phase Set quadrature phase of third decoupler
stepsize Set small-angle phase step size, rf type C or D
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Related: decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver

01-999253-00 A0604 VnmrJ User Programming 141

Chapter 3. Pulse Sequence Statement Reference –

Syntax: dec2blank()

Description: Disables the amplifier for the second decoupler. This is generally used after a
call to dec2unblank.

dec3blank Blank amplifier associated with third decoupler

Applicability: UNITYINOVA systems with third decoupler.

Syntax: dec3blank()

Description: Disables the amplifier for the third decoupler. This is generally used after a call
to dec3unblank.

declvloff Return first decoupler back to “normal” power

Syntax: declvloff()

Description: Switches the decoupler power to the power level set by the appropriate
parameters defined by the amplifier type: dhp for class C amplifiers or dpwr
for linear amplifiers. If dhp='n', declvloff has no effect on systems with
class C amplifiers but still functions for systems with linear amplifiers.

declvlon Turn on first decoupler to full power

Syntax: declvlon()

Description: Switches the first decoupler power level between the power level set by the
high-power parameter(s) to the full output of the decoupler. If dhp='n',
declvloff has no effect on systems with class C amplifiers but still functions
for systems with linear amplifiers.

If declvlon is used, make sure declvloff is used prior to time periods in which
normal, controllable power levels are desired, such as prior to acquisition. Use
full decoupler power only for decoupler pulses or for solids applications.

decoff Turn off first decoupler

Syntax: decoff()

Related: dec2unblank Unblank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dec3unblank Unblank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Related: declvlon Turn on first decoupler to full power
power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, lin. amp. sys.
rlpwrf Set transmitter or decoupler fine power

Related: declvloff Return first decoupler back to “normal” power
power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, lin. amp. sys.
rlpwrf Set transmitter or decoupler fine power

142 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: Explicitly gates off the first decoupler in the pulse sequence.

dec2off Turn off second decoupler

Applicability: Systems with a second decoupler.

Syntax: dec2off()

Description: Explicitly gates off the second decoupler in the pulse sequence.

dec3off Turn off third decoupler

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3off()

Description: Explicitly gates off the third decoupler in the pulse sequence.

decoffset Change offset frequency of first decoupler

Syntax: decoffset(frequency)
double frequency; /* offset in Hz */

Description: Changes the offset frequency of the first decoupler (parameter dof). It is
functionally the same as offset(frequency,DODEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: decoffset(do1);

dec2offset Change offset frequency of second decoupler

Syntax: dec2offset(frequency)
double frequency; /* offset frequency in Hz */

Description: Changes the offset frequency of the second decoupler (parameter dof2). It is
functionally the same as offset(frequency,DO2DEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: dec2offset(do2);

dec3offset Change offset frequency of third decoupler

Syntax: dec3offset(frequency)
double frequency; /* offset frequency in Hz */

Related: decon Turn on first decoupler
dec2off Turn off second decoupler
dec3off Turn off third decoupler

Related: dec2on Turn on second decoupler

Related: dec3on Turn on third decoupler

Related: dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Related: decoffset Change offset frequency of first decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

01-999253-00 A0604 VnmrJ User Programming 143

Chapter 3. Pulse Sequence Statement Reference –

Description: Changes the offset frequency of the third decoupler (parameter dof3). It is
functionally the same as offset(frequency,DO3DEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: dec3offset(do3);

dec4offset Change offset frequency of fourth decoupler

Applicability: UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

Syntax: dec4offset(frequency)
double frequency; /* offset frequency in Hz */

Description: Changes the offset frequency of the fourth decoupler (parameter dof4). It is
functionally the same as offset(frequency,DO4DEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: dec4offset(do4);

decon Turn on first decoupler

Syntax: decon()

Description: Explicitly gates on the first decoupler in the pulse sequence. First decoupler
gating is handled automatically by the statements declvloff, declvlon,
decpulse, decrgpulse, decshaped_pulse, decspinlock,
simpulse, sim3pulse, simshaped_pulse, sim3shaped_pulse.

decprgon generally needs to be enabled with an explicit decon statement
and followed by a decoff call.

dec2on Turn on second decoupler

Applicability: Systems with a second decoupler.

Syntax: dec2on()

Description: Explicitly gates on the second decoupler in the pulse sequence. Second
decoupler gating is handled automatically by the statements dec2rgpulse,
dec2shaped_pulse, dec2spinlock, sim3pulse, and
sim3shaped_pulse.

dec2prgon generally needs to be enabled with an explicit dec2on
statement and followed by a dec2off call.

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler
rftype Type of rf generation

Related: decoff Turn off first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler

Related: dec2off Turn off second decoupler

144 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

dec3on Turn on third decoupler

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3on()

Description: Explicitly gates on the third decoupler in the pulse sequence. Third decoupler
gating is handled automatically by the statements dec3rgpulse,
dec3shaped_pulse, and dec3spinlock

dec3prgon generally needs to be enabled with an explicit dec3on
statement and followed by a dec3off call.

decphase Set quadrature phase of first decoupler

Syntax: decphase(phase)
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the first decoupler rf. decphase is
syntactically and functionally equivalent to txphase and is useful for a
decoupler pulse in all cases where txphase is useful for a transmitter pulse.

Arguments: phase is the quadrature phase for the first decoupler rf. The value must be a
real-time variable (v1 to v14, oph, ct, etc.).

Examples: decphase(v4);

dec2phase Set quadrature phase of second decoupler

Applicability: Systems with a second decoupler.

Syntax: dec2phase(phase)
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the second decoupler rf.

Arguments: phase is the quadrature phase for the second decoupler rf. The value must be
a real-time variable (v1 to v14, oph, ct, etc.).

Examples: dec2phase(v9);

dec3phase Set quadrature phase of third decoupler

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3phase(phase)
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the third decoupler rf.

Arguments: phase is the quadrature phase for the third decoupler rf. The value must be a
real-time variable (v1 to v14, oph, ct, etc.).

Examples: dec3phase(v9);

Related: dec3off Turn off third decoupler

Related: dcplrphase Set small-angle phase of first decoupler, rf type C or D
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler
txphase Set quadrature phase of observe transmitter

Related: dcplr2phase Set small-angle phase of second decoupler, rf type C or D
decphase Set quadrature phase of first decoupler

Related: dcplr3phase Set small-angle phase of third decoupler, rf type C or D
decphase Set quadrature phase of first decoupler

01-999253-00 A0604 VnmrJ User Programming 145

Chapter 3. Pulse Sequence Statement Reference –

dec4phase Set quadrature phase of fourth decoupler

Applicability: UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

Syntax: dec4phase(phase)
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the fourth decoupler rf.

Arguments: phase is the quadrature phase for the third decoupler rf. The value must be a
real-time variable (v1 to v14, oph, ct, etc.).

Examples: dec4phase(v9);

decpower Change first decoupler power level, linear amp. systems

Applicability: Systems with linear amplifiers.

Syntax: decpower(power)
double power; /* new power level for DODEV */

Description: Changes the first decoupler power. It is functionally the same as
rlpower(value,DODEV).

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator, or from –16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

CAUTION: On systems with linear amplifiers, be careful when using values of
decpower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for
parameters tpwr, dpwr, dpwr2, and dpwr3.

dec2power Change second decoupler power level, linear amp. systems

Applicability: Systems with a second decoupler.

Syntax: dec2power(power)
double power; /* new power level for DO2DEV */

Description: Changes the second decoupler power. It is functionally the same as
rlpower(value,DO2DEV).

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator, or from –16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

Related: rftype Type of rf generation
decphase Set quadrature phase of first decoupler

Related: dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

Related: decpower Change first decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

146 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

dec3power Change third decoupler power level, linear amp. systems

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3power(power)
double power; /* new power level for DO3DEV */

Description: Changes the third decoupler power. It is functionally the same as
rlpower(value,DO3DEV).

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator, or from –16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

dec4power Change fourth decoupler power level, linear amp. systems

Applicability: UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

Syntax: dec4power(power)
double power; /* new power level for DO4DEV */

Description: Changes the third decoupler power. It is functionally the same as
rlpower(value,DO4DEV).

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63
(maximum power).

decprgoff End programmable decoupling on first decoupler

Applicability: Systems with a waveform generator on rf channel for the first decoupler.

Syntax: decprgoff()

Description: Terminates any waveform-generator-controlled programmable decoupling on
the first decoupler started by the decprgon statement.

dec2prgoff End programmable decoupling on second decoupler

Applicability: Systems with a waveform generator on rf channel for the second decoupler.

Syntax: dec2prgoff()

Description: Terminates any waveform-generator-controlled programmable decoupling on
the second decoupler set by the dec2prgon statement.

Related: decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems

Related: decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
rlpower Change power level, linear amplifier systems
rftype Type of rf generation

Related: decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
dec3prgoff End programmable decoupling on third decoupler

Related: dec2prgon Start programmable decoupling on second decoupler

01-999253-00 A0604 VnmrJ User Programming 147

Chapter 3. Pulse Sequence Statement Reference –

dec3prgoff End programmable decoupling on third decoupler

Applicability: UNITYINOVA systems with a waveform generator on rf channel with the third
decoupler.

Syntax: dec3prgoff()

Description: Terminates any waveform-generator-controlled programmable decoupling on
the third decoupler set by the dec3prgon statement.

decprgon Start programmable decoupling on first decoupler

Applicability: Systems with a waveform generator on rf channel for the first decoupler.

Syntax: decprgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90∞∞-deg pulse length in sec
*/
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable decoupling on the first decoupler under waveform
generator control, and returns the number of 50-ns ticks (as an integer value) in
one cycle of the decoupling pattern. Explicit gating of the first decoupler with
decon and decoff is generally required. Arguments can be variables (which
require the appropriate getval and getstr statements) to permit changes by
the parameters (see the second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the
first decoupler.

tipangle_resoln is the resolution, in tip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

Examples: decprgon("garp1",1/dmf, 1.0);
decprgon(modtype,pwx90,dres);
n50ns_ticks = decprgon("waltz16",1/dmf,90.0);

dec2prgon Start programmable decoupling on second decoupler

Applicability: Systems with a waveform generator on rf channel for the second decoupler.

Syntax: dec2prgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90∞∞∞-deg pulse length in sec
*/
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable decoupling on second decoupler under waveform
generator control, and returns the number of 50-ns ticks (as an integer value) in
one cycle of the decoupling pattern. Explicit gating of the second decoupler
with dec2on and dec2off is generally required. Arguments can be variables
(which require the appropriate getval and getstr statements) to permit
changes by the parameters (see the second example).

Related: dec3prgon Start programmable decoupling on third decoupler

Related: decprgoff End programmable decoupling on first decoupler
dec2prgon Start programmable decoupling on second decoupler
dec3prgon Start programmable decoupling on third decoupler
obsprgon Start programmable control of obs. transmitter

148 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the
second decoupler.

tipangle_resoln is the resolution, in tip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

Examples: (1) dec2prgon("waltz16",1/dmf2,90.0);

(2) dec2prgon(modtype,pwx290,dres2);
n50ns_ticks=dec2prgon("garp1",1/dmf2,1.0);

dec3prgon Start programmable decoupling on third decoupler

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the third
decoupler.

Syntax: dec3prgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length in sec */
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable decoupling on third decoupler under waveform
generator control. It returns the number of 50-ns ticks (as an integer value) in
one cycle of the decoupling pattern. Explicit gating of the third decoupler with
dec3on and dec3off is generally required. Arguments can be variables
(which require the appropriate getval and getstr statements) to permit
changes by parameters (see second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the
third decoupler.

tipangle_resoln is the resolution, in tip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

Examples: (1) dec3prgon("waltz16",1/dmf3,90.0);

(2) dec3prgon(modtype,pwx390,dres3);
n50ns_ticks = dec3prgon("garp1",1/dmf3,1.0);

decpulse Pulse first decoupler transmitter with amplifier gating

Syntax: decpulse(width,phase)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase of pulse */

Description: Pulses the first decoupler at its current power level. The amplifier is gated off
during decoupler pulses as it is during observe pulses. The amplifier gating
times (see RG1 and RG2 for decrgpulse) are internally set to zero for this
statement. dmm should be set to 'c' during any period of time in which
decoupler pulses occur.

Related: decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
obsprgon Start programmable control of obs. transmitter

Related: decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
obsprgon Start programmable control of obs. transmitter

01-999253-00 A0604 VnmrJ User Programming 149

Chapter 3. Pulse Sequence Statement Reference –

Arguments: width is the duration of the pulse, in seconds.

phase is the phase of the pulse. The value must be a real-time variable (v1 to
v14, etc.) or a real-time constant (zero, one, etc.).

Examples: decpulse(pp,v3);
decpulse(2.0*pp,zero);

decpwr Set first decoupler high-power level, class C amplifier

Applicability: All systems with class C amplifiers.

Syntax: decpwr(level)
double level; /* new power level for DODEV channel */

Description: Changes the first decoupler high-power level to the value specified. To reset the
power back to the “standard” dhp level, use decpwr(dhp).

Switching between low power decoupling (dhp='n') and high power
decoupling (dhp=x), as well as switching between different levels of low
power decoupling, uses relays whose switching time is about 10 ms and are not
provided for in the standard pulse sequence capability. Neither function should
prove necessary because extremely low levels of decoupling are provided for in
dhp mode by using very small (0 to 30) values of dhp.

Arguments: level specifies the decoupler high-power level, from 0 (lowest) to 255 (full
power). These values in this range increase monotonically but are neither linear
nor logarithmic

Examples: decpwr(255.0);
decpwr(level1);

decpwrf Set first decoupler fine power

Applicability: Systems with fine power control on the first decoupler.

Syntax: decpwrf(power)
double power; /* new fine power value for DODEV */

Description: Changes first decoupler fine power. It is functionally the same as
rlpwrf(value,DECch).

Arguments: power is the fine power desired.

Examples: decpwrf(4.0);

dec2pwrf Set second decoupler fine power

Applicability: Systems with fine power control on the second decoupler.

Syntax: dec2pwrf(power)

Related: decrgpulse Pulse decoupler transmitter with amplifier gating
idecpulse Pulse the decoupler transmitter with IPA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Related: declvloff Return first decoupler back to “normal” power

Related: dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

150 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

double power; /* new fine power value for DO2DEV */

Description: Changes the second decoupler fine power. It is functionally the same as
rlpwrf(value,DO2DEV).

Arguments: power is the fine power desired.

Examples: dec2pwrf(4.0);

dec3pwrf Set third decoupler fine power

Applicability: UNITYINOVA systems with fine power control on the third decoupler.

Syntax: dec3pwrf(power)
double power; /* new fine power value for DO3DEV */

Description: Changes third decoupler fine power. It is functionally the same as
rlpwrf(value,DO3DEV).

Arguments: power is the fine power desired.

Examples: dec3pwrf(4.0);

decr Decrement an integer value

Syntax: decr(vi)
codeint vi; /* real-time variable for starting value */

Description: Decrements integer value vi by 1 (i.e., vi=vi–1).

Arguments: vi is a real-time variable (v1 to v14, oph, etc.).

Examples: decr(v5);

decrgpulse Pulse first decoupler with amplifier gating

Syntax: decrgpulse(width,phase,RG1,RG2)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Related: decpwrf Set first decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

01-999253-00 A0604 VnmrJ User Programming 151

Chapter 3. Pulse Sequence Statement Reference –

Description: Syntactically equivalent to rgpulse statement and functionally equivalent to
rgpulse with two exceptions. First, the first decoupler (instead of the
transmitter) is pulsed at its current power level. Second, if homo='n', the slow
gate on the first decoupler board is always open and therefore need not be
switched open during RG1. In contrast, if homo='y', the slow gate on the first
decoupler board is normally closed and must therefore be allowed sufficient
time during RG1 to switch open.

For systems with linear amplifiers, RG1 for a decoupler pulse is important from
the standpoint of amplifier stabilization under the following conditions: tn,dn
equal {3H, 1H, 19F} (high-band nuclei, 3H does not apply to MERCURYplus/-
Vx systems), or tn,dn less than or equal to 31P (low-band nuclei). For these
conditions, the “decoupler” amplifier module is placed in pulse mode, in which
it remains blanked as long as the receiver is on. In this mode, RG1 must be
sufficiently long to allow the amplifier to stabilize after blanking is removed: 5
to 10 µs (2 µs typical for MERCURYplus/-Vx) for high-band nuclei and 10 to 20
µs (2 µs typical for MERCURYplus/-Vx) for low-band nuclei. Solids require at
least 1.5 µs. On 500-MHz systems that use the ENI-5100 class A amplifier for
low-band nuclei on the observe channel, RG1 should be 40–60 µs.

If the tn nucleus and the dn nucleus are in different bands (e.g., tn is 1H and
dn is 13C), the “decoupler” amplifier module is placed in the cw mode, in which
it is always unblanked regardless of the state of the receiver. In this mode RG1
is unimportant with respect to amplifier stabilization prior to the decoupler
pulse.

Arguments: width is the duration, in seconds, of the decoupler transmitter pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.).

RG1 is the time, in seconds, before the start of the pulse that the amplifier is
gated off.

RG2 is the time, in seconds, after the end of the pulse that the amplifier is gated
on.

Examples: decrgpulse(pp,v3,rof1,rof2);
decrgpulse(pp,zero,1.0e–6,0.2e–6);

dec2rgpulse Pulse second decoupler with amplifier gating

Applicability: Systems with a second decoupler.

Syntax: dec2rgpulse(width,phase,RG1,RG2)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs an explicit amplifier-gated pulse on the second decoupler (DO2DEV).

Related: decpulse Pulse first decoupler with amplifier gating
dec2rgpulse Pulse second decoupler with amplifier gating
dec3rgpulse Pulse third decoupler with amplifier gating
idecpulse Pulse first decoupler transmitter with IPA
idecrgpulse Pulse first decoupler with amplifier gating and IPA
irgpulse Pulse observe transmitter with IPA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

152 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 is the delay, in seconds, between gating the rf transmitter off and gating the
amplifier off. homo has no effect on the gating on the second decoupler board.
On UNITYINOVA , homo2 controls gating of second decoupler rf.

Examples: dec2rgpulse(p1,v10,rof1,rof2);

dec3rgpulse Pulse third decoupler with amplifier gating

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3rgpulse(width,phase,RG1,RG2)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs an explicit amplifier-gated pulse on the third decoupler (DO3DEV).

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 is the delay, in seconds, between gating the rf transmitter off and gating the
amplifier off. homo has no effect on the gating on the third decoupler board. On
UNITYINOVA , homo3 controls gating of third decoupler rf.

Examples: dec3rgpulse(p1,v10,rof1,rof2);

dec4rgpulse Pulse fourth decoupler with amplifier gating

Applicability: UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

Related: decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulse first decoupler with amplifier gating
idecpulse Pulse first decoupler with IPA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Related: decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulse first decoupler with amplifier gating
idecpulse Pulse first decoupler with IPA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

01-999253-00 A0604 VnmrJ User Programming 153

Chapter 3. Pulse Sequence Statement Reference –

Syntax: dec4rgpulse(width,phase,RG1,RG2)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs an explicit amplifier-gated pulse on the fourth decoupler (DO4DEV).

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 is the delay, in seconds, between gating the rf transmitter off and gating the
amplifier off.

Examples: dec4rgpulse(p1,v10,rof1,rof2);

decshaped_pulse Perform shaped pulse on first decoupler

Applicability: UNITYINOVA systems, or systems with waveform generator on rf channel for the
first decoupler.

Syntax: decshaped_pulse(pattern,width,phase,RG1,RG2)
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the first decoupler. If a waveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an
apshaped_decpulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When decshaped_pulse is
called, the shape is addressed and started. The minimum pulse length is 0.2 µs.
The overhead at the start and end of the shaped pulse varies:

• UNITYINOVA: 1 µs (start), 0 (end)

• System with Acquisition Controller board: 10.75 µs (start), 4.3 µs (end)

• System with Output board: 10.95 µs (start), 4.5 µs (end)

If the length is less than 0.2 µs, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the decshaped_pulse statement creates AP tables on the fly
for amplitude and phase. It also uses the real-time variables v12 and v13 to

Related: decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulse first decoupler with amplifier gating
idecpulse Pulse first decoupler with IPA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

154 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

control the execution of the shape. It does not use AP table variables. For timing
and more information, see the description of apshaped_decpulse. Note
that if using AP tables with shapes that have a large number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underflow errors can result.

Arguments: pattern is the name of a text file in the shapelib directory that stores the
rf pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.)

RG1 is the delay, in seconds, between gating the amplifier on and gating the first
decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the first decoupler off and gating
the amplifier off.

Examples: decshaped_pulse("sinc",p1,v5,rof1,rof2);

dec2shaped_pulse Perform shaped pulse on second decoupler

Applicability: Systems with a waveform generator on rf channel for the second decoupler.

Syntax: dec2shaped_pulse(pattern,width,phase,RG1,RG2)
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the second decoupler. If a waveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an
apshaped_dec2pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When dec2shaped_pulse is
called, the shape is addressed and started. The minimum pulse length is 0.2 µs.
The overhead at the start and end of the shaped pulse varies:

• UNITYINOVA: 1 µs (start), 0 (end)

• System with Acquisition Controller board: 10.75 µs (start), 4.3 µs (end)

• System with Output board: 10.95 µs (start), 4.5 µs (end)

If the length is less than 0.2 µs, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the dec2shaped_pulse statement creates AP tables on the fly
for amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It does not use AP table variables. For timing
and more information, see the description of apshaped_dec2pulse. Note

Related: apshaped_decpulse First decoupler pulse shaping via AP bus
dec2shaped_pulse Perform shaped pulse on second decoupler
dec3shaped_pulse Perform shaped pulse on third decoupler
shaped_pulse Perform shaped pulse on observe transmitter
simshaped_pulse Simultaneous two-pulse shaped pulse
sim3shaped_pulse Simultaneous three-pulse shaped pulse

01-999253-00 A0604 VnmrJ User Programming 155

Chapter 3. Pulse Sequence Statement Reference –

that if using AP tables with shapes that have a large number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underflow errors can result.

Arguments: pattern is the name of a text file in the shapelib directory that stores the
rf pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.)

RG1 is the delay, in seconds, between gating the amplifier on and gating the
second decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the second decoupler off and
gating the amplifier off.

Examples: dec2shaped_pulse("gauss",p1,v9,rof1,rof2);

dec3shaped_pulse Perform shaped pulse on third decoupler

Applicability: UNITYINOVA systems.

Syntax: dec3shaped_pulse(pattern,width,phase,RG1,RG2)
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the third decoupler. If a waveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an
apshaped_dec3pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When dec3shaped_pulse is
called, the shape is addressed and started. The minimum pulse length is 0.2 µs.
The overhead at the start and end of the shaped pulse varies:

• UNITYINOVA: 1 µs (start), 0 (end)

• System with Acquisition Controller board: 10.75 µs (start), 4.3 µs (end)

• System with Output board: 10.95 µs (start), 4.5 µs (end)

If the length is less than 0.2 µs, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the dec3shaped_pulse statement creates AP tables on the fly
for amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It does not use AP table variables. For timing
and more information, see the description of apshaped_dec3pulse. Note
that if using AP tables with shapes that have a large number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underflow errors can result.

Related: apshaped_dec2pulse Second decoupler pulse shaping via AP bus
decshaped_pulse Perform shaped pulse on first decoupler
shaped_pulse Perform shaped pulse on observe transmitter
sim3shaped_pulse Simultaneous three-pulse shaped pulse

156 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: pattern is the name of a text file in the shapelib directory that stores the
rf pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.)
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the
third decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the third decoupler off and gating
the amplifier off.

Examples: dec3shaped_pulse("gauss",p1,v9,rof1,rof2);

decspinlock Set spin lock waveform control on first decoupler

Applicability: Systems with waveform generator on rf channel for the first decoupler.

Syntax: decspinlock(pattern,90_pulselength,tipangle_resoln,
phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90∞∞-deg pulse length in sec
*/
double tipangle_resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-generator-controlled spin lock on the first decoupler,
handling both rf gating and the mixing delay. Arguments can be variables
(which require the appropriate getval and getstr statements) to permit
changes via parameters (see the second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle.

tipangle_resoln is the resolution, in tip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

phase is the phase of the spin lock. It must be a real-time variable (v1 to v14,
etc.) or a real-time constant (zero, one, etc.).

ncycles is the number of times the spin-lock pattern is to be executed.

Examples: decspinlock("mlev16",p190,dres,v1,30);
decspinlock(spinlk,pp90,dres,v1,cycles);

dec2spinlock Set spin lock waveform control on second decoupler

Applicability: Systems with a waveform generator on rf channel for the second decoupler.

Syntax: dec2spinlock(pattern,90_pulselength,
tipangle_resoln,phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length of channel */

Related: decshaped_pulse Perform shaped pulse on first decoupler
shaped_pulse Perform shaped pulse on observe transmitter

Related: dec2spinlock Set spin lock waveform control on second decoupler
dec3spinlock Set spin lock waveform control on third decoupler
spinlock Set spin lock waveform control on obs. transmitter

01-999253-00 A0604 VnmrJ User Programming 157

Chapter 3. Pulse Sequence Statement Reference –

double tipangle_resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-generator-controlled spin lock on the second decoupler.
Both the rf gating and the mixing delay are handled within this function.
Arguments can be variables (which require the appropriate getval and
getstr statements) to permit changes via parameters (see the second
example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle.

tipangle_resoln is the resolution, in tip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

phase is the phase of the spin lock. It must be a real-time variable (v1 to v14,
etc.) or a real-time constant (zero, one, etc.).

ncycles is the number of times that the spin-lock pattern is to be executed.

Examples: (1) dec2spinlock("mlev16",p290,dres2,v1,42);
(2) dec2spinlock(lock2,pwx2,dres2,v1,cycles);

dec3spinlock Set spin lock waveform control on third decoupler

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the third
decoupler.

Syntax: dec3spinlock(pattern,90_pulselength,
tipangle_resoln,phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length of channel */
double tipangle_resoln;/* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-generator-controlled spin lock on the third decoupler.
Both the rf gating and the mixing delay are handled within this function.
Arguments can be variables (which would need the appropriate getval and
getstr statements) to permit changes via parameters (see the second
example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle.

tipangle_resoln is the resolution in tip-angle degrees to which the
decoupling pattern is stored in the waveform generator.

phase is the phase of the spin lock. It must be a real-time variable (v1 to v14,
etc.) or a real-time constant (zero, one, etc.).

ncycles is the number of times that the spin-lock pattern is to be executed.

Examples: dec3spinlock("mlev16",p390,dres3,v1,42);
dec3spinlock(lock2,pwx2,dres3,v1,cycles);

Related: decspinlock Set spin lock waveform control on first decoupler
spinlock Set spin lock waveform control on obs. transmitter

Related: decspinlock Set spin lock waveform control on first decoupler
spinlock Set spin lock waveform control on observe transmitter

158 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

decstepsize Set step size for first decoupler

Syntax: decstepsize(step_size)
double step_size; /* phase step size of DODEV */

Description: Sets the step size of the first decoupler. It is functionally the same as
stepsize(base,DODEV).

Arguments: step_size is the phase step size desired and is a real number or a variable.

Examples: decstepsize(30.0);

dec2stepsize Set step size for second decoupler

Applicability: Systems with a second decoupler.

Syntax: dec2stepsize(step_size)
double step_size; /* phase step size of DO2DEV */

Description: Sets the step size of the first decoupler. This statement is functionally the same
as stepsize(base,DO2DEV).

Arguments: step_size is the phase step size desired and is a real number or a variable.

Examples: dec2stepsize(30.0);

dec3stepsize Set step size for third decoupler

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3stepsize(step_size)
double step_size; /* phase step size of DO3DEV */

Description: Sets the step size of the third decoupler. This statement is functionally the same
as stepsize(base,DO3DEV).

Arguments: step_size is the phase step size desired and is a real number or a variable.

Examples: dec3stepsize(30.0);

decunblank Unblank amplifier associated with first decoupler

Applicability: UNITYINOVA systems.

Syntax: decunblank()

Related: dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size, rf type C or D

Related: decstepsize Set step size of first decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size, rf type C or D

Related: decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size, rf type C or D

01-999253-00 A0604 VnmrJ User Programming 159

Chapter 3. Pulse Sequence Statement Reference –

Description: Explicitly enables the amplifier for the first decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pulses.
decunblank is generally followed by a call to decblank.

dec2unblank Unblank amplifier associated with second decoupler

Applicability: Systems with a second decoupler.

Syntax: dec2unblank()

Description: Explicitly enables the amplifier for the second decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pulses.
dec2unblank is generally followed by a call to dec2blank.

dec3unblank Unblank amplifier associated with third decoupler

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3unblank()

Description: Explicitly enables the amplifier for the third decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pulses.
dec3unblank is generally followed by a call to dec3blank.

delay Delay for a specified time

Syntax: delay(time)
double time; /* delay in sec */

Description: Sets a delay for a specified number of seconds.

Arguments: time specifies the delay, in seconds.

Examples: delay(d1);
delay(d2/2.0);

dhpflag Switch decoupling from low-power to high-power

Applicability: On all systems with class C amplifiers.

Syntax: dhpflag

Related: decblank Blank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dec2blank Blank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dec3blank Blank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dps_show Draw delay or pulses in a sequence for graphical display
hsdelay Delay specified time with possible homospoil pulse
idelay Delay for a specified time with IPA
incdelay Real time incremental delay
initdelay Initialize incremental delay
vdelay Delay with fixed timebase and real time count

160 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: Switches the system from low-power to high-power decoupling; e.g.,
dhpflag=TRUE (correct use of upper and lower case letters is necessary).

Values: TRUE; switches the system to high-power decoupling.

FALSE; switches the system to low-power decoupling.

divn Divide integer values

Syntax: divn(vi,vj,vk)
codeint vi; /* real-time variable for dividend */
codeint vj; /* real-time variable for divisor */
codeint vk; /* real-time variable for quotient */

Description: Sets the integer value vk equal to vi divided by vj. Any remainder is ignored.

Arguments: vi is the dividend, vj is the divisor, and vk is the quotient. All three are real-
time variables (v1 to v14, oph, etc.).

Examples: divn(v2,v3,v4);

dps_off Turn off graphical display of statements

Syntax: dps_off()

Examples: Turns off dps display of statements. Pulse statements following dps_off are
not shown in the graphical display.

dps_on Turn on graphical display of statements

Syntax: dps_on()

Description: Turns on dps display of statements. Pulse statements following dps_on are
shown in the graphical display.

dps_show Draw delay or pulses in a sequence for graphical display

Syntax: (1) dps_show("delay",time)
double time; /* delay in sec */

Related: status Draw delay or pulses in a sequence for graphical display

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Related: dps_on Turn on graphical display of statements
dps_show Draw delay or pulses in a sequence for graphical display
dps_skip Skip graphical display of next statement

Related: dps_off Turn off graphical display of statements
dps_show Draw delay or pulses in a sequence for graphical display
dps_skip Skip graphical display of next statement

01-999253-00 A0604 VnmrJ User Programming 161

Chapter 3. Pulse Sequence Statement Reference –

Syntax: (2) dps_show("pulse",channel,label,width)
char *channel; /* "obs", "dec”, "dec2",or "dec3" */
char *label; /* text label selected by user */
double width; /* pulse length in sec */

Syntax: (3) dps_show("shape_pulse",channel,label,width)
char *channel; /* "obs", "dec”, "dec2",or "dec3" */
char *label; /* text label selected by user */
double width; /* pulse length in sec */

Syntax: (4) dps_show("simpulse",label_of_obs,width_of_obs,
label_of_dec,width_of_dec)

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */

Syntax: (5) dps_show("simshaped_pulse",label_of_obs,
width_of_obs,label_of_dec,width_of_dec)

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */

Syntax: (6) dps_show("sim3pulse",label_of_obs,width_of_obs,
label_of_dec,width_of_dec,label_of_dec2,
width_of_dec2)

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */
char *label_of_dec2; /* text label selected by user */
double width_of_dec2; /* pulse length in sec */

Syntax: (7) dps_show("sim3shaped_pulse",label_of_obs,
width_of_obs,label_of_dec,width_of_dec,
label_of_dec2,width_of_dec2)

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */
char *label_of_dec2; /* text label selected by user */
double width_of_dec2; /* pulse length in sec */

Syntax: (8) dps_show("zgradpulse",value,delay)
double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

Syntax: (9) dps_show("rgradient",channel,value)
char channel; /* 'X', 'x', 'Y', 'y', 'Z', or 'z' */
double value; /* amplitude of gradient amplifier */

Syntax: (10) dps_show("vgradient",channel,intercept,
slope,mult)

char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */
int slope; /* gradient increment */
codeint mult; /* real-time variable */

Syntax: (11) dps_show("shapedgradient",pattern,width,amp,
channel,loops,wait)

char *pattern; /* name of shape text file */
double width; /* length of pulse */

162 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Syntax: (12) dps_show("shaped2Dgradient",pattern,width,amp,
channel,loops,wait,tag)

char *pattern; /* name of shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulses */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Description: Draws for dps graphical display the pulses, lines, and labels related to the
statement (if it exists) given as the first argument.

• Syntax 1 draws a line to represent a delay.

• Syntax 2 draws a pulse picture and display a label underneath the picture.

• Syntax 3 draws the picture of a shaped pulse and displays a label
underneath the picture.

• Syntax 4 draws observe and decoupler pulses at the same time.

• Syntax 5 draws a shaped pulse for observe and decoupler channels at the
same time.

• Syntax 6 draws observe, decoupler, and second decoupler pulses at the
same time.

• Syntax 7 draws a shaped pulse for observe, decoupler, and the second
decoupler channels at the same time.

• Syntax 8 draws a pulse on the z channel.

• Syntax 9 draws a pulse on the specified channel.

• Syntax 10 draws a gradient picture.

• Syntax 11 draws a shaped pulse on a specified channel.

• Syntax 12 draws a shaped pulse on a specified channel. For an explanation
of the arguments (delay, shapedpulse, etc.), see the corresponding
entry in this reference.

Examples: dps_show("delay",d1);
dps_show("pulse","obs","obspulse",p1);
dps_show("pulse","dec","pw",pw);
dps_show("shaped_pulse","obs","shaped",p1*2);
dps_show("shaped_pulse","dec2","gauss",pw);
dps_show("simpulse","obs_pulse",p1,"dec_pulse",p2);
dps_show("simshaped_pulse","gauss",p1,"gauss",p2);
dps_show("sim3pulse","p1",p1,"p2",p2,"p1*2",p1*2);
dps_show("zgradpulse",123.0,d1);
dps_show("rgradient",'x',1234.0);
dps_show("vgradient",'x',0,2000,v10);
dps_show("shapedgradient","sinc",1000.0,3000.0, \

'y',1,NOWAIT);

01-999253-00 A0604 VnmrJ User Programming 163

Chapter 3. Pulse Sequence Statement Reference –

dps_show("shaped2Dgradient","square",1000.0, \
3000.0,'y',0,NOWAIT,1);

dps_skip Skip graphical display of next statement

Syntax: dps_skip()

Description: Skips dps display of the next statement. The statement following dps_skip
is not shown in the graphical display.

E

elsenz Execute succeeding statements if argument is nonzero

Syntax: elsenz(vi)
codeint vi; /* real-time variable tested as 0 or not */

Description: Placed between the ifzero and endif statements to execute succeeding
statements if vi is nonzero. The elsenz statement can be omitted if it is not
desired. It is also not necessary for any statements to appear between the
ifzero and the elsenz, or between the elsenz and the endif statements.

Related: delay Delay for a specified time
dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_skip Skip graphical display of next statement
pulse Pulse observe transmitter with amplifier gating
rgradient Set gradient to specified level
shaped_pulse Perform shaped pulse on observe transmitter
shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
simpulse Pulse observe and decouple channels simultaneously
sim3pulse Pulse simultaneously on 2 or 3 rf channels
simshaped_pulse Perform simultaneous two-pulse shaped pulse
sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse
vgradient Set gradient to a level determined by real-time math
zgradpulse Create a gradient pulse on the z channel

Related: dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_show Draw delay or pulses for graphical display of a sequence

A B C D E G H I L M O P R S T V W X Z

elsenz Execute succeeding statements if argument is nonzero

endhardloop End hardware loop

endif End execution started by ifzero or elsenz

endloop End loop

endmsloop End multislice loop

endpeloop End phase-encode loop

164 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: vi is a real-time variable (v1 to v14, oph, etc.) tested for either being zero or
non-zero.

n is the same value (1, 2, or 3) as used in the corresponding ifzero statement.

Examples: elsenz(v2);
elsenz(1);

endhardloop End hardware loop

Syntax: endhardloop()

Description: Ends a hardware loop that was started by the starthardloop statement.

endif End execution started by ifzero or elsenz

Syntax: endif(vi)
codeint vi; /* real-time variable to test if 0 or not */

Description: Ends conditional execution started by the ifzero and elsenz statements.

Arguments: vi is a real-time variable (v1 to v14, oph, etc.) that is tested for either being
zero or non-zero.

n is the same value (1, 2, or 3) as used in the corresponding ifzero statement.

Examples: endif(v4);
endif(2);

endloop End loop

Syntax: endloop(index)
codeint index; /* real-time variable */

Description: Ends a loop that was started by a loop statement.

Arguments: index is a real-time variable used as a temporary counter to keep track of the
number of times through the loop. It must not be altered by any statements
within the loop.

n is the same value (1, 2, or 3) as used in the corresponding loop statement.

Examples: endloop(v2);
endloop(2);

endmsloop End multislice loop

Applicability: UNITYINOVA systems.

Syntax: endmsloop(state,apv2)
char state; /* compressed or standard */
codeint apv2; /* current counter value */

Description: Ends a loop that was started by a msloop statement.

Related: endif End ifzero statement
ifzero Execute succeeding statements if argument is zero

Related: acquire Explicitly acquire data
starthardloop Start hardware loop

Related: elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero

Related: loop Start loop

01-999253-00 A0604 VnmrJ User Programming 165

Chapter 3. Pulse Sequence Statement Reference –

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate
the standard arrayed mode. It should be the same value that was in the state
argument in the msloop loop that it is ending.

apv2 is a real-time variable that holds the current counter value. This variable
should be the same variable that was in the apv2 counter variable in the
msloop loop that it is ending.

Examples: endmsloop(seqcon[1],v12);

endpeloop End phase-encode loop

Applicability: UNITYINOVA systems.

Syntax: endpeloop(state,apv2)
char state; /* compressed or standard */
codeint apv2; /* current counter value */

Description: Ends a loop that was started by a peloop statement.

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate
the standard arrayed mode. It should be the same value that was in the state
argument in the peloop loop that it is ending.

apv2 is a real-time variable that holds the current counter value. This variable
should be the same variable that was in the apv2 counter variable in the
peloop loop that it is ending.

Examples: endpeloop(seqcon[1],v12);

G

Related: msloop Multislice loop
endloop End loop
endpeloop End phase-encode loop

Related: peloop Phase-encode loop
endloop End loop
endmsloop End multi-slice loop

A B C D E G H I L M O P R S T V W X Z

gate Device gating (obsolete)

getarray Get arrayed parameter values

getelem Retrieve an element from an AP table

getorientation Read image plane orientation

getstr Look up value of string parameter

getval Look up value of numeric parameter

G_Delay Generic delay routine

G_Offset Frequency offset routine

G_Power Fine power routine

G_Pulse Generic pulse routine

166 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

gate Device gating (obsolete)

Description: Not supported. Replace gate statements as follows:
gate(DECUPLR,TRUE) by a decon() statement.
gate(DECUPLR,FALSE) by a decoff() statement.
gate(DECUPLR2,TRUE) by a dec2on() statement.
gate(DECUPLR2,FALSE) by a dec2off() statement.
gate(RXOFF,TRUE) by a rcvroff() statement.
gate(RXOFF,FALSE) by a rcvron() statement.
gate(TXON,FALSE) by a xmtroff() statement.
gate(TXON,TRUE) by a xmtron() statement.

getarray Get arrayed parameter values

Applicability: UNITYINOVA systems.

Syntax: number=getarray(parname,array)
char *parname; /* parameter name */
double array[]; /* starting address of array */

Description: Retrieves all values of an arrayed parameter from the parameter set. It performs
a sizeof on the array address to check for the maximum number of statements
that the array can hold. The number of statements in the arrayed parameter
parname is determined and returned by getarray as an integer. This
statement is very useful when reading in parameter values for a global list of
PSG statements such as poffset_list and position_offset_list.

When creating an acquisition parameter array that will be treated as lists,
protection bit 8 (256) is set if the parameter is not to be treated as an arrayed
acquisition parameter. An example of the pss parameter when compressing
slice select portion of the acquisition is create(pss,real)
setprotect(pss,on,256)

Arguments: number is an integer return argument that holds the number of values in
parname.

parname is a numeric parameter, either arrayed or single value.

array is the starting address of an array of doubles.

Examples: double upss[256]; /* declare array upss */
int uns;
uns = getarray(upss,upss); /* get values from upss */
poffset_list(upss,gss,uns,v12);

getelem Retrieve an element from an AP table

Syntax: getelem(table,AP_index,AP_dest)
codeint table; /* table variable */
codeint AP_index; /* variable for index to element */
codeint AP_dest; /* variable for destination */

Description: Gets an element from an AP table. The element is identified by an index.

Arguments: table specifies the name of the table (t1 to t60).

Related: create_delay_list Create table of delays
create_freq_list Create table of frequencies
create_offset_list Create table of offsets
poffset_list Set frequency from position list
position_offset_list Set frequency from position list

01-999253-00 A0604 VnmrJ User Programming 167

Chapter 3. Pulse Sequence Statement Reference –

AP_index is an AP variable (v1 to v14, oph, ct, bsctr, or ssctr) that
contains the index of the desired table element. Note that the first element of an
AP table has an index of 0. For tables for which the autoincrement feature is set,
the AP_index argument is ignored and can be set to any AP variable name;
each element in such a table is by definition always accessed sequentially.

AP_dest is an AP variable (v1 to v14 and oph) into which the retrieved table
element is placed.

Examples: getelem(t25,ct,v1);

getorientation Read image plane orientation

Applicability: Systems with imaging or PFG modules.

Syntax: <error_return => getorientation(&char1,&char2, \
&char3,search_string)

char *char1,*char2,*char3; /* program variable pointers */
char *search_string; /* pointer to search string */

Description: Reads in and processes the value of a string parameter used typically for control
of magnetic field gradients. The source of the string value is typically a user-
created parameter available in the current parameters of the experiment used to
initiate acquisition.

Arguments: error_return can contain the following values:

• error_return is set to zero if getorientation was successful in
finding the parameter given in search_string and reading in the value
of that parameter.

• error_return is set to –1 if search_string was not empty but it
did not contain the correct characters.

• error_return is set to a value greater than zero if the procedure failed
or if the string value is made up of characters other than n, x, y, and z.

char1, char2, and char3 are user-created program variables of type char
(single characters). The address operator (&) is used with these arguments to
pass the address, rather than the values of these variables, to
getorientation.

search_string is a literal string that getorientation will search for in
the VnmrJ parameter set, i.e., the parameter name. For example, if
search_string="orient", the value of parameter orient will be
accessed. The value of the parameter should not exceed three characters and
should only be made up of characters from the set n, x, y, and z.

The message can’t find variable in tree aborts
getorientation. This means there is no string associated with
search_string or the parameter name cannot be found.

Examples: (1) pulsesequence()
{
...
char phase,read,slice;
...

Related: loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integers in a real-time AP table

168 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

getorientation(&read,&phase,&slice,"orient");
...
}

(2) pulsesequence()
{
...
char rd, ph, sl;
int error;
...
error=getorientation(&rd,&ph,&sl,”ort”);
...
}

getstr Look up value of string parameter

Syntax: getstr(parameter_name,internal_name)
char *parameter_name; /* name of parameter */
char *internal_name; /* parameter value buffer name */

Description: Looks up the value of the string parameter parameter_name in the current
experiment parameter list and introduces it into the pulse sequence in the
variable internal_name. If parameter_name is not found in the current
experiment parameter list, internal_name is set to the null string and PSG
produces a warning message.

Arguments: parameter_name is a string parameter.

internal_name is any legitimate C variable name defined at the beginning
of the pulse sequence as an array of type char with dimension MAXSTR.

Examples: getstr("xpol",xpol);

getval Look up value of numeric parameter

Syntax: internal_name = getval(parameter_name)
char *parameter_name; /* name of parameter */

Description: Looks up the value of the numeric parameter parameter_name in the current
experiment parameter list and introduces it into the pulse sequence in the
variable internal_name. If parameter_name is not found in the current
experiment parameter list, internal_name is set to zero and PSG produces
a warning message.

Arguments: parameter_name is a numeric parameter.

internal_name can be any legitimate C variable name that has been defined
at the beginning of the pulse sequence as type double.

Examples: J=getval("J");
acqtime=getval("at");

delay(getval("mix"));

Related: shapedvgradient Dynamic variable shaped gradient function
rgradient Set gradient to specified level
vgradient Dynamic variable gradient function

Related: getval Look up value of numeric parameter

Related: getstr Look up value of string parameter

01-999253-00 A0604 VnmrJ User Programming 169

Chapter 3. Pulse Sequence Statement Reference –

G_Delay Generic delay routine

Applicability: UNITYINOVA systems.

Syntax: G_Delay(DELAY_TIME, d1,
SLIDER_LABEL, NULL,
SLIDER_SCALE, 1,
SLIDER_MAX, 60,
SLIDER_MIN, 0,
SLIDER_UNITS, 1.0,
0);

Description: See the section “Generic Pulse Routine,” page 92.

G_Offset Frequency offset routine

Applicability: UNITYINOVA systems.

Syntax: G_Offset(OFFSET_DEVICE, TODEV,
OFFSET_FREQ, tof,
SLIDER_LABEL, NULL,
SLIDER_SCALE, 0,
SLIDER_MAX, 1000,
SLIDER_MIN, –1000,
SLIDER_UNITS, 0,
0);

Description: See the section “Frequency Offset Subroutine,” page 93.

G_Power Fine power routine

Applicability: UNITYINOVA systems.

Syntax: G_Power(POWER_VALUE, tpwrf,
POWER_DEVICE, TODEV,
SLIDER_LABEL, NULL,
SLIDER_SCALE, 1,
SLIDER_MAX, 4095,
SLIDER_MIN, 0,
SLIDER_UNITS, 1.0,
0);

Description: See the section “Fine Power Subroutine,” page 96.

G_Pulse Generic pulse routine

Applicability: UNITYINOVA systems.

Syntax: G_Pulse(PULSE_WIDTH, pw,
PULSE_PRE_ROFF, rof1,
PULSE_POST_ROFF, rof2,
PULSE_DEVICE, TODEV,
SLIDER_LABEL, NULL,
SLIDER_SCALE, 1,
SLIDER_MAX, 1000,
SLIDER_MIN, 0,
SLIDER_UNITS, 1e–6,
PULSE_PHASE, oph,
0);

170 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: See “Generic Pulse Routine,” page 92.

H

hdwshiminit Initialize next delay for hardware shimming

Applicability: UNITYINOVA systems

Syntax: hdwshiminit()

Description: Enables hardware shimming during the following delay or during the following
presaturation pulse, defined as a power level change followed by pulse.
hdwshiminit is not necessary for the first delay or presaturation pulse in a
pulse sequence, which is automatically enabled for hardware shimming.

Examples: hdwshiminit();
delay(d2);
/*hardware shim during d2 if hdwshim='y'*/

hdwshiminit();
obspower(satpwr);
rgpulse(satdly,v5, rof1, rof2);
/*hardware shim during satdly if hdwshim='p'*/

hlv Find half the value of an integer

Syntax: hlv(vi,vj)
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for 1/2 starting value */

Description: Sets vj equal to the integer part of one-half of vi.

Arguments: vi is the starting value, and vj is the integer part of one-half of the starting
value. Both arguments much be real-time variables (v1 to v14, oph, etc.).

Examples: hlv(v2,v5);

A B C D E G H I L M O P R S T V W X Z

hdwshiminit Initialize next delay for hardware shimming

hlv Find half the value of an integer

hsdelay Delay specified time with possible homospoil pulse

Related: delay Delay for a specified time

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n

01-999253-00 A0604 VnmrJ User Programming 171

Chapter 3. Pulse Sequence Statement Reference –

hsdelay Delay specified time with possible homospoil pulse

Syntax: hsdelay(time)
double time; /* delay in sec */

Description: Sets a delay for a specified number of seconds. If the homospoil parameter hs
is set appropriately (see the definition of status), hsdelay inserts a
homospoil pulse of length hst sec at the beginning of the delay.

Arguments: time specifies the length of the delay, in seconds.

Examples: hsdelay(d1);
hsdelay(1.5e–3);

I

mult Multiply integer values
sub Subtract integer values

Related: delay Delay for a specified time
idelay Delay for a specified time with IPA
incdelay Real time incremental delay
initdelay Initialize incremental delay
vdelay Delay with fixed timebase and real time count

A B C D E G H I L M O P R S T V W X Z

idecpulse Pulse first decoupler transmitter with IPA

idecrgpulse Pulse first decoupler with amplifier gating and IPA

idelay Delay for a specified time with IPA

ifzero Execute succeeding statements if argument is zero

incdelay Set real-time incremental delay

incgradient Generate dynamic variable gradient pulse

incr Increment an integer value

indirect Set indirect detection

init_rfpattern Create rf pattern file

init_gradpattern Create gradient pattern file

init_vscan Initialize real-time variable for vscan statement

initdelay Initialize incremental delay

initparms_sis Initialize parameters for spectroscopy imaging sequences

initval Initialize a real-time variable to specified value

iobspulse Pulse observe transmitter with IPA

ioffset Change offset frequency with IPA

ipulse Pulse observe transmitter with IPA

ipwrf Change transmitter or decoupler fine power with IPA

ipwrm Change transmitter or decoupler lin. mod. power with IPA

irgpulse Pulse observe transmitter with IPA

172 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

idecpulse Pulse first decoupler transmitter with IPA

Applicability: UNITYINOVA systems.

Syntax: idecpulse(width,phase,label)
double width; /* pulse width in sec */
codeint phase; /* real-time variable for phase */
char *label; /* slider label in acqi */

Description: Functions the same as the decpulse statement but generates interactive
parameter adjustment (IPA) information when gf or go('acqi') is typed.
idecpulse is the same as decpulse if go is typed.

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14,
oph, etc.) or a real-time constant (zero, one, etc.).

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: idecpulse(pp,v1,"decpul");
idecpulse(pp,v2,"pp");

idecrgpulse Pulse first decoupler with amplifier gating and IPA

Applicability: UNITYINOVA systems.

Syntax: idecrgpulse(width,phase,RG1,RG2,label)
double width; /* pulse width in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acqi */

Description: Works similar to the decrgpulse statement but generates interactive
parameter adjustment (IPA) information when gf or go('acqi') is typed.
idecrgpulse is the same as decrgpulse if go is typed.

Arguments: width is the duration, in seconds, of the decoupler transmitter pulse.

phase sets the decoupler transmitter phase. The value must be a real-time
variable.

RG1 is the time, in seconds, that the amplifier is gated on prior to the start of the
pulse.

RG2 is the time, in seconds, that the amplifier is gated off after the end of the
pulse.

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: idecrgpulse(pp,v5,rof1,rof2,"decpul");
idecrgpulse(pp,v4,rof1,rof2,"pp");

idelay Delay for a specified time with IPA

Applicability: UNITYINOVA systems.

Syntax: idelay(time,label)
double time; /* delay in sec */
char *label; /* slider label in acqi */

Related: decpulse Pulse the decoupler transmitter

Related: decrgpulse Pulse decoupler transmitter with amplifier gating

01-999253-00 A0604 VnmrJ User Programming 173

Chapter 3. Pulse Sequence Statement Reference –

Description: Works similar to the delay statement but generates interactive parameter
adjustment (IPA) information when gf or go('acqi') is entered. idelay
is the same as delay if go is entered.

Arguments: time is the length of the delay, in seconds.

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: idelay(d1,"delay");
idelay(d1,"d1");

ifzero Execute succeeding statements if argument is zero

Syntax: ifzero(vi)
codeint vi; /* real-time variable to check for zero */

Description: Executes succeeding statements if vi is zero. If vi is non-zero and an elsenz
statement exits before the next endif statement, execution moves to the
elsenz statement. Conditional execution ends when the endif statement is
reached. It is not necessary for any statements to appear between the ifzero
and the elsenz or between the elsenz and the endif statements.

Arguments: vi is a real-time variable (v1 to v14, oph, etc.) that is tested for being either
zero or non-zero.

n is the same value (1, 2, or 3) as used in the corresponding elsenz or endif
statements.

Examples: mod2(ct,v1); /* v1=010101... */
ifzero(v1); /* test if v1 is zero */

pulse(pw,v2); /* execute if v1 is zero */
delay(d3); /* execute if v1 is zero */

elsenz(v1); /* test if v1 is non-zero */
pulse(2.0*pw,v2); /* execute if v1 is non-zero */
delay(d3/2.0); /* execute if v1 is non-zero */

endif(v1); /* end conditional execution */

incdelay Set real-time incremental delay

Applicability: UNITYINOVA systems.

Syntax: incdelay(count,index)
codeint count; /* real-time variable */
int index; /* time increment: DELAY1, DELAY2, etc. */

Description: Enables real-time incremental delays. Before incdelay can be used to set a
delay, an associated initdelay statement must be executed to initialize the
time increment and delay index.

Arguments: count is a real-time variable (ct, v1 to v14, etc.) that multiplies the
time_increment (initialized by the initdelay statement) to set the delay
time.

index is DELAY1, DELAY2, DELAY3, DELAY4, or DELAY5. It identifies
which time increment is being multiplied by count to equal the delay.

Related: delay Delay for a specified time

Related: elsenz Execute succeeding statements if argument is nonzero
endif End ifzero statement
initval Initialize real-time variable to specified value

174 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Examples: incdelay(ct,DELAY1);
incdelay(v3,DELAY2);

incgradient Generate dynamic variable gradient pulse

Applicability: UNITYINOVA systems.

Syntax: incgradient(channel,base,inc1,inc2,inc3,mult1, \
mult2,mult3)

char channel; /* gradient 'x', 'y', or 'z' */
int base; /* base value */
int inc1,inc2,inc3; /* increments */
codeint mult1,mult2,mult3; /* multipliers */

Description: Provides a dynamic variable gradient pulse controlled using the AP math
functions. It drives the chosen gradient to the level defined by the formula:

level=base+inc1*mult1+inc2*mult2+inc3*mult3

with increments inc1, inc2, inc3 and multipliers mult1, mult2, mult3.

The range of the gradient level is –2047 to +2047 if the gradients are run
through the DAC board, and –32767 to +32767 if the gradient waveform
generator package is installed. If the requested level lies outside the legal range,
it is clipped at the appropriate boundary value. Note that, while each variable in
the level formula must fit in a 16-bit integer, partial sums and products in the
calculation are done with double-precision 32-bit integers.

The action of the gradient after the use of the incgradient statement is
controlled by the gradient power supply and optional gradient compensation
boards. The gradient level is ramped at the maximum slew rate to the value
requested by incgradient. This fact becomes a concern when using the
incgradient statement in a loop with a delay statement to produce a
modulated gradient. The delay statement should be sufficiently long so as to
allow the gradient to reach the assigned value, that is,

The following error messages are possible:

• Bad gradient specified: channel is caused by the channel
character evaluating to other than 'x', 'y', or 'z'; or by being a string.

• mult[i] illegal RT variable: multiplier_i is caused by
mult1, mult2, or mult3 having a value other than a AP math variable,
v1 to v14.

Arguments: channel is an expression that evaluates to the character 'x', 'y', or 'z'.
(do not confuse characters 'x', 'y' and 'z' with strings "x", "y" and "z".)

base and inc1, inc2, inc3 are the base value and increments used in the
formula for determining the gradient level.

mult1, mult2, mult3 are the multipliers used in the gradient level formula.
These arguments should be AP math variables, v1 to v14. Note that AP tables
(t1 to t60) are not allowed in this statement.

Related: delay Delay for a specified time
hsdelay Delay with possible homospoil pulse
idelay Delay for a specified time with IPA
initdelay Initialize incremental delay
vdelay Delay with fixed timebase and real time count

delay
new_level old_level–

full_scale
--- risetime×≥

01-999253-00 A0604 VnmrJ User Programming 175

Chapter 3. Pulse Sequence Statement Reference –

Examples: See the program inctst.c

incr Increment an integer value

Syntax: incr(vi)
codeint vi; /* real-time variable to increment */

Description: Increments by 1 the integer value given by vi (i.e, vi=vi+1).

Arguments: vi is the integer to be incremented, It must be a real-time variable (v1 to v14,
oph, etc.).

Examples: incr(v4);

indirect Set indirect detection

Applicability: No longer useful to any system using VNMR 5.2 or later.

Syntax: indirect()

Description: Starting with VNMR 5.2, if tn is 'H1' and dn is not 'H1', the software
automatically uses the decoupler as the observe channel and the broadband
channel as the decoupler channel.

init_rfpattern Create rf pattern file

Applicability: UNITYINOVA systems.

Syntax: init_rfpattern(pattern,rfpat_struct,nsteps)
char *pattern; /* name of .RF text file */
RFpattern *rfpat_struct; /* pointer to struct RFpattern */
int nsteps; /* number of steps in pattern */
typedef struct _RFpattern {

double phase; /* phase of pattern step */
double amp; /* amplitude of pattern step */
double time: /* length of pattern step in sec */

} RFpattern

Description: Creates and defines rf patterns within a pulse sequence. The patterns can be
created by any algorithm as long as each pattern step is correctly put into the
rfpat_struct argument. The number of steps in the pattern also has to be
furnished as an argument. init_rfpattern saves the created pattern as a

Related: getorientation Read image plane orientation
rgradient Set gradient to specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

176 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

pattern file (with the suffix .RF appended to the name) in the user’s
shapelib directory. This statement does not have any return value.

Arguments: pattern is the name of the pattern file (without the .RF suffix).

rfpat_struct is the rf structure that contains the pattern.

nsteps is the number of steps in the pattern.

Examples: #include "standard.h"
pulsesequence()
{
int nsteps;
RFpattern pulse1[512], pulse2[512];
Gpattern gshape[512];
...
nsteps = 0;
for (j=0; j<256; j++) {

pulse1[j].phase = (double)j*0.5;
pulse1[j].amp = (double)j*2;
pulse1[j].time = 1.0;
nsteps = nsteps +1;

}
init_rfpattern(p1pat,pulse1,nsteps);
nsteps = 512;
for (j=0; j<nsteps; j++) {

gshape[j].amp = 32767.0*sin((double)j/50.0);
gshape[j].time = 1.0;

}
init_gradpattern("gpat",gshape,nsteps);
...
shaped_pulse(p1pat,p1,v1,rof1,rof1);
...
shapedgradient("gpat",.01, 16000.0, 'z', 1, WAIT);
...
}

init_gradpattern Create gradient pattern file

Applicability: UNITYINOVA systems.

Syntax: init_gradpattern(pattern_name,gradpat_struct,nsteps)
char *pattern; /* name of .GID pattern file */
Gpattern *gradpat_struct; /* pointer to struct Gpattern */
int nsteps; /* number of steps in pattern */
typedef struct _Gpattern{

double amp; /* amplitude of pattern step */
double time; /* pattern step length in sec */

} Gpattern

Description: Creates and defines gradient patterns within a pulse sequence. The patterns can
be created by any algorithm as long as each pattern step is correctly put into the

Related: init_gradpattern Create gradient pattern file
pulse Pulse observe transmitter with amplifier gating
shaped_pulse Perform shaped pulse on observe transmitter
shapedgradient Provide shaped gradient pulse to gradient channel
simpulse Pulse observe and decouple channels simultaneously
simshaped_pulse Perform simultaneous two-pulse shaped pulse

01-999253-00 A0604 VnmrJ User Programming 177

Chapter 3. Pulse Sequence Statement Reference –

gradpat_struct argument. The number of steps in the pattern also has to
be furnished as an argument. init_gradpattern saves the created pattern
as a pattern file (with a .GRD suffix is appended to the name) in the user’s
shapelib directory. This statement has no return value.

Arguments: pattern is the name of the pattern file (without the .GRD suffix).

gradpat_struct is the gradient structure that contains the pattern.

nsteps is the number of steps in the pattern.

Examples: See the example for the init_rfpattern statement.

init_vscan Initialize real-time variable for vscan statement

Applicability: Systems with imaging capability.

Syntax: init_vscan(vi,number_points)
codeint vi; /* variable to initialize */
double number_points; /* number of points to acquire */

Description: Initializes a real-time AP math variable for use with the vscan statement.
init_vscan has no return value.

Arguments: vi is an AP math variable (v1 to v14). Its range is 1 to 32767.

number_points is the number of points to acquire in the scan. This is not
limited to one acquisition but can be the sum of multiple acquires.

Examples: See the example used in the entry for vscan.

initdelay Initialize incremental delay

Applicability: UNITYINOVA systems.

Syntax: initdelay(time_increment,index)
double time_increment; /* time increment in sec */
int index; /* time increment: DELAY1, etc. */

Description: Initializes a time increment delay and its associated delay index. This statement
must be executed before an incdelay statement can set an incremental delay.
A maximum of five incremental delays (set by the index argument) can be
defined in one pulse sequence.

Arguments: time_increment is the time increment, in seconds, that is multiplied by the
count argument (set in the incdelay statement) for the delay time.

index is DELAY1, DELAY2, DELAY3, DELAY4, or DELAY5, and identifies
which time increment is being initialized.

Examples: initdelay(1.0/sw,DELAY1);
initdelay(1.0/sw1,DELAY2);

Related: pulse Pulse observe transmitter with amplifier gating
shaped_pulse Perform shaped pulse on observe transmitter
simpulse Pulse observe and decouple channels simultaneously
simshaped_pulse Perform simultaneous two-pulse shaped pulse

Related: vscan Dynamic variable scan function

Related: delay Delay for a specified time
hsdelay Delay with possible homospoil pulse
idelay Delay for a specified time with IPA
incdelay Real time incremental delay
vdelay Delay with fixed timebase and real time count

178 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

initparms_sis Initialize parameters for spectroscopy imaging sequences

Applicability: Systems with imaging capability; however, this statement will be obsoleted in
future versions of VnmrJ.

Syntax: void initparms_sis()

Description: Sets the default state of the receiver to ON so that the receiver is enabled for
explicit acquisitions. The original purpose of initparms_sis was to
initialize the standard imaging parameters in imaging sequences, but starting
with VNMR 5.3, initialization of these parameters has been folded into PSG.

Examples: /* To upgrade older SIS sequences for Vnmr 5.1+: */
/* insert initparms_sis() after the variable */
/* declarations and update ‘griserate’ variable. */
...
/* EXTERNAL TRIGGER */
double rcvry,hold;
initparms_sis();
griserate = trise/gradstepsz;
/**[3.2] PARAMETER READ IN FROM EXPERIMENT *******/
...

initval Initialize a real-time variable to specified value

Syntax: initval(number,vi)
double number; /* value to use for initialization */
codeint vi; /* variable to be initialized */

Description: Initializes a real- time variable with a real number. The real number input is
rounded off and placed in the variable vi. Unlike add, sub, etc., initval is
executed once and only once at the start of a non-arrayed 1D experiment or at
the start of each increment in an n-dimensional or an arrayed experiment, not at
the start of each transient; this must be taken into account in pulse sequence
programming, as shown in the example.

Arguments: number is the real number, from –32768.0 to 32767.0, to be placed in the real-
time variable. Entering a value less than –32768.0 (after rounding off) results in
using –32768, and entering a value greater than 32767.0 (after rounding off)
results in using 32767.

vi is the real-time variable (v1 to v14, etc.).to be initialized

Examples: (1) initval(nt,v8);

(2) ifzero(ct);
assign(v8,v7);

elsenz(ct);
decr(v7);

endif(ct);

iobspulse Pulse observe transmitter with IPA

Applicability: UNITYINOVA systems.

Syntax: iobspulse(label)
char *label; /* slider label in acqi */

Related: elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero
loop Start loop

01-999253-00 A0604 VnmrJ User Programming 179

Chapter 3. Pulse Sequence Statement Reference –

Description: Functions the same as obspulse except iobspulse generates interactive
parameter adjustment (IPA) information when gf or go('acqi') is entered.
If go is entered, iobspulse is the same as obspulse.

Arguments: label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: iobspulse("pulse");
iobspulse("pw");

ioffset Change offset frequency with IPA

Applicability: UNITYINOVA systems.

Syntax: ioffset(frequency,device,label)
double frequency; /* offset frequency */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acqi */

Description: Functions the same as offset except that ioffset generates interactive
parameter adjustment (IPA) information when gf or go('acqi') is entered.
If go is entered, ioffset is the same as offset.

Arguments: frequency is the new offset frequency of the device specified.

device is OBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: ioffset(tof,OBSch,"tof");

ipulse Pulse observe transmitter with IPA

Applicability: UNITYINOVA systems.

Syntax: ipulse(width,phase,label)
double width; /* pulse length in sec */
codeint phase; /* real-time variable for phrase */
char *label; /* slider label in acqi */

Description: Functions the same as pulse(width,phase) statement except that
ipulse generates interactive parameter adjustment (IPA) information when
gf or go('acqi') is entered. If go is entered, ipulse is the same as
pulse.

Arguments: width specifies the duration, in seconds, of the pulse.

phase sets the phase of the pulse. The value must be a real-time variable (v1
to v14, oph, etc.).

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: ipulse(pw,v4,"pulse");
ipulse(pw,v5,"pw");

Related: obspulse Pulse observe transmitter with amplifier gating

Related: offset Change offset frequency of transmitter or decoupler

Related: pulse Pulse observe transmitter with amplifier gating

180 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

ipwrf Change transmitter or decoupler fine power with IPA

Applicability: UNITYINOVA systems.

Syntax: ipwrf(power,device,label)
double power; /* new fine power level */
int device; /* OBSch, DECch, DEC2ch, DEC3ch */
char *label; /* slider label in acqi */

Description: Functions the same as rlpwrf statement except that ipwrf generates
interactive parameter adjustment (IPA) information when gf or go('acqi')
is entered. If go is entered, ipwrf is ignored by the pulse sequence; use
rlpwrf for this purpose. Do not execute rlpwrf and ipwrf together
because they cancel each other's effect.

Arguments: power is the new fine power level. It can range from 0.0 to 4095.0 (60 dB on
UNITYINOVA , about 6 dB on other systems).

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: ipwrf(powr,OBSch,"fpower");
ipwrf(2000.0,DECch,"dpwrf");

ipwrm Change transmitter or decoupler lin. mod. power with IPA

Applicability: UNITYINOVA systems.

Syntax: ipwrm(value,device,label)
double value; /* new linear modulator power level */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acqi */

Description: Functions the same as rlpwrm statement except that ipwrm generates
interactive parameter adjustment (IPA) information when gf or go('acqi')
is entered. If go is entered, ipwrm is ignored by the pulse sequence; use
rlpwrm for this purpose. Do not execute rlpwrm and ipwrm together as they
cancel each other's effect.

Arguments: value is the new linear modulator power level. It can range from 0.0 to 4095.0
(60 dB on UNITYINOVA , about 6 dB on other systems).

device is OBSch (observe transmitter) or DECch (first decoupler). On the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: ipwrm(power,OBSch,"fpower");
ipwrm(2000.0,DECch,"dpwrm");

irgpulse Pulse observe transmitter with IPA

Applicability: UNITYINOVA systems.

Syntax: irgpulse(width,phase,RG1,RG2,label)

Related: rlpwrf Set transmitter or decoupler fine power

Related: rlpwrm Set transmitter or decoupler linear modulator power

01-999253-00 A0604 VnmrJ User Programming 181

Chapter 3. Pulse Sequence Statement Reference –

double width; /* pulse length in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acqi */

Description: Functions the same as the rgpulse statement except that irgpulse
generates interactive parameter adjustment (IPA) information when gf or
go('acqi') is entered. If go is entered, irgpulse is the same as
rgpulse.

Arguments: width specifies the duration, in seconds, of the observe transmitter pulse.

phase sets the observe transmitter phase. It must be a real-time variable.

RG1 is the time, in seconds, the amplifier is gated on prior to the start of the
pulse.

RG2 is the time, in seconds, the amplifier is gated off after the end of the pulse.

label is the short character string to be given to the slider when displayed in
the Acquisition window (acqi program).

Examples: irgpulse(pw,v3,rof1,rof2,"rgpul");
irgpulse(pw,v7,rof1,rof2,"pw");

L

lk_hold Set lock correction circuitry to hold correction

Syntax: lk_hold()

Description: Makes the lock correction circuitry hold the correction to the z0 constant,
thereby ignoring any influence on the lock signal such as gradient or pulses at
2H frequency. The correction remains in effect until the statement lk_sample
is called or until the end of an experiment. If an acquisition is aborted, the lock
correction circuitry will be reset to sample the lock signal.

lk_sample Set lock correction circuitry to sample lock signal

Syntax: lk_sample()

Related: rgpulse Pulse observe transmitter with amplifier gating

A B C D E G H I L M O P R S T V W X Z

lk_hold Set lock correction circuitry to hold correction

lk_sample Set lock correction circuitry to sample lock signal

loadtable Load AP table elements from table text file

loop Start loop

loop_check Check that number of FIDs is consitent with number of slices, etc.

Related: lk_sample Set lock correction circuitry to sample lock signal

182 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: Makes the lock correction circuitry continuously sample the lock signal and
correct z0 with the time constant as set by the parameter lockacqtc. The
correction remains in effect until the statement lk_hold is called.

loadtable Load AP table elements from table text file

Syntax: loadtable(file)
char *file; /* name of table file */

Description: Loads AP table elements from a table file (a UNIX text file). It can be called
multiple times within a pulse sequence but make sure that the same table name
is not used more than once within all the table files accessed by the sequence.
Table values can be greater than, equal to, or less than zero.

Arguments: file is the name of a table file in a user’s private tablib or in the system
tablib.

Examples: loadtable("tabletest");

loop Start loop

Syntax: loop(count,index)
codeint count /* number of times to loop */
codeint index /* real-time variable to use during loop */

Description: Starts a loop to execute statements within the pulse sequence. The loop is ended
by the endloop statement.

Arguments: count is a real-time variable used to specify the number of times through the
loop. count can be any positive number, including zero.

index is a real-time variable used as a temporary counter to keep track of the
number of times through the loop. The value must not be altered by any
statements within the loop.

n is the same value (1, 2, or 3) as used in the corresponding endloop
statement.

Examples: (1) initval(5.0,v1); /* set first loop count */
loop(v1,v10);
dbl(ct,v2); /* set second loop count */

loop(v2,v9);
rgpulse(p1,v1,0.0,0.0);

endloop(v9);
delay(d2);

endloop(v10);

(2) loop(2,5.0,v9);

Related: lk_hold Set lock correction circuitry to hold correction

Related: getelem Retrieve an element from an AP table
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integers in a real-time AP table

Related: initval Initialize real-time variable to specified value
endloop End loop
msloop Multislice loop

01-999253-00 A0604 VnmrJ User Programming 183

Chapter 3. Pulse Sequence Statement Reference –

loop_check Check that number of FIDs is consitent with number of slices, etc.

Syntax: loop_check

Description: Checks that the number of FIDs in a compressed acquisition (nf) is consistent
with the number of slices (ns), number of echoes (ne), number of phase
encoding steps in the various dimensions (nv, nv2, nv3), and seqcon.

M

magradient Simultaneous gradient at the magic angle

Applicability: UNITYINOVA systems.

Syntax: magradient(gradlvl)
double gradlvl; /* gradient amplitude in G/cm */

Description: Applies a simultaneous gradient on the x, y, and z axes at the magic angle to B0.
Information from a gradient table is used to scale and set values correctly. The
gradients are left at the given levels until they are turned off. To turn off the
gradients, add another magradient statement with gradlvl set to zero or
insert the statement zero_all_gradients.

Arguments: gradlvl is the gradient amplitude, in gauss/cm.

Examples: magradient(3.0);
pulse(pw,oph);
delay(0.001 - pw);
zero_all_gradients();

A B C D E G H I L M O P R S T V W X Z

magradient Simultaneous gradient at the magic angle

magradpulse Gradient pulse at the magic angle

mashapedgradient Simultaneous shaped gradient at the magic angle

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle

mod2 Find integer value modulo 2

mod4 Find integer value modulo 4

modn Find integer value modulo n

msloop Multislice loop

mult Multiply integer values

Related: magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients

184 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

magradpulse Gradient pulse at the magic angle

Applicability: UNITYINOVA systems.

Syntax: magradpulse(gradlvl,gradtime)
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Description: Applies a simultaneous gradient pulse on the x, y, and z axes at the magic angle
to B0. Information from a gradient table is used to scale and set values correctly.

magradpulse differs from magradient in that the gradients are turned off
after gradtime seconds. Use magradpulse if there are no other actions
while the gradients are on. magradient is used if there are actions to be
performed while the gradients are on.

Arguments: gradlvl is the gradient pulse amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

Examples: magradpulse(3.0,0.001);

mashapedgradient Simultaneous shaped gradient at the magic angle

Applicability: UNITYINOVA systems.

Syntax: mashapedgradient(pattern,gradlvl,gradtime, \
loops,wait)

char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */
int loops; /* number of waveform loops */
int wait; /* WAIT or NOWAIT*/

Description: Applies a simultaneous gradient with shape pattern and amplitude
gradlvl on the x, y, and z axes at the magic angle to B0. Information is used
from a gradient table to scale and set the values correctly.
mashapedgradient leaves the gradients at the given levels until they are
turned off. To turn off the gradients, add another mashapedgradient
statement with gradlvl set to zero or include the zero_all_gradients
statement.

mashapedgradpulse differs from mashapedgradient in that the
gradients are turned off after gradtime seconds. mashapedgradient is
used if there are actions to be performed while the gradients are on.
mashapedgradpulse is best when there are no other actions required while
the gradients are on.

Arguments: pattern is the name of a text file describing the shape of the gradient. The
text file is located in $vnmrsystem/shapelib or in the user directory
$vnmruser/shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the gradient application time, in seconds.

Related: magradient Simultaneous gradient at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients

01-999253-00 A0604 VnmrJ User Programming 185

Chapter 3. Pulse Sequence Statement Reference –

loops is a value from 0 to 255 to loop the selected waveform. Gradient
waveforms on UNITYINOVA systems do not use this field, and loops is set to 0
on UNITYINOVA systems.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay
is inserted to wait until the gradient is completed before executing the next
statement.

Examples: mashapedgradient("ramp_hold",3.0,trise,0,NOWAIT);
pulse(pw,oph);
delay(0.001-pw-2*trise);
mashapedgradient("ramp_down",3.0,trise,0,NOWAIT);

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle

Applicability: UNITYINOVA systems.

Syntax: mashapedgradpulse(pattern,gradlvl,gradtime,theta,ph)
char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Description: Applies a simultaneous gradient with shape pattern and amplitude
gradlvl on the x, y, and z axes at the magic angle to B0.
mashapedgradpulse assumes that the gradient pattern zeroes the gradients
at its end and so it does not explicitly zero the gradients. Information from a
gradient table is used to scale and set values correctly.

mashapedgradpulse is used if there are no other actions required when the
gradients are on. mashapedgradient is used if there are actions to be
performed while the gradients are on.

Arguments: pattern is the name of a text file describing the shape of the gradient. The
text file is located in $vnmrsystem/shapelib or in the user directory
$vnmruser/shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the gradient application time, in seconds.

Examples: mashapedgradpulse("hsine",3.0, 0.001);

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients

186 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

mod2 Find integer value modulo 2

Syntax: mod2(vi,vj)
codeint vi; /* variable for starting value */
codeint vj; /* variable for result */

Description: Sets the value of vj equal to vi modulo 2.

Arguments: vi is the starting integer value and vj is the value of vi modulo 2 (the
remainder after vi is divided by 2). Both arguments must be real-time variables
(v1 to v14, etc.).

Examples: mod2(v3,v5);

mod4 Find integer value modulo 4

Syntax: mod4(vi,vj)
codeint vi; /* variable for starting value */
codeint vj; /* variable for result */

Description: Sets the value of vj equal to vi modulo 4.

Arguments: vi is the starting integer value and vj is the value of vi modulo 4 (the
remainder after vi is divided by 4). Both arguments must be real-time variables
(v1 to v14, etc.).

Examples: mod4(v3,v5);

modn Find integer value modulo n

Syntax: modn(vi,vj,vk)
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for modulo number */
codeint vk; /* real-time variable for result */

Description: Sets the value of vk equal to vi modulo vj.

Arguments: vi is the starting integer value, vj is the modulo value, and vk is vi modulo
vj (the remainder after vi is divided by vj). All arguments must be real-time
variables (v1 to v14, etc.).

Examples: modn(v3,v5,v4);

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Related: mod2 Find integer value modulo 2
modn Find integer value modulo n

Related: mod2 Find integer value modulo 2
mod4 Find integer value modulo 4

01-999253-00 A0604 VnmrJ User Programming 187

Chapter 3. Pulse Sequence Statement Reference –

msloop Multislice loop

Applicability: UNITYINOVA systems.

Syntax: msloop(state,max_count,apv1,apv2)
char state; /* compressed or standard */
double max_count; /* initializes apv1 */
codeint apv1; /* maximum count */
codeint apv2; /* current counter value */

Description: Provides a sequence-switchable loop that can use real-time variables in what is
known as a compressed loop or it can use the standard arrayed features of PSG.
In imaging sequences, msloop uses the second character of the seqcon string
parameter (seqcon[1]) for the state argument. msloop is used in
conjunction with endmsloop.

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate
the standard arrayed mode.

max_count initializes apv1. If state is 'c', this value should equal the
number of slices. If state is 's', this value should be 1.0.

apv1 is real-time variable that holds the maximum count.

apv2 is a real-time variable that holds the current counter value. If state is
'c', apv2 counts from 0 to max_count-1. If state is 's', apv2 is set
to zero.

Examples: msloop(seqcon[1],ns,v11,v12);
...
poffset_list(pss,gss,ns,v12);
...
acquire(np,1.0/sw);
...

endmsloop(seqcon[1],v12);

mult Multiply integer values

Syntax: mult(vi,vj,vk)
codeint vi; /* real-time variable for first factor */
codeint vj; /* real-time variable for second factor */
codeint vk; /* real-time variable for product */

Description: Sets the value of vk equal to the product of the integer values vi and vj.

Arguments: vi is an integer value, vj is another integer value, and vk is the product of vi
and vj. All arguments must be real-time variables (v1 to v14 etc.).

Examples: mult(v3,v5,v4);

Related: endmsloop End multislice loop
loop Start loop
peloop Phase-encode loop

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4

188 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

O

obl_gradient Execute an oblique gradient

Applicability: UNITYINOVA systems.

Syntax: obl_gradient(level1,level2,level3)
double level1,level2,level3; /* gradient values in G/cm */

Description: Defines an oblique gradient with respect to the magnet reference frame. This
statement is basically the same as the statement oblique_gradient except
that obl_gradient uses the parameters psi, phi, and theta in the
parameter set rather than setting them directly. It has no return value.

The pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: level1, level2, level3 are gradient values, in gauss/cm.

Examples: obl_gradient(0.0,0.0,gss);
obl_gradient(gro,0.0,0.0);

oblique_gradientExecute an oblique gradient

Applicability: UNITYINOVA systems.

Syntax: oblique_gradient(level1,level2,level3,psi,phi,theta)
double level1,level2,level3; /* gradient values in G/cm */
double psi,phi,theta; /* Euler angles in degrees */

modn Find integer value modulo n
sub Subtract integer values

A B C D E G H I L M O P R S T V W X Z

obl_gradient Execute an oblique gradient

oblique_gradient Execute an oblique gradient

obl_shapedgradient Execute a shaped oblique gradient

oblique_shapedgradient Execute a shaped oblique gradient

obsblank Blank amplifier associated with observe transmitter

obsoffset Change offset frequency of observe transmitter

obspower Change observe transmitter power level, lin. amp. systems

obsprgoff End programmable control of observe transmitter

obsprgon Start programmable control of observe transmitter

obspulse Pulse observe transmitter with amplifier gating

obspwrf Set observe transmitter fine power

obsstepsize Set step size for observe transmitter

obsunblank Unblank amplifier associated with observe transmitter

offset Change offset frequency of transmitter or decoupler

Related: oblique_gradient Execute an oblique gradient

01-999253-00 A0604 VnmrJ User Programming 189

Chapter 3. Pulse Sequence Statement Reference –

Description: Defines an oblique gradient with respect to the magnet reference frame. It has
no return value. The gradient amplitudes (level1,level2,level3) are
put through a coordinate transformation matrix using psi, phi, and theta to
determine the actual x, y, and z gradient levels. These are then converted into
DAC values and set with their corresponding gradient statements. For more
coordinate system information, refer to the manual User Guide: Imaging.

The pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: level1, level2, level3 are gradient values, in gauss/cm.

psi is an Euler angle, in degrees, with a range of –90 to +90.

phi is an Euler angle, in degrees, with the range of –180 to +180.

theta is an Euler angle, in degrees, with the range –90 to +90.

Examples: oblique_gradient(gvox1,0,0,vpsi,vphi,vtheta);

obl_shapedgradient Execute a shaped oblique gradient

Applicability: UNITYINOVA systems.

Syntax: obl_shapedgradient(pat1,pat2,pat3,width,lvl1, \
lvl2,lvl3,loops,wait)

char *pat1,*pat2,*pat3; /* names of gradient shapes */
double width; /* gradient length in sec */
double lvl1,lvl2,lvl3; /* gradient values in G/cm */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Description: Defines a shaped oblique gradient with respect to the magnet reference frame.
It is basically the same as the oblique_shapedgradient statement except
that obl_shapedgradient uses the parameters psi, phi, and theta in
the parameter set rather than setting them directly.

The pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pat1, pat2, pat3 are names of gradient shapes. (Note that the VNMR 5.1
and 5.2 software releases used only one pattern in the argument list.)

width is the length of the gradient, in seconds.

level1, level2, level3 are gradient values, in gauss/cm.

loops is the number of times, from 1 to 255, to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to stop until the gradient has completed before executing the
next statement.

Examples: obl_shapedgradient("ramp_hold","","",trise,gro, \
0.0,0.0,1,NOWAIT);

oblique_shapedgradient Execute a shaped oblique gradient

Applicability: UNITYINOVA systems.

Syntax: oblique_shapedgradient(pat1,pat2,pat3,width, \
lvl1,lvl2,lvl3,psi,phi,theta,loops,wait)

Related: obl_gradient Execute an oblique gradient

Related: oblique_shapedgradient Execute a shaped oblique gradient

190 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

char *pat1,*pat2,*pat3; /* names of gradient shapes */
double width; /* gradient length in sec */
double lvl1,lvl2,lvl3; /* gradient values in G/cm */
double psi,phi,theta; /* Euler angles in degrees */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Description: Defines a shaped oblique gradient with respect to the magnet reference frame.
The gradient patterns (pat1,pat2,pat3) and the gradient amplitudes
(lvl1,lvl2,lvl3) are put through a coordinate transformation matrix using
psi, phi, and theta to determine the actual x, y, and z gradient levels.

pat1 and lvl1 correspond to the logical read-out axis.
pat2 and lvl2 correspond to the logical phase-encode axis.
pat3 and lvl3 correspond to the logical slice-select axis.

Patterns are read in; scaled according to their respective amplitudes; rotated into
x, y, and z patterns; rescaled; converted to DAC values; and written out to
temporary files shapedgradient_x, shapedgradient_y, and
shapedgradient_z in the user’s shapelib directory; and set with their
corresponding shapedgradient statements. If an axis does not have a
pattern, use empty quotes ("") to indicate a null pattern. The patterns must have
the same number of points, or an integral multiple number of points.

The pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pat1, pat2, pat3 are names of gradient shapes. (Note that the VNMR 5.1
and 5.2 software releases used only one pattern in the argument list.)

width is the length of the gradient, in seconds.

lvl1, lvl2, lvl3 are gradient values, in gauss/cm.

psi is an Euler angle, in degrees, with a range of –90 to +90.

phi is an Euler angle, in degrees, with the range –180 to +180.

theta is an Euler angle, in degrees, with the range –90 to +90.

loops is the number of times, from 1 to 255, to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to stop until the gradient has completed before executing the
next statement.

WAIT or NOWAIT adds extra pulse sequence programming flexibility for
imaging experiments. It allows performing other pulse sequence events during
the gradient pulse. Because oblique_shapedgradient “talks” to the x, y,
and z gradient axes, NOWAIT cannot be used to produce simultaneous oblique
gradient pulses, even if they are orthogonal. In the following example,

oblique_shapedgradient(patx,tdelta,gdiff,0.0,0.0, \
0.0,0.0,0.0, 1,NOWAIT);

oblique_shapedgradient(paty,tdelta 0.0,gdiff,0.0 \
0.0,0.0,0.0, 1,NOWAIT);

oblique_shapedgradient(patz,tdelta,0.0,0.0,gdiff, \
0.0,0.0,0.0, 1,WAIT);

the first two function calls set up all three gradients. In both cases, after a few
microseconds, the gradient hardware is reset by the third function call, which is
the only call fully executed. Even though the third call is executed, expect
negative side-effects from the first two “suppressed” calls.

01-999253-00 A0604 VnmrJ User Programming 191

Chapter 3. Pulse Sequence Statement Reference –

Examples: oblique_shapedgradient("ramp_hold","","",trise, \
gvox1,0,0,vpsi,vphi,vtheta,1,NOWAIT);

obsblank Blank amplifier associated with observe transmitter

Syntax: obsblank()

Description: Disables the amplifier for the observe transmitter. This statement is generally
used after a call to obsunblank.

obsoffset Change offset frequency of observe transmitter

Syntax: obsoffset(frequency)
double frequency; /* offset frequency */

Description: Changes the offset frequency, in Hz, of the observe transmitter (parameter tof).
It is functionally the same as offset(frequency,OBSch).

• For systems with rf types A or B, the frequency typically changes between
10 to 30 µs, but 100 µs is automatically inserted into the sequence by the
offset statement so that the time duration of offset is constant and not
frequency-dependent.

• For systems with rf type C, which necessarily have PTS frequency
synthesizers, the frequency shift time is 15.05 µs for standard, non-latching
synthesizers and 21.5 µs for the latching synthesizers with the overrange/
under-range option.

• For the UNITYINOVA, the frequency shift is 4 µs.

• For the MERCURYplus/-Vx, this statement inserts a 86.4-µs delay, although
the actual switching of the frequency takes 1 µs.

• For systems with the Output board (and only those systems), all offset
statements by default are preceded internally by a 0.2-µs delay (see the
apovrride statement for more details).

Arguments: frequency is the offset frequency desired for the observe channel.

Examples: obsoffset(to);

obspower Change observe transmitter power level, lin. amp. systems

Applicability: Systems with linear amplifiers.

Syntax: obspower(power)
double power; /* new coarse power level */

Description: Changes observe transmitter power. This statement is functionally the same as
rlpower(value,OBSch).

Related: obl_shapedgradient Execute a shaped oblique gradient

Related: decunblank Unblank amplifier associated with first decoupler
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
offset Change offset frequency of transmitter or decoupler

192 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator or from –16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

CAUTION: On systems with linear amplifiers, be careful when using values of
obspower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

obsprgoff End programmable control of observe transmitter

Applicability: Systems with a waveform generator on the observe transmitter channel.

Syntax: obsprgoff()

Description: Terminates any programmable phase and amplitude control on the observe
transmitter started by the obsprgon statement under waveform generator
control.

obsprgon Start programmable control of observe transmitter

Applicability: Systems with a waveform generator on the observe transmitter channel.

Syntax: obsprgon(pattern,90_pulselength,tipangle_resoln)
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length, in sec */
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable phase and amplitude control on the observe transmitter
under waveform generator control. It returns the number of 50-ns ticks (as an
integer value) in one cycle of the decoupling pattern. Explicit gating of the
observe transmitter with xmtron and xmtroff is generally required.
Arguments can be variables (which requires appropriate getval and getstr
statements) to permit changes via parameters (see second example).

Arguments: pattern is the name of the text file (without the .DEC file suffix) in the
shapelib directory that stores the decoupling pattern.

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the
observe transmitter.

tipangle_resoln is the resolution in tip-angle degrees to which the
decoupling pattern is stored in the waveform generator.

Examples: obsprgon("waltz16",pw90,90.0);
obsprgon("modulation",pp90,dres);

obspulse Pulse observe transmitter with amplifier gating

Syntax: obspulse()

Related: decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
rlpower Change power level, linear amplifier systems

Related: obsprgon Start programmable control of observe transmitter

Related: decprgon Start programmable decoupling on first decoupler
dec2prgon Start programmable decoupling on second decoupler
obsprgoff End programmable control of observe transmitter

01-999253-00 A0604 VnmrJ User Programming 193

Chapter 3. Pulse Sequence Statement Reference –

Description: A special case of the rgpulse(width,phase,RG1,RG2) statement, in
which width is preset to pw and phase is preset to oph. Thus, obspulse
is exactly equivalent to rgpulse(pw,oph,rof1,rof2). Note that
obspulse has nothing whatsoever to do with data acquisition, despite its
name. Except in special cases, data acquisition begins at the end of the pulse
sequence.

obspwrf Set observe transmitter fine power

Applicability: Systems with fine power control.

Syntax: obspwrf(power)
double power; /* new fine power level for OBSch */

Description: Changes observe transmitter fine power. This statement is functionally the same
as rlpwrf(value,OBSch).

Arguments: value is the fine power desired.

Examples: obspwrf(4.0);

obsstepsize Set step size for observe transmitter

Syntax: obsstepsize(step_size)
double step_size; /* small-angle phase step size */

Description: Sets the step size of the observe transmitter. This statement is functionally the
same as stepsize(base,OBSch).

Arguments: step_size is the phase step size desired and is a real number or a variable.

Examples: obsstepsize(30.0);

obsunblank Unblank amplifier associated with observe transmitter

Syntax: obsunblank()

Description: Explicitly enables the amplifier for the observe transmitter. obsunblank is
generally followed by a call to obsblank.

Related: iobspulse Pulse observe transmitter with IPA
ipulse Pulse observe transmitter with IPA
irgpulse Pulse observe transmitter with IPA
pulse Pulse observe transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
rlpwrf Set transmitter or decoupler fine power

Related: decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
stepsize Set small-angle phase step size, rf type C or D

Related: decblank Blank amplifier associated with first decoupler
decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter

194 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

offset Change offset frequency of transmitter or decoupler

Applicability: This statement will be eliminated in future versions of VnmrJ software.
Although it is still functional, you should not write any new pulse sequences
using it and should replace it in existing sequences with obsoffset,
decoffset, dec2offset, or dec3offset, as appropriate.

Syntax: offset(frequency,device)
double frequency; /* frequency offset */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the offset frequency of the observe transmitter (parameter tof), first
decoupler (dof), second decoupler (dof2), or third decoupler (dof3).

Arguments: frequency is the offset frequency desired.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

Examples: offset(do2,DECch);
offset(to2,OBSch);
delay(d2);
offset(tof,OBSch);

P

rcvroff Turn off receiver
rcvron Turn on receiver

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
ioffset Change offset frequency with IPA

A B C D E G H I L M O P R S T V W X Z

pe_gradient Oblique gradient with phase encode in one axis

pe2_gradient Oblique gradient with phase encode in two axes

pe3_gradient Oblique gradient with phase encode in three axes

pe_shapedgradient Oblique shaped gradient with phase encode in one axis

pe2_shapedgradient Oblique shaped gradient with phase encode in two axes

pe3_shapedgradient Oblique shaped gradient with phase encode in three axes

peloop Phase-encode loop

phase_encode_gradient Oblique gradient with phase encode in one axis

phase_encode3_gradient Oblique gradient with phase encode in three axes

phase_encode_shapedgradient Oblique shaped gradient with PE in one axis

phase_encode3_shapedgradient Oblique shaped gradient with PE in three axes

phaseshift Set phase-pulse technique, rf type A or B

poffset Set frequency based on position

poffset_list Set frequency from position list

01-999253-00 A0604 VnmrJ User Programming 195

Chapter 3. Pulse Sequence Statement Reference –

pe_gradient Oblique gradient with phase encode in one axis

Applicability: UNITYINOVA systems.

Syntax: pe_gradient(stat1,stat2,stat3,step2,vmult2)
double stat1,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */

Description: Sets static oblique gradient levels plus one oblique phase encode gradient. The
phase encode gradient is associated with the second axis of the logical frame.
This corresponds to the convention read, phase, slice for the functions of the
logical frame axes. This statement is the same as
phase_encode_gradient except the Euler angles are read from the
default set for imaging. lim2 is automatically set to half the nv (number of
views) where nv is usually the number of phase encode steps.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in
the variable portion of the gradient.

vmult2 is a real-time math variable (v1 to v14, ct, zero, one, two,
three) or reference to AP tables (t1 to t60), whose associated values vary
dynamically in a manner controlled by the user.

Examples: pe_gradient(0.0,–sgpe*nv/2.0,gss,sgpe,v6);

pe2_gradient Oblique gradient with phase encode in two axes

Applicability: UNITYINOVA systems.

Syntax: pe2_gradient(stat1,stat2,stat3,step2,step3, \
vmult2,vmult3)

double stat1,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient stepsize */
codeint vmult2,vmult /* real-time math variables */

Description: Sets only two oblique phase encode gradients; otherwise, pe2_gradient is
the same as pe3_gradient.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

position_offset Set frequency based on position

position_offset_list Set frequency from position list

power Change power level, linear amplifier systems

psg_abort Abort the PSG process

pulse Pulse observe transmitter with amplifier gating

putCmd Send a command to VnmrJ form a pulse sequence

pwrf Change transmitter or decoupler fine power

pwrm Change transmitter or decoupler linear modulator power

Related: phase_encode_gradient Oblique gradient with phase encode in 1 axis

196 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2, step3 are values, in gauss/cm, of the components for the step size
change in the variable portion of the gradient.

vmult2, vmult3 are real-time math variables (v1 to v14, ct, zero, one,
two, three) or references to AP tables (t1 to t60), whose associated values
vary dynamically in a manner controlled by the user.

Examples: pe2_gradient(gro,sgpe*nv/2.0,sgpe2*nv2/2.0,sgpe, \
sgpe2,v6,v8);

pe3_gradient Oblique gradient with phase encode in three axes

Applicability: UNITYINOVA systems.

Syntax: pe3_gradient(stat1,stat2,stat3,step1,step2, \
step3,vmult1,vmult2,vmult3)

double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* gradient step sizes */
codeint vmult1,vmult2,vmult3; /* real-time variables */

Description: Sets three oblique phase encode gradients. This statement is the same as
phase_encode3_gradient except the Euler angles are read from the
default set for imaging. lim1, lim2, and lim3 are set to nv/2, nv2/2, and
nv3/2, respectively.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct,
zero, one, two, three) or references to AP tables (t1 to t60) whose
associated values vary dynamically in a manner controlled by the user.

Examples: pe3_gradient(gro,sgpe*nv/2.0,sgpe2*nv2/2.0,0.0, \
sgpe,sgpe2,zero,v6,v8);

pe_shapedgradient Oblique shaped gradient with phase encode in one axis

Applicability: UNITYINOVA systems.

Syntax: pe_shapedgradient(pattern,width,stat1,stat2, \
stat3,step2,vmult2,wait,tag)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step2; /* variable gradient step size */
codeint vmult2; /* real-time math variable */
int wait; /* WAIT or NOWAIT */
int tag; /* tag to a gradient element */

Description: Sets a static oblique shaped gradient plus one oblique phase encode shaped
gradient. This is same as phase_encode_shapedgradient except in

Related: pe3_gradient Oblique gradient with phase encode in 3 axes

Related: phase_encode3_gradient Oblique gradient with phase encode in 3 axes

01-999253-00 A0604 VnmrJ User Programming 197

Chapter 3. Pulse Sequence Statement Reference –

pe_shapedgradient the Euler angles are read from the default set for
imaging. lim2 is automatically set to nv/2, where nv is usually the number
of phase encode steps.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in
the variable portion of the gradient.

vmult2 is a real-time math variable (v1 to v14, ct, zero, one, two,
three) or reference to AP tables (t1 to t60) whose associated values vary
dynamically in a manner controlled by the user.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to wait until the gradient has completed before executing the
next statement.

tag is a unique integer that “tags” the gradient element from any other
gradient elements used in the sequence. These tags are used for variable
amplitude pulses.

pe2_shapedgradient Oblique shaped gradient with phase encode in two axes

Applicability: UNITYINOVA systems.

Syntax: pe2_shapedgradient(pattern,width,stat1,stat2, \
stat3,step2,step3,vmult2,vmult3)

char *pattern; /* name of gradient shape file */
double width; /* length of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient step size */
codeint vmult2,vmult3; /* real-time math variables */

Description: Sets two oblique phase encode shaped gradients; otherwise, this statement is the
same as pe3_shapedgradient.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2, step3 are values, in gauss/cm, of the components for the step size
change in the variable portion of the gradient.

vmult2, vmult3 are real-time math variables (v1 to v14, ct, zero,
one, two, three) or references to AP tables (t1 to t60) whose associated
values vary dynamically in a manner controlled by the user.

Related: phase_encode_shapedgradient Oblique shaped gradient with PE on 1 axis

Related: pe3_shapedgradient Oblique shaped gradient with phase encode in 3 axes

198 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

pe3_shapedgradient Oblique shaped gradient with phase encode in three axes

Applicability: UNITYINOVA systems.

Syntax: pe3_shapedgradient(pattern,width,stat1,stat2, \
stat3,step1,step2,step3,vmult1,vmult2,vmult3)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* var. gradient components */
codeint vmult1,vmult2,vmult3; /* real-time variables */

Description: Sets three oblique phase encode shaped gradients. This statement is the same as
the statement phase_encode3_shapedgradient except the Euler
angles are read from the default set for imaging. The lim1, lim2, and lim3
arguments in phase_encode3_shapedgradient are set to
nv/2, nv2/2, and nv3/2, respectively.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct,
zero, one, two, three) or references to AP tables (t1 to t60) whose
associated values vary dynamically in a manner controlled by the user.

peloop Phase-encode loop

Applicability: UNITYINOVA systems.

Syntax: peloop(state,max_count,apvl,apv2)
char state; /* compressed or standard */
double max_count; /* initializes apv1 */
codeint apv1; /* maximum count */
codeint apv2; /* current counter value */

Description: Provides a sequence-switchable loop that can use real-time variables in what is
known as a compressed loop, or it can use the standard arrayed features of PSG.
In the imaging sequences it uses the third character of the seqcon string
parameter seqcon[2] for the state argument. The statement is used in
conjunction with the endpeloop statement.

peloop differs from msloop in how it sets the apv2 variable in standard
arrayed mode (state is 's'). In standard arrayed mode, apv2 is set to
nth2D–1 if max_count is greater than zero. nth2D is a PSG internal
counting variable for the second dimension. When in the compressed mode,
apv2 counts from zero to max_count–1.

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate
the standard arrayed mode.

apv1 is a real-time variable that holds the maximum count.

Related: phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes

01-999253-00 A0604 VnmrJ User Programming 199

Chapter 3. Pulse Sequence Statement Reference –

apv2 is a real-time variable that holds the current counter value. If state is
's' and max_count is greater than zero, apv2 is set to nth2D–1;
otherwise, it is set to zero.

Examples: peloop(seqcon[2],nv,v5,v6);
msloop(seqcon[1],nv,v11,v12);

...
poffset_list(pss,gss,ns,v12):
...
pe_gradient(gror,-0.5*sgpe*nv,gssr,sgpe,v6);
...
acquire(np,1.0/sw);

...
endmsloop(seqcon[1],v12);

endpeloop(seqcon{2},v6;

phase_encode_gradient Oblique gradient with phase encode in one axis

Applicability: UNITYINOVA systems.

Syntax: phase_encode_gradient(stat1,stat2,stat3,step2, \
vmult2,lim2,ang1, ang2, ang3)

double stat1,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */
double lim2; /* max. gradient value step */
double ang1,ang2,ang3; /* Euler angles in degrees */

Description: Sets static oblique gradient levels plus one oblique phase encode gradient. The
phase encode gradient is associated with the second axis of the logical frame.
This corresponds to the convention: read, phase, slice for the functions of the
logical frame axes. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in
the variable portion of the gradient.

vmult2 is a real-time math variable (v1-v14, ct, zero, one, two, three)
or reference to AP tables (t1 to t60), whose associated values vary
dynamically in a manner controlled by the user.

lim2 is a value representing the dynamic step that will generate the maximum
gradient value for each component. This provides error checking in pulse
sequence generation and is normally nv/2.

ang1 is Euler angle psi, in degrees, with the range –90 to +90.

ang2 is Euler angle phi, in degrees, with the range –180 to +180.

ang3 is Euler angle theta, in degrees, with the range –90 to +90.

Related: endpeloop End phase-encode loop
loop Start loop
msloop Multislice loop

Related: oblique_gradient Execute an oblique gradient
oblique_shapedgradient Execute a shaped oblique gradient
pe_gradient Oblique gradient with PE on 1 axis

200 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

phase_encode3_gradient Oblique gradient with phase encode in three axes

Applicability: UNITYINOVA systems.

Syntax: phase_encode3_gradient(stat1,stat2,stat3, \
step1,step2,step3,vmult1,vmult2,vmult3, \
lim1,lim2,lim3,ang1,ang2,ang3)

double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* var. gradient stepsize */
codeint vmult1,vmult2,vmult3; /* real-time variables */
double lim1,lim2,lim3; /* max. gradient value steps */
double ang1,ang2,ang3; /* Euler angles in degrees */

Description: Sets three oblique phase encode gradients. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct,
zero, one, two, three) or references to AP tables (t1 to t60) whose
associated values vary dynamically in a manner controlled by the user.

lim1, lim2, lim3 are values representing the dynamic step that will generate
the maximum gradient value for each component. This provides error checking
in pulse sequence generation and is normally nv/2.

ang1 is Euler angle psi, in degrees, with the range –90 to +90.

ang2 is Euler angle phi, in degrees, with the range –180 to +180.

ang3 is Euler angle theta, in degrees, with the range –90 to +90.

Examples: phase_encode3_gradient(0,0,0,0,0,2.0*gcrush/ne, \
zero,zero,v12,0,0,0,psi,phi,theta);

phase_encode_shapedgradient Oblique shaped gradient with PE in one axis

Applicability: UNITYINOVA systems.

Syntax: phase_encode_shapedgradient(pattern,width, \
stat1,stat2,stat3,step2,vmult2,lim2, \
ang1,ang2,ang3,vloops,wait,tag)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step2; /* var. gradient step size */
codeint vmult2; /* real-time math variable */
double lim2; /* max. gradient value steps */
double ang1,ang2,ang3; /* Euler angles in degrees */
codeint vloops; /* number of loops */

phase_encode_shapedgradient Oblique sh. gradient with PE on 1 axis
phase_encode3_gradient Oblique gradient with PE on 3 axes
phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes

Related: pe3_gradient Oblique gradient with PE in 3 axes
phase_encode_shapedgradient Oblique sh. gradient with PE on 1 axis
phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes

01-999253-00 A0604 VnmrJ User Programming 201

Chapter 3. Pulse Sequence Statement Reference –

int wait; /* WAIT or NOWAIT */
int tag; /* tag to a gradient element */

Description: Sets static oblique shaped gradients plus one oblique phase encode shaped
gradient. The phase encode gradient is associated with the second axis of the
logical frame. This corresponds to the convention: read, phase, slice for the
functions of the logical frame axes. One gradient shape is used for all three axes.
It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in
the variable portion of the gradient.

vmult2 is a real-time math variable (v1 to v14, ct, zero, one, two,
three) or reference to AP tables (t1 to t60) whose associated values vary
dynamically in a manner controlled by the user.

lim2 is the value representing the dynamic step that will generate the
maximum gradient value for the component. This provides error checking in
pulse sequence generation and is normally nv/2.

ang1 is the Euler angle psi, in degrees, with the range of –90 to +90.

ang2 is the Euler angle phi, in degrees, with the range of –180 to +180.

ang3 is the Euler angle theta, in degrees, with the range of –90 to +90.

vloops is a real-time math variable (v1 to v14, ct, zero, one, two,
three) or references to AP tables (t1 to t60) that dynamically sets the
number of times to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to wait until the gradient has completed before executing the
next statement.

tag is a unique integer that “tags” the gradient element from any other
gradient elements used in the sequence. These tags are used for variable
amplitude pulses.

phase_encode3_shapedgradient Oblique shaped gradient with PE in three axes

Applicability: UNITYINOVA systems.

Syntax: phase_encode3_shapedgradient(pattern,width, \
stat1,stat2,stat3,step1,step2,step3, \
vmult1,vmult2,vmult3,lim1,lim2,lim3, \
ang1,ang2,ang3,loops,wait)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* var. gradient step sizes */

Related: oblique_gradient Execute an oblique gradient
oblique_shapedgradient Execute a shaped oblique gradient
pe_shapedgradient Oblique sh. gradient with PE in 1 axis
phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes

202 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

codeint vmult1,vmult2,vmult3; /* real-time variables */
double lim1,lim2,lim3; /* max. gradient value steps */
double ang1,ang2,ang3; /* Euler angles in degrees */
int loops; /* number of times to loop */
int wait; /* WAIT or NOWAIT */

Description: Sets three oblique phase encode shaped gradient. Note that this statement has a
loops argument that is an integer, as opposed to the vloops argument in
phase_encode_shapedgradient. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of the gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct,
zero, one, two, three) or references to AP tables (t1 to t60) whose
associated values vary dynamically in a manner controlled by the user.

lim1, lim2, lim3 are values representing the dynamic step that will generate
the maximum gradient value for each component. This provides error checking
in pulse sequence generation and is normally nv/2.

ang1 is the Euler angle psi, in degrees, with the range of –90 to +90.

ang2 is the Euler angle phi, in degrees, with the range of –180 to +180.

ang3 is the Euler angle theta, in degrees, with the range of –90 to +90.

loops is non-real-time integer value, from 1 to 255, that sets the number of
times to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to wait until the gradient has completed before executing
the next statement.

phaseshift Set phase-pulse technique, rf type A or B

Applicability: Systems with rf type A or B (MERCURYplus/-Vx systems are rf type E or F).

Syntax: phaseshift(base,multiplier,device)
double base; /* base small-angle phase shift */
codeint multiplier; /* real-time variable */
int device; /* channel, TODEV or DODEV */

Description: Implements the “phase-pulse” technique.

Arguments: base is a real number, expression, or variable representing the base phase shift
in degrees. Any value is acceptable.

multiplier is a real-time variable (v1 to v14, ct, etc.). The value must be
positive. The actual phase shift is ((base*multiplier)mod360).

device is TODEV (observe transmitter) or DODEV (first decoupler).

Related: pe3_shapedgradient Oblique sh. gradient with PE in 3 axes
phase_encode_shapedgradient Oblique sh. gradient with PE on 1 axis
phase_encode3_gradient Oblique gradient with PE in 3 axes

01-999253-00 A0604 VnmrJ User Programming 203

Chapter 3. Pulse Sequence Statement Reference –

Examples: phaseshift(60.0,ct,TODEV);
phaseshift(–30.0,v1,DODEV);

poffset Set frequency based on position

Applicability: UNITYINOVA systems.

Syntax: poffset(position,level)
double position; /* slice position in cm */
double level; /* gradient level in G/cm */

Description: Sets the rf frequency from position and conjugate gradient values. poffset is
functionally the same as position_offset except that poffset takes the
value of resfrq from the resto parameter and always assumes the device is
the observe transmitter device TODEV.

Arguments: position is the slice position, in cm.

level is the gradient level, in gauss/cm, used in the slice selection process.

Examples: poffset(pss[0],gss);

poffset_list Set frequency from position list

Applicability: UNITYINOVA systems.

Syntax: poffset_list(posarray,grad,nslices,apv1)
double position_array[]; /* position values in cm */
double level; /* gradient level in G/cm */
double nslices; /* number of slices */
codeint vi; /* variable or AP table */

Description: Sets the rf frequency from a position list, conjugate gradient value, and dynamic
math selector. poffset_list is functionally the same as
position_offset_list except that poffset_list takes the value of
resfrq from the resto parameter, assumes the device is the observe
transmitter device OBSch, and assumes that the list number is zero.

Arguments: position_array is a list of position values, in cm.

level is the gradient level, in gauss/cm, used in the slice selection process.

nslices is the number of slices or position values.

vi is a dynamic real-time variable (v1 to v14) or AP table (t1 to t60).

Examples: poffset_list(pss,gss,ns,v8);

position_offset Set frequency based on position

Applicability: UNITYINOVA systems.

Syntax: position_offset(pos,grad,resfrq,device)
double pos; /* slice position in cm */
double grad; /* gradient level in G/cm */
double resfrq; /* resonance offset in Hz */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Sets the rf frequency from position and conjugate gradient values. It has no
return value.

Related: position_offset Set frequency based on position

Related: getarray Retrieves all values of an arrayed parameter
position_offset_list Set frequency from position list

204 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: pos is the slice position, in cm.

grad is the gradient level, in gauss/cm, used in the slice selection process.

resfrq is the resonance offset value, in Hz, for the nucleus of interest.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

Examples: position_offset(pos1,gvox1,resto,OBSch);

position_offset_listSet frequency from position list

Applicability: UNITYINOVA systems.

Syntax: position_offset_list(posarray,grad,nslices, \
resfrq,device,list_number,apv1)

double posarray[]; /* position values in cm */
double level; /* gradient level in G/cm */
double nslices; /* number of slices */
double resfrq; /* resonance offset in Hz */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list_number; /* number for global list */
codeint vi; /* real-time variable or AP table */

Description: Sets the rf frequency from a position list, conjugate gradient value, and dynamic
math selector. The dynamic math selector (apv1) holds the index for required
slice offset value as stored in the array. The arrays provided to this statement
must count zero up; that is, array[0] must have the first slice position and
array[ns-1] the last. It has no return value.

Arguments: position_array is a list of position values, in cm.

level is the gradient level, in gauss/cm, used in the slice selection process.

nslices is the number of slices or position values.

resfrq is the resonance offset, in Hz, for the nucleus of interest.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

list_number is a value for identifying a global list. The first global list must
begin at zero and each created list must be incremented by one.

vi is a dynamic real-time variable (v1 to v14) or AP table (t1 to t60).

power Change power level, linear amplifier systems

Applicability: Systems with linear amplifiers. Use of statements obspower, decpower,
dec2power, or dec3power, as appropriate, is preferred.

Syntax: power(power,device)
int power; /* new value for coarse power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Related: poffset Set frequency based on position
position_offset_list Set frequency from position list

Related: getarray Retrieves all values of an arrayed parameter
poffset_list Set frequency from position list
position_offset Set frequency based on position

01-999253-00 A0604 VnmrJ User Programming 205

Chapter 3. Pulse Sequence Statement Reference –

Description: Changes transmitter or decoupler power by assuming values of 0 (minimum
power) to 63 (maximum power) on channels with a 63-dB attenuator or –16
(minimum power) to 63 (maximum power) on channels with a 79-dB
attenuator. On systems with an Output board, by default, power statements are
preceded internally by a 0.2-µs delay (see the apovrride statement for more
details).

Arguments: power is the power desired. It must be stored in a real-time variable (v1-v14,
etc.), which means it cannot be placed directly in the power statement. This
allows the power to be changed in real-time or from pulse to pulse. Setting the
power argument is most commonly done using initval (see the example).
To avoid consuming a real-time variable, use the rlpower statement instead
of the power statement.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

CAUTION: On systems with linear amplifiers, be careful when using values of
power greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

Examples: pulsesequence()
{
double newpwr;
newpwr=getval("newpwr");
initval(newpwr,v2);
power(v2,OBSch);
...

}

psg_abort Abort the PSG process

Syntax: psg_abort(int_error)

Description: psg_abort aborts the PSG process. The acquisition will not start. the error
argument is typically 1.

pulse Pulse observe transmitter with amplifier gating

Syntax: pulse(width,phase)
double width; /* pulse length in sec */
codeint phase; /* real-time variable for phase */

Description: Turns on a pulse the same as the rgpulse(width,phase,RG1,RG2)
statement, but with RG1 and RG2 set to the parameters rof1 and rof2,
respectively. Thus, pulse is a special case of rgpulse where the “hidden”
parameters rof1 and rof2 remain “hidden.”

Related: decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
initval Initialize a real-time variable to a specified value
obspower Change observe transmitter power, linear amplifier systems
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, linear amplifier
rlpwrf Set transmitter or decoupler fine power

206 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: width specifies the width of the observe transmitter pulse.

phase sets the phase and must be a real-time variable.

Examples: pulse(pw,v2);

putCmd Send a command to VnmrJ form a pulse sequence

Syntax: putCmd(char *format, ...)

Description: The putCmd function allows you to execute any Magical expression from a
pulse sequence. For example,

 putCmd("setvalue('d1',%g,'processed')",d1);

will update the d1 parameter in the experiment processed parameter tree. The
arguments to putCmd are analogous to those for printf. The first argument
to putCmd is like the printf format string.

The go('check') command will execute the pulse sequence and any
putCmd statements. It will not, however, start an acquisition.

If you want putCmd to update a parameter used as part on an acquisition, then
you will probably need to use setvalue and change the parameter in the
processed tree. You might also change it in the current tree.

For example:

putCmd("setvalue('d1',%g,'processed') setvalue('d1',%g,'current')",d1,d1);

The integer "checkflag" indicates whether go('check') was called, or not.
If the putCmd is only used when go('check') is used, then it is okay to use
something like

if (checkflag)
putCmd("d1=%g",d1);

Some parameters are defined as subtype pulse. Examples are pw, p1, etc. A
consequence of this is that the values entered in VnmrJ are multiplied by 1e-6
in PSG. Therefore, if from the VnmrJ command line you entered pw? you
might get 6.4. In PSG, the value of pw will be 6.4e-6. Therefore, the appropriate
putCmd in this case would be

putCmd("pw=%g", pw*1e6)

That is, the internal PSG variable is converted back to microseconds for use
with putCmd. If an arrayed experiment is done, the putCmd function is only
active for the first increment. Any Magical expression can be used in putCmd.
For example,

putCmd("banner('acquisition started')");
putCmd("dps");

Related: dps_show Draw delay or pulses in a sequence for graphical display
obspulse Pulse observe transmitter with IPA
ipulse Pulse observe transmitter with IPA
irgpulse Pulse observe transmitter with IPA
obspulse Pulse observe transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

01-999253-00 A0604 VnmrJ User Programming 207

Chapter 3. Pulse Sequence Statement Reference –

pwrf Change transmitter or decoupler fine power

Applicability: UNITYINOVA systems.

Syntax: pwrf(power,device)
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the fine power of the device specified by adjusting the optional fine
attenuators. Do not execute pwrf and ipwrf together because they will cancel
each other's effect.

Arguments: power is the fine power desired. It must be a real-time variable (v1 to v14,
etc.), which means it cannot be placed directly in the pwrf statement. It can
range from 0 to 4095 (60 dB on UNITYINOVA , about 6 dB on other systems).

device is OBSch (observe transmitter) or DECch (first decoupler). On the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

Examples: pwrf(v1,OBSch);

pwrm Change transmitter or decoupler linear modulator power

Applicability: UNITYINOVA systems only. Use of statements obspwrf, decpwrf,
dec2pwrf, or dec3pwrf, as appropriate, is preferred.

Syntax: pwrm(power,device)
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the linear modulator power of the device specified by adjusting the
optional fine attenuators. Do not execute pwrm and ipwrm together because
they will cancel each other's effect.

Arguments: power is the linear modulator power desired. It must be a real-time variable
(v1 to v14, etc.), which means the power level as an integer cannot be placed
directly in the pwrm statement. power can range from 0 to 4095 (60 dB on
UNITYINOVA .

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

Examples: pwrm(v1,OBSch);

Related: ipwrf Change transmitter or decoupler fine power
power Change transmitter or decoupler power, linear amp. system
rlpwrf Set transmitter or decoupler fine power

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
ipwrf Change transmitter or decoupler fine power with IPA
ipwrm Change transmitter or decoupler linear modulator power
obspwrf Set observe transmitter fine power
rlpwrm Set transmitter or decoupler linear modulator power

208 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

R

rcvroff Turn off receiver gate and amplifier blanking gate

Syntax: rcvroff()

Description: The receiver is normally off during the pulse sequence and iis turned on only
during acquisition. The rcvroff statement also unblanks, or enables, the
observe transmitter.

Receiver gating is normally controlled automatically by decpulse,
decrgpulse, dec2rgpulse, dec3rgpulse, obspulse, pulse, and
rgpulse. At the end of each of these statements, the receiver is automatically
turned back on if and only if the receiver has not been previously turned off
explicitly by a rcvroff statement. In all cases, the receiver is implicitly turned
back on immediately prior to data acquisition.

rcvron Turn on receiver gate and amplifier blanking gate

Syntax: rcvron()

Description: The receiver is normally off during the pulse sequence. It is turned on only
during acquisition. On other systems, rcvron provides explicit receiver gating
in the pulse sequence. The rcvron statement also blanks, or disables, the
observe transmitter

Receiver gating is normally controlled automatically by obspulse, pulse,
and rgpulse, decpulse, decrgpulse, dec2rgpulse, and
dec3rgpulse. At the end of each of these statements, the receiver is
automatically turned back on if and only if the receiver has not been previously

A B C D E G H I L M O P R S T V W X Z

rcvroff Turn off receiver gate and amplifier blanking gate

rcvron Turn on receiver gate and amplifier blanking gate

readuserap Read input from user AP register

recoff Turn off receiver gate only

recon Turn on receiver gate only

rgpulse Pulse observe transmitter with amplifier gating

rgradient Set gradient to specified level

rlpower Change power level, linear amplifier systems

rlpwrf Set transmitter or decoupler fine power

rlpwrm Set transmitter or decoupler linear modulator power

rotorperiod Obtain rotor period of MAS rotor

rotorsync Gated pulse sequence delay from MAS rotor position

Related: rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver only
recon Turn on receiver only

01-999253-00 A0604 VnmrJ User Programming 209

Chapter 3. Pulse Sequence Statement Reference –

turned off explicitly by a rcvroff statement. In all cases, the receiver is
implicitly turned back on immediately prior to data acquisition.

readuserap Read input from user AP register

Applicability: UNITYINOVA systems.

Syntax: readuserap(vi)
codeint vi; /* index to value read in user AP register */

Description: Reads input from user AP bus register 3 to a real-time variable. The user can
then act on this information using real-time math and real time control
statements while the pulse sequence is running. Register 3 is lines 1 to 8 of the
USER AP connector J8212 on the Breakout panel on the rear of the left console
cabinet. This register interfaces to a bidirectional TTL-compatible 8-bit buffer,
which has a 100-ohm series resistor for circuit protection.

readuserap stops parsing acodes (acquisition codes) until the lines in the
buffer have been read and the value placed in to the specified real-time variable.
In order for the parser to parse and stuff more words into the FIFO before
underflowing, the readuserap statement puts in a 500 µs delay after reading
the input. However, depending on what is to be done after reading the lines, a
longer delay may be needed to avoid FIFO underflow.

If an error occurs in reading, a warning message is sent to the host and a value
of –1 is returned to the real-time variable.

Arguments: vi is a real-time variable (v1 to v14, etc.) that indexes a signed or unsigned
number read from user AP register 3.

Examples: /* Check a value read in from input register and */
/* execute a pulse if it is the expected value. */
double testval;
testval=getval(testval) /* set value to check */
initval(testval,v2);
loop(two,v1); /* reset below makes loop go */

readuserap(v1); /* until expected value reads in */
delay(d2);
sub(v1,v2,v3);
ifzero(v3);

pulse(pw,oph);
assign(one,v1);

elsenz(v3)
assign(zero,v1); /*reset counter*/

endif(v3);
endloop(v1);

recoff Turn off receiver gate only

Applicability: UNITYINOVA systems.

Syntax: recoff()

Related: rcvroff Turn off receiver gate and amplifier blanking gate
recoff Turn off receiver gate only
recon Turn on receiver gate only

Related: setuserap Set user AP register
vsetuserap Set user AP register using real-time variable

210 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: On UNITYINOVA systems, receiver gating has been decoupled from amplifier
blanking. The recoff statement is similar to the rcvroff statement in that
it defaults the receiver off throughout the pulse sequence; however, unlike
rcvroff, the recoff statement only affects the receiver gate and does not
affect the amplifier blanking gate. In all cases, the receiver is turned off when
applying pulses and turned on during acquisition. The default state of the
receiver is off for UNITYINOVA systems (except for whole body systems and for
imaging pulses sequences that have the initparms_sis statement at the
beginning).

recon Turn on receiver gate only

Applicability: UNITYINOVA systems.

Syntax: recon()

Description: On UNITYINOVA systems, receiver gating has been decoupled from amplifier
blanking. The recoff statement is similar to the rcvron statement in that it
defaults the receiver on throughout the pulse sequence; however, unlike
rcvron, the recon statement only affects the receiver gate and does not affect
the amplifier blanking gate. In all cases, the receiver is turned off when applying
pulses and turned on during acquisition. The default state of the receiver is off
for UNITYINOVA systems (except for whole body systems and for imaging pulses
sequences that have the initparms_sis statement at the beginning).

rgpulse Pulse observe transmitter with amplifier gating

Syntax: rgpulse(width,phase,RG1,RG2)
double width; /* length of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gate delay before pulse in sec */
double RG2; /* gate delay after pulse in sec */

Description: Pulses the observe transmitter with amplifier gating. The amplifier is gated on
prior to the start of the pulse by RG1 sec and gated off RG2 sec after the end of
the pulse. The total length of this event is therefore not simply width, but
width+RG1+RG2.

The amplifier gating times RG1 and RG2 may be specified explicitly. The
parameters rof1 and rof2 are often used for these times. These parameters
are normally “hidden” parameters, not displayed on the screen and entered by
the user. Their values can be interrogated by entering the name of the parameter
followed by a question mark (e.g., rof1?).

Arguments: width specifies the duration, in seconds, of the observe transmitter pulse.

phase sets the observe transmitter phase and must be a real-time variable.

Related: initparms_sis Initialize parameters for spectroscopy imaging sequences
rcvroff Turn off receiver gate and amplifier blanking gate
rcvron Turn on receiver gate and amplifier blanking gate
recon Turn on receiver gate only

Related: initparms_sis Initialize parameters for spectroscopy imaging sequences
rcvroff Turn off receiver gate and amplifier blanking gate
rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver gate only

01-999253-00 A0604 VnmrJ User Programming 211

Chapter 3. Pulse Sequence Statement Reference –

RG1 is the time, in seconds, the amplifier is gated on prior to the start of the
pulse (typically 10 µs for 1H/19F, 40 µs for other nuclei, and 2 µs for the
MERCURYplus/-Vx).

RG2 is the time, in seconds, before the amplifier is gated off after the end of the
pulse (typically 10 µs on the MERCURYplus/-Vx, and about 10 to 20 µs on other
systems).

Examples: rgpulse(pw,v1,rof1,rof2);
rgpulse(2.0*pw,v2,1.0e–6,0.2e–6);

rgradient Set gradient to specified level

Applicability: Systems with imaging or PFG modules.

Syntax: rgradient(channel,value)
char channel; /* gradient 'x', 'y', or 'z' */
double value; /* amplitude of gradient amplifier */

Description: Sets the gradient current amplifier to specified value. In imaging, rgradient
sets a gradient to a specified level in DAC units.

Arguments: channel specifies the gradient to set. It uses one of the characters 'X', 'x',
'Y', 'y', 'Z' or 'z'. In imaging, channel can be 'gread', 'gphase',
or 'gslice'.

value specifies the gradient level by a real number (a DAC setting in imaging)
from –4096.0 to 4095.0 for the Performa I PFG module, and from –32768.0 to
32767.0 for the Performa II PFG module.

Examples: rgradient('z',1327.0);

rlpower Change power level, linear amplifier systems

Applicability: Systems with linear amplifiers. This statement is due to be eliminated in future
versions of VnmrJ software. Although it is still functional, you should not write
pulse sequences using it and should replace it in existing sequences with
obspower, decpower, dec2power, or dec3power, as appropriate.

Syntax: rlpower(power,device)
double power; /* new level for coarse power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes transmitter or decoupler power the same as the power statement but
avoids consuming a real-time variable for the value. On systems with the Output
board (and only on these systems), by default, rlpower statements are

Related: iobspulse Pulse observe transmitter with IPA
ipulse Pulse observe transmitter with IPA
irgpulse Pulse observe transmitter with IPA
obspulse Pulse observe transmitter with amplifier gating
pulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Related: dps_show Draw delay or pulses in a sequence for graphical display
getorientation Read image plane orientation
shapedgradient Generate shaped gradient
vgradient Set gradient to a level determined by real-time math
zgradpulse Create a gradient pulse on the z channel

212 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

preceded internally by a 0.2-µs delay (see the apovrride statement for more
details).

Arguments: power sets the power level by assuming values of 0 (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator or –16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler).

CAUTION: On systems with linear amplifiers, be careful when using values of
rlpower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

Examples: (1) pulsesequence()
{
double satpwr;
satpwr=getval("satpwr");
...
rlpower(satpwr,OBSch);
...

}

(2) rlpower(63.0,OBSch);

rlpwrf Set transmitter or decoupler fine power (obsolete)

Description: Do not write any new pulse sequences using this statement and should replace
it in existing sequences with obspwrf, decpwrf, dec2pwrf, or
dec3pwrf, as appropriate.Changes transmitter or decoupler fine power the
same as the pwrf statement, except rlpwrf uses a real-number variable for
the power level desired instead of consuming a real-time variable for the level.

rlpwrm Set transmitter or decoupler linear modulator power

Applicability: UNITYINOVA systems.

Syntax: rlpwrm(power,device)
double power; /* new level for lin. mod. power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Related: decpower Change first decoupler power, linear amplifier systems
dec2power Change second decoupler power, linear amplifier systems
dec3power Change third decoupler power, linear amplifier systems
obspower Change observe transmitter power, linear amplifier systems
power Change transmitter or decoupler power, linear amp. sys.
rlpwrf Set transmitter or decoupler fine power

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
ipwrf Change transmitter or decoupler fine power with IPA
obspwrf Set observe transmitter fine power
power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpwrf Set transmitter or decoupler fine power

01-999253-00 A0604 VnmrJ User Programming 213

Chapter 3. Pulse Sequence Statement Reference –

Description: Changes transmitter or decoupler linear modulator power the same as the pwrm
statement, but to avoid using real-time variables, rlpwrm uses a C variable of
type double as the argument for the amount of change.

Arguments: power is the linear modulation (fine) power desired.

device is OBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

Examples: rlpwrm(4.0,OBSch);

rotorperiod Obtain rotor period of MAS rotor

Applicability: Systems with MAS (magic-angle spinning) rotor synchronization hardware.

Syntax: rotorperiod(period)
codeint period; /* variable to hold rotor period */

Description: Obtains the rotor period.

Arguments: period is a real-time variable into which is placed the rotor period as an
integer in units of 100 ns. For example, for rotorperiod(v4), if v4
contains the value 1700, the rotor period is 170 µs and the rotor speed is 1E+7
/ 1700 = 5882 Hz.

Examples: rotorperiod(v4);

rotorsync Gated pulse sequence delay from MAS rotor position

Applicability: Systems with MAS (magic-angle spinning) rotor synchronization hardware.

Syntax: rotorsync(rotations)
codeint rotations; /* variable for turns to wait */

Description: Inserts a variable-length delay that allows synchronizing the execution of the
pulse sequence with a particular orientation of the sample rotor. When the
rotorsync statement is encountered, the pulse sequence is stopped until the
number of rotor rotations has occurred.

Arguments: rotations is a real-time variable that specifies the number of rotor rotations
to occur before restarting the pulse sequence.

Examples: rotorsync(v6);

S

Related: ipwrm Change transmitter or decoupler lin. mod. power with IPA
pwrm Change transmitter or decoupler linear modulator power

Related: rotorsync Gated pulse sequence delay from MAS rotor position
xgate Gate pulse sequence from an external event

Related: rotorperiod Obtain rotor period of MAS rotor
xgate Gate pulse sequence from an external event

A B C D E G H I L M O P R S T V W X Z

setautoincrement Set autoincrement attribute for an AP table

setdivnfactor Set divn-return attribute and divn-factor for AP table

setreceiver Associate the receiver phase cycle with an AP table

214 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

setautoincrement Set autoincrement attribute for an AP table

Syntax: setautoincrement(table)
codeint table; /* real-time table variable */

Description: Sets the autoincrement attribute in an AP table. The index into the table is set to
0 at the start of an FID acquisition and is incremented after each access into the
table. Tables using the autoincrement feature cannot be accessed within a
hardware loop.

Arguments: table is the name of the table (t1 to t60).

Examples: setautoincrement(t9);

setdivnfactor Set divn-return attribute and divn-factor for AP table

Syntax: setdivnfactor(table,divn_factor)
codeint table; /* real-time table variable */
int divn_factor; /* number to compress by */

Description: Sets the divn-return attribute and divn-factor for an AP table. The actual index
into the table is now set to (index/divn-factor). {0 1}2 is therefore translated by

setstatus Set status of observe transmitter or decoupler transmitter

settable Store an array of integers in a real-time AP table

setuserap Set user AP register

shapedpulse Perform shaped pulse on observe transmitter

shaped_pulse Perform shaped pulse on observe transmitter

shapedgradient Generate shaped gradient pulse

shaped2Dgradient Generate arrayed shaped gradient pulse

shapedincgradient Generate dynamic variable gradient pulse

shapedvgradient Generate dynamic variable shaped gradient pulse

simpulse Pulse observe and decouple channels simultaneously

sim3pulse Pulse simultaneously on 2 or 3 rf channels

sim4pulse Simultaneous pulse on four channels

simshaped_pulse Perform simultaneous two-pulse shaped pulse

sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse

sli Set SLI lines

sp#off Turn off specified spare line

sp#on Turn on specified spare line

spinlock Control spin lock on observe transmitter

starthardloop Start hardware loop

status Change status of decoupler and homospoil

statusdelay Execute the status statement with a given delay time

stepsize Set small-angle phase step size, rf type C or D

sub Subtract integer values

Related: getelem Retrieve an element from an AP table
loadtable Load AP table elements from table text file
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integers in a real-time AP table

01-999253-00 A0604 VnmrJ User Programming 215

Chapter 3. Pulse Sequence Statement Reference –

the acquisition processor, not by PSG (pulse sequence generation), into 0 0 1 1.
The divn-return attribute results in a divn-factor-fold compression of the
AP table at the level of the acquisition processor.

Arguments: table specifies the name of the table (t1 to t60).

divn_factor specifies the divn-factor for the table.

Examples: setdivnfactor(t7,4);

setreceiver Associate the receiver phase cycle with an AP table

Syntax: setreceiver(table)
codeint table; /* real-time table variable */

Description: Assigns the ctth element of a table to the receiver variable oph. If multiple
setreceiver statements are used in a pulse sequence, or if the value of oph
is changed by real-time math statements such as assign, add, etc., the last
value of oph prior to the acquisition of data determines the value of the receiver
phase.

Arguments: table specifies the name of the table (t1 to t60).

Examples: setreceiver(t18);

setstatus Set status of observe transmitter or decoupler transmitter

Applicability: UNITYINOVA systems.

Syntax: setstatus(channel,on,mode,sync,mod_freq)
int channel; /* OBSch, DECch, DEC2ch, or DEC3ch */
int on; /* TRUE (=on) or FALSE (=off) */
char mode; /* 'c', 'w', 'g', etc. */
int sync; /* TRUE (=synchronous) or FALSE */
double mod_freq; /* modulation frequency */

Description: Sets the status of a transmitter independent of the status statement, thus
overriding decoupler parameters such as dm and dmm. Since the setstatus
statement is part of the pulse sequence, it has no effect when only an su
command is executed. It is the only way the observe transmitter can be
modulated on UNITYINOVA systems.

Arguments: channel is OBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

on is TRUE (turn on decoupler) or FALSE (turn off decoupler).

mode is one of the following values for a decoupler mode (for further
information on decoupler modes, refer to the description of the dmm parameter
in the manual Command and Parameter Reference):

• 'c' sets continuous wave (CW) modulation.

Related: getelem Retrieve an element from an AP table
loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setreceiver Associate the receiver phase cycle with an AP table
settable Store an array of integers in a real-time AP table

Related: getelem Retrieve an element from an AP table
loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
settable Store an array of integers in a real-time AP table

216 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

• 'f' sets fm-fm modulation (swept-square wave).

• 'g' sets GARP modulation.

• 'm' sets MLEV-16 modulation.

• 'n' sets noise modulation.

• 'p' sets programmable pulse modulation (i.e., waveform generation).

• 'r' sets square wave modulation.

• 'u' sets user-supplied modulation from external hardware.

• 'w' sets WALTZ-16 modulation.

• 'x' sets XY32 modulation.

On the UNITYINOVA , 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x' are
available.

sync is TRUE (decoupler is synchronous, on UNITYINOVA systems only) or
FALSE (decoupler is asynchronous).

mod_freq is the modulation frequency.

Examples: setstatus(DECch,TRUE,'w',FALSE,dmf);
setstatus(DEC2ch,FALSE,'c',FALSE,dmf2);

settable Store an array of integers in a real-time AP table

Syntax: settable(tablename,numelements,intarray)
codeint tablename; /* real-time table variable */
int numelements; /* number in array */
int *intarray; /* pointer to array of elements */

Description: Stores an integer array in a real-time AP table. The autoincrement or divn-return
attributes can be subsequently associated with a table defined by settable by
using setautoincrement and setdivnfactor.

Arguments: table is the name of the table (t1 to t60).

number_elements is the size of the table.

intarray is a C array that contains the table elements, which can range from
–32768 to 32767. Before calling settable, this array must be predefined and
predimensioned in the pulse sequence using C statements.

Examples: settable(t1,10,int_array);

setuserap Set user AP register

Applicability: UNITYINOVA systems.

Syntax: setuserap(value,register)
real value; /* value sent to user AP register */
int register; /* AP bus register number: 0, 1, 2, or 3 */

Description: Sets a value in one of the four 8-bit AP bus registers that provide an output
interface to user devices. The outputs of these registers go to the USER

Related: status Change status of decoupler and homospoil

Related: getelem Retrieve an element from an AP table
loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for an AP table
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with an AP table

01-999253-00 A0604 VnmrJ User Programming 217

Chapter 3. Pulse Sequence Statement Reference –

AP connectors J8212 and J8213, located on the back of the left console cabinet.
These outputs have a 100-ohm series resistor for circuit protection.

Arguments: value is a signed or unsigned number (real or integer) to output to the
specified user AP register. The number is truncated to an 8-bit byte.

register is the AP register number, mapped to output lines as follows:

• Register 0 is J8213, lines 9 to 16.

• Register 1 is J8213, lines 1 to 8.

• Register 2 is J8212, lines 9 to 16.

• Register 3 is J8212, lines 1 to 8.

Examples: setuserap(127.0,0);

shapedpulse Perform shaped pulse on observe transmitter

Applicability: This statement is due to be eliminated in future versions of VnmrJ software.
Although it is still functional, you should not write any new pulse sequences
using it and should replace it in existing sequences with shaped_pulse,
which functions exactly the same as shapedpulse.

shaped_pulse Perform shaped pulse on observe transmitter

Applicability: UNITYINOVA systems, or systems with a waveform generator on the observe
transmitter channel.

Syntax: shaped_pulse(pattern,width,phase,RG1,RG2)
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the observe transmitter. If a waveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an
apshaped_pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When shaped_pulse is called,
the shape is addressed and started. The minimum pulse length is 0.2 µs. The
overhead at the start and end of the shaped pulse varies with the system:

• UNITYINOVA: 1 µs (start), 0 (end)

• System with Acquisition Controller board: 10.75 µs (start), 4.3 µs (end)

• System with Output board: 10.95 µs (start), 4.5 µs (end)

If the length is less than 0.2 µs, the pulse is not executed and there is no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the shaped_pulse statement creates AP tables on the fly for
amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It does not use AP table variables. For
timing and more information, see the description of apshaped_pulse. Note
that if using AP tables with shapes that have a large number of points, the FIFO

Related: readuserap Read input from user AP register
vsetuserap Set user AP register using real-time variable

218 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

can become overloaded with words generating the pulse shape and FIFO
Underflow errors can result.

Arguments: file is the name of a text file in the shapelib directory that stores the rf
pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse on the observe transmitter.

phase is the phase of the pulse and must be a real-time variable.

RG1 is the delay, in seconds, between gating the amplifier on and gating the
observe transmitter on (the phase shift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the observe transmitter off and
gating the amplifier off.

Examples: shaped_pulse("gauss",pw,v1,rof1,rof2);

shapedgradient Generate shaped gradient pulse

Applicability: Systems with waveform generation on imaging or PFG module.

Syntax: shapedgradient(pattern,width,amp,channel,loops,wait)
char *pattern; /* name of shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Operates the selected gradient channel to provide a gradient pulse to the
selected set of gradient coils. The pulse is created using a gradient waveform
generator and has a pulse shape determined by the arguments name, width,
amp, and loops. Unlike the shaped rf pulses, the shaped gradient leaves the
gradients at the last value in the gradient pattern when the pulse completes.

Arguments: pattern is the name of a text file without a .GRD extension to describe the
shape of the pulse. The text file with a .GRD extension should be located in
$vnmrsystem/shapelib or in the users directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The pulse length is
affected by two factors: (1) the minimum time of every element in the shape
file must be at least 10 µs long, and (2) the time for every element must be a
multiple of 50 ns. If the width of the pulse is less than 10 µs times the number
of steps in the shape, a warning message is generated. The shaped gradient
software rounds each element to a multiple of 50 ns. If the requested width
differs from the actual width by more than 2%, a warning message is displayed.

amp is a value that scales the amplitude of the pulse. Only the integer portion
of the value is used and it ranges from 32767 to –32767; where 32767 is full
scale and –32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y', or 'z'. (Be sure not to confuse the characters 'x', 'y',
or 'z' with the strings "x", "y", or "z".)

Related: apshaped_pulse Observe transmitter pulse shaping via AP bus
decshaped_pulse Shaped pulse on first decoupler
dec2shaped_pulse Shaped pulse on second decouple r
simshaped_pulse Simultaneous two-pulse shaped pulse
sim3shaped_pulse Simultaneous three-pulse shaped pulse

01-999253-00 A0604 VnmrJ User Programming 219

Chapter 3. Pulse Sequence Statement Reference –

loops is a value, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given value is the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay
is inserted to wait until the gradient is completed before executing the next
statement. The total time it will wait is width*loops. If loops is supplied as
0, it will be counted as 1 when determining its total time.

Examples: shapedgradient("hsine",0.02,32767,'y',1,NOWAIT);

#include "standard.h"
#define POVR 1.2e-5 /* shaped pulse overhead=12 us */
pulsesequence()
{
...
for (i=-32000; i<=32000; i+16000)
{
shapedgradient("hsine",pw+d3+rx1+rx2,i,'x', \

1,NOWAIT);
shapedpulse("sinc",pw,oph,rx1,rx2);
delay(d3);
}
/* This step sets a square gradient from a low value */
/* to a high value while executing a shaped pulse */
/* and a delay during each gradient value. */
...
}

shaped2Dgradient Generate arrayed shaped gradient pulse

Applicability: Systems with WFG on imaging or PFG module.

Syntax: shaped2Dgradient(pattern,width,amp,channel, \
loops,wait,tag)

char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Description: Operates the selected gradient channel to provide a gradient pulse to the
selected set of gradient coils. This statement is basically the same as the
shapedgradient statement except that shaped2Dgradient is tailored
to be used in pulse sequences where the amplitude is arrayed (imaging
sequences). For sequences that array the amplitude, it does not use the amount
of waveform generator memory that the shapedgradient statement uses,
but there is a penalty in the amount of overhead time used in setting it up. The
pulse is created using a gradient waveform generator and has a pulse shape
determined by the name, width, amp, and loops arguments.

Related: dps_show Draw delay or pulses in a sequence for graphical display
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Arrayed shaped gradient function
vgradient Set gradient to a level determined by real-time math

220 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: pattern is the name of a text file without a .GRD extension that describes the
shape of the pulse. The text file with a .GRD extension should be located in
$vnmrsystem/shapelib or in the users directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
file must be at least 200 ns long, and (2) the time for every element must be a
multiple of 50 ns. If the width of the pulse is less than 10 µs times the number
of steps in the shape, a warning message is generated. The shaped gradient
software will round each element to a multiple of 50 ns. If the requested width
differs from the actual width by more than 2%, a warning message is displayed.

amp is a value that scales the amplitude of the pulse. Only the integer portion
of the value is used and it ranges from 32767 to –32767; where 32767 is full
scale and –32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y', or 'z'. (Be sure not to confuse the characters 'x', 'y',
or 'z' with the strings "x", "y", or "z".)

loops is a value, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given value is the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once. Due to a digital
hardware bug affecting looping, patterns must be carefully constructed to
achieve the desired results.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay
is inserted to wait until the gradient is completed before executing the next
element. The total time it will wait is width*loops.

tag is a unique integer that “tags” the gradient element from any other gradient
elements used in the sequence.

Examples: #include "standard.h"
pulsesequence()
{
...
shaped2Dgradient("hsine",d3,0.0-gpe,'x',0,NOWAIT,1);
delay(d3);
shaped2Dgradient("hsine",d4,gpe,'y',0,NOWAIT,2);
...
}

shapedincgradient Generate dynamic variable gradient pulse

Applicability: Systems with WFG on imaging or PFG module.

Syntax: shapedincgradient(channel,pattern,width, \
a0,a1,a2,a3,x1,x2,x3,loops,wait)

char channel; /* gradient channel 'x', 'y', or 'z' */
char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double a0,a1,a2,a3; /* coefficients to determine level */
codeint x1,x2,x3; /* variables to determine level */

Related: dps_show Draw delay or pulses in a sequence for graphical display
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
vgradient Set gradient to a level determined by real-time math

01-999253-00 A0604 VnmrJ User Programming 221

Chapter 3. Pulse Sequence Statement Reference –

int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Provides a dynamic, variable shaped gradient pulse controlled using the AP
math functions. The statement drives the chosen gradient with the specified
pattern, scaled to the level defined by the formula:

level = a0 + a1*x1 + a2*x2 + a3*x3

The pulse is created using a gradient waveform generator and has a pulse shape
determined by the pattern, width, and loops arguments, as well as the
calculation of level.

Unlike the shaped rf pulses, the shapedincgradient will leave the
gradients at the last value in the gradient pattern when the pulse completes. The
range of the gradient level is –32767 to +32767. If the requested level lies
outside the legal range, it is clipped at the appropriate boundary value. Note that,
while each variable in the calculation of level must fit in a 16-bit integer,
intermediate sums and products in the calculation are done with double
precision, 32-bit integers.

The following error messages are possible:

• Machine configuration doesn't allow gradient
patterns is displayed if this statement is used on a system without
gradient waveshaping hardware.

• shapedincgradient: x[i] illegal RT variable: xi or
shapedincgradient: no match! is displayed if the requested
shape cannot be found or if a width of zero is specified.

Arguments: channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y', or 'z'. (Be careful not to confuse the characters 'x',
'y', or 'z' with the strings "x", "y", or "z".)

pattern is the name of a text file without a .GRD extension to describe the
shape of the pulse. The text file with a .GRD extension should be located in
$vnmrsystem/shapelib or in the users directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
file must be at least 10 µs, and (2) the time for every element must be a multiple
of 50 ns. If the width of the pulse is less than 10 µs times the number of steps in
the shape), a warning message is generated. The shapedincgradient
software will round each element to a multiple of 50 ns. If the requested width
differs from the actual width by more than 2%, a warning message is displayed.

a0, a1, a2, a3, x1, x2, x3 are values used in the calculation of “level.”

loops is a value, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given value is the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once. Due to a digital
hardware bug affecting looping, patterns must be carefully constructed to
achieve the desired results.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to wait until the gradient is completed before executing the next
element. The total time it will wait is width*loops. If loops is supplied as
0, it will be counted as 1 when determining its total time.

Related: getorientation Read image plane orientation
rgradient Set gradient to a specified level

222 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

shapedvgradient Generate dynamic variable shaped gradient pulse

Applicability: Systems with WFG on imaging or PFG module.

Syntax: shapedvgradient(pattern,width,amp_const, \
amp_incr,amp_vmult,channel,vloops,wait,tag)

char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double amp_const; /* sets amplitude of pulse */
double amp_incr; /* sets amplitude of pulse */
codeint amp_vmult; /* sets amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
codeint vloops; /* variable for number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Description: Operates the selected gradient channel to provide a shaped gradient pulse to the
selected set of gradient coils. This statement is tailored to provide a dynamic
variable shaped gradient level controlled using the system AP math functions
and real-time looping. The statement drives the chosen gradient shape to the
level defined by the formula:

amplitude = amp_const + amp_incr*amp_vmult

The range of the gradient amplitude is–32767 to +32767, where 32767 is full
scale and –32767 is negative full scale.

If the requested level lies outside this range, it is truncated to the appropriate
boundary value. Note that the vloops argument is also controlled by a real-
time AP math variable. Unlike the shaped rf pulses, the shaped gradient leaves
the gradients at the last value in the gradient pattern when the pulse completes.

Arguments: name is the name of a text file without a .GRD extension to describe the shape
of the pulse. The text file with a .GRD extension should be located in
$vnmrsystem/shapelib or in the user’s directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
file must be at least 10 µs, and (2) the time for every element must be a multiple
of 50 ns. If width is less than 10 µs times the number of steps in the shape, a
warning message is generated. The shaped gradient software will round each
element to a multiple of 50 ns. If the requested width differs from the actual
width by more than 2%, a warning message is displayed.

amp_const, amp_incr, and amp_vmult scale the amplitude of the pulse
according to the formula above. amp_const and amp_incr can be values of
type double or integer. amp_vmult must be a real-time AP math variable (v1
to v14) or a table pointer (t1 to t60). The amplitude ranges are also given
above.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y’, or 'z'. (Be careful not to confuse the characters 'x',
'y', or 'z' with the strings "x", "y", or "z".)

vloops allows the user to loop the selected waveform. Values range from 1 to
255. This also must be a real-time AP math variable (v1 to v14) or a table

shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Set gradient to a level determined by real-time math

01-999253-00 A0604 VnmrJ User Programming 223

Chapter 3. Pulse Sequence Statement Reference –

pointer (t1 to t60). Do not use 0 for vloops, because this may cause
inconsistencies when WAIT is selected for the wait_4_me argument. Due to
a digital hardware bug affecting looping, patterns must be carefully constructed
to achieve the desired results.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a
delay is inserted to wait until the gradient is completed before executing the next
element. The total time it will wait is width*vloops. It uses the incdelay
statement when waiting for the gradient pulse to complete.

tag is a unique integer that “tags” this gradient statement from any other
gradient statement used in the sequence.

Examples: #include "standard.h"
pulsesequence()
{
...
char gphase, gread, gslice;
...
amplitude=(int)(0.5*ni*gpe);
stat=getorientation(&gread,&gphase,&gslice,"orient")
;
...
initval(1.0,v1);
initval(nf,v9);
loop(v9,v5);
...
shapedvgradient("hsine",d3,amplitude,igpe, \

v5,gphase,v1,NOWAIT,1);
...
endloop(v5);
...
}

simpulse Pulse observe and decouple channels simultaneously

Syntax: simpulse(obswidth,decwidth,obsphase,decphase, \
RG1,RG2)

double obswidth, decwidth; /* pulse lengths in sec */
codeint obsphase,decphase; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Gates the observe and decoupler channels. The shorter of the two pulses is
centered on the longer pulse, while the amplifier gating occurs before the start
of the longer pulse (even if it is the decoupler pulse) and after the end of the
longer pulse.

For UNITYINOVA, the absolute difference in the two pulse widths must be greater
than or equal to 0.2 µs; otherwise, a timed event of less than the minimum value
(0.1 µs) would be produced:

• if the difference is less than 0.1 µs, the pulses are made equally long.

Related: incdelay Set real-time incremental delay
rgradient Set gradient to specified level
shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

224 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

• If the difference is from 0.1 to 0.2 µs, the difference is made 0.2 µs.

• If the difference is larger than 0.2 µs, the difference is made as close as the
timing resolution allows (0.0125 µs).

For systems other than UNITYINOVA, the minimum time is 0.2 µs; thus, the times
are doubled (the difference must be 0.4 µs, resolution is 0.025 µs).

Arguments: obswidth and decwidth are the duration, in sec, of the pulse on the observe
transmitter and first decoupler, respectively.

obsphase and decphase are the phase of the pulse on the observe
transmitter and the first decoupler, respectively. Each must be a real-time
variable.

RG1 is the delay, in seconds, between gating the amplifier on and gating the first
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

Examples: simpulse(pw,pp,v1,v2,0.0,rof2);

sim3pulse Pulse simultaneously on 2 or 3 rf channels

Applicability: Systems with two or more independent rf channels.

Syntax: sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2)
double pw1,pw2,pw3; /* pulse lengths in sec */
codeint phase1,phase2,phase3; /* variables for phases */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Performs a simultaneous, three-pulse pulse on three independent rf channels. A
simultaneous, two-pulse pulse on the observe transmitter and second decoupler
can also be performed by setting the pulse length for the first decoupler to 0.0
(see the second example for how this is done).

Timing limitations connected with the difference in pulse widths are covered in
the description of simpulse.

Arguments: pw1, pw2, and pw3 are the pulse length, in seconds, of channels OBSch,
DECch, and DEC2ch, respectively.

phase1, phase2, and phase3 are the phases of the corresponding pulses.
These must be real-time variables (v1 to v14, oph, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the first
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

Examples: sim3pulse(pw,p1,p2,oph,v10,v1,rof1,rof2);
sim3pulse(pw,0.0,p2,oph,v10,v1,rof1,rof2);

Related: decpulse Pulse the decoupler transmitter
decrgpulse Pulse decoupler transmitter with amplifier gating
dps_show Draw delay or pulses in a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating
sim3pulse Simultaneous pulse on 2 or 3 rf channels
sim4pulse Simultaneous pulse on four channels

Related: decpulse Pulse the decoupler transmitter
decrgpulse Pulse decoupler transmitter with amplifier gating

01-999253-00 A0604 VnmrJ User Programming 225

Chapter 3. Pulse Sequence Statement Reference –

sim4pulse Simultaneous pulse on four channels

Applicability: Systems with two or more independent rf channels.

Syntax: sim4pulse(pw1,pw2,pw3,pw4,phase1,phase2, \
phase3,phase4,RG1,RG2)

double pw1,pw2,pw3,pw4; /* pulse length in sec */
codeint phase1,phase2; /* variables for phase */
codeint phase3,phase4; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Allows for simultaneous pulses on up to four different channels. If any of the
pulses are set to 0.0, no pulse is executed on that channel.

Timing limitations connected with the difference in pulse widths is covered in
the description of simpulse.

Arguments: pw1, pw2, pw3, and pw4 are the pulse length, in seconds, of channels OBSch,
DECch, DEC2ch, and DEC3ch, respectively.

phase1, phase2, phase3, and phase4 are the phases of the corresponding
pulses. Each must be real-time variable (v1-v14, oph, etc.)

RG1 is the delay, in seconds, between gating on the amplifier and turning on the
first transmitter (all phases set at beginning of RG1, even if pwn is 0.0).

RG2 is the delay, in seconds, between the final transmitter off and gating the
amplifier off.

Examples: sim4pulse(pw,2*pw,p1,2*p1,oph,v3,ZERO,TWO,RG1,RG2);
sim4pulse(pw,0.0,0.0,2*p1,oph,ZERO,ZERO,TWO,RG1,RG2);

simshaped_pulse Perform simultaneous two-pulse shaped pulse

Applicability: Systems with a waveform generator on two or more rf channels.

Syntax: simshaped_pulse(obsshape,decshape,obswidth, \
decwidth,obsphase,decphase,RG1,RG2)

char *obsshape,*decshape; /* names of .RF shape files */
double obswidth, decwidth; /* pulse lengths in sec */
codeint obsphase,decphase; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Performs a simultaneous, two-pulse shaped pulse on the observe transmitter and
the first decoupler under waveform generator control. The overhead at the start
and end of the two-pulse shaped pulse varies with the system:

• UNITYINOVA: 1.45 µs (start), 0 (end).

• Systems with an Acquisition Controller board: 21.5 µs, 8.6 µs.

• Systems with an Output board: 21.7 µs, 8.8 µs.

dps_show Draw delay or pulses in a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim4pulse Simultaneous pulse on four channels

Related: rgpulse Pulse observe channel with amplifier gating
simpulse Pulse observe and decoupler channel simultaneously
sim3pulse Pulse simultaneously on 2 or 3 channel s

226 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

These values hold regardless of the values for the arguments obswidth and
decwidth.

If either obswidth or decwidth is 0.0, no pulse occurs on the corresponding
channel. If both obswidth and decwidth are non-zero and either
obsshape or decshape is set to the null string (''), then a hard pulse occurs
on the channel with the null shape name. If either the pulse width is zero or the
shape name is the null string, then a waveform generator is not required on that
channel.

Arguments: obsshape is the name of the text file in the shapelib directory that contains
the rf pattern to be executed on the observe transmitter.

decshape is the name of the text file in the shapelib directory that contains
the rf pattern to be executed on the first decoupler.

obswidth is the length of the pulse, in seconds, on the observe transmitter.

decwidth is the length of the pulse, in seconds, on the first decoupler.

obsphase is the phase of the pulse on the observe transmitter. The value must
be a real-time variable (v1 to v14, oph, etc.).

decphase is the phase of the pulse on the first decoupler. The value must be
a real-time variable (v1 to v14, oph, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the first
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

Examples: simshaped_pulse("gauss","hrm180",pw,p1,v2,v5, \
rof1,rof2);

sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse

Applicability: Systems with a waveform generator on three or more rf channels.

Syntax: sim3shaped_pulse(obsshape,decshape,dec2shape, \
obswidth,decwidth,dec2width,obsphase, \
decphase,dec2phase,RG1,RG2)

char *obsshape; /* name of obs .RF file */
char *decshape; /* name of dec .RF file */
char *dec2shape; /* name of dec2 .RF file */
double obswidth; /* obs pulse length in sec */
double decwidth; /* dec pulse length in sec */
double dec2width; /* dec2 pulse length in sec */
codeint obsphase; /* obs real-time var. for phase */
codeint decphase; /* dec real-time var. for phase */
codeint dec2phase; /* dec2 real-time var for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a simultaneous, three-pulse shaped pulse under waveform generator
control on three independent rf channels. The overhead at the start and end of
the shaped pulse varies:

• UNITYINOVA: 1.95 µs (start), 0 (end).

Related: decshaped_pulse Shaped pulse on first decoupler
dec2shaped_pulse Shaped pulse on second decoupler
shaped_pulse Shaped pulse on observe transmitter
sim3shaped_pulse Simultaneous three-pulse shaped pulse

01-999253-00 A0604 VnmrJ User Programming 227

Chapter 3. Pulse Sequence Statement Reference –

• Systems with an Acquisition Controller board: 32.25 µs, 12.9 µs.

• Systems with an Output board: 32.45 µs, 13.1 µs.

These values hold regardless of the values of the arguments obswidth,
decwidth, and dec2width.

sim3shaped_pulse can also be used to perform a simultaneous two-pulse
shaped pulse on any combination of three rf channels. This can be achieved by
setting one of the pulse lengths to the value 0.0 (see the second example for an
illustration of how this is done).

If any of the shape names are set to the null string (''), then a hard pulse occurs
on the channel with the null shape name. If either the pulse width is zero or the
shape name is the null string, then a waveform generator is not required on that
channel.

Arguments: obsshape is the name of the text file in the shapelib directory that contains
the rf pattern to be executed on the observe transmitter.

decshape is the name of the text file in the shapelib directory that contains
the rf pattern to be executed on the first decoupler.

dec2shape is the name of the text file in the shapelib directory that
contains the rf pattern to be executed on the second decoupler.

obswidth is the length of the pulse, in seconds, on the observe transmitter.

decwidth is the length of the pulse, in seconds, on the first decoupler.

dec2width is the length of the pulse, in seconds, on the second decoupler.

obsphase is the phase of the pulse on the observe transmitter. The value must
be a real-time variable (v1 to v14, oph, etc.).

decphase is the phase of the pulse on the first decoupler. The value must be
a real-time variable (v1 to v14, oph, etc.).

dec2phase is the phase of the pulse on the second decoupler. The value must
be a real-time variable (v1 to v14, oph, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the first
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

Examples: sim3shaped_pulse("gauss","hrm180","sinc",pw,p1,p2, \
v2,v5,v6,rof1,rof2);

sim3shaped_pulse("dumy","hrm180","sinc",0.0,p1,p2, \
v2,v5,v6,rof1,rof2);

sli Set SLI lines

Applicability: Systems with imaging capability and the Synchronous Line Interface (SLI)
board, an option that provides an interface to custom user equipment.

Syntax: sli(address,mode,value)
int address; /* SLI board address */
int mode; /* SLI_SET, SLI_OR, SLI_AND, SLI_XOR */
unsigned value; /* bit pattern */

Related: decshaped_pulse Shaped pulse on first decoupler
dec2shaped_pulse Shaped pulse on second decoupler
shaped_pulse Shaped pulse on observe transmitter
simshaped_pulse Simultaneous two-pulse shaped pulse

228 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: Sets lines on the SLI board. It has no return value. The board contains 32 TTL-
compatible logic signals that can be set by these functions. Each line has an
LED indicator and a 100-ohm series resistor for circuit protection. The lines are
accessible through the 50-pin ribbon connector J4 on the front edge of the SLI
board. The pin assignments are as follows:

• Pins 1 and 49 are a +5 V supply through 100-ohm series resistor (enabled
by installing jumper J3L)

• Pins 3 to 10 control bits 0 to 7

• Pins 12 to 19 control bits 8 to 15

• Pins 21 to 28 control bits 16 to 23

• Pins 41 to 48 control bits 24 to 31

• Pins 2, 11, 20, 29, 40, and 50 are ground

sli has a pre-execution delay of 10.950 µs but no post-execution delay. The
delay is composed of a 200-ns startup delay with 5 AP bus cycles (1 AP bus
cycle = 2.150 µs).

The logic levels on the SLI lines are not all set simultaneously. The four bytes
of the 32 bit word are set consecutively, the low-order byte first. The delay
between setting of consecutive bytes is 1 AP bus cycle ±100 ns. (This 100-ns
timing jitter is non-cumulative.)

The error message Illegal mode: n is caused by the mode argument not
being one of SLI_SET, SLI_OR, SLI_XOR, or SLI_AND.

Arguments: address is the address of the SLI board in the system. It must match the
address specified by jumper J7R on the board. Note that the jumpers 19-20
through -2 specify bits 2 through 11, respectively. Bits 0 and 1 are always zero.
An installed jumper signifies a “one” bit, and a missing jumper a “zero”. The
standard addresses for the SLI in the VME card cage:

• Digital (left) side is C90 (hex) = 3216

• Analog (right) side is 990 (hex) = 2448

mode determines how to combine the specified value with the current output of
the SLI to produce the new output. The four possible modes:

• SLI_SET is to load the new value directly into the SLI

• SLI_OR is to logically OR the new value with the old

• SLI_AND is to logically AND the new value with the old

• SLI_XOR is to logically XOR the new value with the old

value (as modified by the mode argument) specifies the bit pattern to be set
in the SLI board. This should be a non-negative number, between 0 (all lines
low) and 232–1 (all lines high).

Examples: pulsesequence()
{
...
int SLIaddr; /* Address of SLI board */
unsigned SLIbits; /* 32 bits of SLI line settings */
...
SLIbits = getval("sli");
SLIaddr = getval("address");
...
sli(SLIaddr, SLI_SET, SLIbits);

01-999253-00 A0604 VnmrJ User Programming 229

Chapter 3. Pulse Sequence Statement Reference –

...
}

Note that sli and address are not standard parameters, but need to be
created by the user if they are mentioned in a user pulse sequence (for
details, see the description of the create command).

sp#off Turn off specified spare line

Applicability: UNITYINOVA systems.

Syntax: sp1off() to sp5off()

Description: Turns off the specified user-dedicated spare line connector (sp1off for
SPARE 1, sp2off for SPARE 2, etc.) for high-speed device control.

• UNITYINOVA has five spare lines available from the Breakout panel on the
back of the left console cabinet.

Examples: sp1off();
sp4off();

sp#on Turn on specified spare line

Applicability: UNITYINOVA systems.

Syntax: sp1on() to sp5on()

Description: Turns on the specified user-dedicated spare line connector (sp1on for SPARE
1, sp2on for SPARE 2, etc.) for high-speed device control. On the UNITYINOVA,
each spare line changes from low to high when turned on.

• UNITYINOVA has five spare lines available from the Breakout panel on the
back of the left console cabinet.

Examples: sp1on();
sp5on();

spinlock Control spin lock on observe transmitter

Applicability: Systems with a waveform generator on the observe transmitter channel.

Syntax: spinlock(pattern,90_pulselength,tipangle_resoln, \
phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length of channel */
double tipangle_resoln;/* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-generator-controlled spin lock on the observe transmitter.
Both the rf gating and the mixing delay are handled within this function.
Arguments can be variables (which require the appropriate getval and
getstr statements) to permit changes via parameters (see the second
example).

Related: sp#on Turn on specified spare line
sp#off Turn off specified spare line
vsli Set SLI lines from real-time variable

Related: sp#on Turn on specified spare line

Related: sp#off Turn off specified spare line

230 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Arguments: pattern is the name of the text file in the shapelib directory that stores the
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration for a 90° tip angle on the observe
transmitter.

tipangle_resoln is the resolution in tip-angle degrees to which the
decoupling pattern is stored in the waveform generator.

phase is the phase angle of the spin lock. It must be a real-time variable (v1
to v14, oph, etc.).

ncycles is the number of times that the spin-lock pattern is to be executed.

Examples: spinlock("mlev16",pw90,90.0,v1,50);
spinlock(locktype,pw,resol,v1,cycles);

starthardloop Start hardware loop

Syntax: starthardloop(vloop)
codeint vloop; /* real-time variable for loop count */

Description: Starts a hardware loop. The number of repetitions of the hardware loop must be
two or more. If the number of repetitions is 1, the hardware looping feature is
not activated. A hardware loop with a count equal to 0 is not permitted and
generates an error. Depending on the pulse sequence, additional code may be
needed to trap for this condition and skip the starthardloop and
endhardloop statements if the count is 0.

Only instructions that require no further intervention by the acquisition
computer (pulses, delays, acquires, and other scattered instructions) are allowed
in a hard loop. Most notably, no real-time math statements are allowed, thereby
precluding any phase cycle calculations. The number of events included in the
hard loop, including the total number of data points if acquisition is performed,
is subject to the following limitations:

• 2048 or less for the Data Acquisition Controller board, Pulse Sequence
Controller board, or MERCURYplus/-Vx STM/Output board.

• 1024 or less for the Acquisition Controller board.

• 63 or less for the Output board (see the description section of the acquire
statement for further information about these boards).

In all cases, the number of events must be greater than one. No nesting of hard
loops is allowed.

For the Output board, a hardware loop must be preceded by some timed event
other than an explicit acquisition or another hardware loop. If two hardware
loops must follow one another, it will therefore be necessary to insert a
statement like delay(0.2e–6) between the first endhardloop and the
second starthardloop. With only a single hardware loop, there is no timing
limitation on the length of a single cycle of the loop. With two hardware loops
(such as a loop of pulses and delays followed by an implicit acquisition), the
first hardware loop must have a minimum cycle length of approximately 80 µs.
With three or more hardware loops, loops that are not the first or last must have
a minimum cycle length of about 100 µs.

Related: decspinlock First decoupler spin lock waveform control
dec2spinlock Second decoupler spin lock waveform control
dec3spinlock Third decoupler spin lock waveform control

01-999253-00 A0604 VnmrJ User Programming 231

Chapter 3. Pulse Sequence Statement Reference –

For the Data Acquisition Controller, Pulse Sequence Controller, Acquisition
Controller, and MERCURYplus/-Vx STM/Output boards, there are no timing
restrictions between multiple, back-to-back hard loops. There is one subtle
restriction placed on the actual duration of a hard loop if back-to-back hard
loops are encountered: the duration of the ith hard loop must be N(i+1) * 0.4 µs,
where N(i+1) is the number of events occurring in the (i+1)th hard loop.

Arguments: vloop is the number of hardware loop repetitions. It must be a real-time
variable (v1 to v14, ct, etc.) and not an integer, a real number, or a regular
variable.

Examples: starthardloop(v2);

status Change status of decoupler and homospoil

Syntax: status(state)
int state; /* index: A, B, C, ..., Z */

Description: Controls decoupler and homospoil gating. Parameters controlled by status
are dm (first decoupler mode), dmm (first decoupler modulation mode), and hs
(homospoil). For systems with a third rf channel, dm2 (second decoupler
mode), dm3 (third decoupler mode), dmm2 (second decoupler modulation
mode), and dmm3 (third decoupler modulation mode) are also controlled.

Each of these parameters can have multiple states: status(A) sets each
parameter to the state described by the first letter of its value, status(B) uses
the second letter, etc. If a pulse sequence has more status statements than there
are status modes for a particular parameter, control reverts to the last letter of
the parameter value. Thus if dm='ny', status(C) will look for the third
letter, find none, and then use the second letter (y) and turn the decoupler on
(actually, leave the decoupler on).

The states do not have to increase monotonically during a pulse sequence. It is
perfectly possible to write a pulse sequence that starts with status(A), goes
later to status(B), then goes back to status(A), then to status(C),
etc.

Homospoil is treated slightly differently than the decoupler. If a particular
homospoil code letter is 'y', delays coded as hsdelay that occur during the
time the status corresponds to that code letter will begin with a homospoil
pulse, the duration of which is determined by the parameter hst. Thus if
hs='ny', all hsdelay delays that occur during status(B) will begin with
a homospoil pulse. The final status always occurs during acquisition, at which
time a homospoil pulse is not permitted. Thus, if a particular pulse sequence
uses status(A), status(B), and status(C), dm and other decoupler
parameters can have up to three letters, but hs has only two, because having
hs='y' during status(C) is meaningless and is consequently ignored.

On all systems with class C amplifiers to switch from low-power to high-power
decoupling, insert dhpflag=TRUE; or dhpflag=FALSE; in a pulse
sequence just before a status statement.

Arguments: state sets the status mode to A, B, C, ..., or Z.

Examples: status(A);

Related: acquire Explicitly acquire data
endhardloop End hardware loop

Related: dhpflag Switch decoupling from low-power to high-power
hsdelay Delay specified time with possible homospoil pulse

232 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

statusdelay Execute the status statement with a given delay time

Applicability: UNITYINOVA

Syntax: statusdelay(state,time)
int state; /* index: A, B, C, ..., Z */
double time; /* delay time, in sec. */

Description: Executes the status statement and delays for the time provided as an
argument.

The current status statement takes a variable amount of time to execute,
which depends on the number of rf channels configured in the system, the
previous status state of each decoupler channel, and the new status state of each
decoupler channel. This time is small (on the order of a few microseconds
without programmable decoupling to tens of microseconds with programmable
decoupling) but can be significant in certain experiments. statusdelay
allows the user to specify a defined period of time for the status statement to
execute.

If the amount of time given as an argument is not long enough to account for the
overhead delays of status; the pulse sequence will still run, but a warning
message will be generated to let the user know of the discrepancy.

The following table lists the maximum amount of time per channel for the
status statement to execute.

Arguments: state specifies the status mode as A,B,C,...,Z.

time specifies the delay time, in seconds.

Examples: statusdelay(A,d1);
statusdelay(B,0.000010);

stepsize Set small-angle phase step size, rf type C or D

Applicability: Systems with rf type C or D, and MERCURYplus/-Vx. This statement is due to
be eliminated in future versions of VnmrJ software. Although it is still
functional, you should not write any pulse sequences using it and should replace
it in existing sequences with obsstepsize, decstepsize,
dec2stepsize, or dec3stepsize, as appropriate.

Syntax: stepsize(step_size,device)
double step_size; /* step size of phase shifter */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Sets the step size of the small-angle phase increment for a particular device. The
phase information into statements decpulse, decrgpulse,
dec2rgpulse, dec3rgpulse, pulse, rgpulse, and simpulse is still
expressed in units of 90°.

Arguments: step_size is a real number or a variable for the phase step size desired.

setstatus Set status of observe transmitter or a decoupler transmitter
statusdelay Execute the status statement with a given delay time

System
Without programmable
decoupling (µs)

 With programmable
decoupling (µs)

UNITYINOVA 2.5 2.5

Related: status Change status of decoupler and homospoil

01-999253-00 A0604 VnmrJ User Programming 233

Chapter 3. Pulse Sequence Statement Reference –

device is OBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA only, device can also be DEC2ch (second decoupler) or
DEC3ch (third decoupler). The step_size phase shift selected is active only
for the xmtrphase statement if device is OBSch, only for the
dcplrphase statement if device is DECch, only for the dcplr2phase
statement if device is DEC2ch, or only for the dcplr3phase statement if
the device is DEC3ch.

Examples: stepsize(30.0,OBSch);
stepsize(step,DEC2ch);

sub Subtract integer values

Syntax: sub(vi,vj,vk)
codeint vi; /* real-time variable for minuend */
codeint vj; /* real-time variable for subtrahend */
codeint vk; /* real-time variable for difference */

Description: Sets the value of vk equal to vi–vj.

Arguments: vi is the integer value of the minuend, vj is the integer value of the subtrahend,
and vk is the difference of vi and vj. Each argument must be a real-time
variable (v1 to v14, oph, etc.).

Examples: sub(v2,v5,v6);

T

Related: dcplrphase Set small-angle phase of first decoupler, rf type C or D
dcplr2phase Set small-angle phase of second decoupler, rf type C or D
dcplr3phase Set small-angle phase of third decoupler, rf type C or D
decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
xmtrphase Set small-angle phase of observe transmitter, rf type C

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values

A B C D E G H I L M O P R S T V W X Z

text_error Send a text error message to VnmrJ

text_message Send a message to VnmrJ

tsadd Add an integer to AP table elements

234 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

text_error Send a text error message to VnmrJ

Syntax: text_error(char *format, ...)

Description: Sends an error message to VnmrJ and writes the message into the file
userdir+'/psg.error' .

text_message Send a message to VnmrJ

Syntax: text_message(char *format, ...)

Description: Sends a message to VnmrJ. text_message is like warn_message, except it does
not cause the beep to occur.

tsadd Add an integer to AP table elements

Syntax: tsadd(table,scalarval,moduloval)
codeint table; /* real-time table variable */
int scalarval; /* integer added */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that adds an integer to elements of an AP table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be added to each element of the table.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: tsadd(t31,4,4);

tsdiv Divide an integer into AP table elements

Syntax: tsdiv(table,scalarval,moduloval)
codeint table; /* real-time table variable */
int scalarval; /* integer divisor */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that divides an integer into the elements of an
AP table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be divided into each element of the table.
scalarval must not equal 0; otherwise, an error is displayed and PSG aborts.

tsdiv Divide an integer into AP table elements

tsmult Multiply an integer with AP table elements

tssub Subtract an integer from AP table elements

ttadd Add an AP table to a second table

ttdiv Divide an AP table into a second table

ttmult Multiply an AP table by a second table

ttsub Subtract an AP table from a second table

txphase Set quadrature phase of observe transmitter

Related: tsdiv Divide an integer into AP table elements
tsmult Multiply an integer with AP table elements
tssub Subtract an integer from AP table elements

01-999253-00 A0604 VnmrJ User Programming 235

Chapter 3. Pulse Sequence Statement Reference –

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: tsdiv(t31,4,4);

tsmult Multiply an integer with AP table elements

Syntax: tsmult(table,scalarval,moduloval)
codeint table; /* real-time table variable */
int scalarval; /* integer multiplier */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that multiplies an integer with the elements of an
AP table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be multiplied with each element of the table.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: tsmult(t31,4,4);

tssub Subtract an integer from AP table elements

Syntax: tssub(table,scalarval,moduloval)
codeint table; /* real-time table variable */
int scalarval; /* integer subtracted */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that subtracts an integer from the elements of an AP
table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be subtracted from each element of the table.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: tssub(t31,4,4);

ttadd Add an AP table to a second table

Syntax: ttadd(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that adds one AP table to a second table.

Arguments: tablenamedest is the name of the destination table (t1 to t60).

Related: tsadd Add an integer to AP table elements
tsmult Multiply an integer with AP table elements
tssub Subtract an integer from AP table elements

Related: tsadd Add an integer to AP table elements
tsdiv Divide an integer into AP table elements
tssub Subtract an integer from AP table elements

Related: tsadd Add an integer to AP table elements
tsdiv Divide an integer into AP table elements
tsmult Multiply an integer with AP table elements

236 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

table_mod is the name of the table (t1 to t60) that modifies table_dest.
Each element in table_dest is modified by the corresponding element in
table_mod and the result is stored in table_dest. The number of elements
in table_dest must be greater than or equal to the number of elements in
table_mod.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: ttadd(t28,t42,6);

ttdiv Divide an AP table into a second table

Syntax: ttdiv(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that divides one AP table into a second table.

Arguments: table_dest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest.
Each element in table_dest is modified by the corresponding element in
table_mod and the result is stored in table_dest. The number of elements
in table_dest must be greater than or equal to the number of elements in
table_mod. No element in table_mod can equal 0.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: ttdiv(t28,t42,6);

ttmult Multiply an AP table by a second table

Syntax: ttmult(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that multiplies one AP table by a second table.

Arguments: table_dest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest.
Each element in table_dest is modified by the corresponding element in
table_mod and the result is stored in table_dest. The number of elements
in table_dest must be greater than or equal to the number of elements in
table_mod.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Related: ttdiv Divide an AP table into a second table
ttmult Multiply an AP table by a second table
ttsub Subtract an AP table from a second table

Related: ttadd Add an AP table to a second table
ttmult Multiply an AP table by a second table
ttsub Subtract an AP table from a second table

01-999253-00 A0604 VnmrJ User Programming 237

Chapter 3. Pulse Sequence Statement Reference –

Examples: ttmult(t28,t42,6);

ttsub Subtract an AP table from a second table

Syntax: ttsub(table_dest,table_mod,moduloval)
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that subtracts one AP table from a second table.

Arguments: table_dest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest.
Each element in table_dest is modified by the corresponding element in
table_mod and the result is stored in table_dest. The number of elements
in table_dest must be greater than or equal to the number of elements in
table_mod.

moduloval is the modulo value taken on the result of the operation if
moduloval is greater than 0.

Examples: ttsub(t28,t42,6);

txphase Set quadrature phase of observe transmitter

Syntax: txphase(phase)
codeint phase; /* variable for quadrature phase */

Description: Sets the observe transmitter quadrature phase to the value referenced by the
real-time variable so that the transmitter phase is changed independently from a
pulse. This may be useful to “preset” the transmitter phase at the beginning of a
delay that precedes a particular pulse. For example, in the sequence
txphase(v2); delay(d2); pulse(pw,v2);, the transmitter phase is
changed at the start of the d2 delay. In a “normal” sequence, an rof1 time
precedes the pulse to change the transmitter phase.

Arguments: phase is the quadrature phase for the observe transmitter. It must be a real-time
variable (v1 to v14, oph, ct, etc.).

Examples: txphase(v3);

V

Related: ttadd Add an AP table to a second table
ttdiv Divide an AP table into a second table
ttsub Subtract an AP table from a second table

Related: ttadd Add an AP table to a second table
ttdiv Divide an AP table into a second table
ttmult Multiply an AP table by a second table

Related: decphase Set quadrature phase of first decoupler
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler

A B C D E G H I L M O P R S T V W X Z

238 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

vagradient Variable angle gradient

Syntax: vagradient(gradlvl,theta,phi)
double gradlvl; /* gradient amplitude in G/cm */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Description: Applies a gradient of amplitude gradlvl at an angle theta from the z axis
and rotated about the xy plane at an angle phi. Information from a gradient
table is used to scale and set the values correctly.The values applied to each
gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

vagradient leaves the gradients at the given levels until they are turned off.
To turn off the gradients, add a vagradient statement with gradlvl set to
zero or include the zero_all_gradients statement.

vagradient is used if there are actions to be performed while the gradients
are on. vagradpulse is simpler to use if there are no other actions performed
while the gradients are on.

Arguments: gradlvl is the gradient amplitude, in gauss/cm.

theta defines the angle, in degrees, from the z axis.

phi defines the angle of rotation, in degrees, about the xy plane.

Examples: vagradient(3.0, 54.7, 0.0);
pulse(pw,oph);
delay(0.001 - pw);
zero_all_gradients();

vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

var_active Checks if the parameter is being used

vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse

vdelay Set delay with fixed timebase and real-time count

vdelay_list Get delay value from delay list with real-time index

vfreq Select frequency from table

vgradient Set gradient to a level determined by real-time math

voffset Select frequency offset from table

vscan Provide dynamic variable scan

vsetuserap Set user AP register using real-time variable

vsli Set SLI lines from real-time variable

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient

01-999253-00 A0604 VnmrJ User Programming 239

Chapter 3. Pulse Sequence Statement Reference –

vagradpulse Variable angle gradient pulse

Applicability: UNITYINOVA systems.

Syntax: vagradpulse(gradlvl,gradtime,theta,phi)
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Description: Applies a gradient pulse of amplitude gradlvl at an angle theta from the z
axis and rotated about the xy plane at an angle phi. Information from a gradient
table is used to scale and set the values correctly. The values applied to each
gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

The gradients are turned off after gradtime seconds.

vagradpulse is simpler to use if there are no other actions while the
gradients are on. vagradient is used if there are actions to be performed
while the gradients are on.

Arguments: gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

theta is the angle, in degrees, from the z axis

phi is the angle of rotation, in degrees, about the xy plane.

Examples: vagradpulse(3.0,0.001,54.7,0.0);

var_active Checks if the parameter is being used

Syntax: var_active

Description: Checks if the parameter is “active“ (returns 1) or “inactive“ (returns 0). Applies
to numbers, not strings. “Inactive” means that the parameter is not being used.
If the parameter is a number, you can set it to 'n' to make it “inactive.” For
example, you can set fn=256 or fn='n'. If the paramerer does not exist,
var_active is 0.

vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle gradient pulse
zero_all_gradients Zero all gradients

240 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

vashapedgradientVariable angle shaped gradient

Applicability: UNITYINOVA systems.

Syntax: vashapedgradient(pattern,gradlvl,gradtime,theta, \
phi,loops,wait)

char* pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* time to apply gradient in sec */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */
int loops; /* number of waveform loops */
int wait; /* WAIT or NOWAIT */

Description: Applies a gradient shape pattern with an amplitude gradlvl at an angle
theta from the z axis and rotated about the xy plane at an angle phi.
Information from a gradient table is used to scale and set the values correctly.
The amplitudes applied to each gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

vashapedgradient leaves the gradients at the given levels until they are
turned off. To turn off the gradients, add another vashapedgradient
statement with gradlvl set to zero or insert a zero_all_gradients
statement. Note that vashapedgradient assumes the gradient pattern
zeroes the gradients at its end, and it does not explicitly zero the gradients.

vashapedgradient is used if there are actions to be performed while the
gradients are on,

Arguments: pattern is a text file that describes the shape of the gradient. The text file is
located in $vnmrsystem/shapelib or in the users directory
$vnmruser/shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

theta is the angle, in degrees, from the z axis.

phi is the angle of rotation, in degrees, about the xy plane.

loops is a value from 0 to 255 to loop the selected waveform. Gradient
waveforms on the UNITYINOVA do not use this field and it should be set to 0.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay
is inserted to wait until the gradient is completed before executing the next
statement.

Examples: vashapedgradient("ramp_hold",3.0,trise,54.7, \
0.0,0,NOWAIT);

pulse(pw,oph);
delay(0.001-pw-2*trise);
vashapedgradient("ramp_down",3.0,trise,54.7, \

0.0,0,NOWAIT);

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse

01-999253-00 A0604 VnmrJ User Programming 241

Chapter 3. Pulse Sequence Statement Reference –

vashapedgradpulse Variable angle shaped gradient pulse

Applicability: UNITYINOVA systems.

Syntax: vashapedgradpulse(pattern,gradlvl,gradtime, \
theta,phi)

char *pattern; /* gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Description: Applies a gradient shape pattern with an amplitude gradlvl at an angle
theta from the z axis and rotated about the xy plane at an angle phi.
Information from a gradient table is used to scale and set the values correctly.
The amplitudes applied to each gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

The gradient are turned off after gradtime seconds. Note that
vashapedgradpulse assumes that the gradient pattern zeroes the gradients
at its end and does not explicitly zero the gradients.

vashapedgradpulse is simpler to use then the vashapedgradient
statement if there are no other actions while the gradients are on.
vashapedgradient is used when there are actions to be performed while
the gradients are on.

Arguments: pattern is a text file that describes the shape of the gradient. The text file is
located in $vnmrsystem/shapelib or in the user directory $vnmruser/
shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

theta is the angle, in degrees, from the z axis.

phi is the angle of rotation, in degrees, about the xy plane.

Examples: vashapedgradpulse("hsine",3.0,0.001,54.7,0.0);

vdelay Set delay with fixed timebase and real-time count

Applicability: UNITYINOVA systems.

Syntax: vdelay(timebase,count)
int timebase; /* NSEC, USEC, MSEC, or SEC */
codeint count; /* real-time variable for count */

vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
zero_all_gradients Zero all gradients

242 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Description: Sets a delay for a time period equal to the product of the specified timebase
and the count.

Arguments: timebase is one of the four defined time bases: NSEC (described below),
USEC (microseconds), MSEC (milliseconds), or SEC (seconds).

count is a real-time variable (v1 to v14). For predictable acquisition, the real-
time variable should have a value of 2 or more.

If timebase is set to NSEC, the delay depends on which acquisition controller
board is used on the system (see the description section of the acquire
statement for further information about these boards.):

• On systems with a Data Acquisition Controller board, the minimum delay
is a count of 0 (100 ns), and a count of n corresponds to a delay of (100
+ (12.5*n)) ns. For example, vdelay(NSEC,v1), when v1=4, gives a
delay of (100 + (12.5*4)) ns or 150 ns.

• On systems with a Pulse Sequence Controller board or an Acquisition
Controller board, the minimum delay is a count of 2 (200 ns). A count
greater than 2 is the minimum delay plus the resolution (25 ns) of the board.
For example, vdelay(NSEC,v1), when v1=4, gives a delay of (200 +
25) ns or 225 ns.

• On systems with Output boards, the minimum delay is a count of 2 (200
ns). A count greater than 2 is the minimum delay plus the resolution (100
ns) of the board. For example, vdelay(NSEC,v1), when v1=4, gives a
delay of (200 + 100) ns or 300 ns.

Examples: vdelay(USEC,v3);

vdelay_list Get delay value from delay list with real-time index

Applicability: UNITYINOVA systems.

Syntax: vdelay_list(list_number,vindex)
int list_number; /* same index as create_delay_list */
codeint vindex; /* real time variable */

Description: Provides a means of indexing into previously created delay lists using a real-
time variable or an AP table. The indexing into the list is from 0 to N–1, where
N is the number of items in the list. The delay table has to have been created
with the create_delay_list statement. It has no return value.

Arguments: tlist_number is the number between 0 and 255 for each list. This number
must match the list_number used when creating the table.

vindex is a real-time variable (v1 to v14) or an AP table (t1 to t60).

Examples: pulsesequence()
{
...
int noffset, ndelay, listnum;

Related: create_delay_list Create table of delays
delay Delay for a specified time
hsdelay Delay specified time with possible homospoil pulse
idelay Delay for a specified time with IPA
incdelay Real time incremental delay
initdelay Initialize incremental delay
vfreq Select frequency from table
voffset Select frequency offset from table
vdelay_list Get delay value from delay list with real-time index

01-999253-00 A0604 VnmrJ User Programming 243

Chapter 3. Pulse Sequence Statement Reference –

double offsets1[256],offsets2[256],delay[256];
...
/* initialize offset and delay lists */
create_offset_list(offsets1,noffset,OBSch,0);
create_delay_list(delay,ndelay,1);
create_offset_list(offsets2,noffset,DECch,2);
...
voffset(0,v4); /* get v4 from observe offset list */
vdelay_list(1,v5); /* get v5 from delay list */
voffset(2,v4); /* get v4 from decouple offset list */
...
}

vfreq Select frequency from table

Applicability: UNITYINOVA systems.

Syntax: vfreq(list_number,vindex)
int list_number; /* same index as for create_freq_list */
codeint vindex; /* real-time variable */

Description: Provides a means of indexing into previously created frequency lists using a
real-time variable or an AP table. The indexing into the list is from 0 to N–1,
where N is the number of items in the list. The frequency table must have been
created with the create_freq_list statement. It has no return value.

Arguments: list_number is the number between 0 and 255 for each list. This number
must match the list_number used when creating the table.

vindex is a real-time variable (v1 to v14) or an AP table (t1 to t60).

Examples: See the example for the vdelay statement.

vgradient Set gradient to a level determined by real-time math

Applicability: Systems with imaging or PFG modules. Not applicable to MERCURYplus/-Vx.

Syntax: vgradient(channel,intercept,slope,mult)
char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */
int slope; /* gradient increment */
codeint mult; /* real-time variable */

Description: Provides a dynamic variable gradient controlled using the AP real-time math
functions. It has no return value. The statement drives the chosen gradient to the
level defined by the formula:

Related: create_delay_list Create table of delays
delay Delay for a specified time
hsdelay Delay specified time with possible homospoil pulse
idelay Delay for a specified time with IPA
incdelay Real time incremental delay
initdelay Initialize incremental delay
vfreq Select frequency from table
voffset Select frequency offset from table
vdelay Set delay with fixed timebase and real-time count

Related: create_freq_list Create table of frequencies
vdelay Select delay from table
voffset Select frequency offset from table

244 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

level = intercept + slope*mult.

The gradient level ranges from –2047 to +2047 for systems with 12-bit DACs,
or from –32767 to +32767 for gradients using the waveform generators, which
have 16- bit DACs. If the requested level lies outside this range, it is rounded to
the appropriate boundary value.

After vgradient, the action of the gradient is controlled by the gradient
power supply. The gradient level is ramped at the preset slew rate (2047 DAC
units per millisecond) to the value requested by vgradient. This fact
becomes a concern when using vgradient in a loop with a delay element, in
order to produce a modulated gradient. The delay element should be sufficiently
long so as to allow the gradient to reach the assigned value:

Arguments: channel specifies the gradient to be set and is one of the characters 'X',
'x', 'Y', 'y', 'Z', or 'z'. In imaging, channel can also be 'gread',
'gphase', or 'gslice'.

intercept and slope are integers. In imaging, intercept is the initial
gradient DAC setting and slope is the gradient DAC increment.

mult is a real-time variable (v1 to v14, etc.). In imaging, mult is set so that
intercept+slope*mult is the output.

Examples: (1) mod2(ct,v10); /* v10 is 0,1,0,1,0,1,... */
vgradient('z',0,2000,v10);

/* z gradient is 0,2000,0,2000,... */
delay(d2); /* delay for duration d2 */
rgradient('z',0.0); /* gradient turned off */

(2) mod4(ct,v10);
/* v10 is 0,1,2,3,4,0,1,2,3,4,... */

vgradient('z',-5000.0,2500.0,v10);
/* z is –5000,–2500,0,2500 */

(3) pulsesequence()
{
...
char gphase, gread, gslice;
int amplitude, igpe, stat;
double gpe;
...
gpe = getval("gpe");
amplitude = (int)(0.5*ni*gpe);
igpe = (int)gpe;
stat =
getorientation(&gread,&gphase,&gslice,"orient");
...
initval(nf,v9);
loop(v9,v5);

...
vgradient(gphase,amplitude,igpe,v5);
...

endloop(v5);

delay
new_level old_level–

2047
--- risetime×≥

01-999253-00 A0604 VnmrJ User Programming 245

Chapter 3. Pulse Sequence Statement Reference –

...
}

voffset Select frequency offset from table

Applicability: UNITYINOVA systems.

Syntax: voffset(list_number,vindex)
int list_number; /* number of list */
codeint vindex; /* real-time or AP table variable */

Description: Provides a means of indexing into previously created frequency offset lists
using a real-time variable or an AP table. The indexing into the list is from 0 to
N–1, where N is the number of items in the list. The offset table has to have been
created with the create_offset_list statement. It has no return value.

Arguments: list_number is the number between 0 and 255 for each list. This number
must match the list_number used when creating the table.

vindex is a real-time variable (v1 to v14) or an AP table (t1 to t60).

Examples: See the example for the vdelay statement.

vscan Provide dynamic variable scan

Applicability: Systems with imaging capability.

Syntax: vscan(rtvar)
codeint rtval; /* AP math variable */

Description: Provides a dynamic scan capability for compressed-compressed image
sequences. It uses an AP real-time variable as a counter. This real-time variable
must be supplied by the user, but need not be initialized since the
init_vscan statement provides the initialization. vscan uses the standard
nt parameter to determine the number of scans it performs. Since it is a real-
time variable, it is limited to 32K scans. When vscan is used, system-supplied
scan functionality is disabled, similar to the use of the acquire statement.
vscan has no return value.

Arguments: rtvar is an AP math variable (v1 to v14). Its range is 1 to 32767.

Examples: pulsesequence()
{
...
char gphase, gread, gslice;
int amplitude, igpe, stat;
double gpe;
...
initval(nv,v10);

Related: dps_show Draw delay or pulses in a sequence for graphical display
getorientation Read image plane orientation
rgradient Set gradient to specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
zgradpulse Create a gradient pulse on the z channel

Related: create_offset_list Create table of frequency offsets
vdelay Select delay from table
vfreq Select frequency from table

246 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

initval(nf,v9);
loop(v10,v6);

init_vscan(v11,np*nf);
loop(v9,v5);

...
acquire(np,1/sw);
...

endloop(v5);
vscan(v11);

endloop(v6);
...
}

vsetuserap Set user AP register using real-time variable

Applicability: UNITYINOVA systems.

Syntax: vsetuserap(vi,register)
codeint vi; /* variable output to AP bus register */
int register; /* AP bus register: 0, 1, 2, or 3 */

Description: Sets one of the four 8-bit AP bus registers that provide an output interface to
custom user equipment. The outputs of these registers go the USER AP
connectors J8212 and J8213, located on the back of the left console cabinet. The
outputs have a 100-ohm series resistor for circuit protection.

Arguments: vi is an index to a real-time variable that contains a signed or unsigned real
number or integer to output to the specified user AP register.

register is the AP register number, mapped to output lines as follows:

• Register 0 is J8213, lines 9 to 16.

• Register 1 is J8213, lines 1 to 8.

• Register 2 is J8212, lines 9 to 16.

• Register 3 is J8212, lines 1 to 8.

Examples: vsetuserap(v1,1);

vsli Set SLI lines from real-time variable

Applicability: Systems with imaging capability and the Synchronous Line Interface (SLI)
board, an option that provides an interface to custom user equipment.

Syntax: vsli(address,mode,var)
int address; /* SLI board address */
int mode; /* SLI_SET, SLI_OR, SLI_AND, SLI_XOR */
codeint var; /* real-time variables for SLI lines */

Description: Sets lines from real-time variables on the SLI board. It has no return value.

vsli has a pre-execution delay of 10.950 µs but no post-execution delay. The
delay is composed of a 200-ns startup delay with 5 AP bus cycles (1 AP bus
cycle = 2.150 µs).

Related: acquire Explicitly acquire data
init_vscan Initialize real-time variable for vscan statement

Related: readuserap Read input from user AP register
setuserap Set user AP register

01-999253-00 A0604 VnmrJ User Programming 247

Chapter 3. Pulse Sequence Statement Reference –

The logic levels on the SLI lines are not all set simultaneously. The four bytes
of the 32 bit word are set consecutively, the low-order byte first. The delay
between setting of consecutive bytes is 1 AP bus cycle ±100 ns. (This 100-ns
timing jitter is non-cumulative.)

The following error messages are possible:

• Illegal mode: n is caused by the mode argument not being one of
SLI_SET, SLI_OR, SLI_XOR, or SLI_AND.

• Illegal real-time variable: n is caused by the var argument
being outside the range v1 to v13.

Arguments: address is the address of the SLI board in the system. It must match the
address specified by jumper J7R on the board. Note that the jumpers 19-20
through -2 specify bits 2 through 11, respectively. Bits 0 and 1 are always zero.
An installed jumper signifies a “one” bit, and a missing jumper a “zero”. The
standard addresses for the SLI in the VME card cage:

• Digital (left) side is C90 (hex) = 3216

• Analog (right) side is 990 (hex) = 2448

mode determines how to combine the specified value with the current output of
the SLI to produce the new output. The four possible modes:

• SLI_SET is to load the new value directly into the SLI

• SLI_OR is to logically OR the new value with the old

• SLI_AND is to logically AND the new value with the old

• SLI_XOR is to logically XOR the new value with the old

var specifies the real-time variables to use to set the SLI lines. Because the SLI
has 32 bits and the real-time variables have only 16 bits, two real time variables
are used for each call. The one specified in the calling sequence is used for the
high-order word, and the next sequential real-time variable is used for the low-
order word. Thus, legal values for var are v1 to v13.

Examples: pulsesequence()
{
...
int SLIaddr; /* Address of SLI board */
...
SLIaddr = getval("address");
...
vsli(SLIaddr, SLI_SET, v1);
...
}

Notice that address is not a standard parameter, but needs to be created by
the user if it is mentioned in a user pulse sequence (for details, see the
description of the create command).

Related: sli Set SLI lines
sp#off Turn off specified spare line
sp#on Turn on specified spare line

248 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

W

warn_message Send a warning message to VnmrJ

Syntax: warn_message(char *format, ...)

Description: Sends an warning message to VnmrJ and cause a beep.

X

xgate Gate pulse sequence from an external event

Applicability: UNITYINOVA systems.

Syntax: xgate(events)
double events; /* number of external events */

Description: Halts the pulse sequence. When the number of external events has occurred, the
pulse sequence continues.

Arguments: events is the number of external events.

Examples: xgate(2.0);
xgate(events);

xmtroff Turn off observe transmitter

Syntax: xmtroff()

Description: Explicitly gates off the observe transmitter in the pulse sequence.

xmtron Turn on observe transmitter

Syntax: xmtron()

A B C D E G H I L M O P R S T V W X Z

warn_message Send a warning message to VnmrJ

A B C D E G H I L M O P R S T V W X Z

xgate Gate pulse sequence from an external event

xmtroff Turn off observe transmitter

xmtron Turn on observe transmitter

xmtrphase Set transmitter small-angle phase, rf type C, D

Related: rotorperiod Obtain rotor period of MAS rotor
rotorsync Gated pulse sequence delay from MAS rotor position

Related: xmtron Turn on observe transmitter

01-999253-00 A0604 VnmrJ User Programming 249

Chapter 3. Pulse Sequence Statement Reference –

Description: Explicitly gates on the observe transmitter in the pulse sequence. Transmitter
gating is handled automatically by the statements obspulse, pulse,
rgpulse, shaped_pulse, simpulse, sim3pulse,
simshaped_pulse, sim3shaped_pulse, and spinlock.

The obsprgon statement generally needs to be enabled with an explicit
xmtron statement and followed by a xmtroff call.

xmtrphase Set transmitter small-angle phase, rf type C, D

Syntax: xmtrphase(multiplier)
codeint multiplier; /* real-time AP variable */

Description: Sets the phase of transmitter in units set by the stepsize statement. The
small-angle phaseshift is a product of multiplier and the preset step size for
the transmitter. If stepsize has not been used, the default step size is 90°.

If the product of the step size set by the stepsize statement and
multiplier is greater than 90°, the sub-90° part is set by xmtrphase.
Carryovers that are multiples of 90° are automatically saved and added in at the
time of the next 90° phase selection (such as at the time of the next pulse or
decpulse).

xmtrphase should be distinguished from txphase. xmtrphase is needed
any time the transmitter phase shift is to be set to a value that is not a multiple
of 90°. txphase is optional and rarely is needed.

Arguments: multiplier is a small-angle phaseshift multiplier and must be an AP
variable.

Examples: xmtrphase(v1);

Z

zero_all_gradients Zero all gradients

Syntax: zero_all_gradients()

Description: Sets the gradients in the x, y, and z axes to zero.

Related: xmtroff Turn on observe transmitter

Related: dcplrphase Set small-angle phase of first decoupler, rf type C or D
dcplr2phase Set small-angle phase of second decoupler, rf type C or D
dcplr3phase Set small-angle phase of third decoupler, rf type C or D
stepsize Set small-angle phase step size, rf type C or D

A B C D E G H I L M O P R S T V W X Z

zero_all_gradients Zero all gradients

zgradpulse Create a gradient pulse on the z channel

250 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

Examples: vagradient(3.0, 54.7, 0.0);
delay(0.001);
zero_all_gradients();

zgradpulse Create a gradient pulse on the z channel

Applicability: Systems with imaging or PFG module.

Syntax: zgradpulse(value,delay)
double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

Description: Creates a gradient pulse on the z channel with amplitude and duration given by
the arguments. At the end of the pulse, the gradient is set to 0.

Arguments: value is the amplitude of the pulse. It is a real number between –32768 and
32767.

delay is any delay parameter, such as d2.

Examples: zgradpulse(1234.0,d2);

Related: vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse

Related: dps_show Draw delay or pulses for graphical display of a sequence
rgradient Set gradient to specified level
vgradient Set gradient to level determined by real-time math

A B C D E G H I L M O P R S T V W X Z

abort_message Send and error to VnmrJ and abourt the PSG process

acquire Explicitly acquire data

add Add integer values

apovrride Override internal software AP bus delay

apshaped_decpulse First decoupler pulse shaping via AP bus

apshaped_dec2pulse Second decoupler pulse shaping via AP bus

apshaped_pulse Observe transmitter pulse shaping via AP bus

assign Assign integer values

blankingoff Unblank amplifier channels and turn amplifiers on

blankingon Blank amplifier channels and turn amplifiers off

blankoff Stop blanking observe or decoupler amplifier (obsolete)

blankon Start blanking observe or decoupler amplifier (obsolete)

clearapdatatable Zero all data in acquisition processor memory

create_delay_list Create table of delays

create_freq_list Create table of frequencies

create_offset_list Create table of frequency offsets

01-999253-00 A0604 VnmrJ User Programming 251

Chapter 3. Pulse Sequence Statement Reference –

dbl Double an integer value

dcphase Set decoupler phase (obsolete)

dcplrphase Set small-angle phase of 1st decoupler, rf type C or D

dcplr2phase Set small-angle phase of 2nd decoupler, rf type C or D

dcplr3phase Set small-angle phase of 3rd decoupler, rf type C or D

decblank Blank amplifier associated with first decoupler

dec2blank Blank amplifier associated with second decoupler

dec3blank Blank amplifier associated with third decoupler

declvloff Return first decoupler back to “normal” power

declvlon Turn on first decoupler to full power

decoff Turn off first decoupler

dec2off Turn off second decoupler

dec3off Turn off third decoupler

decoffset Change offset frequency of first decoupler

dec2offset Change offset frequency of second decoupler

dec3offset Change offset frequency of third decoupler

dec4offset Change offset frequency of fourth decoupler

decon Turn on first decoupler

dec2on Turn on second decoupler

dec3on Turn on third decoupler

decphase Set quadrature phase of first decoupler

dec2phase Set quadrature phase of second decoupler

dec3phase Set quadrature phase of third decoupler

dec4phase Set quadrature phase of fourth decoupler

decpower Change first decoupler power level, linear amp. systems

dec2power Change second decoupler power level, linear amp. systems

dec3power Change third decoupler power level, linear amp. systems

dec4power Change fourth decoupler power level, linear amp. systems

decprgoff End programmable decoupling on first decoupler

dec2prgoff End programmable decoupling on second decoupler

dec3prgoff End programmable decoupling on third decoupler

decprgon Start programmable decoupling on first decoupler

dec2prgon Start programmable decoupling on second decoupler

dec3prgon Start programmable decoupling on third decoupler

decpulse Pulse first decoupler transmitter with amplifier gating

decpwr Set first decoupler high-power level, class C amplifier

decpwrf Set first decoupler fine power

dec2pwrf Set second decoupler fine power

dec3pwrf Set third decoupler fine power

decr Decrement an integer value

decrgpulse Pulse first decoupler with amplifier gating

dec2rgpulse Pulse second decoupler with amplifier gating

dec3rgpulse Pulse third decoupler with amplifier gating

dec4rgpulse Pulse fourth decoupler with amplifier gating

decshaped_pulse Perform shaped pulse on first decoupler

dec2shaped_pulse Perform shaped pulse on second decoupler

252 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

dec3shaped_pulse Perform shaped pulse on third decoupler

decspinlock Set spin lock waveform control on first decoupler

dec2spinlock Set spin lock waveform control on second decoupler

dec3spinlock Set spin lock waveform control on third decoupler

decstepsize Set step size for first decoupler

dec2stepsize Set step size for second decoupler

dec3stepsize Set step size for third decoupler

decunblank Unblank amplifier associated with first decoupler

dec2unblank Unblank amplifier associated with second decoupler

dec3unblank Unblank amplifier associated with third decoupler

delay Delay for a specified time

dhpflag Switch decoupling from low-power to high-power

divn Divide integer values

dps_off Turn off graphical display of statements

dps_on Turn on graphical display of statements

dps_show Draw delay or pulses in a sequence for graphical display

dps_skip Skip graphical display of next statement

elsenz Execute succeeding statements if argument is nonzero

endhardloop End hardware loop

endif End execution started by ifzero or elsenz

endloop End loop

endmsloop End multislice loop

endpeloop End phase-encode loop

gate Device gating (obsolete)

getarray Get arrayed parameter values

getelem Retrieve an element from an AP table

getorientation Read image plane orientation

getstr Look up value of string parameter

getval Look up value of numeric parameter

G_Delay Generic delay routine

G_Offset Frequency offset routine

G_Power Fine power routine

G_Pulse Generic pulse routine

hdwshiminit Initialize next delay for hardware shimming

hlv Find half the value of an integer

hsdelay Delay specified time with possible homospoil pulse

idecpulse Pulse first decoupler transmitter with IPA

idecrgpulse Pulse first decoupler with amplifier gating and IPA

idelay Delay for a specified time with IPA

ifzero Execute succeeding statements if argument is zero

incdelay Set real-time incremental delay

incgradient Generate dynamic variable gradient pulse

incr Increment an integer value

indirect Set indirect detection

init_rfpattern Create rf pattern file

init_gradpattern Create gradient pattern file

01-999253-00 A0604 VnmrJ User Programming 253

Chapter 3. Pulse Sequence Statement Reference –

init_vscan Initialize real-time variable for vscan statement

initdelay Initialize incremental delay

initparms_sis Initialize parameters for spectroscopy imaging sequences

initval Initialize a real-time variable to specified value

iobspulse Pulse observe transmitter with IPA

ioffset Change offset frequency with IPA

ipulse Pulse observe transmitter with IPA

ipwrf Change transmitter or decoupler fine power with IPA

ipwrm Change transmitter or decoupler lin. mod. power with IPA

irgpulse Pulse observe transmitter with IPA

lk_hold Set lock correction circuitry to hold correction

lk_sample Set lock correction circuitry to sample lock signal

loadtable Load AP table elements from table text file

loop Start loop

loop_check Check that number of FIDs is consitent with number of
slices, etc.

magradient Simultaneous gradient at the magic angle

magradpulse Gradient pulse at the magic angle

mashapedgradient Simultaneous shaped gradient at the magic angle

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle

mod2 Find integer value modulo 2

mod4 Find integer value modulo 4

modn Find integer value modulo n

msloop Multislice loop

mult Multiply integer values

obl_gradient Execute an oblique gradient

oblique_gradient Execute an oblique gradient

obl_shapedgradient Execute a shaped oblique gradient

oblique_shapedgradient Execute a shaped oblique gradient

obsblank Blank amplifier associated with observe transmitter

obsoffset Change offset frequency of observe transmitter

obspower Change observe transmitter power level, lin. amp. systems

obsprgoff End programmable control of observe transmitter

obsprgon Start programmable control of observe transmitter

obspulse Pulse observe transmitter with amplifier gating

obspwrf Set observe transmitter fine power

obsstepsize Set step size for observe transmitter

obsunblank Unblank amplifier associated with observe transmitter

offset Change offset frequency of transmitter or decoupler

pe_gradient Oblique gradient with phase encode in one axis

pe2_gradient Oblique gradient with phase encode in two axes

pe3_gradient Oblique gradient with phase encode in three axes

pe_shapedgradient Oblique shaped gradient with phase encode in one axis

pe2_shapedgradient Oblique shaped gradient with phase encode in two axes

pe3_shapedgradient Oblique shaped gradient with phase encode in three axes

peloop Phase-encode loop

254 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

phase_encode_gradient Oblique gradient with phase encode in one axis

phase_encode3_gradient Oblique gradient with phase encode in three axes

phase_encode_shapedgradient Oblique shaped gradient with PE in one axis

phase_encode3_shapedgradient Oblique shaped gradient with PE in three axes

phaseshift Set phase-pulse technique, rf type A or B

poffset Set frequency based on position

poffset_list Set frequency from position list

position_offset Set frequency based on position

position_offset_list Set frequency from position list

power Change power level, linear amplifier systems

psg_abort Abort the PSG process

pulse Pulse observe transmitter with amplifier gating

putCmd Send a command to VnmrJ form a pulse sequence

pwrf Change transmitter or decoupler fine power

pwrm Change transmitter or decoupler linear modulator power

rcvroff Turn off receiver gate and amplifier blanking gate

rcvron Turn on receiver gate and amplifier blanking gate

readuserap Read input from user AP register

recoff Turn off receiver gate only

recon Turn on receiver gate only

rgpulse Pulse observe transmitter with amplifier gating

rgradient Set gradient to specified level

rlpower Change power level, linear amplifier systems

rlpwrf Set transmitter or decoupler fine power

rlpwrm Set transmitter or decoupler linear modulator power

rotorperiod Obtain rotor period of MAS rotor

rotorsync Gated pulse sequence delay from MAS rotor position

setautoincrement Set autoincrement attribute for an AP table

setdivnfactor Set divn-return attribute and divn-factor for AP table

setreceiver Associate the receiver phase cycle with an AP table

setstatus Set status of observe transmitter or decoupler transmitter

settable Store an array of integers in a real-time AP table

setuserap Set user AP register

shapedpulse Perform shaped pulse on observe transmitter

shaped_pulse Perform shaped pulse on observe transmitter

shapedgradient Generate shaped gradient pulse

shaped2Dgradient Generate arrayed shaped gradient pulse

shapedincgradient Generate dynamic variable gradient pulse

shapedvgradient Generate dynamic variable shaped gradient pulse

simpulse Pulse observe and decouple channels simultaneously

sim3pulse Pulse simultaneously on 2 or 3 rf channels

sim4pulse Simultaneous pulse on four channels

simshaped_pulse Perform simultaneous two-pulse shaped pulse

sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse

sli Set SLI lines

sp#off Turn off specified spare line

01-999253-00 A0604 VnmrJ User Programming 255

Chapter 3. Pulse Sequence Statement Reference –

sp#on Turn on specified spare line

spinlock Control spin lock on observe transmitter

starthardloop Start hardware loop

status Change status of decoupler and homospoil

statusdelay Execute the status statement with a given delay time

stepsize Set small-angle phase step size, rf type C or D

sub Subtract integer values

text_error Send a text error message to VnmrJ

text_message Send a message to VnmrJ

tsadd Add an integer to AP table elements

tsdiv Divide an integer into AP table elements

tsmult Multiply an integer with AP table elements

tssub Subtract an integer from AP table elements

ttadd Add an AP table to a second table

ttdiv Divide an AP table into a second table

ttmult Multiply an AP table by a second table

ttsub Subtract an AP table from a second table

txphase Set quadrature phase of observe transmitter

vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

var_active Checks if the parameter is being used

vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse

vdelay Set delay with fixed timebase and real-time count

vdelay_list Get delay value from delay list with real-time index

vfreq Select frequency from table

vgradient Set gradient to a level determined by real-time math

voffset Select frequency offset from table

vscan Provide dynamic variable scan

vsetuserap Set user AP register using real-time variable

vsli Set SLI lines from real-time variable

warn_message Send a warning message to VnmrJ

xgate Gate pulse sequence from an external event

xmtroff Turn off observe transmitter

xmtron Turn on observe transmitter

xmtrphase Set transmitter small-angle phase, rf type C, D

zero_all_gradients Zero all gradients

zgradpulse Create a gradient pulse on the z channel

256 VnmrJ User Programming 01-999253-00 A0604

Chapter 3. Pulse Sequence Statement Reference –

01-999253-00 A0604 VnmrJ User Programming 257

Chapter 4. UNIX-Level Programming

Sections in this chapter:

• 4.1 “UNIX and VnmrJ,” this page

• 4.2 “UNIX: A Reference Guide,” page 258

• 4.3 “UNIX Commands Accessible from VnmrJ,” page 260

• 4.4 “Background VNMR,” page 260

• 4.5 “Shell Programming,” page 261

UNIX is among the most popular operating systems in the world today, with hundreds of
books written on every aspect of UNIX, at every level. This manual does not attempt to
replace that material, but attempts instead to provide a glimpse of the subject and then to
guide you to resources that can paint a fuller picture.

4.1 UNIX and VnmrJ
Many VnmrJ software users do not need to have any contact with UNIX whatsoever.
Although the UNIX operating system is running the workstation at all times, a user who
wants to use only the Varian VnmrJ software package can do just that. In some installations,
the system operator starts VnmrJ and different users simply sit down at the instrument and
use the NMR software, just as in the earlier generation of NMR spectrometers. The worst
that could happen is that the previous user logged out, requiring the next user to log back
in with their name and password. After completing this login procedure, the VnmrJ
software starts automatically, and again you do not need to have contact with UNIX if you
don't wish to do so.

UNIX provides more than a hundred “tools” that can perform almost anything short of
complex mathematical manipulations like a Fourier transform. For example, UNIX has
commands to search through your files, to sort line lists, to tell you who is on the system,
to run a program unattended at night, and much more. The more performance you want to
get out of your computer, and the more you want to be able to do, the more it will benefit
you to learn about UNIX.

Dozens of manuals are available for your Sun computer system, and surely you will not
want to or be able to read them all. For those with no exposure to UNIX, however, we
strongly recommend that you read any user’s guides that accompanied your Sun
workstation. After that, a book we have found to be particularly useful is The UNIX System
by S. R. Bourne (Addison-Wesley). For coverage of the Solaris environment, a good book
is Guide to Solaris by John Pew (ZD Press).

Chapter 4. UNIX-Level Programming

258 VnmrJ User Programming 01-999253-00 A0604

4.2 UNIX: A Reference Guide
This section includes a brief overview of the UNIX computer operating system and its
associated commands. For more information on UNIX, refer to the Sun manuals covering
Solaris or to UNIX general references found at larger bookstores.

Command Entry

File Names

File Handling Commands

Directory Names

Directory Handling Commands

Single command entry commandname

Command names Generally lowercase, case-sensitive

Multiple command separator ; (semicolon) or new line

Arguments commandname arg1 arg2

Typical (shorthand names usually used) /vnmr/fidlib/fid1d

Level separator / (forward slash)

Individual filenames Any number of characters (256 unique)

Characters in filenames Underline, period often used

First character in filename First character unrestricted

Delete (unlink) a file(s) rm filenames

Copy a file cp filename newfilename

Rename a file mv filename newfilename

Make an alias (link) ln target linkname

Sort files sort filenames

Tape backup tar

Home directory for each user Directory assigned by administrator

Working directory Current directory user is in

Shorthand for current directory . (single period)

Shorthand for parent directory .. (two periods)

Shorthand for home directory ~ (tilde character)

Root directory / (forward slash)

Create (or make) a directory mkdir directoryname

Rename a directory mv dirname newdirname

Remove an empty directory rmdir directoryname

Delete directory and all files in it rm –r directoryname

List files in a directory, short list ls directoryname

4.2 UNIX: A Reference Guide

01-999253-00 A0604 VnmrJ User Programming 259

Text Commands

Other Commands

Special Characters

List files in a directory, long list ls –l directoryname

Copy file(s) into a directory cp filenames directoryname

Move file(s) into a directory mv filenames directoryname

Show current directory pwd

Change current directory cd newdirectoryname

Edit a text file using vi editor vi filename

Edit a text file using ed editor ed filename

Edit a text file using textedit editor textedit filename

Display first part of a file head filename

Display last part of a file tail filename

Concatenate and display files cat filenames

Compare two files cmp filename1 filename2

Compare two files deferentially diff filename1 filename2

Print file(s) on line printer lp filenames

Search file(s) for a pattern grep expression filenames

Find spelling errors spell filename

Pattern scanning and processing awk pattern filename

Change file protection mode chmod newmode filename

Display current date and time date

Summarize disk usage du –k

Report free disk space df –k filesystem

Kill a background process kill process-id

Sign onto system login username

Send mail to other users mail

Print out UNIX manual entry man commandname

Process status ps

Convert quantities to another scale units

Who is on the system w

System identification uname -a

Send output into named file > filename

Append output into named file >> filename

Take input from named file < filename

Send output from first command to input of second command (pipe) | (vertical bar)

Wildcard character for a single character in filename operations ?

Wildcard character for multiple characters in filename operations *

Chapter 4. UNIX-Level Programming

260 VnmrJ User Programming 01-999253-00 A0604

4.3 UNIX Commands Accessible from VnmrJ
Several UNIX commands are accessible directly from VnmrJ, including the vi, edit,
shell, shelli, and w commands.

Opening a UNIX Text Editor from VnmrJ

Entering vi(file) or edit(file) from VnmrJ invokes a UNIX text editor for editing
the name of the file given in the argument (e.g., vi('myfile')). On the Sun
workstation, a popup screen contains the editing window. Exiting from the editor closes the
editing window.

The most useful UNIX program you can learn is vi, the powerful UNIX text editor. UNIX
provides at least two other text editors, ed and textedit, that are easier to learn than vi,
but vi is the most widely used UNIX text editor and worth learning because of its many
features. A text editor is necessary if you wish to prepare or edit text files, such as macros,
menus, and pulse sequences (short text files such as those used to annotate spectra are
usually edited in simpler ways)

Opening a UNIX Shell from VnmrJ

Entering the shell command from VnmrJ without any argument opens a normal UNIX
shell. On the Sun, a popup window is created. Entering shell with the syntax

shell(command)<:$var1,$var2,...>

executes the UNIX command line given, displays any text lines generated, and returns
control to VnmrJ when finished. If return arguments $var1,$var2,... are present, the
results of the command line are returned to the variables listed, with each variable receiving
a single display line.

shell calls involving pipes or input redirection (<) require either an extra pair of
parentheses or the addition of ; cat to the shell command string, for example:

shell('(ls –t|grep May)'):$list
shell('ls –t|grep May; cat'):$list

To display information about who is on UNIX, enter the w command from VnmrJ.

4.4 Background VNMR
Running VNMR commands and processing as a UNIX background tasks are possible by
using Vnmr and vbg commands from UNIX.

Running VNMR Command as a UNIX Background Task

VNMR commands can be executed as a UNIX background task by using the command
Vnmr –mback <–n#> command_string <&>

Run program in background &

Abort the current process Control-C

Logout or end of file Control-D

4.5 Shell Programming

01-999253-00 A0604 VnmrJ User Programming 261

where –mback is a keyword (entered exactly as shown), –n# sets that processing will
occur in experiment # (e.g., –n2 sets experiment 2), and command_string is a VNMR
command or macro. If –n# is omitted, processing occurs in experiment 1. If more than one
command is to be executed, place double quote marks around the command string; e.g.,
"printon dg printoff"

UNIX background operation (&) is possible, as in Vnmr –mback wft2da &. Usually
it is a good idea to use redirection (> or >>) with background processing:
Vnmr –mback –n3 wft2da > vnmroutput &

The UNIX shell script vbg is also available to run VNMR processing in the background.

All text output, both normal text window output and the typical two-letter prompts that
appear in the upper right (“FT”, “PH”, etc.), are directed to the UNIX output window.

Note the following characteristics of the Vnmr command:

• Full multiuser protection is implemented. If user vnmr1 is logged in and using
experiment 1, and another person logs in as vnmr1 from another terminal and tries to
use the background Vnmr, the second vnmr1 receives the message “experiment
1 locked” if that person tries to use experiment 1. The second user can use other
experiments, however.

• Pressing Control-C does not work: if you type the UNIX command shown, you cannot
abort it with Control-C.

• Operation within VNMR is possible using the shell command; e.g.,

shell('Vnmr –mback –n2 wftda')

• Plotting is possible; e.g.,

Vnmr –mback –n3 "pl pscale pap page"

• Printing is possible; e.g.,

Vnmr –mback "printon dg printoff"

Running VNMR Processing in the Background

The UNIX shell script vbg runs VNMR processing in the background. The main
requirements are that vbg must be run from within a UNIX shell and that no foreground or
other background processes can be active in the designated experiment. From UNIX, vbg
is entered in the following form:
vbg # command_string <prefix>

where # is the number of an experiment (from 1 to 9) in the user's directory in which the
background processing is to take place, command_string is one or more VNMR
commands and macros to be executed in the background (double quotes surrounding the
string are mandatory), and prefix is the name of the log file, making the full log file name
prefix_bgf.log (e.g., to perform background plotting from experiment 3, enter vbg
3 "vsadj pl pscale pap page" plotlog).

The default log file name is #_bgf.log, where # is the experiment number. The log file
is placed in the experiment in which the background processing takes place. Refer to the
Command and Parameter Reference for more information on vbg.

4.5 Shell Programming
The shell executes commands given either from a terminal or contained in a file. Files
containing commands and control flow notation, called shell scripts, can be created,

Chapter 4. UNIX-Level Programming

262 VnmrJ User Programming 01-999253-00 A0604

allowing users to build their own commands. This section provides a very short overview
of such programming; refer to the UNIX literature for more information.

Shell Variables and Control Formats

As a programming language, the shell provides string-valued variables: $1, $2,.... The
number of variables is available as $# and the file being executed is available as $0.
Control flow is provided by special notation, including if, case, while, and for. The
following format is used:

Shell Scripts

The following shell scripts show two ways a shell script might be written for the same
command. In both scripts, the command name lower is selected by the user and the intent
of the command is to convert a file to lower case, but the scripts differ in features.

The first script:
: lower --- command to convert a file to lower case
: usage lower filename
: output filename.lower
tr '[A-Z]' '[a-z]' < $1 > $1.lower

The second script:
: lower --- a command to convert a file to lower case
: usage lower filename or lower inputfile outputfile
: output filename.lower or output file
case $# in

1) tr '[A-Z]' '[a-z]' <$1 > $1.lower;;
2) tr '[A-Z]' '[a-z]' <$1 > $2;;
*) echo "Usage: lower filename or lower \

inputfile outputfile";;
esac

In the first script, only one form of input is allowed, but in the second script, not only is a
second form of input allowed but a prompt explaining how to use lower appears if the user
enters lower without any arguments. Notice that in both scripts a colon is used to identify
lines containing comments (and that each script is carefully commented).

if command-list (not Boolean)
then command-list
else command-list
fi

case word in
pattern) command-list;;
...
esac

while command-list
do command-list
done

for name (in w1 w2)
do command-list
done

01-999253-00 A0604 VnmrJ User Programming 263

Chapter 5. Parameters and Data

Sections in this chapter:

• 5.1 “VnmrJ Data Files,” this page

• 5.2 “FDF (Flexible Data Format) Files,” page 270

• 5.3 “Reformatting Data for Processing,” page 275

• 5.4 “Creating and Modifying Parameters,” page 278

• 5.5 “Modifying Parameter Displays in VNMR,” page 284

• 5.6 “User-Written Weighting Functions,” page 287

• 5.7 “User-Written FID Files,” page 289

5.1 VnmrJ Data Files
Although a number of different files are used by VnmrJ to process data, VnmrJ data files
use only two basic formats:

• Binary format – Stores FIDs and transformed spectra. Binary files consist of a file
header describing the details of the data stored in the file followed by the spectral data
in integer or floating point format.

• Text format – Stores all other forms of data, such as line lists, parameters, and all forms
of reduced data obtained by analyzing NMR spectra. The advantage of storing data in
text format is that it can be easily inspected and modified with a text editor and can be
copied from one computer to another with no major problems. The text on Sun systems
use the ASCII format in which each letter is stored in one byte.

Binary Data Files

Binary data files are used in the VnmrJ file system to store FIDs and the transformed
spectra. FIDs and their associated parameters are stored as filename.fid files. A
filename.fid file is always a directory file containing the following individual files:

• filename.fid/fid is a binary file containing the FIDs.

• filename.fid/procpar is a text file with parameters used to obtain the FIDs.

• filename.fid/text is a text file.

In experiments, binary files store FIDs and spectra. In non-automation experiments, the
FID is stored within the experiment regardless of what the parameter file is set to. The
path ~username/vnmrsys/expn/acqfil/fid is the full UNIX path to that file.
FIDs are stored as either 16- or 32-bit integer binary data files, depending on whether the
data acquisition was performed with dp='n' or dp='y', respectively.

Chapter 5. Parameters and Data

264 VnmrJ User Programming 01-999253-00 A0604

After an Fourier transform, the experiment file expn/datdir/data contains the
transformed spectra stored in 32-bit floating point format. This file always contains
complex numbers (pairs of floating point numbers) except if pmode='' was selected in
processing 2D experiments. To speed up the display, VnmrJ stores also the phased spectral
information in expn/datdir/phasefile, where it is available only after the first
display of the data. In arrayed or 2D experiments, phasefile contains only those traces
that have been displayed at least once after the last FT or phase change. Therefore, a user
program to access that file can only be called after a complete display of the data.

The directory file expn for current experiment n contains the following files:

• expn/curpar is a text file containing the current parameters.

• expn/procpar is a text file containing the last used parameters.

• expn/text is a text file.

• expn/acqfil/fid is a binary file that stores the FIDs.

• expn/datdir/data is a binary file with transformed complex spectrum.

• expn/datdir/phasefile is a binary file with transformed phased spectrum.

• expn/sn is saved display number n.

To access information from one of the experiment files of the current experiment, the user
must be sure that each of these files has been written to the disk. The problem arises because
VnmrJ tries to keep individual blocks of the binary files in the internal buffers as long as
possible to minimize disk accesses. This buffering in memory is not the same as the disk
cache buffering that the UNIX operating system performs. The command flush can be
used in VnmrJ to write all data buffers into disk files (or at least into the disk cache, where
it is also available for other processes). The command fsave can be used in VnmrJ to
write all parameter buffers into disk files.

The default directory for the 3D spectral data is curexp/datadir3d. The output
directory for the extracted 2D planes is the same as that for the 3D spectral data, except that
2D uses the /extr subdirectory and 3D uses the /data subdirectory. Within the 3D data
subdirectory /data are the following files and further subdirectories:

• data1 to data# are the actual binary 3D spectral data files. If the option nfiles is
not entered, the number of data files depends upon the size of the largest 2D plane and
the value for the UNIX environmental parameter memsize.

• info is a directory that stores the 3D coefficient text file (coef), the binary
information file (procdat), the 3D parameter set (procpar3d), and the automation
file (auto). The first three files are created by the set3dproc() command within
VnmrJ. The last file is created by the ft3d program.

• log is a directory that stores the log files produced by the ft3d program. The file f3
contains all the log output for the f

3
 transform. For the f

2
 and f

1
 transforms, there are

two log file for each data file, one for the f
2
 transform (f2.#) and one for the f

1

(f1.#). The file master contains the log output produced by the master ft3d
program.

Data File Structures

A data file header of 32 bytes is placed at the beginning of a VnmrJ data file. The header
contains information about the number of blocks and their size. It is followed by one or
more data blocks. At the beginning of each block, a data block header is stored, which
contains information about the data within the individual block. A typical 1D data file,
therefore, has the following form:
data file header

5.1 VnmrJ Data Files

01-999253-00 A0604 VnmrJ User Programming 265

header for block 1

data of block 1

header for block 2

data of block 2

. . .

The data headers allow for 2D hypercomplex data that may be phased in both the f1 and f2
directions. To accomplish this, the data block header has a second part for the 2D
hypercomplex data. Also, the data file header, the data block header, and the data block
header used with all data have been slightly revised. The new format allows processing of
FIDs obtained with earlier versions of VnmrJ.The 2D hypercomplex data files with
datafilehead.nbheaders=2 have the following structure:
data file header

header for block 1

second header for block 1

data of block 1

header for block 2

second header for block 2

data of block 2

. . .

All data in this file is contiguous. The byte following the 32nd byte in the file is expected
to be the first byte of the first data block header. If more than one block is stored in a file,
the first byte following the last byte of data is expected to be the first byte of the second
data block header. Note that these data blocks are not disk blocks; rather, they are a
complete data group, such as an individual trace in a experiment. For non-arrayed 1D
experiments, only one block will be present in the file.

Details of the data structures and constants involved can be found in the file data.h,
which is provided as part of the VnmrJ source code license. The C specification of the file
header is the following:
struct datafilehead

/* Used at start of each data file (FIDs, spectra, 2D) */

{
long nblocks; /* number of blocks in file */

long ntraces; /* number of traces per block */

long np; /* number of elements per trace */

long ebytes; /* number of bytes per element */

long tbytes; /* number of bytes per trace */

long bbytes; /* number of bytes per block */

short vers_id; /* software version, file_id status bits */

short status; /* status of whole file */

long nbheaders; /* number of block headers per block */

};

The variables in datafilehead structure are set as follows:

• nblocks is the number of data blocks present in the file.

• ntraces is the number of traces in each block.

• np is the number of simple elements (16-bit integers, 32-bit integers, or 32-bit floating
point numbers) in one trace. It is equal to twice the number of complex data points.

• ebytes is the number of bytes in one element, either 2 (for 16-bit integers in single
precision FIDs) or 4 (for all others).

• tbytes is set to (np*ebytes).

Chapter 5. Parameters and Data

266 VnmrJ User Programming 01-999253-00 A0604

• bbytes is set to (ntraces*tbytes + nbheaders*sizeof(struct
datablockhead)). The size of the datablockhead structure is 28 bytes.

• vers_id is the version identification of present VnmrJ.

• nbheaders is the number of block headers per data block.

• status is bits as defined below with their hexadecimal values.
All other bits must be zero.

Bits 0–6: file header and block header status bits (bit 6 is unused):

* If S_FLOAT=0, S_32=0 for 16-bit integer, or S_32=1 for 32-bit integer.
If S_FLOAT=1, S_32 is ignored.

Bits 7–14: file header status bits (bits 10 and 15 are unused):

Block headers are defined by the following C specifications:
struct datablockhead

/* Each file block contains the following header */

{

short scale; /* scaling factor */

short status; /* status of data in block */

short index; /* block index */

short mode; /* mode of data in block */

long ctcount; /* ct value for FID */

float lpval; /* f2 (2D-f1) left phase in phasefile */

float rpval; /* f2 (2D-f1) right phase in phasefile */

float lvl; /* level drift correction */

float tlt; /* tilt drift correction */

};

status is bits 0–6 defined the same as for file header status. Bits 7–11 are defined
below (all other bits must be zero):

Additional data block header for hypercomplex 2D data:
struct hypercmplxbhead

0 S_DATA 0x1 0 = no data, 1 = data

1 S_SPEC 0x2 0 = FID, 1 = spectrum

2 S_32 0x4 *

3 S_FLOAT 0x8 0 = integer, 1 = floating point

4 S_COMPLEX 0x10 0 = real, 1 = complex

5 S_HYPERCOMPLEX 0x20 1 = hypercomplex

7 S_ACQPAR 0x80 0 = not Acqpar, 1 = Acqpar

8 S_SECND 0x100 0 = first FT, 1 = second FT

9 S_TRANSF 0x200 0 = regular, 1 = transposed

11 S_NP 0x800 1 = np dimension is active

12 S_NF 0x1000 1 = nf dimension is active

13 S_NI 0x2000 1 = ni dimension is active

14 S_NI2 0x4000 1 = ni2 dimension is active

7 MORE_BLOCKS 0x80 0 = absent, 1 = present

8 NP_CMPLX 0x100 0 = real, 1 = complex

9 NF_CMPLX 0x200 0 = real, 1 = complex

10 NI_CMPLX 0x400 0 = real, 1 = complex

11 NI2_CMPLX 0x800 0 = real, 1 = complex

5.1 VnmrJ Data Files

01-999253-00 A0604 VnmrJ User Programming 267

{

short s_spare1; /* short word: spare */

short status; /* status word for block header */

short s_spare2; /* short word: spare */

short s_spare3; /* short word: spare */

long l_spare1; /* long word: spare */

float lpval1; /* 2D-f2 left phase */

float rpval1; /* 2D-f2 right phase */

float f_spare1; /* float word: spare */

float f_spare2; /* float word: spare */

};

Main data block header mode bits 0–15:

Bits 0–3: bit 3 is currently unused

Bits 4–7: bit 7 is currently unused

Bits 8–11: bit 11 is currently unused

Bits 12–15: bit 15 is currently unused

Usage bits for additional block headers (hypercmplxbhead.status)

The actual FID data is typically stored as pairs of integers in either 16-bit format or 32-bit
format. The first integer represents the real part of a complex pair (or the X channel from
the perspective of quadrature detection); the second integer represents the imaginary
component (or the Y channel). In phase-sensitive 2D experiments, “X” and “Y”
experiments are similarly interleaved. The format of the integers and the organization as
complex pairs must be specified in the data file header.

VnmrJ Use of Binary Data Files

To understand how VnmrJ uses individual binary data files, consider the example of a
simple Fourier transform followed by the display of the spectrum. The FT is performed
with the command ft, which acts as follows:

1. Copy processing parameters from curpar into procpar.

2. If FID is not in the fid file buffer, open the fid file (if not already open) and load
it into buffer.

0 NP_PHMODE 0x1 1 = ph mode

1 NP_AVMODE 0x2 1 = av mode

2 NP_PWRMODE 0x4 1 = pwr mode

4 NF_PHMODE 0x10 1 = ph mode

5 NF_AVMODE 0x20 1 = av mode

6 NF_PWRMODE 0x40 1 = pwr mode

8 NI_PHMODE 0x100 1 = ph mode

9 NI_AVMODE 0x200 1 = av mode

10 NI_PWRMODE 0x400 1 = pwr mode

12 NI2_PHMODE 0x8 1 = ph mode

13 NI2_AVMODE 0x100 1 = av mode

14 NI2_PWRMODE 0x2000 1 = pwr mode

U_HYPERCOMPLEX 0x2 1 = hypercomplex block structure

Chapter 5. Parameters and Data

268 VnmrJ User Programming 01-999253-00 A0604

3. Initialize the data file with the proper size (using parameter fn).

4. Convert integer FID into floating point and store result in data file buffer.

5. Apply dc drift correction and first point correction.

6. Apply weighting function, if requested.

7. Zero fill data, if required.

8. Fourier transform data in data file buffer.

At this point, the data file buffer contains the complex spectrum. Unless other FTs are done,
which use up more memory space than assigned to the data file buffer, the data is not
automatically written to the file expn/datdir/data at this time. Joining a different
experiment or the command flush would perform such a write operation.

The ds command takes the following steps in displaying the spectrum:

1. If data is not in phasefile buffer or if the phase parameters have changed, ds
tries to open the phase file (if not already open) and load data into the buffer (if it is
there). If ds is unsuccessful, the data must be phased:

a. If the data is not in the data file buffer, ds opens the data file (if not already
open) and loads it into the buffer.

b. ds initializes the phasefile buffer with the proper size (using the same
parameter fn as used for last FT).

c. ds calculates the phased (or absolute value) spectrum and stores it in the
phasefile buffer.

2. ds calculates the display and displays the spectrum.

The phasefile buffer now contains the phased spectrum. Unless other displays are
done, which use up more memory space than assigned to the phasefile buffer, the data
is not automatically written to the file expn/datdir/phasefile at this time. Joining
a different experiment or entering the command flush would perform such a write
operation.

Depending on the nature of the data processing, the two files data and phasefile will
contain different information, as follows:

• After a 1D FT – data contains a complex spectrum, which can be used for phased or
absolute value displays.

• After a 1D display – phasefile contains either phased or absolute value data,
depending on which type of display had been selected.

• After a 2D FID display – data contains the complex FIDs, floated and normalized for
different scaling during the 2D acquisition. phasefile contains the absolute value
or phased equivalent of this FID data.

• After the first FT in a 2D experiment – data contains the once-transformed spectra.
This is equivalent to the interferograms, if the data is properly reorganized (see f1 and
f2 traces in “Storing Multiple Traces” on page 269). If a display is done now,
phasefile contains phased (or absolute value) half-transformed spectra or
interferograms.

• After the second FT in a 2D experiment – data contains the fully transformed spectra,
and after a display, phasefile contains the equivalent phased or absolute-value
spectra.

5.1 VnmrJ Data Files

01-999253-00 A0604 VnmrJ User Programming 269

Storing Multiple Traces

Arrayed experiments are handled in VnmrJ by storing the multiple traces of arrayed
experiments in one file. To allow this, the file is divided into several blocks, each containing
one trace. Therefore, in an arrayed experiment, the files fid, data, and phasefile
typically contain the same number of blocks. The number of traces in an arrayed
experiment is identical to the parameter arraydim. The only complication when working
with such data files in arrayed experiments might be that there are “holes” in such files (in
the UNIX version of VnmrJ only). The holes occur if not all FIDs are transformed or
displayed. They do not present a problem as long as a user program just uses a “seek”
operation to position the file pointer at the right point in the file and does not try to read
traces that have never been calculated.

One can look at 2D experiments as a special case of an arrayed experiment; however, the
situation is complicated by the fact that the data often has to be transposed. After the first
FT, the resulting spectra are transposed to become the FIDs used for the second FT, and
after the second FT, the user might want to work on traces in either the f1 or f2 direction.
Furthermore, some types of symmetrization and baseline correction algorithms may have
to work on traces in both directions at the same time. The situation is complicated by the
fact that the “in place” matrix transposition of large data sets is a very complex operation,
requiring many disk accesses and can therefore not be used in a system that has to transform
large non-symmetric data sets in a short time.

“Out of place” transpositions are not acceptable for large data sets because they double the
disk space requirements of the large 2D experiments. Therefore, VnmrJ software uses a
storage format in the 2D data file that allows access to both rows and columns at the same
time. Because of the proprietary nature and complexity of the algorithm involved, it is not
presented here. The storage format is used only in datdir/data.

2D FIDs are stored the same way as 1D FIDs. Transformed 2D data is stored in data in
large blocks of typically 256K bytes.This means that multiple traces are combined to form
a block. Within one block, the data is not stored as individual traces but is scrambled to
make access to rows and columns as fast as possible.

Phased 2D data is stored in phasefile in the same large blocks as in data, but the traces
within each block are stored sequentially in their natural order. Both traces along f1 and f2
are stored in the same file. The first block(s) contain traces number 1 to fn along the f1
axis; the next block(s) contains traces number 1 to fn1 along the f2 axis. Note again, that
phasefile will only contain data if the corresponding display operation has been
performed. Therefore, in most typical situations, where only a display along one of the two
2D axes is done, phasefile will contain only the block(s) for the traces along f1 or a
'hole' followed by the block(s) for the traces along f2. Furthermore, in large
2D experiments, where multiple blocks must be used to store the whole data, only a 'full'
display will ensure that all blocks were actually calculated.

Header and Data Display

The VnmrJ commands ddf, ddff, and ddfp display file headers and data. ddf displays
the data file in the current experiment. Without arguments, only the file header is displayed.
Using ddf<(block_number,trace_number,first_number)>, ddf displays a
block header and part of the data of that block is displayed. block_number is the block
number, default 1. trace_number is the trace number within the block, default 1.
first is the first data element number within the trace, default 1.

The ddff command displays the FID file in the current experiment and the ddfp
command displays the phase file in the current experiment. Without any arguments, both

Chapter 5. Parameters and Data

270 VnmrJ User Programming 01-999253-00 A0604

display only the file header. Using the same arguments as the ddf command, ddff and
ddfp display a block header and part of the data of that block is displayed. The mstat
command displays statistics of memory usage by VnmrJ commands.

5.2 FDF (Flexible Data Format) Files
The FDF file format was developed to support the ImageBrowser, chemical shift imaging
(CSI), and single-voxel spectroscopy (SVS) applications. When these applications were
under development, the current VnmrJ file formats for image data were not easily usable
for the following reasons:

• The data and parameters describing the data were separated into two files. If the files
were ever separated, there would be no way to use or understand the data.

• The data file had embedded headers that were not needed and provided no useful
purpose.

• There was no support or structure for saving multislice data sets or a portion of a
multislice data set as image files.

FDF was developed to make it similar to VnmrJ formats, with parameters in an easy-to-
manipulate ASCII format and a data header that is not fixed so that parameters can be
added. This format makes it easy for users and different applications to manipulate the
headers and add needed parameters without affecting other applications.

File Structures and Naming Conventions

Several file structure and naming conventions have been developed for more ease in using
and interpreting files. Applications should not assume certain names for certain file;
however, specific applications may assume default names when outputting files.

Directories

The directory-naming convention is <name>.dat. The directory can contain a parameter
file and any number of FDF files. The name of the parameter file is procpar, a standard
VnmrJ name.

File Names

Each type of file has a different name in order to make the file more recognizable to the
user. For image files, the name is image[nnnn].fdf, where nnnn is a numeric string
from 0000 to 9999. For volumes, the name is volume[nnnn].fdf, where nnnn is also
a numeric string from 0000 to 9999. Programs that read FDF files should not depend on
these names because they are conventions and not definitions.

Compressed Files

Although not implemented at this time, compression will be supported for the data portion
of the file. The headers will not be compressed. A field will be put in the header to define
the compression method or to identify the command to uncompress the data.

File Format

The format of an FDF file consists of a header and data:

5.2 FDF (Flexible Data Format) Files

01-999253-00 A0604 VnmrJ User Programming 271

• Listing 7 is an example of an FDF header. The header is in ASCII text and its fields are
defined by a data definition language. Using ASCII text makes it easy to decipher the
image content and add new fields, and is compatible with the ASCII format of the
procpar file. The fields in the data header can be in any order except for the magic
number string, which are the first characters in the header, and the end of header
character <null>, which must immediately precede the data. The fields have a C-style
syntax. A correct header can be compiled by the C compiler and should not result in
any errors.

• The data portion is binary data described by fields in the header. It is separated from
the header by a null character.

Header Parameters

The fields in the data header are defined in this section.

Magic Number

The magic number is an ASCII string that identifies the file as a FDF file. The first two
characters in the file must be #!, followed by the identification string. Currently, the string
is #!/usr/local/fdf/startup.

Data Set Dimensionality or Rank Fields

These entries specify the data organization in the binary portion of the file.

• rank is a positive integer value (1, 2, 3, 4,...) giving the number of dimensions in the
data file (e.g., int rank=2;).

• matrix is a set of rank integers giving the number of data points in each dimension
(e.g., for rank=2, float matrix[]={256,256};)

• spatial_rank is a string ("none", "voxel", "1dfov", "2dfov", "3dfov")
for the type of data (e.g., char *spatial_rank="2dfov";).

#!/usr/local/fdf/startup
int rank=2;
char *spatial_rank="2dfov";
char *storage="float";
int bits=32;
char *type="absval";
int matrix[]={256,256};
char *abscissa[]={"cm","cm"};
char *ordinate[]={"intensity"};
float span[]={-10.000000,-15.000000};
float origin[]={5.000000,6.911132};
char *nucleus[]=("H1", "H1"};
float nucfreq[]={200.067000,200.067000};
float location[]={0.000000,-0.588868,0.000000};
float roi[]={10.000000,15.000000,0.208557};
float orientation[]={0.000000,0.000000,1.000000,-1.000000,
0.000000,0.000000,0.000000,1.000000,0.000000};
checksum=0787271376;

<zero>

Listing 7. Example of an FDF Header

Chapter 5. Parameters and Data

272 VnmrJ User Programming 01-999253-00 A0604

Data Content Fields

The following entries define the data type and size.

• storage is a string ("integer", "float") that defines the data type (e.g., char
*storage="float";).

• bits is an integer (8, 16, 32, or 64) that defines the size of the data (e.g.,
float bits=32;).

• type is a string ("real", "imag", "absval", "complex") that defines the
numerical data type (e.g., char *type="absval";).

Data Location and Orientation Fields

The following entries define the user coordinate system and specify the size and position
of the region from which the data was obtained. Figure 4 illustrates the coordinate system.
Vectors that correspond to header parameters are shown in boldface.

• orientation specifies the orientation of the user reference frame (x, y, z) with
respect to the magnet frame (X, Y, Z). orientation is given as a set of nine
direction cosines, in the order:

, , , , , , , ,
where:

and

y

x
Y

XZ

x
y

z

d12 d11d13Magnet reference frame

User reference frame

Direction Cosines
for x axis

(X, Y, Z)

(x, y, z)

Origin of user
coordinate system
(on the midplane

Center of
slice

First voxel in data set

originlocation

span–
2

Data Slice

(always displayed at
upper-left of screen)

(orientation)

of slice)

Figure 4. Magnet Coordinates as Related to User Coordinates.

d11 d12 d13 d21 d22 d23 d31 d32 d33

x d11X d12Y d13Z+ +=

y d21X d22Y d23Z+ +=

z d31X d32Y d33Z+ +=

5.2 FDF (Flexible Data Format) Files

01-999253-00 A0604 VnmrJ User Programming 273

The value is written as nine floating point values grouped as three triads (e.g., float
orientation[]={0.0,0.0,1.0,-1.0,0.0,0.0,0.0,1.0,0.0};).

• location is the position of the center of the acquired data volume relative to the
center of the magnet, in the user’s coordinate system. The position is given in
centimeters as a triple (three floating point values) of x, y, z distances
(e.g., float location[]={10.0,15.0,0.208};).

• roi is the size of the acquired data volume (three floating point values), in
centimeters, in the user’s coordinate frame, not the magnet frame (e.g.,
float roi[]={10.0,15.0,0.208};). Do not confuse this roi with ROIs that
might be specified inside the data set.

Data Axes

The data axes entries specify the user coordinates of data points. These axes do not tell how
to orient the display of the data, but only what to call the coordinates of a given datum.
There are no standard header entries to specify the orientation of the data display. Currently,
data is always displayed or plotted in the same order that it is stored. The fastest data
dimension is plotted horizontally from left to right; the next dimension is plotted vertically
from top to bottom.

• origin is a set of rank floating point values giving the user coordinates of the first
point in the data set (e.g., float origin[]={5.0,6.91};).

• span is a set of rank floating point values for the signed length of each axis, in user
units. A positive value means the value of the particular coordinate increases going
away from the first point (e.g., float span[]={–10.000,–15.000};).

• abscissa is a set of rank strings ("hz", "s", "cm", "cm/s", "cm/s2",
"deg", "ppm1", "ppm2", "ppm3") that identifies the units that apply to each
dimension (e.g., char *abscissa[]={"cm","cm"};).

• ordinate is a string ("intensity", "s", "deg") that gives the units that apply
to the numbers in the binary part of the file (e.g.,
char *ordinate[]={"intensity"};).

Nuclear Data Fields

Data fields may contain data generated by interactions between more than one nucleus
(e.g., a 2D chemical shift correlation map between protons and carbon). Such data requires
interpreting the term “ppm” for the specific nucleus, if ppm to frequency conversions are
necessary, and properly labeling axes arising from different nuclei. To properly interpret
ppm and label axes, the identity of the nucleus in question and the corresponding nuclear
resonance frequency are needed. These fields are related to the abscissa values
"ppm1", "ppm2", and "ppm3" in that the 1, 2, and 3 are indices into the nucleus and
nucfreq fields. That is, the nucleus for the axis with abscissa string "ppm1" is the
first entry in the nucleus field.

• nucleus is one entry ("H1", "F19", same as VnmrJ tn parameter) for each rf
channel (e.g., char *nucleus[]={"H1","H1"};).

• nucfreq is the nuclear frequency (floating point) used for each rf channel (e.g.,
float nucfreq[]={200.067,200.067};).

X d11x d21y d31z+ +=

Y d12x d22y d32z+ +=

Z d13x d23y d33z+ +=

Chapter 5. Parameters and Data

274 VnmrJ User Programming 01-999253-00 A0604

Miscellaneous Fields
• checksum is the checksum of the data. Changes to the header do not affect the

checksum. The checksum is a 32-bit integer, calculated by the gluer program (e.g.,
int checksum=0787271376;).

• compression is a string with either the command needed to uncompress the data or
a tag giving the compression method. This field is not currently implemented.

End of Header

A character specifies the end of the header. If there is data, it immediately follows this
character. The data should be aligned according to its data type. For single precision
floating point data, the data is aligned on word boundaries. Currently, the end of header
character is <zero> (an ASCII “NUL”).

Transformations

By editing some of the header values, it is possible to make a program that reads FDF data
files to perform simple transformations. For example, to flip data left-to-right, set:
span'0=–span0
origin'0=origin0–span'0

Creating FDF Files

To generate files in the FDF format, the following macros are available to write out single
or multislice images:

• For the current imaging software—including sequences sems, mems, and flash—use
the macro svib(directory<,'f'|'m'|'i'|'o'>), where directory is
the directory name desired (.dat is appended to the name), 'f' outputs data in
floating point format (this is the default), 'm' or 'i' outputs data as 12-bit integer
values in 16-bit words, and 'b' outputs data in 8-bit integer bytes.

• For older style SIS imaging sequences and microimaging sequences, use the macro
svsis(directory<,'f'|'m'>), where directory, 'f', and 'm' are
defined the same as svib.

Raw data from the FID file of the current experiment can be saved as an FDF file with the
svfdf(directory) macro, where directory is the name of the directory in which
to store the files (.dat is appended to the name). Data is saved in multiple files, with one
trace per file. The files are named fid0001.fdf, fid0002.fdf, etc. The procpar
file from the current experiment is also saved in the same directory.

Another way to create the FDF files is to edit or create a header defining a set of data with
no headers and attach it to the data file with the fdfgluer program. Use the syntax
fdfgluer header_file <data_file <output_file>> (from UNIX only).
This program takes a header_file and a data_file and puts them together to form
an FDF file. It also calculates a checksum and inserts it into the header. If the data_file
argument is not present, fdfgluer assumes the data is input from the standard input, and
if the output_file name is not present, fdfgluer puts the FDF file to the standard
output.

5.3 Reformatting Data for Processing

01-999253-00 A0604 VnmrJ User Programming 275

Splitting FDF Files

The fdfsplit command takes an FDF file and splits it into its data and header parts. The
syntax is fdfsplit fdf_file data_file header_file (from UNIX only). If
the header still has a checksum value, that value should be removed.

5.3 Reformatting Data for Processing
Sometimes, data acquired in an experiment has to be reformatted for processing. This is
especially true for in-vivo imaging experiments where time is critical in getting the data so
experiments are designed to acquire data quickly but not necessarily in the most desirable
format for processing. Reformatting data can also occur in other applications because of a
particular experimental procedure.

The VnmrJ processing applications ft2d and ft3d can accept data in standard,
compressed, or compressed-compressed (3D) data formats. There are a number of routines
that allow users to reformat their data into these formats for processing. The reformatting
routines allow users to compress or uncompress their data (flashc), move data around
between experiments and into almost any format (mf, mfblk, mfdata, mftrace),
reverse data while moving it (rfblk, rfdata, rftrace), or use a table of values, in this
case an AP table stored in tablib, to sort and reformat scans of data (tabc, tcapply).

In this section, standard and compressed data are defined, reformatting options are
described, and several examples are presented. Table 37 summarizes the reformatting
commands described in this section. Note that the commands rsapply, tcapply,
tcclose, and tcopen are for 2D spectrum data; the remaining commands in the table
are for FID data.

Standard and Compressed Formats

Usually when discussing standard and compressed data formats, standard means the data
was acquired using the arrayed parameters ni and ni2, which specify the number of
increments in the second and third dimensions; and compressed means using parameter nf
to specify the increments in the second dimension.

For multislice imaging, standard means using ni to specify the phase-encode increments
and nf to specify the number of slices and compressed means using nf to specify the
phase-encode increments while arraying the slices.

Compressed-compressed means using nf to specify the phase-encode increments and
slices for 2D or to specify the phase-encode increments in the second and third dimensions
for 3D. In compressed-compressed data sets, nf can be set to nv*ns or nv*nv2, where
nv is the number of phase-encode increments in the second dimension, nv2 is the number
of phase-encode increments in the third dimension, and ns is the number of slices.

To give another view of data formats, which will help when using the “move FID”
commands, each ni increment or array element is stored as a data block in a FID file and
each nf FID is stored as a trace within a data block in a FID file.

Compress or Uncompress Data

The most common form of reformatting for imaging has been to use the flashc command
to convert compressed data sets to standard data sets in order to run ft2d on the data. With
the implementation of ft2d('nf',<index>), flashc is no longer necessary.

Chapter 5. Parameters and Data

276 VnmrJ User Programming 01-999253-00 A0604

However, use of flashc is still necessary for converting compressed-compressed data to
compressed or standard formats.

Move and Reverse Data

The commands mf, mfblk, mfdata, and mftrace are available to move data around in
a FID file or to move data from one experiment FID file to another experiment FID file.
These commands give users more control in reformatting their data by allowing them to
move entire FID files, individual blocks within a FID file, individual traces within a block
of a FID file, or sections of data within a block of a FID file.

To illustrate the use of the “move FID” commands, Listing 8 is an example with code from
a macro that moves a 3D dataset from an arrayed 3D dataset to another experiment that runs
ft3d on the data. The $index variable is the array index. It works on both compressed-
compressed and compressed 3D data.

The “reverse FID” commands rfblk, rftrace, and rfdata are similar to their
respective mfblk, mftrace, and mfdata commands, except that rfblk, rftrace,
and rfdata also reverse the order of the data. The rfblk, rftrace, and rfdata
commands were implemented to support EPI (Echo Planar Imaging) processing. Listing 9
is an example of using these commands to reverse every other FID echo for EPI data. Note
that the mfopen and mfclose commands can significantly speed up the data
reformatting by opening and closing the data files once, instead of every time the data is
moved. The rfblk, rftrace, and rfdata commands can also be used with the “move
FID” commands.

Table 37. Commands for Reformatting Data

Commands
flashc* Convert compressed 2D data to standard 2D format
mf(<from_exp,>to_exp) Move FIDs between experiments
mfblk* Move FID block
mfclose Close memory map FID
mfdata* Move FID data
mfopen(<src_expno,>dest_expno) Memory map open FID file
mftrace* Move FID trace
rfblk* Reverse FID block
rfdata* Reverse FID data
rftrace* Reverse FID trace
rsapply Reverse data in a spectrum
tabc<(dimension)> Convert data in table order to linear order
tcapply<(file)> Apply table conversion reformatting to data
tcclose Close table conversion file
tcopen<(file)> Open table conversion file
* flashc<('ms'|'mi'|'rare'<,traces><,echoes>)

mfblk(<src_expno,>src_blk_no,dest_expno,dest_blk_no)
mfdata(<src_expno,>,src_blk_no,src_start_loc,dest_expno, \

dest_blk_no,dest_start_loc,num_points)
mftrace(<src_expno,>src_blk_no,src_trace_no,dest_expno

dest_blk_no,dest_trace_no)
rfblk(<src_expno,>src_blk_no,dest_expno,dest_blk_no)
rfdata(<src_expno,>src_blk_no,src_start_loc,dest_expno, \

dest_blk_no,dest_start_loc,num_points)
rftrace(<src_expno,>src_blk_no,src_trace_no,dest_expno, \

dest_blk_no,dest_trace_no)

5.3 Reformatting Data for Processing

01-999253-00 A0604 VnmrJ User Programming 277

CAUTION: For speed reasons, the “move FID” and “reverse FID” commands work
directly on the FID and follow data links. These commands can modify
data returned to an experiment with the rt command. To avoid
modification, enter the following sequence of VnmrJ commands
before manipulating the FID data:
cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

Listing 8. Code from a “Move FID” Macro

if ($seqcon[3] = 'c') and ($seqcon[4] = 'c') then
"**** Compressed-compressed 3d ****"
$arraydim = arraydim
if ($index > $arraydim) then

write('error','Index greater than arraydim.')
abort

endif
mfblk($index,$workexp,1)
jexp($workexp)
setvalue('arraydim',1,'processed')
setvalue('arraydim',1,'current')
setvalue('array','','processed')
setvalue('array','','current')
ft3d
jexp($cexpn)

else if ($seqcon[3] = 'c') and ($seqcon[4] = 's') then
"**** Compressed 3d ****"
if (ni < 1.5) then

write('error','seqcon, ni mismatch check parameters.')
abort

endif
$arraydim = arraydim/ni
if ($index > $arraydim) then

write('error','Index greater than arraydim.')
abort

endif
$i = 1
$k = $index
while ($i <= ni) do

mfblk($k,$workexp,$i)
$k = $k + $arraydim
$i = $i + 1

endwhile
jexp($workexp)
setvalue('arraydim',ni,'processed')
setvalue('arraydim',ni,'current')
setvalue('array','','processed')
setvalue('array','','current')
ft3d
jexp($cexpn)

Chapter 5. Parameters and Data

278 VnmrJ User Programming 01-999253-00 A0604

Table Convert Data

VnmrJ supports reconstructing a properly ordered raw data set from any arbitrarily ordered
data set acquired under control of an external AP table. The data must have been acquired
according to a table in the tablib directory. The command for table conversion is tabc.

Reformatting Spectra

The commands rsapply, to reverse a spectrum, and tcapply, to reformat a 2D set of
spectra using an AP table, support reformatting of spectra within a 2D dataset. The types
of reformatting are the reversing of data within a spectrum and the reformatting of
arbitrarily ordered 2D spectrum by using an AP table. These commands do not change the
original FID data, and they may provide some speed improvement over the similar
commands that operate on FID data. For 2D data, an ft1d command should be applied to
the data, followed by the desired reformatting, and then an ft2d command to complete the
processing.

5.4 Creating and Modifying Parameters
VnmrJ parameters and their attributes can be created and modified with the commands
covered in this section. The parameter trees used by these commands are UNIX files
containing the attributes of a parameter as formatted text.

Parameter Types and Trees

The types of parameters that can be created are 'real', 'string', 'delay',
'frequency', 'flag', 'pulse', and 'integer (default is 'real'). In brief, the
meaning of these types are as follows (for more detail, refer to the description of the
create command in the VnmrJ Command and Parameter Reference):

• 'real' is any positive or negative value, and can be positive or negative.

• 'string' is composed of characters, and can be limited to selected words by
enumerating the possible values with the command setenumeral.

• 'delay' is a value between 0 and 8190, in units of seconds.

• 'frequency' is positive real number values.

• 'flag' is composed of characters, similar to the 'string' type, but can be limited
to selected characters by enumerating the possible values with the command

Listing 9. Example of Command Reversing Data Order

"***
" epirf(<blkno>) - macro to reverse every other FID
" block & trace indicies start at 1 for rfblk,rftrace,rfdata **
"***
mfopen
$i=2
while ($i <= nv) do

rftrace($1,$i)
$i = $i + 2

endwhile
mfclose

5.4 Creating and Modifying Parameters

01-999253-00 A0604 VnmrJ User Programming 279

setenumeral. If enumerated values are not set, the 'string' and 'flag' types
are identical.

• 'pulse' is a value between 0 and 8190, in units of microseconds.

• 'integer' is composed of integers (0, 1, 2, 3,...),

The four parameter tree types are 'current', 'global', 'processed', and
'systemglobal' (the default is 'current'):

• 'current' contains the parameters that are adjusted to set up an experiment. The
parameters are from the file curpar in the current experiment.

• 'global' contains user-specific parameters from the file global in the vnmrsys
directory of the present UNIX user.

• 'processed' contains the parameters with which the data was obtained. These
parameters are from the file procpar in the current experiment.

• 'systemglobal' contains instrument-specific parameters from the text file
/vnmr/conpar. The config program is used to define most of these parameters.
All users have the same systemglobal tree.

Tools for Working with Parameter Trees

Table 38 lists commands for creating, modifying, and deleting parameters.

To Create a New Parameter

Use create(parameter<,type<,tree>>) to create a new parameter in a
parameter tree with the name specified by parameter. For example, entering
create('a','real','global') creates a new real-type parameter a in the global

Table 38. Commands for Working with Parameter Trees

Commands
create(parameter<,type<,tree>>) Create a new parameter in parameter tree
destroy(parameter<,tree>) Destroy a parameter
destroygroup(group<,tree>) Destroy parameters of a group in a tree
display(parameter|'*'|'**'<,tree>) Display parameters and their attributes
fread(file<,tree<,'reset'|'value'>>) Read in parameters from a file into a tree
fsave(file<,tree>) Save parameters from a tree to a file
getvalue(parameter<,index><,tree>) Get value of parameter in a tree
groupcopy(from_tree,to_tree,group) Copy group parameters from tree to tree
paramvi(parameter<,tree>) Edit parameter and its attributes using vi
prune(file) Prune extra parameters from current tree
setdgroup(parameter,dgroup<,tree>) Set the Dgroup of a parameter in a tree
setenumeral* Set values of a string parameter in a tree
setgroup(parameter,group<,tree>) Set group of a parameter in a tree
setlimit* Set limits of a parameter in a tree
setprotect* Set protection mode of a parameter
settype(parameter,type<,tree>) Change type of a parameter
setvalue* Set value of any parameter in a tree
* setenumeral(parameter,N,enum1,enum2,...enumN<,tree>)

setlimit(parameter,maximum,minimum,step_size<,tree>) or
setlimit(parameter,index<,tree>)

setprotect(parameter,'set'|'on'|'off',value<,tree>)
setvalue(parameter,value<,index><,tree>)

Chapter 5. Parameters and Data

280 VnmrJ User Programming 01-999253-00 A0604

tree. type can be 'real', 'string', 'delay', ' frequency', 'flag',
'pulse', or 'integer'. If the type argument is not entered, the default is 'real'.
tree can be 'current', 'global', 'processed', or 'systemglobal'. If the
tree argument is not entered, the default is 'current'. See the section above for a
description of parameter types and trees. Note that these same arguments are used with all
the commands appearing in this section.

To Get the Value of a Parameter

The value of most parameters can be accessed simply by using their name in an expression;
for example, sw? or r1=np accesses the value of sw and np, respectively. However,
parameters in the processed tree cannot be accessed this way. Use
getvalue(parameter<,index><,tree>) to get the value of any parameter,
including the value of a parameter in a processed tree. To make this easier, the default value
of tree is 'processed'. The index argument is the number of a single element in an
arrayed parameter (the default is 1).

To Edit or Set Parameter Attributes

Use paramvi(parameter<,tree>) to open the file for a parameter in the UNIX vi
text editor so that you can edit the attributes. To open a parameter file with an editor other
than vi, use paramedit(parameter<,tree>). Refer to entry for paramedit in
the VnmrJ Command and Parameter Reference for information on how to select a text
editor other than vi. The format of a stored parameter is described in the next section.

Several parameter attributes can be set by the following commands:

• setlimit(parameter,maximum,minimum,step_size<,tree>) sets
the maximum and minimum limits and stepsize of a parameter.

• setlimit(parameter,index<,tree>) sets the maximum and minimum
limits and the stepsize, but obtains the values from the index-th entry of a table in
conpar.

• setprotect(parameter,'set'|'on'|'off',bit_vals<,tree>)
sets the protection bits associated with a parameter. The keyword 'set' causes the
current protection bits to be replaced with the set specified by bit_vals (listed in
the VnmrJ Command and Parameter Reference). 'on' causes the bits specified in
bit_vals to be turned on without affecting other protection bits. 'off' causes the
bits specified in bit_vals to be turned off without affecting other protection bits.

• settype(parameter,type<,tree>) changes the type of an existing
parameter. A string parameter can be changed into a string or flag type, or a real
parameter can be changed into a real, delay, frequency, pulse, or integer type.

• setvalue(parameter,value<,index><,tree>) sets the value of any
parameter in a tree. setvalue bypasses normal range checking for parameter entry.
It also bypasses any action that would be invoked by the parameter's protection bits.

• setenumeral(parameter,N,enum1,enum2,...,enumN<,tree>) sets
possible values of a string-type or flag-type parameter in a parameter tree.

• setgroup(parameter,group<,tree>) sets the group (also called the
Ggroup) of a parameter in a tree. The group argument can be 'all', 'sample',
'acquisition', 'processing', 'display', or 'spin'.

• setdgroup(parameter,dgroup<,tree>) sets the Dgroup of a parameter in
a tree. The dgroup argument is an integer. The usage of setdgroup is set by the
application. Only the experimental user interface uses this command currently.

5.4 Creating and Modifying Parameters

01-999253-00 A0604 VnmrJ User Programming 281

To Display a Parameter

Use display(parameter|'*'|'**'<,tree>)to display one or more parameters
and their attributes from a parameter tree. The first argument can be one of the following
three options: a parameter name (to display the attributes of that parameter, '*' (to display
the name and value of all parameters in a tree), or '**' (to display the attributes of all
parameters in a tree. The results are displayed in the process tab, test output.

To Move Parameters

Use groupcopy(from_tree,to_tree,group) to copy a set of parameters of a
group from one parameter tree to another (it cannot be the same tree). group is the same
keywords as used with setgroup.

The fread(file<,tree<,'reset'|'value'>>) command reads in parameters
from a file and loads them into a tree. The keyword 'reset' causes the tree to be cleared
before the new file is read; 'value' causes only the values of the parameters in the file
to be loaded. The fsave(file<,tree>) command writes parameters from a
parameter tree to a file for which the user has write permission. It overwrites any file that
exists.

To Destroy a Parameter

The destroy(parameter<,tree>) command removes a parameter from a
parameter tree while the destroygroup(group<,tree>) command removes
parameters of a group from a parameter tree. The group argument uses the same keywords
as used with the setgroup command. If the destroyed parameter was an array, the array
parameter is automatically updated.

To remove leftover parameters from previous experimental setups, use prune instead. The
prune(file) command destroys parameters in the current parameter tree that are not
also defined in the parameter file specified.

Format of a Stored Parameter

To use the create command to create a new parameter, or to use the paramvi and
paramedit commands to edit a parameter and its attributes, requires knowledge of the
format of a stored parameter. If an error in the format is made, the parameter may not load.
This section describes the format in detail.

The stored format of a parameter is made up of three or more lines:

• Line 1 contains the attributes of the parameter and has the following fields (given in
same order as they appear in the file):

name is the parameter name, which can be any valid string.

subtype is an integer value for the parameter type: 0 (undefined), 1 (real), 2 (string),
3 (delay), 4 (flag), 5 (frequency), 6 (pulse), 7 (integer).

basictype is an integer value: 0 (undefined), 1 (real), 2 (string).

maxvalue is a real number for the maximum value that the parameter can contain, or
an index to a maximum value in the parameter parmax (found in
/vnmr/conpar). Applies to both string and real types of parameters.

minvalue is a real number for the minimum value that the parameter can contain or
an index to a minimum value in the parameter parmin (found in
/vnmr/conpar). Applies to real types of parameters only.

Chapter 5. Parameters and Data

282 VnmrJ User Programming 01-999253-00 A0604

stepsize is a real number for the step size in which parameters can be entered or
index to a step size in the parameter parstep (found in /vnmr/conpar). If
stepsize is 0, it is ignored. Applies to real types only.

Ggroup is an integer value: 0 (ALL), 1 (SAMPLE), 2 (ACQUISITION),
3 (PROCESSING), 4 (DISPLAY), 5 (SPIN).

Dgroup is an integer value. The specific application determines the usage of this
integer.

protection is a 32-bit word made up of the following bit masks, which are summed
to form the full mask:

active is an integer value: 0 (not active), 1 (active).

intptr is not used (generally set to 64).

• Line 2, or the group of lines starting with line 2, list the values of the parameter. The
first field on line 2 is the number of values the parameter is set to. The format of the
rest of the fields on line 2 and subsequent lines, if any, depends on the value of
basictype set on line 1 and the value entered in the first field on line 2:

If basictype is 1 (real) and first value on line 2 is any number, all parameter values
are listed on line 2, starting in the second field. Each value is separated by a space.

If basictype is 2 (string) and first value on line 2 is 1, the single string value of the
parameter is listed in the second field of line 2, inside double quotes.

If basictype is 2 (string) and first value on line 2 is greater than 1, the first array
element is listed in the second field on line 2 and each additional element is listed on
subsequent lines, one value per line. Strings are surrounded by double quotes.

• Last line of a parameter file lists the enumerable values of a string or flag parameter.
This specifies the possible values the string parameter can be set to. The first field is
the number of enumerable values. If this number is greater than 1, all of the values are
listed on this line, starting in the second field.

For example, here is how a typical real parameter file, named a, is interpreted (the numbers
in parentheses are not part of the file but are line references in the interpretation):
(1) a 31 1e+30 -1e+30 0 0 1 0 1 64

Bit Value Description

0 1 Cannot array the parameter

1 2 Cannot change active/not active status

2 4 Cannot change the parameter value

3 8 Causes _parameter macro to be executed (e.g., if parameter
is named sw, the macro _sw is executed when sw is changed)

4 16 Avoids automatic redisplay

5 32 Cannot delete parameter

6 64 System parameter for spectrometer or data station

7 128 Cannot copy parameter from tree to tree

8 256 Cannot set array parameter

9 512 Cannot set parameter enumeral values

10 1024 Cannot change the parameter's group

11 2048 Cannot change protection bits

12 4096 Cannot change the display group

13 8192 Take max, min, step from /vnmr/conpar parameters
parmax, parmin, parstep.

5.4 Creating and Modifying Parameters

01-999253-00 A0604 VnmrJ User Programming 283

(2) 24.126400

(3) 0

This file is made up of the following lines:

1. The parameter has the name a, subtype is 3 (delay), basictype is 1 (real), maximum
size is 1e+30, minimum size is –1e+30, stepsize is 0, Ggroup is 0 (ALL), Dgroup is
1 (ACQUISITION), protection is 0 (cannot array the parameter), active is 1 (ON),
and intptr is 64 (not used).

2. Parameter a has 1 value, the real number 24.126400.

3. Parameter a has 0 enumerable values.

As another example, here are the values in a file for the parameter tof:
(1) tof 5 1 7 7 7 2 1 8202 1 64

(2) 1 1160

(3) 0

The tof file is made up of the following lines:

1. The parameter has the name tof, subtype is 5 (frequency), and basictype is 1 (real).
To read the next 3 values, we must jump to the protection field. Because the
protection word value is 8202, which is 8192 + 8 + 2, then bit 13 (8192), bit 3 (8),
and bit 1 (2) bitmasks are set. Because bit 13 is set, the maximum size, minimum
size, and stepsize values (each is 7) are indices into the 7th array value in the
parameters parmax, parmin, and parstep, respectively, in the file conpar.
Because bit 3 is set, this causes a macro to be executed. The bit 1 bitmask (2) is also
set, which means the active/not active status of the parameter cannot be changed. For
the remaining fields, Ggroup is 2 (ACQUISITION), Dgroup is 1 (ACQUISITION),
active is 1 (ON), and intptr is 64 (not used).

2. Parameter tof has 1 value, the real number 1160.

3. Parameter tof has 0 enumerable values.

The following file is an example of a multielement array character parameter, beatles:
(1) beatles 2 2 8 0 0 2 1 0 1 64

(2) 4 john

(3) paul

george

ringo

(4) 0

The beatles file is made up of the following lines:

1. The parameter has the name of beatles, subtype is 2 (string), basictype is 2
(string), 8 0 0 is max min step (not really used for strings), Ggroup is 2 (acquisition),
Dgroup is 1 (ALL), protection is 0, active is 1 (ON), 64 is a terminating number.

2. There are four elements to this variable; therefore, it is arrayed. john is the first
element in the array.

3. paul, george, and ringo are the other three elements in the array.

4. 0 (zero) is the terminating line.

Chapter 5. Parameters and Data

284 VnmrJ User Programming 01-999253-00 A0604

5.5 Modifying Parameter Displays in VNMR
The VNMR plotting commands and macros— ap,pap—are controlled by template
parameters specifying the content and form of the information plotted. The template
parameters have the same name as the respective command or macro; for example, the plot
created by the ap command is controlled by the parameter ap in the experiment’s current
parameter set.

To modify an existing template parameter, such as ap, enter paramvi('ap') to use the
vi text editor, or enter paramedit('ap') to use the text editor set by the UNIX
environmental variable vnmreditor.

Display Template

A plot template can have a single string or multiple strings. The first number on the second
line of a stored parameter indicates the number of string templates. If the number is 1, the
display template is a single string; otherwise, a value greater than 1 indicates the template
is multiple strings. Figure 5 shows an example of a single-string display template (actually
the parameter ap) and the resulting plot.

In a single-string template, the string always starts with a double quote and then repeats the
following information for each column in the plot:

• Column number (e.g., 2)

• Condition for plot of column (optional, e.g., “4(ni)”, see “Conditional and Arrayed
Plots” on page 285).

• Colon

• Column title (e.g., 2D ACQUISITION)

• Colon

• Parameters to appear in column, separated by commas (for notation, see “Conditional
and Arrayed Plots” on page 285)

• Semicolon

At the end of the string is another double quote. Spaces cannot appear anywhere in the
string template except as part of a column title.

Column titles are often in upper case, but need not be, and are limited to 19 characters.
More than one title can appear in the same column (such as shown above, SAMPLE and
DECOUPLING are both in column 2).

Figure 5. Single-String Display Template with Output

ap 2 2 1023 0 0 4 1 6 1 64

1
“1:SAMPLE:date,solvent,file;1:ACQUISITION:sw:1,at:3,np:0,fb:0,bs(bs):0,ss(ss):0,
d1:3,d2(d2):6,nt:0,ct:0;1:TRANSMITTER:tn,sfrq:3,tof:1,tpwr:0,pw:3,p1(p1):3;1:DE
COUPLER:dn,dof:1,dm,dmm,dpwr:0,dmf:0;2:SPECIAL:temp:1,gain:0,spin:0,hst:3,p
w90:3,alfa:3;2:FLAGS:il,in,dp,hs;2:PROCESSING:lb(lb):2,sb(sb):3,sbs(sb):3,gf(gf):
3,gfs(gf):3,awc(awc):3,lsfid(lsfid):0,lsfrq(lsfrq):1,phfid(phfid):1,fn:0;2:DISPLAY:sp:
1,wp:1,rfl:1,rfp:1,rp:1,lp:1;2:PLOT:wc:0,sc:0,vs:0,th:0,aig*,dcg*,dmg*;”

0

5.5 Modifying Parameter Displays in VNMR

01-999253-00 A0604 VnmrJ User Programming 285

Parameters listed in “plain” form (e.g., tn,date,math) are printed either as strings or in
a form in which the number of decimal places plotted varies depending on the value of the
parameter.

To plot a specific number of digits past the decimal place, the desired number is placed
following a colon (e.g., sfrq:3,at:3,sw:0). Extra commas can be inserted to skip
rows within a column (e.g., math,,werr,wexp,).

The maximum number of columns is 4; each column can have 17 lines of output. Since this
includes the title(s), fewer than 17 parameters can be displayed in any one column. The
entire template is limited to 1024 characters or less.

As an alternative to a single-string template, which tends to be difficult to read, a template
can written as multiple strings, each enclosed in double quotes. The first number indicates
the number of strings that follow. Each string must start with a column number. Figure 6
contains the plot template for the parameter dg2, which is a typical example of a multiple-
string template

The conditional statement in this example (e.g., “(numrfch >2)”) is covered in
“Conditional and Arrayed Plots” on page 285.

The title field can contain a string variable besides a literal. If the variable is a real variable,
or not present, or equal to the null string, the variable itself is used as the title (e.g.,
mystrvar[1]='Example Col 1' and mystrvar[2]='Example Col 2').

Conditional and Arrayed Plots

Use of parentheses allows the conditional plot of an entire column and/or individual
parameters. If the real parameter within parentheses is not present, or is equal to 0 or to
'n', then the associated parameter or section is not plotted. In the case of string
parameters, if the real number is not present, or is equal to the NULL string or the character
'n', then the associated parameter or section is not plotted. The following examples from
the dg template above demonstrate this format:

• p1(p1):1 means plot parameter p1 only when p1 is non-zero.

• sbs(sb):3 means plot sbs only when sb is active (not equal to ‘n’).

• 4(ni):2D PROCESSING: means plot entire “2D PROCESSING” section only
when parameter ni is active and non-zero.

Note that if a parameter is arrayed, the plot status is derived from the first value of the array.
Thus, if p1 is arrayed and the first value is 0, p1 will not appear; if the first value is non-
zero, p1 will appear, with “arrayed” as its parameter value.

Similarly, a multiple variable expression can also be placed within the parentheses for
conditional plot of parameters. Each expression must be a valid MAGICAL II expression
(see “Programming with MAGICAL” on page 21) and must be written so there is no space
between the last character of the expression and the closing parenthesis “)”.

Figure 6. Multiple-String Display Template

Chapter 5. Parameters and Data

286 VnmrJ User Programming 01-999253-00 A0604

In summary, if a single variable expression is placed in the parentheses, it is FALSE under
the following conditions:

• Variable does not exist.

• Variable is real and equals 0 or is marked inactive.

• Variable is a string variable equal to the NULL string or equal to the character 'n'.

Multiple variable expressions are evaluated the same as in MAGICAL II. If a variable does
not exist, it is considered an error.

Examples of multiple parameter expressions include the following:

• 2(numrfch>2):2nd DECOUPLING: means plot entire “2nd DECOUPLING”
section only when numrfch (number of rf channels) is greater than 2.

• 3((myflag <> 'n') or ((myni > ni) and (mysw < sw))):My
Section: means plot entire “My Section” section only when myflag is not equal
to 'n' or when myni is greater than ni and mysw is less than sw.

The asterisk (...*) is a “special parameter” designator that allows the value of a series of
string parameters to be plotted in a single row without names. This is more commonly used
with the parameters aig, dcg, and dmg, for example:
aig*,dcg*,dmg*

For tabular output of arrayed parameters, square brackets ([...]) are used. For example:
1:Sample Table Output:[pw,p1,d1,d2];

Notice that all parameters in the column must be in the brackets; thus, the following is
illegal:
1:Sample Table Output:[pw,p1,d1],d2;

Since arrayed variables are normally displayed with da, this format is rarely needed.

The field width and digit field options can be used to clean up the display. The first number
after the colon is the field width. The next colon is the digit field. For example:
1:Sample Table Output:[pw:6:2,p1:6:2,d1:10:6,d2:10:6];

Here, the parameters pw and p1 are plotted in 6 columns with 2 places after the decimal
point, while d1 and d2 are displayed in 10 columns with 6 places after the decimal point.

Output Format

For plot, each parameter and value occupies 20 characters of space:

• Characters 1 to 8 are the name of the parameter. Parameters with names longer than 8
characters are permitted within VnmrJ itself but cannot be printed with pap.

• Character 9 is always blank.

• Characters 10 to 18 are used for the parameter value. Any parameter value exceeding
9 characters (a file name is a common example) is continued on the next line; in this
case, character 19 is a tilde “~”, which is used to show continuation.

• Character 20 is always blank.

For printing with the pap command, which uses the ap parameter template, a “da” listing
is printed starting in column 3, so that the template will typically specify only two columns
of output. ap can specify more than two columns, but if any parameter is arrayed, the listing
of that parameter will overwrite the third column. For printing, the maximum number of
lines in each column is 64.

5.6 User-Written Weighting Functions

01-999253-00 A0604 VnmrJ User Programming 287

5.6 User-Written Weighting Functions
The parameter wtfile can be set to the name of the file containing a user-written
weighting function. If the parameter wtfile (or wtfile1 or wtfile2) does not exist,
it can be created with the commands
create('wtfile','flag')
setgroup('wtfile','processing')
setlimit('wtfile',15,0,0).

If wtfile exists but wtfile='' (two single quotes), VnmrJ does not look for the file:
wtfile is inactive. To enable user-written weighting functions, set
wtfile=filename, where filename is the name of the executable weighting
function (enclosed in single quotes) that was created by compiling the weighting function
source code with the UNIX shell script wtgen (a process described in the next section).

VnmrJ first checks if filename exists in wtlib subdirectory of the user’s private
directory. If the file exists there, VnmrJ then checks if the file filename.wtp, which
may contain the values for up to ten internal weighting parameters, exists in the current
experiment directory. If filename.wtp does not exist in the current experiment
directory, the ten internal weighting parameters are set to 1.

VnmrJ executes the filename program, using the optional file filename.wtp as the
source for parameter input. The output of the program is the binary file filename.wtf
in the current experiment directory. This binary file contains the weighting vector that will
be read in by VnmrJ. The total weighting vector used by VnmrJ is a vector-vector product
of this external, weighting vector and the internal VnmrJ weighting vector, the latter being
calculated from the parameters lb, gf, gfs, sb, sbs, and awc. The parameter awc still
provides an overall additive contribution to the total weighting vector. Although the
external weighting vector cannot be modified with wti, the total weighting vector can be
modified with wti by modifying the internal VnmrJ weighting vector. Note that only a
single weighting vector is provided for both halves of the complex data set—real and
imaginary data points of the complex pair are always weighted by the same factor.

If the filename program does not exist in a user's wtlib subdirectory, VnmrJ looks for
a text file in the current experiment directory with the name filename. This file contains
the values for the external weighting function in floating point format (for example, 0.025,
but not 2.5e–2) with one value per line. If the number of weighting function values in this
file is less than the number of complex FID data points (that is, np/2), the user-weighting
function is padded out to np/2 points using the last value in the filename text file.

Writing a Weighting Function

Weighting functions must follow this format, similar to pulse sequence programs:
#include "weight.h"

wtcalc(wtpntr, npoints, delta_t)

int npoints; /* number of complex data points */

float *wtpntr, /* pointer to weighting vector */

delta_t; /* dwell time */

{

... /* user-written part */

}

The variable wtpntr is a pointer and must be dealt with differently than an ordinary
variable such as delta_t. wtpntr contains the address in memory of the first element
of the user-calculated weighting vector; *wtpntr is the value of that first element. The

Chapter 5. Parameters and Data

288 VnmrJ User Programming 01-999253-00 A0604

statement *wtpntr++=x implies that *wtpntr is set equal to x and the pointer wtpntr
is subsequently incremented to the address of the next element in the weighting vector.

The following examples show using the filename program set by wtfile=filename

• Source file filename.c in a user’s vnmrsys/wtlib directory:
#include "weight.h"

wtcalc(wtpntr, npoints, delta_t)

int npoints; /* number of complex data points */

float *wtpntr, /* pointer to weighting vector */

delta_t; /* dwell time */

{

int i;

for (i = 0; i < npoints; i++)

*wtpntr++ = (float) (exp(–(delta_t*i*wtconst[0])));

/* wtconst[0] to wtconst[9] are 10 internal weighting */

/* parameters with default values of 1 and type float. */

}

• Optional parameter file filename.wtp in the current experiment directory:
0.35 /* value placed in wtconst[0] */

–2.4 /* value placed in wtconst[1] */

... /* etc. */

• Text file filename in the current experiment directory:
0.9879 /* value of first weighting vector element */

0.8876 /* value of second weighting vector element */

–0.2109 /* value of third weighting vector element */

0.4567 /* value of fourth weighting vector element */

... /* etc. */

0.1234 /* value of last weighting vector element */

Compiling the Weighting Function

The macro/shellscript wtgen is used to compile filename as set by parameter wtfile
into an executable program. The source file is filename.c stored in a user’s vnmrsys/
wtlib directory. The executable file is in the same directory and has the same name as the
source file but with no file extension. The syntax is for wtgen is wtgen(file<.c>)
from VnmrJ or wtgen file<.c> from UNIX.

The wtgen macro allows the compilation of a user-written weighting function that
subsequently can be executed from within VnmrJ. The shellscript wtgen can be run from
within UNIX by typing the name of the shellscript file name, where the .c file extension
is optional. wtgen can also be run from within VnmrJ by executing the macro wtgen with
the file name in single quotes.

The following functions are performed by wtgen:

1. Checks for the existence of the bin subdirectory in the VnmrJ system directory and
aborts if the directory is not found.

2. Checks for files usrwt.o and weight.h in the bin subdirectory and aborts if
either of these two files cannot be found there.

3. Checks for the existence of the user's directory and creates this directory if it does
not already exist.

5.7 User-Written FID Files

01-999253-00 A0604 VnmrJ User Programming 289

4. Establishes in the wtlib directory soft links to usrwt.o and weight.h in the
directory /vnmr/bin.

5. Compiles the user-written weighting function, which is stored in the wtlib
directory, link loads it with usrwt.o, and places the executable program in the
same directory. Any compilation and/or link loading errors are placed in the file
errmsg in wtlib.

6. Removes the soft links to usrwt.o and weight.h in the bin subdirectory of
the VnmrJ system directory.

The name of the executable program is the same as that for the source file without a file
extension. For example, testwt.c is the source file for the executable file testwt.

5.7 User-Written FID Files
You can introduce computed data into your experiment by using the command
makefid(input_file <,element_number,format>). The input_file
argument, which is required, is the name of a file containing numeric values, two per line.
The first value is assigned to the X (or real) channel; the second value on the line is assigned
to the Y (or imaginary) channel. Arguments specifying the element number and the format
are optional and may be entered in either order.

The argument element_number is any integer larger than 0. If this element already
exists in your FID file, the program will overwrite the old data. If not entered, the default
is the first element or FID. format is a character string with the precision of the resulting
FID file and can be specified by one of the following:

If an FID file already exists, format is the precision of data in that file. Otherwise, the
default for format is 32 bits.

The number of points comes from the number of numeric values read from the file.
Remember it reads only two values per line.

If the current experiment already contains a FID, you will not be able to change either the
format or the number of points from that present in the FID file. Use the command
rm(curexp+'/acqfil/fid') to remove the FID.

The makefid command does not look at parameter values when establishing the format
of the data or the number of points in an element. Thus, if the FID file is not present, it is
possible for makefid to write a FID file with a header that does not match the value of dp
or np. Since the active value is in the processed tree, you will need to use the setvalue
command if any changes are needed.

Be aware that makefid can modify data returned to an experiment by the rt command.
To avoid this, enter the following sequence of VnmrJ commands on the saved data before
running makefid:
cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

'dp=n' single precision (16-bit) data

'dp=y' double precision (32-bit) data

'16-bit' single precision (16-bit) data

'32-bit' double precision (32-bit) data

Chapter 5. Parameters and Data

290 VnmrJ User Programming 01-999253-00 A0604

The command writefid(textfile<,element_number>) writes a text file using
data from the selected FID element The default element number is 1. The program writes
two values per line—the first is the value from the X (or real) channel, and the second is
the value from the Y (or imaginary) channel.

01-999253-00 A0604 VnmrJ User Programming 291

Appendix A. Status Codes

These codes apply to all systems, except codes marked with an asterisk (*) are not used on
MERCURYplus/-Vx systems. Codes marked with a double asterisk (**) apply only to
UNITYINOVA Whole Body Imaging systems.

Table 39. Acquisition Status Codes

Done
codes:

11. FID complete

12. Block size complete (error code indicates bs number completed)

13. Soft error

14. Warning

15. Hard error

16. Experiment aborted

17. Setup completed (error code indicates type of setup completed)

101. Experiment complete

102. Experiment started

Error
codes:

Warnings

101. Low-noise signal

102. High-noise signal

103. ADC overflow occurred

104. Receiver overflow occurred*

Soft errors

200. Maximum transient completed for single precision data

201. Lost lock during experiment (LOCKLOST)

300. Spinner errors:

301. Sample fails to spin after 3 attempts to reposition (BUMPFAIL)

302. Spinner did not regulate in the allowed time period (RSPINFAIL)*

303. Spinner went out of regulation during experiment (SPINOUT)*

395. Unknown spinner device specified (SPINUNKNOWN)*

396. Spinner device is not powered up (SPINNOPOWER)*

397. RS-232 cable not connected from console to spinner (SPINRS232)*

398. Spinner does not acknowledge commands (SPINTIMEOUT)*

400. VT (variable temperature) errors:

400. VT did not regulate in the given time vttime after being set

401. VT went out of regulation during the experiment (VTOUT)

402. VT in manual mode after auto command (see Oxford manual)*

403. VT safety sensor has reached limit (see Oxford manual)*

404. VT cannot turn on cooling gas (see Oxford manual)*

292 VnmrJ User Programming 01-999253-00 A0604

405. VT main sensor on bottom limit (see Oxford manual)*

406. VT main sensor on top limit (see Oxford manual)*

407. VT sc/ss error (see Oxford manual)*

408. VT oc/ss error (see Oxford manual)*

495. Unknown VT device specified (VTUNKNOWN)*

496. VT device not powered up (VTNOPOWER)*

497. RS-232 cable not connected between console and VT (VTRS232)*

498. VT does not acknowledge commands (VTTIMEOUT)

500. Sample changer errors:

501. Sample changer has no sample to retrieve

502. Sample changer arm unable to move up during retrieve

503. Sample changer arm unable to move down during retrieve

504. Sample changer arm unable to move sideways during retrieve

505. Invalid sample number during retrieve

506. Invalid temperature during retrieve

507. Gripper abort during retrieve

508. Sample out of range during automatic retrieve

509. Illegal command character during retrieve*

510. Robot arm failed to find home position during retrieve*

511. Sample tray size is not consistent*

512. Sample changer power failure during retrieve*

513. Illegal sample changer command during retrieve*

514. Gripper failed to open during retrieve*

515. Air supply to sample changer failed during retrieve*

525. Tried to insert invalid sample number*

526. Invalid temperature during sample changer insert*

527. Gripper abort during insert*

528. Sample out of range during automatic insert

529. Illegal command character during insert*

530. Robot arm failed to find home position during insert*

531. Sample tray size is not consistent*

532. Sample changer power failure during insert*

533. Illegal sample changer command during insert*

534. Gripper failed to open during insert*

535. Air supply to sample changer failed during insert*

593. Failed to remove sample from magnet*

594. Sample failed to spin after automatic insert

595. Sample failed to insert properly

596. Sample changer not turned on

597. Sample changer not connected to RS-232 interface

598. Sample changer not responding*

600. Shimming errors:

601. Shimming user aborted*

602. Lost lock while shimming*

Table 39. Acquisition Status Codes (continued)

01-999253-00 A0604 VnmrJ User Programming 293

604. Lock saturation while shimming*

608. A shim coil DAC limit hit while shimming*

700. Autolock errors:

701. User aborted (ALKABORT)*

702. Autolock failure in finding resonance of sample (ALKRESFAIL)

703. Autolock failure in lock power adjustment (ALKPOWERFAIL)*

704. Autolock failure in lock phase adjustment (ALKPHASFAIL)*

705. Autolock failure, lost in final gain adjustment (ALKGAINFAIL)*

800. Autogain errors.

801. Autogain failure, gain driven to 0, reduce pw (AGAINFAIL)

Hard errors
901. Incorrect PSG version for acquisition

902. Sum-to-memory error, number of points acquired not equal to np

903. FIFO underflow error (a delay too small?)*

904. Requested number of data points (np) too large for acquisition*

905. Acquisition bus trap (experiment may be lost)*

1000. SCSI errors:

1001. Recoverable SCSI read transfer from console*

1002. Recoverable SCSI write transfer from console**

1003. Unrecoverable SCSI read transfer error*

1004. Unrecoverable SCSI write transfer error*

1100. Host disk errors:

1101. Error opening disk file (probably a UNIX permission problem)*

1102. Error on closing disk file*

1103. Error on reading from disk file*

1104. Error on writing to disk file*

1400–1500. RF Monitor errors:

1400. An RF monitor trip occurred but the error status is OK **

1401. Reserved RF monitor trip A occurred **

1402. Reserved RF monitor trip B occurred **

1404. Excessive reflected power at quad hybrid **

1405. STOP button pressed at operator station **

1406. Power for RF Monitor board (RFM) failed **

1407. Attenuator control or read back failed **

1408. Quad reflected power monitor bypassed **

1409. Power supply monitor for RF Monitor board (RFM) bypassed **

1410. Ran out of memory to report RF monitor errors **

1411. No communication with RF monitor system **

1431. Reserved RF monitor trip A1 occurred on observe channel **

1432. Reserved RF monitor trip B1 occurred on observe channel **

1433. Reserved RF monitor trip C1 occurred on observe channel **

1434. RF Monitor board (PALI/TUSUPI) missing on observe channel **

1435. Excessive reflected power on observe channel **

1436. RF amplifier gating disconnected on observe channel **

Table 39. Acquisition Status Codes (continued)

294 VnmrJ User Programming 01-999253-00 A0604

1437. Excessive power detected by PALI on observe channel **

1438. RF Monitor system (TUSUPI) heartbeat stopped on observe channel **

1439. Power supply for PALI/TUSUPI failed on observe channel **

1440. PALI asserted REQ_ERROR on observe channel (should never occur) **

1441. Excessive power detected by TUSUPI on observe channel **

1442. RF power amp: overdrive on observe channel **

1443. RF power amp: excessive pulse width on observe channel **

1444. RF power amp: maximum duty cycle exceeded on observe channel **

1445. RF power amp: overheated on observe channel **

1446. RF power amp: power supply failed on observe channel **

1447. RF power monitoring disabled on observe channel **

1448. Reflected power monitoring disabled on observe channel **

1449. RF power amp monitoring disabled on observe channel **

1451. Reserved RF monitor trip A2 occurred on decouple channel **

1452. Reserved RF monitor trip B2 occurred on decouple channel **

1453. Reserved RF monitor trip C2 occurred on decouple channel **

1454. RF Monitor board (PALI/TUSUPI) missing on decouple channel **

1455. Excessive reflected power on decouple channel **

1456. RF amplifier gating disconnected on decouple channel **

1457. Excessive power detected by PALI on decouple channel **

1458. RF Monitor system (TUSUPI) heartbeat stopped on decouple channel **

1459. Power supply for PALI/TUSUPI failed on decouple channel **

1460. PALI asserted REQ_ERROR on decouple channel (should never occur) **

1461. Excessive power detected by TUSUPI on decouple channel **

1462. RF power amp: overdrive on decouple channel **

1463. RF power amp: excessive pulse width on decouple channel **

1464. RF power amp: maximum duty cycle exceeded on decouple channel **

1465. RF power amp: overheated on decouple channel **

1466. RF power amp: power supply failed on decouple channel **

1467. RF power monitoring disabled on decouple channel **

1468. Reflected power monitoring disabled on decouple channel **

1469. RF power amp monitoring disabled on decouple channel **

1501. Quad reflected power too high **

1502. RF Power Monitor board not responding **

1503. STOP button pressed on operator’s station **

1504. Cable to Operator’s Station disconnected **

1505. Main gradient coil over temperature limit **

1506. Main gradient coil water is off **

1507. Head gradient coil over temperature limit **

1508. RF limit read back error **

1509. RF Power Monitor Board watchdog error **

1510. RF Power Monitor Board self test failed **

1511. RF Power Monitor Board power supply failed **

1512. RF Power Monitor Board CPU failed **

Table 39. Acquisition Status Codes (continued)

01-999253-00 A0604 VnmrJ User Programming 295

1513. ILI Board power failed **

1514. SDAC duty cycle too high **

1515. ILI Spare #1 trip **

1516. ILI Spare #2 trip **

1517. Quad hybrid reflected power monitor BYPASSED **

1518. SDAC duty cycle limit BYPASSED **

1519. Head Gradient Coil errors BYPASSED **

1520. Main Gradient Coil errors BYPASSED **

1531. Channel 1 RF power exceeds 10s SAR limit **

1532. Channel 1 RF power exceeds 5min SAR limit **

1533. Channel 1 peak RF power exceeds limit **

1534. Channel 1 RF Amp control cable error **

1535. Channel 1 RF Amp reflected power too high **

1536. Channel 1 RF Amp duty cycle limit exceeded **

1537. Channel 1 RF Amp temperature limit exceeded **

1538. Channel 1 RF Amp pulse width limit exceeded **

1539. Channel 1 RF Power Monitoring BYPASSED **

1540. Channel 1 RF Amp errors BYPASSED **

1551. Channel 2 RF power exceeds 10s SAR limit **

1552. Channel 2 RF power exceeds 5 min SAR limit **

1553. Channel 2 peak RF power exceeds limit **

1554. Channel 2 RF Amp control cable error **

1555. Channel 2 RF Amp reflected power too high **

1556. Channel 2 RF Amp duty cycle limit exceeded **

1557. Channel 2 RF Amp temperature limit exceeded **

1558. Channel 2 RF Amp pulse width limit exceeded **

1559. Channel 2 RF Power Monitoring BYPASSED **

1560. Channel 2 RF Amp errors BYPASSED **

Table 39. Acquisition Status Codes (continued)

296 VnmrJ User Programming 01-999253-00 A0604

01-999253-00 A0604 VnmrJ User Programming 297

IndexIndex

Symbols
"..." (double quotes) notation, 18, 23
notation (pulse shaping file), 102
$ (dollar sign) notation, 21, 25
$# special input argument, 29
$0 special input argument, 29
$1, $2,... input arguments, 29
& (ampersand) notation (UNIX), 260
'...' (single quotes) notation, 19, 22
(...) (parentheses) notation, 28
(...)# notation (AP table file), 77
* (asterisk) notation (display template), 286
+ (addition) operator, 23
+= notation (AP table file), 78
. (single period) notation (UNIX), 258
.. (double period) notation (UNIX), 258
.c file extension, 49
.fdf file extension, 270
.fid file extension, 263
/ notation (UNIX), 258
: (colon) notation, 20
; (semicolon) notation, 52
; (semicolon) notation (UNIX), 258
< notation (UNIX), 259
<...> (angled brackets) notation, 19
> notation (UNIX), 259
>> notation (UNIX), 259
? (question mark) notation (UNIX), 259
[...] notation (display template file), 286
[...] notation (square brackets), 26
[...]# notation (AP table file), 77
\ (backslash) notation, 22
_ x macro name, 19
{...} (curly braces) notation, 29, 52
{...}# notation (AP table file), 78
| (vertical bar) notation (UNIX), 259
~ (tilde) notation (UNIX), 258

Numerics
1D data file, 264
1D display, 268
1D Fourier transform, 268
2D data file, 269
2D FID display, 268
2D FID storage, 269
2D hypercomplex data, 265
2D phased data storage, 269
2D plane of a 3D data set, 34
2D plane selection without display, 34
2D pulse sequence in standard form, creating, 115
2D, 3D, and 4D data sets, 115
3D coefficient text file, 264
3D parameter set, 264
3D pulse sequence in standard form, creating, 115
3D spectral data default directory, 264
4D pulse sequence in standard form, creating, 115
63-dB attenuator, 64, 108
79-dB attenuator, 64, 109

A
abort command, 32
abort current process (UNIX), 260
abortoff command, 32
aborton command, 32
abs command, 37
abs macro, 31
A-codes, 73
acos command, 37
acq_errors file, 54
acqi command, 40, 91, 95
Acqstat command, 40
acqstatus parameter, 54
acquire data explicitly, 127
acquire data points, 99
acquire statement, 98, 99, 113, 127
acquisition bus trap, 293
Acquisition codes, 73
Acquisition Controller boards, 128
acquisition CPU, 114
acquisition phase (AP) tables. See AP table
acquisition processor memory, 133
acquisition statements, 54
acquisition status codes, 54
acquisition time, 88
Acquisition window, 91, 95
active parameter test, 42
ADC overflow warning, 291
add AP table to second AP table, 235
add integer to AP table, 234
add integer values, 128
add statement, 71, 128
alfa parameter, 54
alias (UNIX), 258
ampersand (&) character, 260
amplifier blanking gate, 208
amplifier modes, 57
amplifiers

blanking channels, 133
duty cycle, 56
gating, 56
turn off, 133
turn on, 133

ampmode parameter, 57
analyze command, 36
analyze.inp file, 36
and operator, 23
angled brackets (< or >) notation, 19
AP bus commands, 66
AP bus delay, 64, 114, 129
AP bus delay constants, 109
AP bus instruction, 111
AP bus pulse shaping, 129, 130, 131
AP bus registers, 69, 209, 216, 246
ap command, 284
ap parameter, 284, 286
AP table, 76

add integer to elements, 234
add to another table, 235
autoincrement attribute, 79, 214
divide by second AP table, 236
divide integer into elements, 234
divn-factor, 79
file location, 77

Index

298 VnmrJ User Programming 01-999253-00 A0604

load from file, 78, 182
loading statements, 76
multiply by a second AP table, 236
multiply integer with elements, 235
receiver phase cycle, 215
receiver variable, 79
retrieve element, 79, 166
scalar operations, 79
set divn-return and divn-factor, 214
statement format, 77
store integer array, 78, 216
subtract from second AP table, 237
subtract integer from elements, 235
table handling statements, 78
vector operations, 80

apa command, 34
apdelay.h file, 112, 114
apovrride statement, 66, 112, 129
applicability of statements, 49
apshaped_dec2pulse statement, 130
apshaped_decpulse statement, 129
apshaped_pulse statement, 131
arc cosine of a number, 37
arc sine of a number, 37
arc tangent of a number, 37
arc tangent of two numbers, 37
argument number, 29
arguments passed to commands and macros, 19
array defined, 25
arraydim parameter, 116, 269
arrayed experiment, 269
arrayed parameter values, 166
arrayed shaped gradient generation, 219
arrayed string variables, 26
arrayed variables, 23, 26
arraying acquisition parameters, 115
ASCII format, 263
asin command, 37
assign integer values, 132
assign statement, 71, 132
asterisk (*) character, 259, 286
asynchronous decoupling, 216
at parameter, 88
atan command, 37
atan2 command, 37
attenuators-based shaped pulses, 108
attributes of parameter, 281
attributes of variables, 25
auto file, 264
Autogain, see automatic gain
autoincrement attribute, 77, 78, 79, 214
Autolock, see automatic lock
automatic execution of macros, 282
automatic gain

errors, 293
automatic lock

errors, 293
automatic macro execution, 20
automatic variables, 24
automation file, 264
autoscale command, 36
autoscaling, 36
average command, 37
average value of input, 37

awc parameter, 287
awk command (UNIX), 259
axis command, 40
axis labels, 40
axis parameter, 40

B
background process (UNIX), 259
background processing, 261
backslash (\) notation, 22
backward single-quote (`...`), 22
bandinfo macro, 108
banner command, 34
beeper sound, 40
beepoff command, 40
beepon command, 40
binary files, 263
binary information file, 264
blanking amplifiers, 68, 133, 140, 191
blankingoff statement, 133
blankingon statement, 133
blankoff statement, 68, 133
blankon statement, 68, 133
block size complete, 291
block size counter, 70
block size variable, 74
Boolean expressions, 29
Boolean operations, 23
bootup macro, 19, 40, 42
box mode, 33
Breakout panel, 69, 209
bs parameter, 70, 74, 291
bsctr real-time variable, 70, 74
bsval real-time variable, 71, 74
buffering in memory, 264

C
C loop, 109
C programming language, 49
C programming language framework, 52
cat command (UNIX), 259
cd command (UNIX), 259
cf parameter, 100
change current directory, 259
channel control, 115
channel identifiers, 115
channel selection, 57
char-type variables, 53
checkpw macro, 30
checksum of FDF file data, 274
chemical shift, 43
chmod command (UNIX), 259
clear command, 34
clearapdatatable statement, 99, 133
clearing a window, 34
cmp command (UNIX), 259
coarse attenuators, 64
code table, 73
codeint-type variables, 53
coef file, 264

01-999253-00 A0604 VnmrJ User Programming 299

Index

coherence transfer selective phase cycling, 63
colon (:) notation, 20
command entry, 258
command interpreter, 18
command output to variables, 20
command tracing, 32
comments, 23

in macros, 18
comparing two files (UNIX), 259
compilation error messages, 51
compiling source code, 50
completed transient counter, 70
complex pair of FID data, 267
compressed acquisitions, 122
compressed data format, 275
compressed files, 270
compressed loop, 187, 198
Compressed-compressed data format, 275
compressed-compressed image sequences, 245
concatenate and display files (UNIX), 259
concatenate strings, 23
conditional execution, 164, 173
conditional statements, 18, 30
config command, 279
confirm command, 34
confirm message with mouse, 34
confirmer window, 35
conpar file, 279, 281
constant delay time for changing the status, 75
constant phases, 71
constant strings, 19
constants, 22
continuous decoupling caution, 65
continuous wave (CW) modulation, 58, 215
conversion units, 43
copying files (UNIX), 258, 259
copying macros, 39
cos command, 37
cosine value of an angle, 37
COSY-NOESY sequence, 100
cp command (UNIX), 258, 259
cp parameter, 70
cr parameter, 32
crcom command, 38
create command, 279, 281
create_delay_list statement, 124, 134
create_freq_list statement, 124, 135
create_offset_list statement, 124, 136
creategtable macro, 120
creating

directories (UNIX), 259
FDF files, 274
new parameter, 279
slider in Acquisition window, 95
user macros, 38
variable without value, 24

ct variable, 70, 77
curly braces ({...}) notation, 29, 52
curpar file, 264, 267, 279
current experiment files, 264
current parameter tree, 279
current parameters text file, 264
current-type parameter tree, 279
cursor mode, 33

cursor position, 32
curve fitting, 36

D
d0 parameter, 75
d2 parameter, 71, 115
d3 parameter, 71, 115
d4 parameter, 71, 115
DANTE sequence, 109, 111
Data Acquisition Controller boards, 53, 128
data acquisition statements, 54
data block, 264
data block header, 264
data buffers, 264
data directory, 264
data file, 264, 268, 269
data file header, 264
data file in current experiment, 269
data point acquisition, 99
data portion of FDF file, 271
data transposition, 269
data.h file, 265
datablockhead structure, 266
datadir3d directory, 264
datafilehead structure, 265
date command (UNIX), 259
dbl statement, 71, 138
dc drift correction, 268
dcphase statement, 113, 139
dcplr2phase statement, 62, 98, 113, 139
dcplr3phase statement, 62, 98, 113, 140
dcplrphase statement, 62, 98, 113, 139
ddf command, 269
ddff command, 269
ddfp command, 269
debug command, 32
DEC file suffix, 102
dec2blank statement, 68, 141
dec2off statement, 68, 142
dec2offset statement, 64, 142
dec2on statement, 68, 143
dec2phase statement, 98, 144
dec2power statement, 65, 98, 113, 145
dec2prgoff statement, 107, 113, 146
dec2prgon statement, 68, 107, 113, 147
dec2pwrf statement, 65, 98, 113, 149
dec2rgpulse statement, 58, 98, 151
dec2shaped_pulse statement, 105, 110, 113, 154
dec2spinlock statement, 108, 113, 156
dec2stepsize statement, 62, 158
dec2unblank statement, 68, 159
dec3blank statement, 68, 141
dec3off statement, 68, 142
dec3offset statement, 64, 142
dec3on statement, 68, 144
dec3phase statement, 60, 98, 144
dec3power power, 113
dec3power statement, 65, 98, 146
dec3prgoff statement, 107, 113, 147
dec3prgon program, 107
dec3prgon statement, 68, 113, 148
dec3pwrf statement, 98, 113, 150

Index

300 VnmrJ User Programming 01-999253-00 A0604

dec3rgpulse statement, 58, 98, 152
dec3shaped_pulse statement, 105, 113, 155
dec3spinlock statement, 108, 113, 157
dec3stepsize statement, 62, 158
dec3unblank statement, 68, 159
dec4offset statement, 143
dec4phase statement, 145
dec4power statement, 146
dec4rgpulse statement, 153
decblank statement, 68, 140
DECch, DEC2ch, DEC3ch devices, 135, 136
declaring variables, 25, 53
declvloff statement, 66, 98, 141
declvlon statement, 66, 98, 141
decoff statement, 68, 141
decoffset statement, 64, 142
decon statement, 68, 143
decoupler

blank associated amplifier, 68, 140
fine power, 149, 207, 212
fine power adjustment, 65
fine power with IPA, 180
full power, 141
gate channel, 223
gating, 66, 68, 231
high-power level, 149
linear modulator power, 207, 212
linear modulator power with IPA, 180
modes, 66
modulation mode, 66
normal power, 141
offset frequency, 63, 64, 142, 194
pattern type, 102
phase, 61, 139
phase control, 62
power adjustment, 64
power level, 66, 145, 205, 211
power level switching, 64
programmable decoupling, 146, 147
pulse shaping via AP bus, 129
pulse with IPA, 172
pulse with receiver gating, 148, 150
pulse-related statements, 57
quadrature phase, 144
set status, 215
shaped pulse, 153
simultaneous pulses, 59
small-angle phase, 139
small-angle phase step size, 232
spin lock waveform control, 156
status, 231
step size, 158
turn off, 141
turn on, 143
two-pulse shaped pulse, 105
unblank amplifier, 158
WALTZ decoupling, 61
waveforms, 103

decoupler mode, 215
decoupling, switching, 159
decphase statement, 60, 61, 98, 144
decpower statement, 65, 98, 113, 145
decprgoff statement, 104, 107, 113, 146
decprgon statement, 68, 104, 107, 113, 147

decpulse statement, 57, 98, 148
decpwr statement, 149
decpwrf statement, 65, 98, 113, 149
decr statement, 71, 150
decrement integer value, 150
decrgpulse statement, 58, 98, 150
decshaped_pulse statement, 105, 110, 113, 153
decspinlock statement, 108, 113, 156
decstepsize statement, 62, 158
decunblank statement, 68, 158
delay

create delays table, 134
for synchronizing sample rotor, 213
initialize, 177
interincrement, 75
intertransient, 75
parameter type, 278
real-time incremental, 173
routine, 169
specified time, 159
specified time with IPA, 172
timebase fixed and real-time count, 241
with possible homospoil pulse, 171

delay statement, 54, 95, 98, 159
delay-related statements, 54
delays

initializing next for hardware shimming, 170
delcom command, 38
deleting files (UNIX), 258
deleting user macros, 38
destroy command, 281
destroygroup command, 281
device gating, 166
dg2 parameter, 285
Dgroup field, 282
Dgroup of a parameter, 280
dhp parameter, 66, 141
diff command (UNIX), 259
differentially compare files (UNIX), 259
diffusion analysis, 36
digital resolution measurement, 32
dimensioning statement, 26
directory information, 41
disk blocks, 265
disk cache buffering, 264
disk file errors, 293
display command, 281
displaying

confirmer window, 35
controlling pulse sequence graphical display, 75
date and time (UNIX), 259
FID file, 269
file headers, 269
macros, 38
memory usage, 270
part of file (UNIX), 259
pulse sequences, 75

dividing an AP table into a second AP table, 236
dividing an integer into AP table elements, 234
dividing integer values, 160
divn factor, 78, 79, 214
divn statement, 160
divn-return attribute, 78, 79, 214
dll command, 20

01-999253-00 A0604 VnmrJ User Programming 301

Index

dm parameter, 66
dm2 parameter, 66
dm3 parameter, 66
dmm parameter, 58, 66, 112, 114, 215
dmm2 parameter, 66, 112
dmm3 parameter, 66, 112
DODEV, DO2DEV, DO3DEV constants, 57
dof parameter, 63
dof2 parameter, 63
dof3 parameter, 63
dollar-sign (?) notation, 21, 25
done codes, 54, 291
double integer value, 138
double quotation marks ("...") notation, 23
double-precision, 24
double-type variables, 53
dp parameter, 263
dps command, 50, 75, 160
dps_off statement, 75, 160
dps_on statement, 75, 160
dps_ps_gen command, 50
dps_show statement, 160
dps_skip statement, 163
dpwr parameter, 65, 66, 111, 141
dpwr2 parameter, 65
dpwr3 parameter, 65
draw pulses for graphical display, 160
dres command, 32
ds command, 268
dsn command, 32
dsnmax command, 33
du command (UNIX), 259
duty cycle, 56
dynamic range of shaped pulse, 109
dynamic variable gradient pulse generation, 174, 220
dynamic variable scan, 245
dynamic variable shaped gradient pulse generation,

222

E
echo command, 34
echo command (UNIX), 34
ed command (UNIX), 259, 260
edit command, 260
editing

macros, 20, 39
parameter attributes, 280
text files, 259

effective transient counter, 117
elsenz statement, 73, 163
Emacs editor, 20
end hardware loop, 164
end ifzero statement, 164
end loop started by loop, 164
end of file (UNIX), 260
endhardloop statement, 97, 164
endif statement, 73, 76, 164
endloop statement, 72, 96, 164, 165
endmsloop statement, 164
endpeloop statement, 165
enumeral values of a parameter, 282
env command (UNIX), 20

errmsg text file, 51
error codes, 54, 291
error during acquisition, 291
error macro, 30
Euler angles, 124
event in a hardware loop, 97
exec command, 30, 40
executable pulse sequence code, 50
execute statements conditionally, 73
execute statements repeatedly, 72
execute succeeding statements

if argument nonzero, 163
if argument zero, 173

executing a VNMR command, 40
execution of macros and commands, 19
exists command, 41
exp command, 38
experiment files, 81
experiment increment pointers, 71
experiment-based parameters, 25
expfit command (UNIX), 36
expl command, 36
explicit acquisition, 54, 99, 127
expn directory file, 264
exponential curves, 36
exponential value of a number, 38
expressions, 28
external device interface, 124
external event gating, 248
external timebase, 101
external user devices, 69
external variables, 24
extr directory, 264
extracted 2D planes, 264

F
f3 file, 264
FALSE Boolean value, 29
FDF files

attach header to data file, 274
creating, 274
directory naming convention, 270
format, 270
header format, 271
magic number, 271
splitting data and header parts, 275
transformations of data, 274
why developed, 270

fdf files, 270
fdfgluer command, 274
fdfsplit command, 275
FID complete, 291
FID data, 267
fid file, 264, 267
fid file extension, 263
FID files, 263, 269, 289
FIFO underflow error, 293
file

binary format, 263
existence test, 41
header of binary file, 263
information, 41

Index

302 VnmrJ User Programming 01-999253-00 A0604

protection mode (UNIX), 259
text format, 263

fine attenuators, 65
fine power, 180, 207, 212

control, 64
decoupler, 149
transmitter, 193

fine power routine, 96, 169
fine-grained pulse shaping, 110
first point correction, 268
fixpar macro, 19
flag of a parameter test, 42
flag-type parameter, 278
FLASH pulse sequence, 68
flashc command, 275
flexible data format files. See FDF files
flip between graphics and text windows, 34
flip command, 34
floating constant, 22
floating point, 24
float-type variables, 53
flush command, 264, 268
fm-fm modulation, 216
fn parameter, 268
focus command, 41
format command, 35
format of weighting function, 287
formatting for output, 35
forward slash notation (UNIX), 258
Fourier transform process, 267
fourth decoupler

offset frequency, 143
power level, 146
pulse with receiver gating, 152
quadrature phase, 145

fractions in integer mathematics, 71
framework for pulse sequences, 52
fread command, 281
frequency

control, 63
create frequencies table, 135
offsets table, 136
set based on position, 203
set from position list, 203, 204
set on position, 203
table indexing, 243

frequency and intensity from line list, 33
frequency limits of region, 33
frequency lists, 135
frequency offset lists, 245
frequency offset routine, 93, 169
frequency-type parameter, 278
fsave command, 264, 281
ft command, 267
ft3d command, 264

G
G_Delay general routine, 91, 94, 169
G_Offset general routine, 91, 93, 169
G_Power general routine, 91, 96, 169
G_Pulse general routine, 91, 92, 95, 169
gap command, 41

GARP modulation, 216
gate pulse sequence from an external event, 248
gate statement, 166
gating control statements, 66
Gaussian pulse, 109
gcoil parameter, 120
generic delay routine, 94, 169
generic pulse routine, 92, 169
getarray statement, 124, 166
getelem statement, 79, 166
getfile command, 41
getll command, 33
getorientation statement, 167
getreg command, 33
getstr statement, 52, 88, 168
getval statement, 52, 88, 168
getvalue command, 280
Ggroup, 280, 282
global file, 279
global list, 135, 136

statements, 124
global PSG parameters, 82
global variables, 24, 25
global-type parameter tree, 279
go command, 73
gradaxis parameter, 121
gradient

control, 117
set to specified level, 211
simultaneous shaped, 184
variable angle, 238
variable angle gradient pulse, 239
variable angle shaped gradient, 240
variable angle shaped gradient pulse, 241
waveforms, 102, 104
zero all gradients, 249

gradient function, 174
gradient level set by real-time math, 243
gradient pattern file, 176
gradient pulse, 119

generation, 220
on z channel, 250
simultaneous shaped, 185

gradient statement, 122
gradtables directory, 120
gradtype parameter, 113, 117
graphical display of a sequence, 50
graphical display of pulse sequences, 75
graphical display of statements, 160
graphics display status, 41
graphics window, 34
graphis command, 41
GRD file suffix, 102
grep command (UNIX), 259
gripper abort, 292
group of parameters, 280
groupcopy command, 281

H
half value of integer, 170
half-transformed spectra, 268
hardloop nesting, 99

01-999253-00 A0604 VnmrJ User Programming 303

Index

hardware loop, 96, 164
end of loop, 164
start of loop, 230

hardware phase control, 61
hardware shimming

iniitializing next delay, 170
hardware WALTZ decoupling, 61
hardwired 90° phase, 61
head command (UNIX), 259
header of FDF file, 271
HET2DJ pulse sequence, 116
hidden delay, 111
hidecommand command, 38
high-band nuclei, 58
high-noise signal, 291
high-speed device control, 69
high-speed line propagation delay, 114
hlv statement, 71, 73, 170
HMQC experiment, 57
hom2dj.c sequence listing, 50
HOM2DJT pulse sequence, 81
home directory for user (UNIX), 258
homo parameter, 58, 59
homo2 parameter, 59
homo3 parameter, 59
homodecoupler gating, 59
homonuclear J-resolved pulse sequence, 81
homonuclear-2D-J pulse sequence, 49
homospoil gating, 66, 67, 231
homospoil pulse, 55, 171
host disk errors, 293
hs parameter, 55, 66
hsdelay statement, 55, 67, 98, 171
hst parameter, 55, 67
hwlooping.c module, 61
hypercmplxbhead structure, 266
hypercomplex 2D, 116

I
i2pul.c pulse sequence, 91
id2 pointer, 52, 71, 117
id3 pointer, 52, 71
id4 pointer, 52, 71
idecpulse statement, 58, 172
idecrgpulse statement, 58, 172
idelay statement, 55, 172
identifier, 21, 29
if, then, else, endif conditional form, 30
ifzero statement, 73, 76, 173
image file names, 270
image plane orientation, 167
imaginary component of FID data, 267
imaging module, 117
imaging-related statements, 122
implicit acquisition, 54
implicit expressions, 29
implicitly arrayed delay, 115
inactive parameter, 42
incdelay statement, 55, 173
incgradient statement, 122, 174
incr statement, 71, 175
increment an integer value, 175

increment counts, 52
increment index, 117
incremental delay, 55, 173, 177
incrementing a loop, 31
index out of bounds, 28
indices of an array, 26
indirect detection, 175
indirect detection experiments, 115
indirect statement, 175
info directory, 264
init_gradpattern statement, 124, 176
init_rfpattern statement, 124, 175
init_vscan statement, 124, 177
initdelay statement, 55, 177
initialize incremental delay, 177
initialize parameters for imaging sequences, 178
initialize real-time variable, 177, 178
initialize string variable, 25
initparms_sis statement, 68
initval statement, 73, 178
input arguments, 29
input command, 35
input tools, 34
integ command, 33
integer array stored in AP table, 216
integer mathematical statements, 71
integer values

add, 128
assign, 132
decrement, 150
divide, 160
double, 138
half value, 170
increment, 175
modulo 2, 186
modulo 4, 186
modulo n, 186
multiply, 187
subtract, 233

integer-type parameter, 279
intensity of spectrum at a point, 33
interactive parameter adjustment (IPA), 91

change fine power, 180
change linear modulator power, 180
change offset frequency, 179
delay specified time, 55, 172
fine power control, 65
pulse decoupler, 58, 172
pulse transmitter, 57, 178, 179, 180

interferograms, 268
interincrement delays, 75
internal hardware delays, 111
internal variables, 70
intertransient delays, 75
int-type variables, 53
iobspulse statement, 57, 178
ioffset statement, 63, 179
IPA, See interactive parameter adjustment (IPA)
ipulse statement, 57, 179
ipwrf statement, 65, 180
ipwrm statement, 65, 180
irgpulse statement, 57, 180
ix variable, 51

Index

304 VnmrJ User Programming 01-999253-00 A0604

J
jexp command, 25

K
keyboard entries recording, 40
keyboard focus to VNMR input window, 41
keyboard input, 35
kill command (UNIX), 259
kinetic analyses, 36

L
largest integral in region, 33
last used parameters text file, 264
latching, on PTS synthesizers, 109
length command, 41
length of macros, 31
lib directory, 125
libparam.a object library, 50
libpsglib.a directory, 50, 125
library directory, 125
line frequencies and intensities, 33
line list, 26, 33
linear amplifier systems

decoupler power, 145
power control, 64
power level, 204, 211
stabilization, 58
transmitter power level, 191

linear attenuator used for pulse shaping, 105
linear modulator power, 212
linear modulators, 65
lines in a file, 35
linewidth measurement, 32
link loading, 50
lint command (UNIX), 50
list files in a directory (UNIX), 258
listenoff command, 41
listenon command, 42
listing names of macros, 39
lists

frequency, 135
global, 135, 136
offset, 136

lk_hold statement, 98, 120, 181
lk_sample statement, 98, 120, 181, 183
llamp parameter, 26
llfrq parameter, 26
ln command, 38, 258
loading AP table elements from file, 78, 182
loading AP table statements, 76
loading macros into memory, 20, 39
loadtable statement, 76, 78, 182
local variables, 24, 25, 26, 28
lock correction circuitry, 120

set to hold, 181
set to sample, 181

lock feedback loop, 120
lock level, 42
log directory, 264
log files, 261, 264

logarithm of a number, 38
logical frame, 124
login command, 42
login command (UNIX), 259
login macro, 19, 20, 40
login procedure, 257
logout (UNIX), 260
long-type variables, 53
lookup command, 35
loop

end, 164
multislice end, 164
multislice start, 187
phase-encode end, 165
phase-encode start, 198
start, 182
statements, 124
types, 31

loop statement, 72, 96, 109, 182
low-band nuclei, 58
low-core acquisition variables, 74
lower shell script, 262
low-noise signal, 291
lp command (UNIX), 259
ls command (UNIX), 258

M
maclib directory, 19
maclibpath parameter, 19
macro

automatic execution, 20, 282
calling a macro in a loop, 21
clear system macro, 21
concept, 17
defined, 17
directory, 19
editing, 20
execution, 19
existence test, 41
faster execution, 20
files, 19
loading into memory, 20
output to variables, 20
parsing, 20
passing information, 25
remove from memory, 21
VNMR activation, 42

macro name list, 39
macro parameter, 19
macro tracing, 32
macrocat command, 38, 39
macrocp command, 39
macrodir command, 39
macroedit macro, 20, 39
macrold command, 20, 21, 39
macrorm command, 39
macros.h file, 92
macrosyscat command, 39
macrosyscp command, 39
macrosysdir command, 39
macrosysrm command, 39
macrovi command, 20, 39

01-999253-00 A0604 VnmrJ User Programming 305

Index

magic number, 271
MAGICAL language defined, 17
MAGICAL language features, 21
magradient statement, 183
magradpulse statement, 121, 122, 184
mail command (UNIX), 259
makefid command, 289
man command (UNIX), 259
manual directory, 54
manual entry (UNIX), 259
MARK button, 33
mark command, 33
MAS rotor, 213
mashapedgradient statement, 122, 184
mashapedgradpulse statement, 185
mathematical expression, 28
mathematical functions, 37
matrix arithmetic, 23
matrix transposition, 269
maximum value of parameter, 281
maxpk macro, 31
MAXSTR dimension, 53
mean of data in regression.inp, 36
memory usage by VNMR commands, 270
memory usage statistics, 40
MEMS pulse sequence, 68
memsize parameter (UNIX), 264
message confirmation by mouse, 34
message display with large characters, 34
mf command, 276
mfblk command, 276
mfdata command, 276
mftrace command, 276
microimaging pulse sequences, 120
minimum value of parameter, 281
mkdir command (UNIX), 258
MLEV-16 modulation, 216
mod2 statement, 71, 186
mod4 statement, 71, 186
modn statement, 71, 186
modulation frequency, 216
modulation frequency change delay, 112
modulation mode change delays, 112
modulo 2 integer value, 186
modulo 4 integer value, 186
modulo n integer value, 186
modulo number, 71
move data in FID file, 276
move FID commands, 276
moving files into a directory, 259
MREV-type sequences, 99
msloop statement, 124, 187
mstat command, 40, 270
mult statement, 71, 187
multidimensional NMR, 115
multiple command separator (UNIX), 258
multiple FID acquisition, 100
multiple trace or arrayed experiments, 269
multiply AP table by second AP table, 236
multiply integer values, 187
multiply integer with AP table elements, 235
multislice loops, 124, 187
multiuser protection, 261
mv command (UNIX), 258, 259

N
n1-n3 parameters, 25
name replacement, 29
natural logarithm of a number, 38
nested macros, 31
nested multiple hardloops, 99
nf parameter, 100
ni parameter, 71
ni2 parameter, 71
ni3 parameter, 71
nll command, 33
NMR algorithms, 17
NMR language, 17
noise modulation, 216
np parameter, 293
nrecords command, 35
nth2D variable, 198
null string, 25
number of arguments, 29
numeric parameter value lookup, 88, 168
numreg command, 33

O
object code, 50
object file, 125
object libraries, 50
obl_gradient statement, 188
obl_shapedgradient statement, 189
oblique gradient, 188
oblique gradient statements, 124
oblique gradient with phase encode in 1 axis, 195,

199
oblique gradient with phase encode in 2 axes, 195
oblique gradient with phase encode in 3 axes, 196,

200
oblique shaped gradient with phase encode in 1 axis,

196, 200
oblique shaped gradient with phase encode in 2 axes,

197
oblique shaped gradient with phase encode in 3 axes,

198, 201
oblique_gradient statement, 124, 188
oblique_shapedgradient statement, 189
obs_mf parameter, 67
obsblank statement, 191
OBSch device, 135, 136
observe channel gating, 223
observe transmitter modulation, 215
observe transmitter power, 191
observe transmitter pulse, 55
obsoffset statement, 64, 191
obspower statement, 65, 98, 191
obsprgoff statement, 113, 192
obsprgon statement, 68, 107, 113, 192
obspulse statement, 56, 93, 98, 192
obspwrf statement, 65, 98, 113, 193
obsstepsize statement, 62, 193
obsunblank statement, 193
off command, 42
offset frequency, 142, 179, 191
offset lists, 136
offset macro, 29

Index

306 VnmrJ User Programming 01-999253-00 A0604

offset statement, 63, 94, 98, 113, 194
offset table, 245
on command, 42
one pointer, 71
operators, 22
oph variable, 61, 70, 100
order of precedence, 22
orientation of image plane, 167
Output boards, 53, 103, 128
output from commands and macros, 20
output to various devices, 36
output tools, 34
overhead delays, 122
overhead operations, 75
override internal software AP bus delay, 129

P
pap command, 286
par2d macro, 115
par3d macro, 115
par4d macro, 115
paramedit command, 280, 284
parameter

attributes, 281
create new parameter, 279
enumerable values, 282
maximum value, 281
minimum value, 281
table, 52
template, 284
trees, 278
typical parameter file, 282
values, 282

parameters
accessing the value, 280
arrayed parameter values, 166
as global variables, 25
as variables, 18
categories, 82
change type, 280
conditional display, 285
display field width, 286
display formats, 286
display values in text window, 34
editing attributes, 280
existence test, 41
get value, 280
global PSG parameters, 82
look up value, 88
plotting automatically, 34
protection bit, 19
protection bits, 280
set up for pulse sequence, 35
spectroscopy imaging sequences, 178
step size, 282
types, 278
user created, 88

parameters retrieved from a parameter file, 42
paramvi command, 280, 281, 284
parent directory (UNIX), 258
parentheses (...) notation, 28
parlib directory, 35

parmax parameter, 281
parmin parameter, 281
parsing macros, 20
parstep parameter, 282
pattern scanning and processing (UNIX), 259
Pbox, 101
pe_gradient statement, 124, 195
pe_shapedgradient statement, 196
pe2_gradient statement, 195
pe2_shapedgradient statement, 197
pe3_gradient statement, 196
pe3_shapedgradient statement, 198
peak command, 18, 20, 34
peak width of solvent resonances, 43
peloop statement, 124, 198
Performa XYZ PFG module, 120
pexpl command, 36
PFG (pulsed field gradient), 120
phase angle, 102
phase calculation, 70
phase carryover, 62
phase control, 70
phase cycle storage, 76
phase cycling, 81
phase encode loops, 124
phase file in the current experiment, 269
phase parameter, 116
phase step size, 232
phase_encode_gradient statement, 124, 199
phase_encode_shapedgradient statement, 200
phase_encode3_gradient statement, 200
phase_encode3_shapedgradient statement, 201
phase1 integer, 116
phase1 variable, 52
phase2 parameter, 116
phase3 parameter, 116
phased 2D data storage, 269
phased spectral information, 264
phased spectrum, 268
phase-encode loop, 165, 198
phasefile file, 264, 268, 269
phase-pulse technique, 202
phase-related statements, 60
phase-sensitive 2D NMR, 116, 267
phaseshift statement, 202
phi angle, 122
phi parameter, 124, 189
pipe, 259
plotif macro, 31
plotting curves, 36
pmode parameter, 264
poffset statement, 124, 203
poffset_list statement, 124, 203
pointer to memory, 70
pointers to constants, 71
poly0 command, 36
polynomial curves, 36
position list, 203, 204
position statements, 124
position_offset statement, 124, 203
position_offset_list statement, 124, 204
position-based frequency, 203
power control statements, 64
power level of shaped pulse, 109

01-999253-00 A0604 VnmrJ User Programming 307

Index

power statement, 64, 65, 98, 109, 111, 113, 204
ppm of solvent resonances, 43
preacquisition and acquisition steps, 54
precedence of operators, 22
presaturation, 65
print files (UNIX), 259
probe damage caution, 65
procdat file, 264
process status (UNIX), 259
processed-type parameter tree, 279
procpar file, 264, 267, 270, 271, 279
procpar3d file, 264
program execution, 18
programmable control of transmitter, 192
programmable control statements, 106
programmable decoupling

ending, 146
starting, 147

programmable phase and amplitude control, 107
programmable pulse modulation, 216
programming

imaging pulse sequences, 120
Performa XYZ PFG module, 120

prompt for user input, 35
propagation delay, 114
protection bits, 19, 280, 282
prune command, 281
ps command (UNIX), 259
psg directory, 125
psg macro, 73
psggen shell script, 125
psglib directory, 49
psgset command, 35
psi parameter, 124, 189
PTS synthesizers with latching, 109
pulse channels simultaneously, 223, 224
pulse control, 101
pulse decoupler, 148
pulse decoupler with IPA, 172
pulse decoupler with receiver gating, 150
pulse four channels simultaneously, 225
pulse interval time, 107
pulse observe transmitter, 55
pulse program buffer, 96
pulse routine, 169
pulse sequence control statements, 72
Pulse Sequence Controller board, 128
pulse sequence gated from external event, 248
pulse sequence generation (PSG), 51

directory, 49
statement categories, 54

pulse sequences
compiling, 50
execution control, 70
files, 49
general form, 52
graphical display, 50, 75
imaging, 120
internal hardware delays, 111
object code, 52
object file, 125
parameter set up, 35
programming, 49
synchronization, 100

pulse shape definitions, 102
pulse shaping programming, 101
pulse shaping through AP bus, 105
pulse shaping via AP bus, 110, 130, 131
pulse statement, 56, 93, 98, 205
pulse transmitter with IPA, 178, 179, 180
pulse transmitter with receiver gating, 192, 205, 210
pulse width array, 26
Pulsed Field Gradient module, 117
pulsed field gradient module, 120
pulseinfo macro, 108
pulsesequence function, 52, 74
pulsesequence.o file, 125
pulse-type parameter, 279
pulsing channels simultaneously, 59
pulsing the decoupler transmitter, 57
purge command, 21, 40
pw parameter, 56, 293
pwd command, 259
pwrf statement, 65, 98, 109, 113, 207
pwrm statement, 65, 109, 207
pwsadj macro, 107

Q
quadrature detection, 267
quadrature phase, 61
quadrature phase of decoupler, 144, 145
quadrature phase of transmitter, 237
quadrature phase shift, 60
question mark (?) character, 259
quotation mark ("...") notation, 18

R
r1, r2, ... r7 parameters, 25, 26
rcvroff statement, 68, 208
rcvron statement, 68, 208
read parameters from a file, 281
readlk command, 42
readuserap statement, 69
real command, 24
real component of FID data, 267
real number formatting for output, 35
real parameters, 25
real-number arguments, 53
real-time gradient statements, 122
real-time incremental delay, 55, 173
real-time statements, 73
real-time variables, 53, 70, 72, 178
real-type parameter, 278, 280
real-type variables, 24
receiver

default state, 178
gating, 56, 68, 192, 205, 210
mode, 61
phase, 61
phase control, 70
phase cycle, 215
turn off, 209
turn on, 208

receiver gate, 208, 210

Index

308 VnmrJ User Programming 01-999253-00 A0604

receiver overflow warning, 291
recoff statement, 209
recon statement, 210
record macro, 40
records in file, 35
rectangular pulse, 109
recursive calls, 19
redefinition warning, 52
reference to statements, 127
reformatting data for processing, 275
reformatting spectra, 278
regions in spectrum, 33
regression analysis, 36, 37
regression.inp file, 36
removing an empty directory (UNIX), 258
removing macros, 39
removing macros from memory, 40
renaming a directory (UNIX), 258
renaming a file (UNIX), 258
repeat, until loop, 31
reserved words, 21
resto parameter, 203
retrieve element from AP table, 79, 166
retrieving individual parameters, 42
return command, 31
returning a value, 31
reverse a spectrum, 278
reverse FID commands, 276
reverse order of data, 276
rf channels control, 115
RF file suffix, 102
RF monitor errors, 293
rf pattern file, 175
rf pulse shapes, 101
rf pulses waveforms, 102
rf shape file, 102
rfblk command, 276
rfchannel parameter, 57, 115
rfdata command, 276
rftrace command, 276
RG1 and RG2 delays, 55, 58
rgpulse statement, 55, 76, 97, 98, 210
rgradient statement, 113, 118, 120, 121, 211
rinput command, 37
rlpower statement, 211
rlpwrm statement, 65, 109, 212
rm command (UNIX), 258
rmdir command (UNIX), 258
rof1 parameter, 56
rof2 parameter, 56
root directory (UNIX), 258
rotor control statements, 101
rotor period, 101, 213
rotor position, 213
rotorperiod statement, 101, 213
rotorsync statement, 101, 213
RS-232 cable, 291
rsapply command, 278
rt command, 19, 25, 289
rtp command, 19, 25
rtv command, 19, 42
run program in background, 260
run-time statements, 73

S
sample changer

errors, 292
saved display file, 264
scalelimits macro, 36, 37
scalesw parameter, 40
scaling factors for axis, 40
SCSI errors, 293
searching a text file, 35
searching files for a pattern (UNIX), 259
second decoupler

blank associated amplifier, 140
fine power, 149
fine power adjustment, 65
gating, 68
homodecoupler gating, 59
offset frequency, 63, 64, 142
phase control, 62
power adjustment, 65
power level, 145
programmable decoupling, 146, 147
pulse shaping via AP bus, 130
pulse with receiver gating, 151
quadrature phase, 144
shaped pulse, 154
simultaneous pulses, 60
small-angle phase, 139
spin lock waveform control, 156
step size, 158
turn off, 142
turn on, 143
unblank decoupler, 159

select command, 34
semicolon (;) notation, 52
semicolon (;) notation (UNIX), 258
SEMS pulse sequence, 68
send mail to other users (UNIX), 259
send2Vnmr command (UNIX), 42
separators, 24
seqcon parameter, 124, 187
seqgen command, 50, 51, 73
seqgen command (UNIX), 50
seqlib directory, 50, 73
set2d macro, 115
set3dproc command, 264
setautoincrement statement, 79, 214
setdgroup command, 280
setdivnfactor statement, 79, 214
setenumeral command, 278, 280
setgroup command, 280
setlimit command, 24, 280
setprotect command, 280
setreceiver statement, 70, 79, 100, 215
setstatus statement, 66, 67, 112, 215
settable statement, 76, 78, 216
settype command, 280
setuserap statement, 69
setuserpsg shell script, 125
setvalue command, 280, 289
sh2pul macro, 102
shaped gradient, 241

pulse generation, 218, 219, 222
variable angle, 240

shaped oblique gradient, 189

01-999253-00 A0604 VnmrJ User Programming 309

Index

shaped pulse
decoupler, 153
delays, 114
information, 108
on transmitter, 217
simultaneous three-pulse, 226
simultaneous two-pulse, 225
time truncation error, 107
using attenuators, 108
waveform generator control, 105

shaped two-pulse experiment, 102
shaped_pulse statement, 104, 110, 113, 217
shaped2Dgradient statement, 219
shapedgradient statement, 119, 122, 218
shapedincgradient statement, 122, 220
shapedvgradient statement, 122, 222
shapelib directory, 102, 129, 218
shell command, 42, 260, 261
shell scripts, 261
shimming

errors, 292
short-type variables, 53
signal-to-noise measurement, 32, 33
sim3pulse statement, 60, 98, 224
sim3shaped_pulse statement, 106, 113, 226
sim4pulse statement, 60, 225
simpulse statement, 59, 98, 223
simshaped_pulse statement, 113, 225
simultaneous gradient, 183
simultaneous pulses, 59, 60
simultaneous shaped gradient, 184
simultaneous shaped gradient pulse, 185
sin command, 38
sine value of angle, 38
single period notation (UNIX), 258
single quotes ('...') notation, 19, 22
size operator, 22, 26
SLI board, 227, 246
SLI lines

set from real-time variable, 246
setting lines, 227

sli statement, 124, 227
slider action, 95
SLIDER_LABEL attribute, 91, 95
small-angle phase increment, 62
small-angle phase of decoupler, 139, 140
small-angle phase of transmitter, 249
small-angle phase shifts, 61
small-angle phase step size, 232
sn file, 264
soft loop, 96, 109
solppm command, 43
solvent resonances, 43
sort command (UNIX), 258
sort files (UNIX), 258
source code, 49, 125
sp#off statement, 69, 229
sp#on statement, 69, 229
SPARE 1 connector, 69
spare line gating, 229
spare lines, 69
spectral analysis tools, 32
spectrometer control statements, 54
spectrometer differences, 49

spectroscopy imaging sequences, 178
spectrum gap, 41
spectrum intensity at a point, 33
spectrum selection without display, 34
spell command (UNIX), 259
spelling errors check (UNIX), 259
spin lock control on transmitter, 229
spin lock control statements, 107
spin lock waveform control on decoupler, 156
spinlock statement, 108, 113, 229
spinner errors, 291
sqrt operator, 22
square brackets ([...]) notation, 26
square brackets notation, 286
square root, 22
square wave modulation, 216
ss parameter, 70, 74
ssctr real-time variable, 71, 74
ssval real-time variable, 71, 74
standard data format, 275
standard deviation of input, 37
standard PSG variables, 52
standard.h file, 52, 92
start loop, 182
starthardloop statement, 97, 230
status of transmitter or decoupler, 215
status statement, 66, 75, 98, 112, 114, 231
statusdelay statement, 67, 75
steady-state phase cycling, 74
steady-state pulses, 74
step size

decoupler, 158
parameters, 282
transmitter, 193

steps in shaped pulse, 108
stepsize statement, 139, 232
store array in AP table, 78
stored format of a parameter, 281
storing multiple traces, 269
string command, 25
string constant, 22
string formatting for output, 35
string length, 41
string parameter value lookup, 88, 168
string parameters, 25
string template, 284
string variables, 24, 25
strings displayed in text window, 34
string-type parameter, 278, 280
sub statement, 71, 233
substr command, 43
substring from a string, 43
subtract AP table from second AP table, 237
subtract integer from AP table elements, 235
subtract integer values, 233
sum of integer values, 128
sum-to-memory error, 293
Sun manuals, 257
svfdf macro, 274
svib macro, 274
svsis macro, 274
swapping rf channels, 57
swept-square wave modulation, 216
synchronization of a pulse sequence, 101

Index

310 VnmrJ User Programming 01-999253-00 A0604

synchronous decoupling, 216
Synchronous Line Interface (SLI) board, 124, 227,

246
sysgcoil parameter, 120
sysmaclibpath parameter, 19
system identification, 259
system macro, 39
system macro library, 19
systemglobal-type parameter tree, 279

T
T1 analyses, 36
t1–t60 table names, 77
T2 analyses, 36
T2PUL pulse sequence, 80
tabc command, 278
table names, 77
table of delays, 134
table of frequencies, 135
table of frequency offsets, 136
tablib directory, 77
tail command (UNIX), 259
tallest peak in region, 34
tan command, 38
tangent value of angle, 38
tape backup (UNIX), 258
tar command (UNIX), 258
tcapply command, 278
template parameters, 284
temporary variables, 18, 21, 24, 25
terminating a calling macro, 32
terminating zero, 91
test4acq procedure, 61
text display status, 43
text editor, 260
text file, 264
text file lookup, 35
text format files, 263
text window, 34
textedit command (UNIX), 259, 260
textis command, 43
thermal shutdown, 56
theta angle, 122
theta parameter, 124, 189
third decoupler

blank associated amplifier, 141
fine power, 150
fine power adjustment, 65
gating, 68
homodecoupler gating, 59
offset frequency, 63, 64, 142
phase control, 62
power adjustment, 65
power level, 146
programmable decoupling, 147, 148
pulse with receiver gating, 152
quadrature phase, 144
shaped pulse, 155
simultaneous pulses, 60
small-angle phase, 140
spin lock waveform control, 157
step size, 158

turn off, 142
turn on, 144
unblank amplifier, 159

three pointer, 71
three-pulse pulse, 60
three-pulse shaped pulse, 106, 226
tilde character notation (display templates), 286
tilde character notation (UNIX), 258
time increments, 53
time-sharing pulse shaping, 109
timing in a pulse sequence, 75
tip angle, 103
TODEV constant, 57
tof parameter, 63
token defined, 21
total weighting vector, 287
TPPI experiments, 117
TPPI phase increments, 51
tpwr parameter, 65, 111
transformations of FDF data files, 274
transformed complex spectrum storage file, 264
transformed phased spectrum storage file, 264
transformed spectra storage files, 263
transient blocks, 70
transmitter

blanking, 191
fine power, 193, 207, 212
fine power adjustment, 65
fine power with IPA, 180
gating, 68, 103, 248
hardware control of phase, 61
linear modulator power, 207, 212
linear modulator power with IPA, 180
offset frequency, 63, 191, 194
phase control, 60, 62
power adjustment, 64
power level, 191, 205, 211
programmable control, 107, 192
pulse shaping via AP bus, 131
pulse with IPA, 178, 179, 180
pulse with receiver gating, 192, 205, 210
pulse-related statements, 55
quadrature phase, 237
set status, 215
shaped pulse, 104, 217
simultaneous pulses, 59
small-angle phase, 249
small-angle phase step size, 232
spin lock control, 108, 229
step size, 193
unblank, 193

troubleshooting
acquisition status codes, 54

troubleshooting a new sequence, 51
TRUE Boolean value, 29
trunc operator, 22
truncate real number, 22
tsadd statement, 79, 234
tsdiv statement, 80, 234
tsmult statement, 79, 235
tssub statement, 79, 235
ttadd statement, 80, 81, 235
ttdiv statement, 80, 236
ttmult statement, 80, 236

01-999253-00 A0604 VnmrJ User Programming 311

Index

ttsub statement, 80, 237
two attenuators system, 111
two periods notation (UNIX), 258
two pointer, 71
two-pulse pulse, 60
two-pulse sequence T2PUL, 80
two-pulse shaped pulse, 105, 225, 227
txphase statement, 60, 63, 98, 237, 239
type of parameter, 280
typeof operator, 22, 29
types of parameters, 278, 281

U
U+ H1 Only label, 115
uname command (UNIX), 259
unblank amplifier, 68, 158
underline prefix, 19
uniform excitation, 65
uninitialized variable, 52
unit command, 43
units command (UNIX), 259
UNIX

commands, 258
file names, 258
manuals, 257
operating system, 257
shell, 260
shell programming, 262
shell startup, 42
text commands, 259
text editor, 260
tools, 257

updtgcoil macro, 121
user AP lines, 69
user AP register, 209, 216, 246
user device interfacing, 69
user library, 49, 110
user macro, 38
user macro directory, 19
user-created parameters, 88
user-customized pulse sequence generation, 125
user-written weighting function, 287

V
v1, v2, ... v14 real-time variables, 53, 70
vagradient statement, 238
vagradpulse statement, 121, 122, 239
values of a parameter, 282
variable angle gradient, 238
variable angle gradient pulse, 239
variable angle shaped gradient, 240
variable angle shaped gradient pulse, 241
variable declaration, 25, 53
variable gradient pulse generation, 220
variable scan, 245
variable shaped gradient pulse generation, 222
variable types, 24
variables using parameters, 18
vashapedgradient statement, 122, 240
vashapedgradpulse statement, 122, 241

vbg shell script (UNIX), 261
vdelay statement, 55, 241
vdelay_list statement, 124, 242
vertical bar notation (UNIX), 259
vfreq statement, 124, 243
vgradient statement, 113, 118, 122, 243
vi command (UNIX), 259, 260
vi command (VNMR), 260
vi text editor, 280
VNMR

macros executed at startup, 40, 42
software package, 257
source code license, 265

Vnmr command (UNIX), 260
VNMR Command and Parameter Reference manual,

18
vnmr_confirmer command, 35
vnmreditor variable (UNIX), 20
VnmrJ

background processing, 261
vnmrsys directory, 19, 50
voffset statement, 124, 245
vsadj macro, 18
vscan statement, 124, 245

initialize variable, 177
vsetuserap statement, 69
vsli statement, 124, 246
vsmult macro, 29
VT errors, 291
vttime parameter, 291

W
w command, 260
w command (UNIX), 259
WALTZ decoupling, 61
WALTZ-16 modulation, 216
warning error codes, 291
warning messages, 51
waveform generation, 216
waveform generator control, 105, 106, 107
waveform generator delays, 112
waveform generator gate, 103
waveform generators, 101
waveform initialization statements, 124
wbs command, 54
weighting function, 268, 287
werr command, 54
wexp command, 54
WFG_OFFSET_DELAY macro, 114
WFG2_OFFSET_DELAY macro, 114
WFG3_OFFSET_DELAY macro, 114
which macro, 19
while, do, endwhile loop, 31
who is on the system (UNIX), 259
wildcard character (UNIX), 259
wnt command, 54
working directory (UNIX), 258
write command, 36
writing parameter buffers into disk files, 264
wtcalc function, 287
wtf file extension, 287
wtfile parameter, 287, 288

Index

312 VnmrJ User Programming 01-999253-00 A0604

wtfile1 parameter, 287
wtfile2 parameter, 287
wtgen shell script, 287, 288
wti command, 287
wtlib directory, 287, 288
wtp file extension, 287

X
X channel, 267
xgate statement, 101, 248
xmtroff statement, 68, 248
xmtron statement, 68, 248
xmtrphase statement, 62, 63, 98, 113, 249
XY32 modulation, 216

Y
Y channel, 267

Z
z channel gradient pulse, 250
zero acquired data table, 99
zero all gradients, 249
zero data in acquisition processor memory, 133
zero fill data, 268
zero pointer, 71
zero_all_gradients statement, 249
zgradpulse statement, 113, 119, 121, 250

	Online Menu

	Overview of Contents
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. MAGICAL II Programming
	1.1 Working with Macros
	1.2 Programming with MAGICAL
	1.3 Relevant VnmrJ Commands

	Chapter 2. Pulse Sequence Programming
	2.1 Application Type and Execpars Programming
	2.2 Overview of Pulse Sequence Programming
	2.3 Spectrometer Control
	2.4 Pulse Sequence Statements: Phase and Sequence Control
	2.5 Real-Time AP Tables
	2.6 Accessing Parameters
	2.7 Using Interactive Parameter Adjustment
	2.8 Hardware Looping and Explicit Acquisition
	2.9 Pulse Sequence Synchronization
	2.10 Pulse Shaping
	2.11 Shaped Pulses Using Attenuators
	2.12 Internal Hardware Delays
	2.13 Indirect Detection on Fixed-Frequency Channel
	2.14 Multidimensional NMR
	2.15 Gradient Control for PFG and Imaging
	2.16 Programming the Performa XYZ PFG Module
	2.17 Imaging-Related Statements
	2.18 User-Customized Pulse Sequence Generation

	Chapter 3. Pulse Sequence Statement Reference
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X
	Z

	Chapter 4. UNIX-Level Programming
	4.1 UNIX and VnmrJ
	4.2 UNIX: A Reference Guide
	4.3 UNIX Commands Accessible from VnmrJ
	4.4 Background VNMR
	4.5 Shell Programming

	Chapter 5. Parameters and Data
	5.1 VnmrJ Data Files
	5.2 FDF (Flexible Data Format) Files
	5.3 Reformatting Data for Processing
	5.4 Creating and Modifying Parameters
	5.5 Modifying Parameter Displays in VNMR
	5.6 User-Written Weighting Functions
	5.7 User-Written FID Files

	Appendix A. Status Codes
	Index

